
HAL Id: hal-03119901
https://hal.science/hal-03119901v1

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized SDN Control Plane for a Distributed
Cloud-Edge Infrastructure: A Survey

David Espinel Sarmiento, Adrien Lebre, Lucas Nussbaum, Abdelhadi Chari

To cite this version:
David Espinel Sarmiento, Adrien Lebre, Lucas Nussbaum, Abdelhadi Chari. Decentralized SDN
Control Plane for a Distributed Cloud-Edge Infrastructure: A Survey. Communications Surveys and
Tutorials, IEEE Communications Society, 2021, IEEE Communications Surveys & Tutorials, 23 (1),
pp.256-281. �10.1109/COMST.2021.3050297�. �hal-03119901�

https://hal.science/hal-03119901v1
https://hal.archives-ouvertes.fr


1

Decentralized SDN Control Plane for a Distributed
Cloud-Edge Infrastructure: A Survey
David Espinel Sarmiento∗, Adrien Lebre†, Lucas Nussbaum‡, Abdelhadi Chari§

∗ Orange Lannion, France davidfernando.espinelsarmiento@orange.com
† IMT-Atlantique - Inria - LS2N Nantes, France adrien.lebre@inria.fr

‡ Université de Lorraine - Inria - LORIA Nancy, France lucas.nussbaum@loria.fr
§ Orange Lannion, France abdelhadi.chari@orange.com

Abstract—Today’s emerging needs (Internet of Things appli-
cations, Network Function Virtualization services, Mobile Edge
computing, etc.) are challenging the classic approach of deploying
a few large data centers to provide cloud services. A massively
distributed Cloud-Edge architecture could better fit these new
trends’ requirements and constraints by deploying on-demand
infrastructure services in Point-of-Presences within backbone
networks. In this context, a key feature is establishing connec-
tivity among several resource managers in charge of operating,
each one a subset of the infrastructure. After explaining the
networking management challenges related to distributed Cloud-
Edge infrastructures, this article surveys and analyzes the char-
acteristics and limitations of existing technologies in the Software
Defined Network field that could be used to provide the inter-
site connectivity feature. We also introduce Kubernetes, the new
de facto container orchestrator platform, and analyze its use in
the proposed context. This survey is concluded by providing a
discussion about some research directions in the field of SDN
applied to distributed Cloud-Edge infrastructures’ management.

Index Terms—IaaS, SDN, virtualization, networking, automa-
tion

I. INTRODUCTION

Internet of Things (IoT) applications, Network Function
Virtualization (NFV) services, and Mobile Edge Computing
(MEC) [1] require to deploy IaaS services closer to the end-
users in order to respect operational requirements. One way
to deploy such a distributed cloud infrastructure (DCI) is
to extend network points of presence (PoPs) with dedicated
servers and to operate them through a cloud-like resource
management system [2].

Since building such a DCI resource management system
from scratch would be too expensive technically speaking, a
few initiatives proposed to build solutions on top of OpenStack
(RedHat DCN [3] or StarlingX [4] to name a few). These
proposals are based either on a centralized approach or a feder-
ation of independent Virtual Infrastructure Managers (VIMs)1.
The former lies in operating a DCI as a traditional single
data center environment, the key difference being the wide-
area network (WAN) found between the control and compute
nodes. The latter consists in deploying one VIM on each DCI
site and federate them through a brokering approach to give

1Unless specified, we used the term VIM in the rest of the article for
infrastructure management systems of any kind such as OpenStack.

the illusion of a single coherent system as promoted by ETSI
NFV Management and Orchestration (MANO) framework [5].

Due to frequent isolation risks of one site from the rest
of the infrastructure [6], the federated approach presents a
significant advantage (each site can continue to operate lo-
cally). However, the downside relates to the fact that resource
management systems code does not provide any mechanism
to deliver inter-site services. In other words, VIMs have not
been designed to peer with other instances to establish inter-
site services but rather in a pretty stand-alone way in order to
manage a single deployment.

While major public cloud actors such as Amazon Web
Services (AWS), Google Cloud Platform (GCP), and Microsoft
Azure already provide a globally deployed infrastructure to
provide cloud services (i.e., In 2020, more than 170 global
PoPs for Azure [7], more than 90 global PoPs for Google [8],
more than 210 global PoPs for AWS [9]), they are limited
in terms of the actions users can do concerning the man-
agement of networking resources. For instance, in the AWS
environment, a virtual private cloud (VPC) can only exist at a
region scope. Although a VPC spans all the availability zones
in that region, subnetworks belonging to that VPC must reside
entirely within a single Availability Zone.

Several academic studies investigated how this global vision
can be delivered either through a bottom-up or top-down
approaches. A bottom-up collaboration aims at revising low-
level VIM mechanisms to make them collaborative, using, for
instance, a shared database between all VIM instances [1],
[2], [10]. A top-down design implements the collaboration by
interacting only with the VIMs’ API leveraging, for instance,
a P2P broker [11].

In addition to underlining the inter-site service challenges,
these studies enabled us to identify key elements a resource
management for DCIs should take into account:

• Scalability: A DCI should not be restricted by design to
a certain amount of VIMs.

