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Abstract—Children with Attention Deficit Hyperactivity Dis-
order (ADHD), present different symptoms binding for everyday
life, e.g. difficulty to be focused, impulsiveness, difficulty to
regulate motor functions, etc. The most commonly prescribed
treatment is the medication that can present side effects. Another
solution is behavioural treatment that does not seem to present
better results than medication for a higher cost. A novel method
with growing interest is the use of neurofeedback (NF) to teach
the patient to self-regulate symptoms by herself, through the
visualisation of the brain activity in an understandable form.
Moreover, virtual reality (VR) is a supportive environment for
NF in the context of ADHD. However, before proceeding the
NF, it is important to determine the features of the physiological
signals corresponding to the symptoms’ appearance. We present
here a novel framework based on the joint measurement of
electroencephalogram (EEG) and sight direction by equipment
that can be embedded in VR headset, the goals being to estimate
attentional state. In parallel to the signal acquisition, attentional
tasks are performed to label the physiological signals. Features
have been extracted from the signals and machine learning
(ML) models have been applied to retrieve the attentional state.
Encouraging results have been provided from the pilot study with
the ability to make the right classification in multiple scenarios.
Moreover, a dataset with the labelled physiological signals is
under development. It will help to have a better understanding
of the mechanism behind ADHD symptoms.

Keywords—Virtual-Reality, Eye-tracking, Brain-Computer In-
terface, Machine Learning

I. INTRODUCTION

Nowadays Attention Deficit Hyperactivity Disorder |,
ADHD, is one of the most prevalent mental disorder in
childhood. According to Raman et al. 2018 [24], approx-
imatively 5% of the children in the world are diagnosed
via the DSM-V [1] but these figures may vary depending
on the region (e.g. North-America presenting a prevalence
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higher of 5.3% compared to UK [24]). Three subtypes have
been defined by the DSM-V, depending on the symptoms
encountered: predominantly inattentive (ADHD-I), hyperactive
(ADHD-H) and combined (ADHD-C). Their distribution is
not clearly defined, however, the ADHD-I and ADHD-C seem
to be more represented, with a slightly higher representation
of the inattentive subgroups in comparison with ADHD-H
as explained by Willcutt 2012 [31]. Although the patients’
symptoms vary from one to another, all three subtypes present
difficulties to plan, focus and inhibit perturbators. The degree
of difficulty varies depending on the subgroup.

In everyday life, ADHD is characterized by several draw-
backs that affect the patients’ life as explained by Caci et
al. 2014 [9]: impairments in school, social life (with friends,
classmates and parents), activities, etc. To reduce these symp-
toms, different methods have been developed: 1) Medication
by daily intake of methylphenidate, nevertheless in addition to
the controversial aspects that medicalizing children involves,
it is not effective for 20 to 30% of the patients according
to Cueli et al. 2019 [11]; 2) Behavioural treatments to help
the detection and reduction of the behaviours caused by the
symptoms, but this method is more expensive and binding;
3) Neurofeedback (NF) a method consisting of a real-time
representation of the brain activity (in an understandable form)
to teach how to self-regulate specific brain functions, this
method is already used for treatment of phobia (Zilverstand et
al. 2015 [32]), Autistic Spectrum Disorder (Coben et al. 2010
[10]) or Anxiety (Schoneveld et al. 2016 [27]).

In parallel to the diagnosis, it is possible to measure the
ADHD symptoms with assessments/tests, as explained by
Blume et al. 2017 [8]. These can be classified into different
categories:



« Questionnaires completed by specialists, teachers, parents
or even in some cases by the patient himself.

« Physiological tests evaluating the neurophysiological be-
haviour trough specifics tasks.

« Physiological signal analysis providing insights on
cerebral activity. The considered signals may be the
following: Electroencephalography (EEG), functional
near-infrared spectroscopy (fNIRS), Electromyography
(EMGQG), eye-tracking, gaze direction, etc.

