Aleksandar Milenkoski
email: amilenkoski@ernw.de

Windows Defender Application Control: Image verification

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows

Introduction

Windows 10 performs WDAC verification (i.e., verification of images conducted by WDAC) in the CiEvaluatePoli-cyInfo and CipApplySIPolicyUMCI functions, implemented in ci.dll. Both functions ultimately invoke the ci.dll function SIPolicyValidateImage. All digitally signed critical system images, which include the Windows kernel and drivers loaded during the Windows boot process, are subjected to non-configurable code integrity verification when loaded. If the nonconfigurable code integrity verification succeeds, WDAC verification is performed. This is done by invoking CiEvaluatePolicyInfo which invokes SIPolicyValidateImage. WDAC verification takes place only if WDAC is enabled (i.e., if a WDAC policy is deployed). If the non-configurable or the WDAC verification fails, the verified image is not loaded. All critical system images are digitally signed by Microsoft.

All other digitally signed images, such as third-party images operating in user-mode, are also subjected to nonconfigurable code integrity verification when loaded. After non-configurable integrity verification, WDAC verification is performed. This is done by conditionally invoking CiEvaluatePolicyInfo and/or CipApplySIPolicyUMCI, which invoke SIPolicyValidateImage. WDAC verification takes place only if WDAC is enabled (i.e., if a WDAC policy is deployed). If the non-configurable integrity verification had failed, for all policy levels, except Hash and amilenkoski.client.ernw.net 2019-10-25 11:54:24 If a verified image is not digitally signed, WDAC performs image verification in an identical manner as in the scenario when the image is signed and the policy level Hash or FileName is configured. That is, WDAC blocks, or allows, the execution of the image in CipApplySIPolicyUMCI if WDAC verification fails, or succeeds, respectively. For unsigned images, only the policy levels Hash or FileName may be configured.

Image verification in SIPolicyValidateImage

SIPolicyValidateImage verifies images based on data stored in an initialized WDAC policy and brings the decision whether an image is allowed to execute. This section provides an overview of the working principles of SIPolicyValidateImage.

SIPolicyValidateImage verifies an image based on comparing:

• data stored in a deployed WDAC policy as part of file rules; with • verification data associated with the image being verified. This work refers to this data as image verification data.

What image verification data is compared in SIPolicyValidateImage depends on the policy levels configured in the deployed WDAC policy. For example, this data involves the image's file name if the policy level FileName is configured.

SIPolicyValidateImage compares data stored in the deployed WDAC policy with image verification data using standard data comparison functions, such as memory and string comparison functions. Examples include memcmp and RtlEqualUnicodeString.1,2 SIPolicyValidateImage accesses the content of the deployed WDAC policy through the ci.dll variable g_SiPolicyHandles. This variable stores at the offset 0x6C the content of the policy in binary format. g_SiPolicyHandles is passed as the first parameter of SIPolicyValidateImage.

g_SiPolicyHandles is populated with the content of the deployed WDAC policy in the SIPolicyInitialize and SIPol-icySetActivePolicy functions. These functions are invoked during the initialization of code integrity. Label [1] in Figure 3 depicts SIPolicyInitialize storing the content of a policy in g_SiPolicyHandles. Label [2] in Figure 3 depicts the policy content, stored in g_SiPolicyHandles, passed as a parameter to SIPolicyValidateImage. Label [3] in Figure 3 depicts the policy content as viewed with the HxD hex editor, in the context of the Windows 10 instance where the policy is deployed. • at offset 0x30 data related to the certificate chain used to sign the image being verified, including the leaf (i.e., the signer's certificate) and the PCAcertificate. This data is relevant when an image is verified based on the Leaf and Publisher policy levels;

• at offset 0x160 the name of the image being verified. This data is relevant when an image is verified based on the FileName policy level;

• at offset 0x1A0 the hash value of the image being verified. This data is relevant when an image is verified based on the Hash policy level.

The validation context is populated with data in multiple functions that are invoked before SIPolicyValidateImage. As an example, Figure 4 filecrypt.sys is signed through a catalog file. Windows 10 uses catalogs to associate Authenticode signatures with a given image. 3 Catalogs are files that contain a set of file hashes such that each hash identifies a specific image. The catalog file itself is signed with an Authenticode signature. Therefore, a single catalog file serves as a detached signature that may be associated with multiple images. 4 The data related to the certificate chain used to sign the filecrypt.sys image is extracted from the Authenticode signature embedded in the catalog. This data is relevant for image verification, for example, when the PcaCertificate policy level is configured. The I_-FindFileOrHeaderHashInLoadedCatalogs function searches through deployed catalog files for the image's hash value previously calculated by CipCalculateImageHash. In Windows 10, deployed catalog files are stored in the %SystemRoot%\System32\CatRoot folder. I_FindFileOrHeaderHashInLoadedCatalogs performs binary search in order to locate the image's hash value stored in a catalog (see bsearch in Figure 4). 5

Since CipCalculateImageHash has calculated a Secure Hash Algorithm (SHA)-1 hash value of the image, bsearch invokes the CipFileHashSearchCompareRoutineSHA1 function in order to locate the SHA-1 hash in a catalog. Figure 6 shows that the data related to the certificate chain used to sign filecrypt.sys, compared in SIPolicyVal-idateImage, originates from the catalog that represents a detached signature of filecrypt.sys. In general, the discussion above shows that the image verification data compared in SIPolicyValidateImage originates either from the image being verified itself, or from the catalog serving as the image's detached signature.