• Resiliency: All parts of a DCI should be able to survive
network partitioning issues. In other words, cloud service
capabilities should be operational locally when a site is
isolated from the rest of the infrastructure.

• Locality awareness: VIMs should have autonomy for
local domain management. It implies that locally created
data should remain local as much as possible and only



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 2

shared with other instances if needed, thus avoiding
global knowledge.

• Abstraction and automation: Configuration and instan-
tiation of inter-site services should be kept as simple
as possible to allow the deployment and operation of
complex scenarios. The management of the involved
implementations must be fully automatic and transparent
for the users.

In this article, we propose to extend these studies by
focusing on the inter-site networking service, i.e., the capacity
to interconnect virtual networking constructions belonging to
several independent VIMs. For instance, in an OpenStack-
based DCI (i.e., one OpenStack instance by POP), the net-
working module, Neutron [12], should be extended to enable
the control of both intra-PoP and inter-PoP connectivity, taking
into account the aforementioned key elements.

We consider, in particular, the following inter-site network-
ing services [13]:

• Layer 2 network extension: being able to have a Layer
2 Virtual Network (VN) that spans several VIMs. This
is the ability to plug into the same VN, virtual ma-
chines (VMs) deployed in different VIMs.

• Routing function: being able to route traffic between a
VN A on VIM 1 and a VN B on VIM 2.

• Traffic filtering, policy, and QoS : being able to enforce
traffic policies and Quality of Service (QoS) rules for
traffic between several VIMs.

• Service Chaining: Service Function Chaining (SFC) is the
ability to specify a different path for traffic in replacement
of the one provided by the shortest path first (SPF) routing
decisions. A user needs to be able to deploy a service
chaining spanning several VIMs, having the possibility to
have parts of the service VMs placed in different VIMs.

Technologies such as Software Defined Networking (SDN),
which proposes a decoupling among control and data
plane [14], can be leveraged to provide such operations among
VIMs [15]. This paradigm has been applied, for instance, to
provide centralized control of lower infrastructure layers of
WANs (e.g., physical links or fabric routers and switches) in
several proposals [16]–[18], including the well-known Google
B4 controller [19] and Espresso [20], and commonly referred
nowadays as Software Defined WAN [21]. Similarly, VIMs
specialized in the management of WANs, usually called WAN
infrastructure managers (WIMs) [22], have been proposed
as SDN stacks capable of controlling all the links and
connectivity among multiple PoPs [23]–[25]. Moreover, the
literature is rich on the study of SDN aspects such as the
controller placement problem (CPP) [26] or the optimization
of computational paths [27].

The approach in which this survey is interested is called
SDN-based cloud computing [28]. As such, SDN-based cloud
computing has been applied to implement specific applications
at a cloud-scale, such as load balancing [29], [30] or policy
enforcement [31] functionalities. Our objective is to study how
IaaS networking services can be delivered in a DCI context
leveraging as much as possible existing solutions. To the best
of our knowledge, this is the first study that addresses this

question. Concretely, our contributions are (i) an analysis of
the requirements and challenges raised by the connectivity
management in a DCI operated by several VIMs taking
OpenStack as IaaS management example, (ii) a survey of
decentralized SDN solutions (analyzing their design principles
and limitations in the context of DCIs), and (iii) a discussion
of recent activities around the Kubernetes [32] ecosystem, in
particular three projects that target the management of multiple
sites. Finally, we conclude this survey by (iv) discussing the
research directions in this field.

The rest of this paper is organized as follows. Section II
defines SDN technologies in general and introduces the Open-
Stack SDN-based cloud computing solution. A review of
previous SDN surveys is provided in Section III. Challenges
related to DCI are presented and discussed in Section IV.
Definitions of selected design principles used for the survey
are explained in Section V. Section VI presents properties of
the studied SDN solutions. Section VII introduces Kubernetes
and its ecosystem. The discussion and future work related
to the distribution of the SDN control plane for DCIs are
presented in Section VIII. Finally, Section IX concludes and
discusses future works.

II. SDN AND VIMS NETWORKING: BACKGROUND

In this section, we present background elements for readers
who are not familiar with the context. First, we remind the
main concepts around Software-Defined-Network as they are
a strong basis for most solutions studied in this survey. Second,
we give an overview of how the network is virtualized in
OpenStack, the de facto open-source solution to use cloud
computing infrastructures.

A. Software-Defined-Network

The Software-Defined-Network paradigm offers the oppor-
tunity to program the control of the network and abstract
the underlying infrastructure for applications and network
services [14]. It relies on the control and the data plane
abstractions. The former corresponds to the programming and
managing of the network (i.e., it controls how the routing
logic should work) The latter corresponds to the virtual or
physical network infrastructure composed of switches, routers,
and other network equipment that are interconnected. These
equipment use the rules that have been defined by the control
plane to determine how a packet should be processed once
it arrives at the device. While the idea of control and data
plane separation is present in IETF ForCES Working Group
works [33] and even earlier with the concept of programmable
and active networks [34], [35], the work achieved in 2008
around OpenFlow [36] is considered as the first appearance
of Software Defined Networks in modern literature [37]. In
this initial proposal, the control plane is managed through a
centralized software entity called the SDN controller. To com-
municate with every forwarding device or lower-level com-
ponents, the controller uses standardized application program
interfaces (APIs) called southbound interfaces. In addition to
OpenFlow, the most popular southbound APIs are Cisco’s
OpFlex ones [38].



