Aleksandar Milenkoski
email: amilenkoski@ernw.de

Dominik Phillips
email: dphillips@ernw.de

Device Guard Image Integrity: Architecture Overview

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows

Introduction

The Device Guard component of Windows 10 implements a feature for preventing the execution of untrusted code. Untrusted code is program code whose integrity and authenticity cannot be verified. For example, this is code that has been tampered with in an unauthorized manner, or originates from untrusted sources.

Device Guard implements a feature referred to as configurable code integrity. Configurable code integrity takes user-defined criteria into account in order to verify images, that is, to allow only specific images -executable files -to execute. 1 These criteria may involve cryptographic information (e.g., hash values) or non-cryptographic information (e.g., file names). In addition to configurable code integrity, Windows 10 implements code integrity functionalities that do not take user-defined criteria into account. These are implemented as part of the Windows boot manager, the Windows loader, and the kernel. This work refers to these functionalities as nonconfigurable code integrity. When enabled, the VSM feature -hypervisor code integrity (HVCI), protects configurable and non-configurable code integrity functionalities by executing them in the secure environment. If the Unified Extensible Firmware Interface (UEFI) is present, the UEFI SecureBoot feature may be deployed for the verification of the integrity of the UEFI firmware and the Windows boot entities, the boot manager and the Windows loader.

The configurable code integrity features can be structured into two categories: user-mode code integrity (UMCI) and kernel-mode code integrity (KMCI) ([YIRS17], Chapter 7). UMCI is for entities that operate in user-mode, such as user applications and services. KMCI is for entities that operate in kernel-mode. This includes the kernel and its extensions, such as drivers. The UMCI and KMCI implementations of the configurable code integrity feature are also known as Windows Defender Application Control (WDAC).

Architecture Overview

Figure 1 depicts a compact overview of the architecture of the Device Guard and Windows 10 code integrity features. Configurable code integrity is based on user-defined rules. Among other things, these rules may specify file names, file versions, and hashes of images. An image is verified based on comparing rule-specified data with relevant data associated with the image. For example, a rule may specify the image's hash value. When the image is verified, Windows compares the rule-specified hash value with a hash value that it has calculated. In the case of a mismatch, the image may not be allowed to execute. User-defined rules are stored in a policy file, referred to as WDAC policy in this work (Policy file in Figure 1). This file is written in the Extensible Markup Language (XML) format and then converted into binary format for deployment. The WDAC policy can be digitally signed in order to prevent modifications after it is deployed. In addition, the TPM measures WDAC policies for integrity measurement purposes.

A WDAC policy consists of rules grouped into sections. In a WDAC policy, a user may define:

• policy rule options (Rule options in Figure 1): Policy rule options configure the overall functionality of WDAC. An example is the Enabled: UMCI option, which enables UMCI. • file rules (File rules in Figure 1): File rules configure verification for images. This configuration is done based on associating a specific level with file rules. Such levels specify at what level a given image is trusted. This work refers to these levels as policy levels. The policy levels make WDAC highly configurable and allow for administrators to decide on a trade-off between policy manageability and verification strictness. For example, in contrast to FileName, the policy level Hash reports any modification of a file's content. However, the policy in which this level is specified has to be updated every time the content of the file is modified. This makes Hash an operationally challenging policy level for verifying files that are frequently modified. This option allows for modifications to an already deployed WDAC policy to be applied without system reboot. By default, for changes to a deployed WDAC policy to take effect, the system at which the policy is deployed has to be rebooted. Table 1

Policy rule option Description

: Policy rule options

Policy level Description Hash

This level verifies an image based on the image's hash value.

FileName

This level verifies an image based on the image's name. This name is stored as part of the image as an image property.

LeafCertificate

This level verifies an image based on a hash value of a portion of the certificate issued to the image's signer. This certificate is the leaf of the certificate chain used to sign the image.

PcaCertificate

This level verifies an image based on a hash value of a portion of the certificate that is at the highest position in the certificate chain used to sign the image, with the exception of the root certificate. This is the certificate below the root certificate in the certificate chain. We refer to it as the PCAcertificate.

RootCertificate

Currently not supported.

Publisher

This level verifies an image based on a hash value of a portion of the PCAcertificate and the common name (CN) field of the leaf certificate in the certificate chain used to sign the image. This level is a combination of the PcaCertificate level with a verification based on the previously mentioned CN field.

SignedVersion

This level verifies an image based on a hash value of a portion of the PCAcertificate, the CN field of the leaf certificate in the certificate chain used to sign the image, and the image's file version. The image's file version has to be at, or above, a minimum version specified in the WDAC policy. This level is a combination of the Publisher level with a verification based on the image's file version.