II. RELATED WORK

There are different types of neurophysiological tests de-
pending on the information desired. For instance, Go/NoGo
task where it is asked to the participant to answer as fast
as possible to a target, e.g. an x appears on the screen, and
respectively to inhibit the wrong stimuli (not corresponding to
the target, an x in this case). This test aims to assess the ability
of the patient to inhibit specific stimuli as described in Dillon
and Pizzagali 2007 [12]. In the context of ADHD, it can also
be interesting to design tests aiming to measure selective and
sustained attention.

Alternatively, it has been proven that it is possible to classify
ADHD/control participants by the measurement of specific
physiological signals.

For the EEG, the spectral power of different frequency
bands is often considered and especially the ratio between the
0 (=~ 4—8 Hz) and 3 (=~ 12— 30 Hz) bands during the resting
state (as described by Lubar 1991 [20]). However, this choice
is mainly used in different works aiming to diagnosis and/or
treat ADHD. It has been shown in a meta-analysis of Arns
et al. in 2013 [2], that not all the ADHD subgroups present
an abnormal 6/ ratio. For this reason, other frequency bands
have also been taken into account in this study.

Another type of signal that may be considered for ADHD
symptoms assessment is the sight analysis during specific
tasks. In Varela Casal et al. 2018 [30], it has been shown
that gaze direction and eye vergence (i.e. focal property) can
be considered as a biomarker for classifying ADHD from
control participants. Besides, sight analysis has also been used
in studies aiming to assess ADHD symptoms as shown in
Garcia-Baos et al. 2019 [15] and Tan et al. 2019 [28].

The last physiological signal presented is the head move-
ment over time. It has been shown in Rizzo et al. 2006 [25] that
participants with ADHD symptoms present a different motor
activity, represented here by head movement.

Furthermore, there is a growing interest among the use
of VR in different domains related to ADHD. Bashiri et
al. 2017 [4] presents in a rewiew all the works including
virtual environment and ADHD. In the context of ADHD
assessment and diagnosis, different neurophysiological tasks
may be used to measure patient attention. In various works,
the use of VR consisted in the implementation of regular 2D
test in a virtual environment, like Continuous Performance
Test (CPT) as described in Eom et al. 2019 [13]. Pollak
et al. 2009 [22] have made a comparison between CPT in
VR environment and on two-dimension screen. It appears in

his work that VR provides a higher ecological validity for
CPT (compared to 2D screen) and in a more appreciated
environment. Moreover, virtual reality brings larger freedom
for the environment definition with greater safety and more
control for the distractors.

for the environment definition with greater safety and more

The original methods that have been used for signal pro-
cessing in research related to attention state estimation (for
instance neurofeedback training for children with ADHD as
presented in Bioullac 2019 [7]) follow the following steps:

o Pre-processing consisting mainly to remove the artefacts
that may affect the EEG, e.g. eye movements/blinks,
muscular movement or noise induce by the surrounding
environment.

o Feature extraction consisting to create a feature vec-
tor representing the most relevant information from the
signals. Different methods have been created depending
on the considered characteristics: frequency bandwidths
amplitude (by considering fixed boundaries or iAPF as in
Bioullac et al. 2019 [7] and Bazanova et al. 2018 [3]);
downsampled signals to study the signal’s shape; trans-
formation in other subspace with Principal Component
Analysis (PCA) or Riemannian Geometry transformation
for instance [18]. All these methods can be also used
jointly (larger feature vectors) or in series (making a PCA
on the bandwidths amplitudes).

« Classification, i.e. in our case to know if the participant is
focused or not. Different algorithms can be used to sepa-
rate the feature vector in the function of their classes. The
principal algorithms are the linear regressors, support-
vectors machines (SVM) and naive/Gaussian classifier as
explained in Lotte et al. 2018 [18]. However, during the
last decades, the improvements of machine-learning (ML)
algorithms and the democratization of the computational
hardware (e.g. GPU, cloud-computing, etc) have lead to
an increase of deep learning use [18].