3

Controllers also expose a northbound API, allowing com-
munication among the controller and the higher-level compo-
nents like management solutions for automation and orches-
tration. A generic SDN architecture with the aforementioned
elements is presented in Figure 1. Overall, an SDN controller
abstracts the low-level operations for controlling the hardware,
allowing easy interaction with the control plane, as developers
and users can control and monitor the underlying network
infrastructure [39]. The authors refer to [40] for fundamentals
in a more detailed SDN history. Moreover, SDN principles
have been successfully applied at the industry level with
controllers such as VMware NSX [41], Juniper Contrail [42],
or Nuage [43].

Fig. 1: SDN general architecture

One of the possible application domains of the SDN tech-
nology lies in the cloud computing paradigm, which exposes to
end-users software, applications, or virtualized infrastructures
in a simple and easy-to-use way [44].

By delivering network programmability, SDN abstractions
provide the control and management necessary for cloud
computing solutions to expose network resources to end-users.
Referred to as SDN-based cloud networking (SDN-clouds or
SDN-enabled clouds), this approach enables the configuration
and provisioning of virtualized network entities using pro-
grammable interfaces in cloud computing infrastructures. It is
used, for instance, to assure the multi-tenancy needs and the
sharing of network resources among end-users [16], [28], [45],
[46]. The Neutron OpenStack service described in the next
section is a concrete example of such an SDN-based cloud
networking service.

B. SDN-based Cloud networking: The Neutron example

To illustrate how the network resources are managed in
a cloud computing infrastructure using SDN technologies,
we discuss in this section Neutron, the “Network connec-
tivity as a Service” of OpenStack, the de facto open-source
solution to manage and expose Infrastructure-as-a-Service
platforms [47]. Neutron provides on-demand, scalable, and
technology-agnostic network services. Neutron is generally

used with Nova [48], the OpenStack project to manage virtu-
alized computational resources, in order to provide VMs with
networking capabilities.

1) Neutron architecture:
Neutron is a modular and pluggable platform. The reference

Neutron architecture, as shown in Figure 2 is composed of the
following elements:
• Representational state transfer (REST) API: Neutron’s

REST API service exposes the OpenStack Networking
API to create and manage network objects and passes
tenant’s requests to a suite of plug-ins for additional
processing. It requires indirect access to a persistent
database where related information to network objects is
stored.

• Network plug-ins: While Neutron API exposes the virtual
network service interface to users and other services, the
actual implementation of these network services resides
in plug-ins. The Neutron pluggable architecture com-
prises Core plug-ins (which implements the core API)
and Service plug-ins (to implement the API extensions).
Core plug-ins primarily deal with L2 connectivity and
IP address management, while Service plug-ins support
services such as routing. The Modular Layer 2 (ML2) is
the main OpenStack Core plug-in. It supports type drivers
to maintain type-specific network state (i.e., VLAN,
VXLAN, GRE, etc.) and mechanism drivers for applying
configuration to specific networking mechanisms (i.e.,
OpenvSwitch [49], LinuxBridges [50], etc.). Since 2020,
Neutron’s main ML2 mechanism driver changed from
OVS to Open Virtual Network (OVN) [51]. OVN is
a sub-project in OpenvSwitch that provides native in-
kernel support for virtual network abstraction and a better
control plane separation than an OpenvSwitch.

• Network Agents: Agents implement the actual networking
functionality closely associated with specific technologies
and the corresponding plug-ins. Agents receive messages
and instructions from the Neutron server on the mes-
sage bus. The most common Agents are L3 (Routing
functions), L2 (Layer 2 functions), and Dynamic Host
Configuration Protocol (DHCP).

• Messaging queue: Used by most Neutron installations to
route information between the Neutron-server and various
Agents.

2) Neutron networking:
Neutron divides the networking constructions that it can

manage as Core and extension resources. Port, Network, and
Subnetwork are the basic Core object abstractions offered by
Neutron.

Each abstraction has the same functionality as its physical
counterpart: Network is an isolated L2 segment, Subnetwork
is a block of IPv4 or IPv6 addresses contained inside a
Network, Port is a virtual switch connection point used to
attach elements like VMs to a virtual network. More exten-
sion network objects can be defined and exposed, extending
the Neutron API. Some examples are Router, floatingIPs,
L2GWs [52], BGP-VPNs [53] or Virtual Private Network as a
Service (VPNaaS) [54]. A more complete list of OpenStack
networking objects can be found in [55]. Agents configure



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 4

Fig. 2: Neutron deployment components.

the mechanisms allowing these constructions to communicate
among them (i.e., a tunnel between two OpenvSwitches to
communicate VMs belonging to the same Subnetwork) or
with the Internet (i.e., Network Address Translation (NAT)
capabilities normally implemented by a Router to route traffic
externally).