FilePublisher

This level verifies an image based on its name, a hash value of a portion of the PCAcertificate, the common name (CN) field of the leaf certificate in the certificate chain used to sign the image, and the image's file version. The configurable and non-configurable code integrity features implement functionalities in the boot manager, the Windows loader, and the Windows kernel. In the context of the boot manager and the Windows loader, code integrity functionalities are implemented as part of their executables. In the context of the Windows kernel, code integrity functionalities are implemented as kernel routines in external library files. If the VSM feature HVCI is disabled, code integrity functionalities are executed in the context of the ci.dll library file. This file is loaded by the ntoskrnl.exe executable, which implements the normal kernel (Normal kernel in Figure 1). The ci.dll library file exposes an interface of functions to the kernel for use.

If HVCI is enabled, Windows routes code integrity functionalities to the secure environment, that is, to the virtual trust level (VTL) 1, for execution (VTL 0, VTL 1, and VTL context switch in Figure 1). Code integrity functionalities are then executed in the context of the skci.dll library file. This prevents attackers that have gained access to the normal environment to tamper with code integrity functionalities. skci.dll is loaded by the securekernel.exe executable, which implements the secure kernel (Secure kernel in Figure 1).

Figure 1 :

 1 Figure 1: The architecture of the Device Guard and Windows 10 code integrity features

Figure 2

 2 Figure2depicts the placement of a WDAC policy stored in the binary file C:\Users\ernw\Desktop\DeviceGuard-Policy.bin. This file is deployed by configuring the Administrative Templates\System\Device Guard group policy with the Group Policy Object Editor utility. Once a user configures this group policy, the Group Policy Object Editor utility loads the dggpext.dll library file and invokes the InstallConfigCIPolicy function. This function copies the content of DeviceGuardPolicy.bin to the %System%\System32\CodeIntegrity\SIPolicy.p7b and the \EFI\Microsoft\Boot\SIPolicy.p7b file, depending on the presence of UEFI. The analysis presented in this work was conducted on a platform where UEFI is not present.

Figure 2 :

 2 Figure 2: Placement of a WDAC policy

 Table 1 lists the different policy rule options and provides descriptions. The descriptions presented in Table 1 are based on the informa-

tion available at https://docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-codeintegrity-policies-policy-rules-and-file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].

 Table 2 lists the different policy levels and provides descriptions. The descriptions presented in Table 2 are based on the information available at https:// docs.microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policyrules-and-file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].The policy rule options and policy levels that are available on a given Windows 10 instance can be observed by investigating the policy XML schema. The schema is stored in the Windows\schemas\CodeIntegrity\cipolicy.xsd file. Table1and Table2present only the information about policy rule options and levels available at https://docs.

	microsoft.com/en-us/windows/device-security/device-guard/deploy-code-integrity-policies-policy-rules-and-
	file-rules#code-integrity-file-rule-levels [Retrieved: 17/7/2018].

Table 2 :

 2 This level is a combination of the SignedVersion level with a verification based on the image's name. WHQL This level allows an image to execute if it has been signed by the WHQL. WHQLPublisher This level allows an image to execute if it has been signed by the WHQL and verified based on the CN field of the leaf certificate in the certificate chain used to sign the image. This level is a combination of the WHQL level with a verfication based on the previously mentioned CN field. WHQLFilePublisher This level allows an image to execute if it has been signed by the WHQL, verified based on the CN field of the leaf certificate in the certificate chain used to sign the image, and verified based on the image's file version. The image's file version has to be at, or above, a minimum version specified in the WDAC policy. This level is a combination of the WHQLPublisher level with a verfication based on the image's file version. Policy levels Once a WDAC policy in XML format is converted into binary format, it can be deployed. For example, the group policy at the Administrative Templates\System\Device Guard policy path may be used for policy deployment. Windows 10 stores WDAC policies in the SIPolicy.p7b file. On non-UEFI platforms, Windows 10 places the SIPolicy.p7b file in the %System%\System32\CodeIntegrity\ directory. On UEFI-based platforms, Windows 10 places the SIPolicy.p7b file additionally in the \EFI\Microsoft\Boot\ directory of the boot partition.

https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/ [Retrieved: 17/7/2018] amilenkoski.client.ernw.net

2019-10-25 11:50:04

https://insider.windows.com/en-us/ [Retrieved: 17/7/2018]

http://download.microsoft.com/download/5/D/B/5DBEBA38-8D5D-4119-B2E8-B8369B74BF43/system_center_configuration_ manager_and_microsoft_intune_datasheet.pdf [Retrieved: 17/7/2018]

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

operating system. For general inquiries contact Aleksandar Milenkoski