III. METHODOLOGY

In the context of this work, VR environments have been
designed. Their goal is to create a medium promoting atten-
tion, controllable and safe. Nevertheless, these environments
are not the first designed with this purpose (see Blume et
al. 2017 [8]). The goal was to create environments with the
highest emotional comfort. It is for this reason that no school
environment has been created to avoid the possible fears
related, as explained in Caci et al. 2014 [9].

The framework steps are sketched in Fig. 2 and described
in details below.

A. Environments

The framework is composed of five different environments
promoting attention. The choice of creating different envi-
ronments is to allow the participant to choose the place he
feels the most comfortable in. These five environments are
representing lifespan scenes of a current child: sport session in
a gym hall; rest in a bedroom; walk in the forest; birthday party



Fig. 1: VERA - Virtual Environments.
This figure describes the different VR environments that
have been developed in the VERA (Virtual Environment
Recording Attention) study. Each of these environments
describes lifespan scene of a current child.

in a living room and a trip to an amusement park. For each
scene, three different stimuli can appear in predefined mo-
ments. To measure the effectiveness of the visual, auditive and
combined perturbation on the physiological measurements,
one stimulus of each type was considered as presented in
Table 1. All the perturbators are linked with the considered
environment, e.g. the basketballs in the gym hall or the
squirrels in the forest.

Auditory Visual Audio-Visual
Bedroom Knocking door | Blinking Light Cars passing
Gym Hall Fridge On/Off Ball falling Birds flying on roof
Forest Bird singing Butterfly Squirrel running
Birthday Fire cracking Cat Box falling
Amusement Carousel Balloon Dog running

TABLE I: Stimuli for each VR Environment.

Each of the five environments described above are repre-
sented in Fig. 1.

B. Physiological measurements

As explained earlier, it is possible to assess the ADHD
symptoms and the attentional state from physiological signals.
In this context, it has been decided to build a dataset composed
of:

o Electroencephalography (EEG) recording the brain elec-
trical activity. The EEG recorder and VR game are
synchronised through annotation at the beginning/end
of each task (cf. C) and at each stimulus/perturbator
appearance.

o Gaze information, i.e. pupils size, blinking instants and
sight direction.

+ Head movement from the accelerometer and gyroscope
placed in VR headset.

It is important to note that the sight direction will be

recorded two times: after a preprocessing step to determine

Physiological Signals

Attentional
State

2
=

VR Task %

Fig. 2: VERA - Summary outline.

This figure describes a summary of the VERA framework
with all the different main steps: signal acquisition, signal
processing, VR task.

the score of the tasks in virtual reality (see subsection C. VR
tasks); and also in a raw format to do signal classification.

C. VR tasks

To record information about the participant attention abili-
ties, three cognitive tasks have been designed in VR environ-
ments.

The first task corresponds to relaxation, it is asked to the
participant to relax without moving. During this step, the EEG
baseline can be recorded which allows computing specific
EEG features. For instance, it is possible to compute the
individual frequency band limits for each patient (e.g. «, 3,6
bands limits) with Individual alpha peak frequency (IAPF). As
described in Bazanova and Aftanas 2010 [6], if we compute
the power spectral density of the signals with eye-closed and
opened, we are able to compute the frequency boundaries of
the o band, and therefore the lower (resp. upper) limit of
the 5 (resp. 0) band. It is explained by the fact that EEG
frequency spectrum is respectively composed of the 6, « and 3
bands, in that order. Moreover, as described in the study, wrong
frequency bands definition lead to wrong signals classification.
In parallel to these baseline measurements, perturbators appear
at the end of the task, the goal being to detect the loss of
attention on the EEG. However, to avoid an alert status (the
state during which the participant is waiting for stimuli), these
perturbators will only be displayed once at the end of the first
task.