3) Multi-instance Neutron:
Conceptually speaking, a single instance of the Neutron

module could manage all network resources of a DCI. As
long as it is possible to communicate at the IP level between
all equipment, Neutron can configure the different network
devices and deliver the expected network abstractions. Techni-
cally speaking, leveraging a single centralized module cannot
satisfy DCI properties (i.e., Single Point of Failures (SPOF),
network bottleneck, intermittent connectivity between network
equipment, etc.) and the deployment of several collaborative
instances (in the worst case, one per locations) is necessary.
Unfortunately, the software architecture of Neutron does not
allow collaborations between multiple instances. For instance,
the Neutron database belongs to a single Neutron entity; that
Neutron can only manage the resources created at one site.
It is not possible for a distant Neutron to have knowledge
nor access to the objects present in a database of another
instance. Because information of resources is not shared
among Neutrons, the notion of a virtual network spanning
different VIMs does not exist today in the Neutron database.
Further, operations like identifiers assignation, IP, and MAC
address generation and allocations, DHCP services, or security
group management are also handled internally at each Neutron
instance. Such kind of constraints takes out the possibility to
manage Neutron resources in a distributed way.

However, some projects propose Neutron’s management in
a more distributed way, such as the Tricircle project [56].
Tricircle achieves network automation in a multi-instance
deployment of OpenStack using a Central Neutron instance
managing a series of Local Neutrons with modified Neutron
Core plug-ins. To allow communication with the Central
Neutron when querying for an element that is not locally
present, Tricircle uses the Tricircle Local Core plug-in, a
modified version of the ML2 Core plug-in. Once this Local
Core plug-in receives a request, it will internally send the
same request to the Central Neutron that will answer using

standard REST API calls. With the answer, the resource will
be locally created using the same information present in
the Central Neutron database, and then, the initial request
will be treated by the real Core plug-in. For the Central
Neutron, which gathers and maintains data consistency across
the infrastructure, Tricircle provides a Tricircle Central plug-
in that allows the Tricircle to effectively manage and map
central created resources and their respective locally created
copies, storing this information in the Tricircle Database.
Tricircle’s major flaw lies in its hierarchical architecture as
the Central Neutron becomes a SPOF and a bottleneck. The
user is only allowed to use this central API to manage or
control networking resources. Since Local Neutrons always
need to communicate with Central Neutron in order to answer
local requests, network partitioning cases become the principal
blocking point as isolated Local Neutrons will remain useless
as long as the disconnection remains. Finally, Tricircle does
not leverage real collaboration among Local Neutron. Indeed,
there is neither communication nor knowledge of each other’s
presence since all the management is done at the Central
Neutron.

4) Summary:
Because VIMs such as OpenStack have not been designed

to peer with other instances, several projects have investigated
how it might be possible to deliver inter-site services. These
projects aim at exposing multiple Openstacks as a single entity.
Unfortunately, these solutions have been designed around a
centralized architecture and face important limitations (scala-
bility, network partitions, etc.).

Thus, how to decentralize the management of multiple
clusters is an important question that our community must
deal with. We propose to initiate the debate by focusing on
the OpenStack Neutron service in the following. However, we
underline that our study is valuable more generally since it
provides an abstract enough analysis of DCI management’s
different challenges.

Before analyzing in detail those challenges, we discuss
previous works and surveys on SDN technologies. In addition
to underlining major studies that might be relevant to better
understand SDN concepts, it enables us to position our current
work with respect to previous surveys.

III. REVIEWS ON WORK & SURVEYS ON SDN AND
SDN-BASED CLOUD COMPUTING

SDN Technology has been a hot topic for the last few years.
In that sense, several studies have already been published. In
this section, we underline the major ones. First, we discuss
papers that discuss SDN technologies in general. Second,
we review SDN-based cloud activities. By introducing these
studies, we aim to underline that the use of multi-instance
SDN technologies in a DCI context has not been analyzed in
the literature yet.

In [57] the authors presented a general survey on SDN
technologies presenting a taxonomy based on two classifi-
cations: physical classification and logical classification. For
every classifications, multiple subcategories were presented
and explained, and the surveyed SDN solutions were placed



5

according to their architectural analysis. The work finished
by presenting a list of open questions such as scalability,
reliability, consistency, interoperability, and other challenges
such as statistics collection and monitoring.

In [58], and [59], the authors focus on the scalability
criteria. More precisely, the work done by Karakus et al. [58]
provided an analysis of the scalability issues of the SDN con-
trol plane. The paper surveyed and summarized the SDN con-
trol plane scalability’s characteristics and taxonomy through
two different viewpoints: topology-related and mechanisms-
related. The topology-related analysis presents the relation be-
tween the topology of architectures and some scalability issues
related to them. The mechanism-related viewpoint describes
the relation between different mechanisms (e.g., parallelization
optimization) and scalability issues. This work’s limitation is
that the analysis is done by only considering the throughput
measured in established flows per second and the flow setup
latency.

In [59], Yang et al. provided a scalability comparison among
several different types of SDN control plane architectures
by doing simulations. To assign a degree of scalability, the
authors proposed to measure the flow setup capabilities and the
statistics collection. Although comparisons among controller
architectures are made in these two articles, there is no analysis
nor mention of the DCI context and related challenges.

