Aleksandar Milenkoski
email: amilenkoski@ernw.de

Device Guard Image Integrity: Function Invocation Paths between ci.dll and skci.dll

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar Milenkoski (amilenkoski

Introduction

ci.dll statically exports 8 functions: CiCheckSignedFile, CiFindPageHashesInCatalog, CiFindPageHashesInSigned-File, CiFreePolicyInfo, CiGetPEInformation, CiInitialize, CiValidateFileObject, and CiVerifyHashInCatalog. However, when initialized, it exports additional 18 functions in the form of callback functions. Once they are exported, the normal kernel can invoke these functions. The exported callback functions are: CiValidateImageHeader, CiValidateImageData, CiQueryInformation, CiSetFileCache, CiGetFileCache, CiHashMemory, KappxIsPackageFile, CiCompareSigningLevels, CiValidateFileAsImageType, CiRegisterSigningInformation, CiUnregisterSigningInformation, CiInitializePolicy, SIPolicyQueryPolicyInformation, CiValidateDynamicCodePages, SIPolicyQuerySecurityPolicy, CiGetStrongImageReference, CiReleaseContext, and CiHvciSetImageBaseAddress. The kernel invokes the SepInitializeCodeIntegrity and CiInitialize functions in order to initialize code integrity. This function exports the previously mentioned callback functions. Figure 1 The functions exported by skci.dll are invoked when Windows 10 routes code integrity functionalities from the normal to the secure kernel. This work provides an overview of the invocation paths of the functions exported by skci.dll, from the triggering of their invocation in the context of the normal environment (Section 3), to their execution in the context of the secure environment (Section 2).

Secure Environment

In the context of the secure kernel, the functions exported by skci.dll are primarily invoked by functions with the prefix Skm (an exception is the SkInitSystem function). The column 'skci.dll' of Table 2 lists the functions exported by skci.dll. The column 'Secure kernel' of this table lists the functions that invoke the functions exported by skci.dll -functions with prefix Skm and SkInitSystem.

The functions with prefix Skm and SkInitSystem are primarily invoked when the secure kernel processes specific secure services. SkinitSystem is also invoked during the initialization of the secure kernel, by the SkiSystemStar-tupFunction. Secure services are requested by the normal environment. They can be uniquely identified by their secure service call numbers (SSCNs). The column 'SSCN' in Table 2 lists the SSCNs of the secure services that execute the functions with prefix Skm, or SkInitSystem. These functions are invoked in the IumInvokeSecure-Service function, which is where secure service requests are processed. SkmiDeleteImage is invoked through a function pointer. Therefore, this function cannot be associated with a specific SSCN based on static analysis only (/ in Table 2).

Normal Environment

In order to invoke functions implemented in skci.dll, the normal kernel and functions implemented in ci.dll request secure services. In order to request a secure service, they use the g_CiVslHvciInterface variable implemented in ci.dll. This variable stores pointers to functions implemented in the normal kernel. These functions have names with the prefix Vsl. They invoke the VslpEnterIumSecureMode function. This function requests secure services from the secure kernel by issuing Virtual Trust Level (VTL) calls. The SSCNs of requested secure services are stored as the second parameter of VslpEnterIumSecureMode. The invocation of the functions referenced by g_CiVslHvciInterface is protected by ControlFlowGuard. Figure 3 depicts an invocation of the function referenced at offset 0x20 of g_CiVslHvciInterface -VslValidateSecureIm-agePages (see Table 1). In accordance with the design of ControlFlowGuard, the rax register, at the time the _guard_dispatch_icall_fptr function is invoked, points to the function that is ultimately invoked. Therefore, the places where the functions referenced by g_CiVslHvciInterface are invoked can be identifed by searching for invocations of _guard_dispatch_icall_fptr in the implementations of ci.dll and the normal kernel, such that the rax register points at a given offset of g_CiVslHvciInterface.

 depicts several of these functions. The functions depicted in Figure1are extracted from the execution context of the normal kernel. Figure2depicts the kernel invoking the CiInitializePolicy callback function after the function has been exported to it. amilenkoski.client.ernw.net 2019-11-22 11:06:13 skci.dll statically exports 9 functions. These functions are: SkciCreateCodeCatalog, SkciCreateSecureImage, Skci-FinalizeSecureImageHash, SkciFinishImageValidation, SkciFreeImageContext, SkciInitialize, SkciTransferVersion-Resource, SkciValidateDynamicCodePages, and SkciValidateImageData.