The second task aims to measure selective attention. This
cognitive assessment represents the capacity of a subject to
remain focused on a specific task during a certain time while
inhibiting the external perturbators. The second and third tasks
have been especially designed for this study by specialists
[?]. During this task, two stimuli appear (the target and the
perturbator) at a random position in the participant field of
view. At each appearance, it is asked to the participant to
look at the direction of the target as fast as possible without
moving the head. The interstimulus interval (ISI) is following
a random distribution of 3000 ms mean and with a standard
deviation of 250 ms, i.e. ST € [3000 — 250; 3000 + 250]ms.
The appearance time, i.e. the time during which the stimuli



are visible, is equal to 2500 ms (slightly below to avoid
stimuli multi-appearance). By the means of eye-tracker, it is
possible to measure the time during which the stimuli have
been watched. Each stimulus is considered as watched if the
eyes have looked in that direction during at least 50% of its
appearance time. The score and the stimuli’s looking duration
is continuously computed to make further analysis after the
task completion.

The third task aims to measure sustained attention that
represents the faculty to focus on a redundant task after a
certain amount of time according to Oken et al. 2006 [21].
An example of a task, as described in Blume et al. 2017 [8]],
is the CPT which consists in a test where it is requested to
answer as fast as possible to a stimulus, e.g. appearance of
an X on the screen. It is important to note that to measure
sustained attention, no perturbators can appear. Moreover,
to stay out of the alertness the interstimulus time has to
remain short [13]. During this task, the ISI follows a random
distribution of 3000 ms mean and with a standard deviation of
500 ms,i.e. IST € [3000 — 500; 3000 + 500]ms. The stimuli
appearance time is equal to 2500 ms to avoid the multiple
stimuli appearance. As in the second task, the stimuli are
appearing in a random position in the participant field of view.
The score is computed by measuring the time taken to look at
the stimuli, this measurement is made through the whole task.

As explained earlier, EEG, sight direction and head move-
ment are also measured every 200 ms in parallel of these three
tasks. After the three tasks, different data have been registered:

o Results of the second and third tasks as explained above.

« Raw EEG with annotations at specifics moments, i.e.

begin/end tasks and appearance of stimuli.

o Eye-tracking information (the direction where the partic-

ipant looked at), pupils’ size and eye blinking.

« Head position and orientation.

Moreover, as for the first task, the stimuli appearing during the
second and third tasks are linked with the environment (e.g.
balloon at a birthday, basket-ball during sport activities).

In addition to the accomplishment of the tasks, neurophys-
iological tests aiming to assess attention are also proceeded
by specialists (CiPsE [?]), as Conners Continous Performance
Tests (CPT) and Go/NoGo as mentioned in Blume et al. 2017.
These tests aim to validate the insights provided by the VR
task results.

D. Signal Analysis

To extract information from biological signals, various
methods have been developed, however, most of them follow a
similar pipeline as explained in Lotte 2014 [19]. In this work,
two different approaches will be considered to estimate the
attentional state from the participant with ADHD. The first
one aims to reproduce the results from previous works and
the second to improve these results.

In this work, it was planned to use the full information
provided by the different devices: EEG, eye-information (sight
direction, pupils diameter and blinking time) and head posi-
tion. The signal analysis framework dedicated to this study

Physiological VERA .
Signals Signal Analysis | = @
Pipeline

Attentional
State Analysis

Task results ——

Fig. 3: Training Loop for the VERA Signal Analysis pipeline.

is presented in Fig. 3. The actual attentional state is first
extracted from the results of the VR tasks presented above.
The knwoledge from eye-tracker is then added. This step has
been added to verify the actual attention state of the participant
to avoid the possible error induced by particular scenarios in
VR Tasks, e.g. the target too close to the perturbators.