Among other available studies in traditional SDN tech-
nologies, the work presented in [60], and [61] are probably
the most interesting ones concerning DCI objectives. In their
article [60], Blial et al. give an overview of SDN architectures
composed of multiple controllers. The study focuses on the
distribution methods and the communication systems used by
several solutions to design and implement SDN solutions able
to manage traditional networks. Similarly, the survey [61]
discusses some design choices of distributed SDN control
planes. It delivers an interesting analysis of the fundamental
issues found when trying to decentralize an SDN control
plane. These cornerstone problems are scalability, failure,
consistency, and privacy. The paper analyses pros and cons
of several design choices based on the aforementioned issues.
While these two studies provide important information for our
analysis, they do not address the cloud computing viewpoint
as well as the DCI challenges.

In the field of SDN applied specifically to cloud computing,
the works of Azodolmolky et al. [28], [45] provide informa-
tion about the benefits, and potential contributions of SDN
technologies applied for the management of cloud computing
networking. While these works represent an interesting entry
point to analyze SDN-based cloud networking evolution, they
mostly analyzed the networking protocols and implementa-
tions (e.g., VLAN, VXLAN, etc) that may be used in order to
provide networking federation among a few data centers. More
recently, Son et al. [46] presented a taxonomy of SDN-enabled
cloud computing works as well as a classification based on
their objective (e.g., energy efficiency, performance, virtualiza-
tion, and security), the method scope (e.g., network-only, and
joint network and host), the targeted architecture (e.g., Intra-
datacenter network (DCN), and Inter-DCN), the application
model (e.g., web application, map-reduce, and batch pro-

cessing), the resource configuration (e.g., homogeneous, and
heterogeneous), and the evaluation method (e.g., simulation,
and empirical). Additional metrics, such as data center power
optimization, traffic engineering, network virtualization, and
security, are also used to distinguish the studied solutions.
Finally, the paper provides a gap analysis of several aspects
of SDN technologies in cloud computing that have not been
investigated yet. Among them, we can cite the question related
to the extension of cloud computing concepts to the edge of
the network (i.e the DCI we envisioned).

To summarize, prior surveys and works neither analyze the
challenges of decentralized virtualized networking manage-
ment in the context of DCIs nor the characteristics (pros/cons)
of SDN solutions that could be used to execute this manage-
ment between multiple instances of the same VIM. The present
survey aims to deliver such a contribution.

IV. DISTRIBUTED NETWORK CONTROL MANAGEMENT
CHALLENGES

As discussed in Section II, the control of the network
elements of a DCI infrastructure should be performed in
a distributed fashion (i.e., with multiple VIM networking
services that collaborate together to deliver the same network
capabilities across multiple sites). Obviously, decentralizing a
controller such as Neutron brings forth new challenges and
questions. We choose to divide them into two categories: the
ones related to the organization of network information and the
ones related to the implementation of the inter-site networking
services. These challenges are summarized in Table I. The key
words column is used to introduce the name of the challenges
that will be used in the rest of the document. Finally, the term
VIM refers to the VIM network service in the following.

A. Network information’s challenges

Giving the illusion that multiple VIMs behave like a global
SDN-based Cloud networking service requires information
exchange. However, mitigating as much as possible data
communications while being as robust as possible (w.r.t net-
work disconnection or partitioning issues) requires to consider
several dimensions as discussed in the following.

1) Identifying how information should be shared (informa-
tion granularity): The first dimension to consider is the or-
ganization of the information related to the network elements.
As an example, the provisioning of an IP network between
two VIMs will require to share information related to the
IPs that have been allocated on each VIM. A first approach
may consist of sharing the information between the two VIMs
each time an IP is allocated to one resource. This way will
prevent possible conflict, but with an overhead in terms of
communications (the global knowledge base is updated each
time there is a modification). A second approach would be
to split the range of IP addresses with the same Classless
Inter-Domain Routing (CIDR or network prefix) between the
two VIMs at the creation of the network (i.e., each VIM has a
subset of the IPs and can allocate them without communicating
with other controllers). This way prevents facing IP conflicts
even in the case of network partitioning without exchanging



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 6

Challenge Key words Summary
Network information’s challenges
Identifying how information
should be shared

information granularity Propose good information
sharding strategies

Sharing networking informa-
tion on-demand and in an ef-
ficient manner

information scope Avoid heavy synchronization
by contacting only the rele-
vant sites

Facing network disconnec-
tions

information availability Continue to operate in cases
of network partitioning and be
able to recover

Technological challenges
Standard automatized and dis-
tributed interface

automatized interfaces Well-defined and bridged ver-
tical and horizontal interfaces

Support and adaptation of net-
working technologies

networking technologies Capacity to configure differ-
ent networking technologies

TABLE I: DCI Challenges summary

information each time a new IP is allocated to a particular
resource.

Understanding the different structures that are manipulated
will enable the definition of different information sharding
strategies between multiple VIMs and identify the pros and
cons of each of them.

Additionally, other elements related to local domain net-
working management that may be attached to a virtual network
as local router gateways, external gateways, DHCP ports, DNS
servers, fixed host routes, or floating IPs may not be likely
to be shared with remote sites. In consequence, depending
on the inter-site service, the granularity of the shared objects’
information needs to be well specified to avoid conflicts among
the networking management entities. If, in any case, the joint
management of a networking construction is strictly required,
the management entities should have the necessary mecha-
nisms to do management coordination in order to provide some
kind of data consistency.