Once the validation context has been populated with data, it is passed to SIPolicyValidateImage for comparison with data originating from the deployed WDAC policy. The text blocks below provide an insight into the operation of SIPolicyValidateImage. They provide an overview of SIPolicyValidateImage comparing image verification data with data stored in a deployed WDAC policy when the policy levels Hash, PcaCertificate, and Publisher are configured (see also Figure 6). In the text blocks below:

• in the label Policy and integrity verification:

 Figure 1 and Figure 2 depict sample function call stacks resulting in the invocation of SIPolicyValidateImage by CiEvaluatePolicyInfo and CipApplySIPolicyUMCI.

Figure 1 :

 1 Figure 1: Function stack: Invoking SIPolicyValidateImage by CiEvaluatePolicyInfo

Figure 3 :

 3 Figure 3: The content of a deployed DeviceGuard policy in different contexts Image verification data is passed to SIPolicyValidateImage in the form of a structure, referred to as validation context. The validation context stores the image verification data that may be relevant when verifying an image based on any policy level. For example, the validation context stores:

 depicts Windows 10 populating the validation context with image verification data when the image filecrypt.sys is verified. This image is verified against a WDAC policy with the PcaCertificate policy level configured. The validation context is initialized in the CipValidateImageHash function, at the address 0xffffac05af19fbc0. Once the validation context is initialized, the functions CipCalculateImageHash, CipUpdate-ValidatationContextWithFileInfo, and MinCryptCopyPolicyInfo populate the offsets 0x1A0, 0x160, and 0x30 of the validation context, respectively. CipCalculateImageHash calculates the image's hash value and stores it at the offset 0x1A0 of the validation context (see Figure4, function CipCalculateImageHash). CipUpdateValidatation-ContextWithFileInfo extracts the name of the image from its properties and stores it at the offset 0x160 of the validation context (see Figure4, function CipUpdateValidatationContextWithFileInfo). CipUpdateValidatationCon-textWithFileInfo extracts the image's name and version from the image itself, by invoking the SIPolicyGetOrigi-nalFilenameAndVersionFromImage function.

Figure 4 :

 4 Figure 4: Populating the validation context with image integrity verification data

 The SHA-1 hash of filecrypt.sys is stored in the catalog Microsoft-Windows-Desktop-Shared-Drivers-onecore-Package~31bf3856ad364e35~amd64~~10.0.14393.0.cat (see Figure 4, function RtlDuplicateUnicodeString). Figure 5 depicts the SHA-1 hash of filecrypt.sys stored in this catalog as viewed with the HxD hex editor (see also Figure 4, function CipCalculateImageHash).

Figure 5 :

 5 Figure 5: SHA-1 hash of filecrypt.sys stored in a catalog Once FindFileOrHeaderHashInLoadedCatalogs has located the catalog, MinCryptCopyPolicyInfo stores data related to the certificate chain used to sign the catalog at the offset 0x30 of validation context (see Figure 4, function MinCryptCopyPolicyInfo). This includes the certificate chain itself. The binary sequence beginning with 30 82 depicted in Figure 4 mark certificate content encoded in the ASN.1 format. Once MinCryptCopyPolicyInfo has stored in the validation context data related to the certificate chain used to sign the catalog, SIPolicyValidateImage compares this data with data stored in the deployed WDAC policy (see Figure 6, label [1], function memcmp). The data SIPolicyValidateImage compares is a hash of the TbsCertificate field of the PCAcertificate used to sign Microsoft-Windows-Desktop-Shared-Drivers-onecore-Package3 1bf3856ad364e35~amd64~~10.0.14393.0.cat (4e 80 be… in Figure 6, label [1]). 6 Figure 6, label [2], depicts the extraction of the TbsCertificate field from this certificate with the openssl and dd utilities. It also depicts the calculated SHA-256 hash of the extracted TbsCertificate field with the sha256sum utility.

Figure 6 :

 6 Figure 6: SIPolicyValidateImage comparing certificate data

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memcmp-wmemcmp?view=vs-2019[Retrieved: 6/10/2019]

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/wdm/nf-wdm-rtlequalunicodestring[Retrieved: 6/10/2019]

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

operating system. For general inquiries contact Aleksandar Milenkoski

Policy and integrity verification