For the implementation of our method, the signal analysis
pipeline had to be adjusted due to the addition to physiologi-
cal signals to EEG. Moreover, novel interesting approaches
have to be considered, like the transformation of spectral
information from EEG into images presented in Bashivan
et al. 2016 [5]. The goal is to develop a ML-based model
aiming to estimate the attentional state with only knowledge
of physiological signals (without the results of the tasks) to
have a better understanding of the attention mechanism in the
brain. It is important to note that Fig. 3 presents only the
training step of the VERA signal analysis pipeline, during the
validation, the classes y being not known.

In parallel, as explained by Lotte et al. 2018 [18] deep
learning techniques being more and more used, innovative
ML approach will be considered. Nevertherless, these novel
algorithms present two drawbacks:

e The need of a large amount of data. In Roy et al. 2019
[26], the authors presented different similar approach with
at least 150 minutes of EEG recording.

o The results uninterpretability induced by the “black box”
algorithms can’t match with the medical community.
However, different works have been considered to add
interpretability layer into deep learning models. This
method consists of the projection of a specific layer in
another subspace called latent-space, aiming to see the
results in a more interpretable way as presented in Tits
et al. 2019 [29].

For these reasons, we have first considered the original
method for the signal analysis before building more complex
models.

IV. EXPERIMENTS

A. Hardware and software

The development has been made in C# in Unity for the
virtual environments and in Python 3.7 for the signal process-
ing, the system used is the HTC-Vive pro with Tobii eye-
tracker included. All the source codes and the application



Task 2 Results

—— Right Stimulus
Wrong Stimulus
Attention Loss
Attention Gain

&
=}
L

NN W w
L= ¥ L =
.

———

=
w
.

Looking duration [s]

=
o
.

o o
o w
—

300 350 400 450 500 550
Trials Apparition Time [s]
Fig. 4: Result of the 2"¢ task.

Plots showing the results of the second task (measuring selective
attention) from VERA. The looking duration of the target, i.e right
stimulus, and the perturbator, i.e. wrong stimulus are respectively
plotted in blue and orange. Moreover, the sharp fluctuation is shown
in green and red, this last representing the attention gain and decay.

are available on Github (https://github.com/VDelv/VERA).
The EEG acquisition has been made with the BrainVision
actiCHamp Plus with 32 electrodes in the regular position
proposed by BrainVision [23].

B. Results

After the implementation of the prototypes, several signal
acquisitions have been made. During the pilot study a record
of 30 minutes of the physiological signals (i.e. EEG, eye-
tracking and head position) has been made. To compare the
tasks’ results with the physiological signals, the signals have
been proceeded through the Signal Analysis Pipeline presented
in Fig. 3 to retrieve the attentional state.

After the denoising step made with MNE python library
[16], the results of the tasks have been analyzed. For the
second task, as explained above, the score is computed by mea-
suring the time during which the stimulus has been watched:
a duration prior to 50% of the target (resp. perturbator) total
appearance corresponds to a success (resp. a failure) of the
trial. By subtracting the perturbator watched time from the
target and normalizing the result, as described in equation 1,
it is possible to compute the score of the second task.

Timerarget(t) — Timeperturbator (t)
HTimeTarget (t) - TimePerturbatm’ (t) ||

Score(t) = (1)
With Timerqrget(t) and Time periurbator (t), the looked du-
ration for the target and the perturbator in function of the
time. It is possible to compute the variation of the score
corresponding to its time derivative to identify the loss/gain
of attention as seen in Fig. 4.

For the third task, the score corresponds to the amount of
time taken to look at the target after normalization whose not
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Plots showing the results of the third task (measuring sustained
attention) from VERA. The looking duration of the target is plotted
in blue. Moreover, the sharp fluctuation is shown in green and red,

this last representing the attention gain and decay.

looking to the target corresponding to a null value. Similarly,
the gain and loss of attention may be computed and are
represented in Fig. 5.