2) Sharing networking information on-demand and in an
efficient manner (information scope): The second dimension
to consider is related to the scope of a request. Networking
information should stay as local as possible. For instance,
network information, like MAC/IP addresses of ports and
identifiers of a network related to one VIM, does not need
to be shared with the other VIMs that composed the DCI.
Similarly, information related to a Layer 2 network shared
between two VIMs as depicted in Figure 3 does not need to
be shared with the 3rd VIM. The extension of this Layer 2
network could be done later. That is, only when it will be
relevant to extend this network to VIM 3.

Taking into account the scope for each request is critical
since sharing information across all VIMs should be avoided
due to the heavy synchronization and communication needs.
In other words, contacting only the relevant sites for a request
will mitigate the network communication overhead and the
limitations regarding scalability as well as network discon-
nections.

Obviously, the information-sharing protocol needs to be fast
and reliable to avoid performance penalties that could affect

Fig. 3: Layer 2 extension Request

the deployment of the network service.
3) Facing network disconnections (information availabil-

ity): Each VIM should be able to deliver network services
even in case of network partitioning issues. Two situations
must be considered: (i) the inter-site network resource (for
instance, a Layer 2 network) has been deployed before the
network disconnection and (ii) the provisioning of a new inter-
site network resource. In the first case, the isolation of a VIM
(for instance VIM 2 in Figure 4) should not impact the inter-
site network elements: VIM 2 should still be able to assign
IPs to VMs using the “local” part of the inter-site Layer 2
network. Meanwhile, VIM 1 and VIM 3 should continue to
manage inter-site traffic from/to the VMs deployed on this
same shared Layer 2 network.

In the second case, because the VIM cannot reach other
VIMs due to the network partitioning issue, it is impossible to
get information that is mandatory to finalize the provisioning
process. The first way to address such an issue is to simply
revoke such a request. In this case, the information availability
challenge is only partially addressed. The second approach
is to provide appropriate mechanisms in charge of finalizing
the provisioning request only locally (e.g., creating temporary
resources). However, such an approach implies integrating



7

mechanisms to recover from a network disconnection.

Fig. 4: Operate in a local any mode

Depending on the way the resource has been created during
the partitioning, the complexity of the re-synchronization
procedure may vary.

In the aforementioned scenario, the VIM may do the pro-
visioning of a new VM in VIM 2 using an IP address already
granted to a VM in VIM 1 or that belongs to another CIDR.
Once the network failure is restored, VIM 1 will face issues
to forward traffic to VIM 2 either because of the overlapping
addresses or because there are two different CIDRs.

To satisfy the availability property, the inter-site connectivity
management should be able to address such corner cases.

B. Technological challenges regarding inter-site networking
services

Technological challenges are related to the technical issues
that could be presented when trying to implement DCI net-
working services.

1) Standard automatized and distributed interfaces (autom-
atized interfaces): A first challenge is related to the definition
of the vertical and horizontal APIs to allow the provision-
ing of inter-site services from the end-users viewpoint but
also to make the communication/collaboration between the
different VIMs possible. This means that the interface which
faces the user (user-side or north-side as traffic flows in a
vertical way) and the interface which faces other networking
services (VIMs-side or east-west-side as traffic flows in a
horizontal way) have to be smoothly bridged among them.
This integration needs to be done in order to provide the
necessary user abstraction and the automation of the VIMs
communication process. Consequently, this necessitates the
specification and development of well-defined north- and east-
west-bound interfaces presenting to the user and to remote in-
stances an abstract enough API with the available networking
services and constructions. Thus, how to design efficient APIs
for both northbound and east-west-bound communication is
another problem to address in the case of inter-site connectivity
management tools.

Within the framework of OpenStack, Neutron (see Section
II-B) only presents a user-oriented interface to provide local
services due to its centralized nature.

The Tricircle project [56] partially address this interface
automation leveraging a hierarchical architecture where an API

gateway node is used as an entry point to a geo-distributed
set of OpenStack deployments. Neutron deployments are not
aware of the existence of other local Neutrons but instead
always communicate with the Neutron gateway, which is also
the only interface exposed to the user.

2) Support and adaptation of networking technologies (net-
working technologies): Along with the initial networking
information exchanges among VIMs to provide inter-site con-
nectivity (MAC/IP addresses, network identifiers, etc.), the
identification of the mechanism to actually do the implementa-
tion will be needed. Although there are many existing network-
ing protocols to rely on to do the implementation (VLANs
on an interconnection box, BGP-EVPN/IPVPN, VXLAN ids,
GRE tunnels, etc.), they will need adaptation in the DCI
case. Since the configuration of the networking mechanisms
needs to be known by all the participant VIMs in a requested
inter-site service, the exchange of additional implementation
information will be required among the sites in an automatized
way. This automation is required due to the fact that the user
should not be aware of how these networking constructions
are configured at the low-level implementation. Since a Cloud-
Edge infrastructure could scale up to hundreds of sites, manual
networking stitch techniques like [52] [53] will be simply not
enough.

Depending on the implementation, the solution needs to be
able to do the reconfiguration of networking services at two
different levels:
• At the overlay level which implies the ability to configure

virtual forwarding elements like GoBGP instances [62],
OpenvSwitch switches or Linux bridges.