Figure 1 :

 1 Figure 1: Code integrity callback functions

Figure 2 :

 2 Figure 2: The kernel invoking the exported callback function CIInitializePolicy

Figure 3 :

 3 Figure 3: ControlFlowGuard protecting functions referenced by g_CiVslHvciInterface A brief analysis revealed that most of the functions referenced by g_CiVslHvciInterface are invoked by functions with the prefix CiHvci. These functions are implemented in ci.dll.

Table 1 :

 1 Table 1 lists the positions, or offsets, in the g_CiVslHvciInterface variable (column 'g_CiVslvciInterface position') at which pointers to functions with the prefix Vsl are stored (column 'Function'). The column 'SSCN' of Table 1 lists the SSCNs identifying the secure services requested by the functions with the prefix Vsl. Functions referenced by g_CiVslHvciInterface

	g_CiVslHvciInterface position Function	SSCN
	g_CiVslHvciInterface	VslCreateSecureAllocation	0x13
	g_CiVslHvciInterface + 0x08	VslFillSecureAllocation	0x14
	g_CiVslHvciInterface + 0x10	VslMakeCodeCatalog	0x15
	g_CiVslHvciInterface + 0x18	VslCreateSecureImageSection	0x16
	g_CiVslHvciInterface + 0x20	VslValidateSecureImagePages	0xC1
	g_CiVslHvciInterface + 0x28	VslFinalizeSecureImageHash	0x17
	g_CiVslHvciInterface + 0x30	VslFinishSecureImageValidation	0x18
	g_CiVslHvciInterface + 0x38	VslPrepareSecureImageRelocations	0x19
	g_CiVslHvciInterface + 0x40	VslRelocateImage	0x1A
	g_CiVslHvciInterface + 0x48	VslCloseSecureHandle	0x1B
	g_CiVslHvciInterface + 0x50	VslGetNestedPageProtectionFlags	0xE7
	g_CiVslHvciInterface + 0x58	VslValidateDynamicCodePages	0x1C
	g_CiVslHvciInterface + 0x60	VslTransferSecureImageVersionResource 0x1D

Table 2 :

 2 The column 'ci.dll' of Table2lists the functions with prefix CiHvci that ultimately trigger the execution of functions exported by skci.dll (the → symbol marks function invocation). The column 'Normal kernel' of this table lists functions implemented in the normal kernel that request secure services in order to trigger the execution of functions exported by skci.dll. Some of these functions are referenced by the g_CiVslHvciInterface variable and are invoked by the functions with prefix CiHvci (see Table1). Others are invoked directly by the normal kernel, such as VslCreateSecureImageSection. The column 'SSCN' of Table2lists the SSCNs identifying the secure requested by the functions listed in the column 'Normal kernel' of this table. The execution of these services in the context of the secure kernel results in the execution of functions exported by skci.dll. ci.dll and skci.dll: Invocation paths to functions statically exported by skci.dll

	ci.dll	Normal kernel	SSCN Secure kernel	skci.dll
		VslpIumPhase4Initialize	0x1	SkInitSystem	SkciInitialize
		VslpIumPhase0Initialize	0xD0		
		VslMakeCodeCatalog	0x15	SkmmConvertSecureAllocationToCatalog SkciCreateCodeCatalog
	CiHvciCalculateHeaderHash				
		VslCreateSecureImageSection	0x16	SkmmCreateSecureImageSection	SkciCreateSecureImage
	CiHvciCalculateImageHash				
	CiHvciAddNonSectionDataToFileHash				
	CiHvciCalculateImageHash	VslValidateSecureImagePages	0xC1	SkmmValidateSecureImagePages	SkciValidateImageData
	CiHvciValidateImageData				
	CiHvciTransferRelocationInformation VslPrepareSecureImageRelocations	0x19	SkmmPrepareImageRelocations	
	CiHvciValidateDynamicCodePages	VslValidateDynamicCodePages	0x1C	SkmmValidateDynamicCodePages	SkciValidateDynamicCodePages
	CiHvciCalculateHeaderHash				
		VslFinalizeSecureImageHash	0x17	SkmmFinalizeSecureImageHash	SkciFinalizeSecureImageHash
	CiHvciCalculateImageHash				
	CiHvciVerifyFileHashInCatalogs				
	→ CipHvciVerifyHashInCatalogs				
	CiHvciVerifyPageHashInCatalogs	VslFinishSecureImageValidation	0x18	SkmmFinishSecureImageValidation	SkciFinishImageValidation
	→ CipHvciVerifyHashInCatalogs				
	CiHvciVerifyFileHashSignedFile				
		VslCreateSecureImageSection	0x16	SkmmCreateSecureImageSection	SkciFreeImageContext
			/	SkmiDeleteImage	
	CiHvciSetFileVersionInformation	VslTransferSecureImageVersionResource 0x1D	SkmmTransferImageVersionResource	SkciTransferVersionResource

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).