In parallel to the information provided by the task achieve-
ment, an analysis of the signal from the VR-headset i.e. head
linear and rotational position and eye information, has been
completed. The linear and rotational instantaneous velocity of
the head have been computed with the time derivative. Besides,
the pupils‘size time derivative has also been computed. The
physiological recording frequency has been set to 5 Hz. These
parameters can be tuned.

Finally, the electroencephalography has been synchronised
with the different temporal steps of the virtual environ-
ment (task beginning/end, stimuli appearance). After the pre-
processing, frequential information have been extracted from
the EEG with power spectral density (PSD) and separate in
different frequency bands: 6 (= 4 — 8 Hz), o (= 8 — 15 Hz)
and 8 (= 15 — 25 Hz), the exact bands limits varying from
a patient to another. In addition to these features, the ratio
between the theta and beta bands has also been computed.
The PSD has been computed with windows of 3 seconds and
overlaps of 0.2 seconds.

After this step, a feature vector is created for each attentional
task trial. Each of these vectors is composed of different
components:

o Head linear velocity.

o Head rotational velocity.

o Alpha band amplitudes.

« Beta band amplitudes.

o Theta band amplitudes.

o Theta/Beta bands amplitudes ratio.

The dataset is then constructed with feature vectors com-



posed by the signals mentioned above. To classify the signals
in the function of the attention state, different algorithms
have been trained with the features vectors described above.
Eeach vector corresponding to an attentional state, i.e. At-
tentive/NotAttentive. To evaluate the ability of a classifier to
estimate the class from the feature vector, three classifiers have
been trained on the first set of signal from one patient. The
considered classifiers are simple ML algorithms mainly used
in biomedical application of machine learning [19]: Linear
Classifier (LC), Support Vector Machine (SVM) and Gaussian
Naive Bayes Classifier (GNB). The physiological signals have
been separated in the different tasks (relaxation, selective
attention and sustained attention) for a total length of 15
minutes. All the feature have been extracted, separated into
windows of 2.5 seconds and assigned to a class. The three
simple algorithms have been trained on this dataset and then
evaluated by computing the cross-validation accuracy for the
classification. This accuracy is presented in Table II.

As seen in Table II, although the models can estimate the
attentional seven times out of ten, the results for ML models
can still be improved. For this purpose, different approach
may be considered. Moreover, it can be interesting to consider
features used in other BCI as downsample signal (that are
mainly used for detecting a specific temporal pattern in EEG),
like fractal dimension as presented in Joadder et al. 2019
[17] or EEG entropy as presented in Eroglu et al. 2018 [14].
Another interesting approach to consider could be the used
of deeper models as mentioned above, however, this method
requiring a huge amount of data. It will be considered in future
works when the dataset’s size will be sufficient.

V. CONCLUSION

In this work, we proposed an innovative framework aiming
to assess attention in virtual reality environments. It aims to
have better knowledge on the mechanisms behind attention
and to be able to detect the loss and gain of attention
from physiological signals, e.g. Electroencephalogram, eyes
information (pupils size, saccade) or head-movement. The
detector created could be used in further work to design
neurofeedback for children with ADHD in virtual reality.
Besides, to provide an emotionally comfortable environment
by allowing the participant to make her choice, the framework
presents encouraging results regarding the classification of
states of attention. Three different machine learning-based
classifiers have been tested on feature vectors built from the
physiological signals and can predict well the attention state
in many cases.

For the future works, a larger study will lead to an increase
of the dataset that will allow us to try other classification

Cross-Validation Accuracy [%]
LC 55.25
SVM 70.35
GNB 65.87

TABLE II: Cross-validation accuracy for ML algorithms.

methods. Moreover, it will also be possible to study a wider
population to add personalisation features to the models.

For the next years, virtual reality combined with signal
acquisition, as in the VERA framework, could be used for
diagnosis, symptoms assessments and also as a help for the
innovative treatment methods such as neurofeedback.
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