• At the underlay level, which implies the ability to talk
or communicate with some physical equipment like the
Edge site gateway. As not all physical equipment is
OpenFlow-enabled, the possibility to use other protocols
may be an advantage when it is necessary to configure
heterogeneous components or when internal routes should
be exposed to allow traffic forwarding at the data plane
level.

Additionally, in the context of the challenge described
in IV-A3, the mechanisms used for the implementation need to
be capable of reconfiguring themselves in order to re-establish
the inter-site traffic forwarding.

V. DISTRIBUTED SDN DESIGN PRINCIPLES

In addition to highlight the main challenges that should
be addressed by a DCI network service management, our
study aims at describing the state of the art of major SDN
solutions and the analysis on how each controller may answer
the different DCI proposed challenges. This section presents
an overview of the major differences we identified between
the solutions we have studied.

A. Architecture

The first point that distinguishes one solution from another
is the way controllers are interconnected with each other [57]–
[61]. Figure 5 presents the connection topologies we identified



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 8

during our analysis. We discuss in the following the pros and
cons of each approach.

Centralized: Architecture presenting a single cen-
tralized controller with a global view of the system. It
is the simplest and easiest architecture to manage, but
at the same time, the less scalable/robust one due to
the well-known problems of centralized architectures
(SPOF, bottlenecks, network partitioning, etc.).
Hierarchical: Tree-type architecture composed of
several layers of controllers. Most solutions present
a two-level tree consisting of local controllers and
a "root" controller. As the names indicate, local
controllers handle local operations such as intra-site
routing. On the opposite, the "root" controller deals
with all inter-site operations. While local controllers
only have their own local view and are not aware of
other local controllers’ existence, the root controller
should maintain a global knowledge of the infras-
tructure to communicate with local controllers each
time it is mandatory. While this approach tackles the
scalability challenge w.r.t. the centralized approach,
it only increases the robustness partially as the root
controller is still a centralized point.
Distributed but logically centralized: Architecture
where there is one controller per site, managing both
intra and inter-site operations. Each time a controller
creates or updates a network resource, it broadcasts
all other controllers’ modifications. This way enables
controllers to maintain an up-to-date copy of the
global knowledge, thus acting as a single logical
entity. This design stands close to the initial SDN
proposition [14] as several controllers share global
network information to present themselves as one
single controller.
Fully distributed: Architecture similar to the pre-
vious one but without communicating all cre-
ations/modifications to other controllers. In this ap-
proach, locally-created data remains in the instance
where it has been created and shared with other
instances only when needed. In such a case, explicit
communications between controllers are instantiated
in order to exchange technical information to estab-
lish, for instance, inter-site services. This way of
interconnecting controllers increases the robustness
w.r.t network disconnections as a network discon-
nection, or a node failure only impacts a subpart of
the infrastructure.
Hybrid: Two-layer architecture mixing the dis-
tributed and the hierarchical architectures. The con-
trol plane consists of several root controllers at the
top layer. Each one of the roots manages multiple
local controllers who are in charge of their respec-
tive sites. These root controllers are organized in a
distributed fashion, gathering global network state
information among them.

Fig. 5: SDN topologies

B. Leader-based operations

When implementing a DCI network service, it is important
to consider two kinds of operations: leaderless vs. leader-
based. Leaderless operations such as creating an only-local
network and its sub-networks are "simple" operations that
should not lead to network information inconsistencies [61]
and thus do not require leadership mechanisms. On the oppo-
site, leader-based operations, such as the assignment of an IP
in an inter-site network, require a dedicated approach to avoid
issues such as IP collisions. For those operations, there should
be a leader to take consistent decisions among all controllers.
Leaderships can be either given in two ways [63]: in a static
manner to a controller (i.e., the root node in a hierarchical
approach) or by using consensus protocols. Consensus can be
divided in two general types: leaderless consensus (i.e., such as
EPAXOS [64] or Alvin [65]), and leader-based consensus (i.e.,
such as PAXOS [66] or RAFT [67]).

Leader-based consensus protocols such as the aforemen-
tioned ones are used for several tasks such as leader election,
group membership, cluster management, service discovery, re-
source/access management, consistent replication of the master
nodes in services, among others [68]. Consensus typically
involves multiple instances agreeing on values. Moreover,
consensus can be reached when any majority of the instances
is available; for instance, a cluster of 5 instances can continue
to operate even if two nodes fail. However, applying consensus
protocols to a distributed SDN controller may present some
problems. In RAFT, for instance, network failures can seri-
ously impact the performance of the protocol: in the best case,
the partitioning may reduce the normal operation time of the
protocol; in the worst case, they render RAFT unable to reach
consensus by failing to elect a consistent leader [69].

To avoid the limitation imposed by a single leader elec-
tion, leaderless consensus protocols allow multiple nodes to
operate as a leader at-a-time [70]. This is achieved by divid-
ing conflicting and non-conflicting operations. Non-conflicting
operations can be executed without synchronization, while
for the conflicting ones, the nodes proposing the operation
assume the leadership. The per-operation-leader then collects



9

the dependencies from remote nodes to compute the order
among conflicting operations. However, as the system size gets
bigger, leaderless protocols may present scalability problems.
In EPAXOS, for instance, as the system size increases, more
nodes could propose transactions generating more conflicting
operations. As a consequence of this possibility, there is a
higher probability of different nodes viewing different depen-
dencies, which can fail to deliver fast decisions.

C. Internal communication protocols

Depending on the selected topology, the communication
between controllers occurs either vertically (centralized and
hierarchical) or horizontally (distributed). Those communica-
tions can be handled through different manners like polling
information from other controllers periodically, using a pub-
lish/subscribe approach to send notifications automatically, or
through explicit communication protocols between controllers.

D. Database management system

As largely discussed in Section IV, storing and sharing the
state of the DCI network service would be an important chal-
lenge. Surveyed SDN solutions rely either on relational (SQL)
or NoSQL databases.

1) SQL Databases: SQL databases are based on the rela-
tional data model; they are also known as Relational Database
Managing System (RDBMS). In most cases, they use Struc-
tured Query Language (SQL) for designing and manipulating
data and are normally deployed in a centralized node [71].
Relational databases can generally be vertically scalable,
which means that their performance could be increased using
more CPU or RAM. Some SQL databases such as MySQL
Cluster [72] proposes to scale horizontally, generally sharding
data over multiple database servers (a.k.a. "shared nothing"
architecture).

2) NoSQL Databases: NoSQL database is a general term
that gathers several kinds of databases that do not use the rela-
tional model. NoSQL databases can be gathered in four main
types [73]: document-based (e.g., MongoDB [74]), key-value
pairs (e.g., Redis [75]), graph databases (e.g., Neo4j [76])
or wide-column stores (e.g., Apache Cassandra [77]). This
kind of databases are by nature horizontal scalable as the
unstructured data scheme allows information to be sharded
in different sites, thus allowing different entities to access it
simultaneously in a geographically distributed way [78], [79].

More generally, the database management system would be
a key element of a DCI network service. It could be used
as the means to share information between controllers, thus
eliminating the need for a dedicated communication protocol
as discussed in the previous paragraph.

E. SDN interoperability and maturity

The studied SDN controllers should be capable of achieving
a good performance in heterogeneous and dynamic network
environments. For this reason, the capacity to configure a
different kind of equipment and the maturity of the solution
will be explained in this section.

1) Network types targeted: The popularity of virtualization
technologies leads to the abstraction of the physical network
(a.k.a. the underlay network) into multiple virtual ones (a.k.a.
overlay networks).
• Underlay network : Is a physical infrastructure that can

be deployed in one or several geographical sites. It is
composed of a series of active equipment like switches or
routers connected among them using Ethernet switching,
VLANs, routing functions, among other protocols. Due
to the heterogeneity of equipment and protocols, the
Underlay network becomes complex and hard to manage,
thus affecting the different requirements that must be ad-
dressed like scalability, robustness, and high bandwidth.

• Overlay network : Virtual network built on top of another
network, normally the underlying physical network, and
connected by virtual or logical links. Overlay networks
help administrators tackle the scalability challenge of
the underlay network. For instance, overlay networks
leverage the use of encapsulation protocols like VXLAN
because of its scalability (e.g., VXLAN provides up to
16 million identifiers while VLAN provides 4096 tags).

Because of these two levels of complexity, SDN controllers
could be designed to deal with both levels or just one.
Obviously, the richer the operations offered by controllers,
the more difficult it would be to distribute the DCI network
service.

2) Supported Southbound protocols: The reference SDN
architecture exposes two kinds of interfaces: Northbound and
Southbound. Northbound interfaces reference the protocol
communication between the SDN controller and applications
or higher layer control programs that may be automation or
orchestration tools. Southbound interfaces are used to allow
the SDN controller to communicate with the network’s phys-
ical/virtual equipment. OpenFlow [80] is an industry-standard
considered as the de facto southbound interface protocol. It
allows entries to be added and removed to the switches and
potentially routers’ internal flow-table, so forwarding decisions
are based on these flows. In addition to OpenFlow, SDN
controllers may use other protocols to configure network
components like NETCONF, LISP, XMPP, SNMP, OVSDB,
BGP, among others [14]. The Border Gateway Protocol (BGP),
for example, allows different Autonomous Systems (ASes) to
exchange routing and reachability information between edge
routers.

More generally, as not all physical equipment is OpenFlow-
enabled, the possibility to use other protocols may be an
advantage when it is necessary to configure heterogeneous
components or when internal routes should be exposed to
allow communication at the data plane level.

3) Readiness Level: The Technological Readiness Level
(TRL) scale is an indicator of a particular technology’s ma-
turity level. Due to the complexity of the mechanisms we are
dealing with in this survey, it is important to consider the
TRL of technology in order to mitigate as much as possible
development efforts. This measurement provides a common
understanding of technology status and allows us to establish
the surveyed SDN solutions’ status, as not all solutions have
the same maturity degree. To this end, the TRL proposed by



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 10

the European Commission presented in [81] has been used to
classify the different solutions we studied.

4) Additional considerations: OpenStack compatibility: As
we also propose to take the example of an OpenStack-based
system to explain how SDN solutions could be used in a multi-
VIM deployment, the capability to integrate with Neutron
is introduced as an illustrative example. Indeed, some SDN
controllers may be able to integrate with Neutron to implement
networking services or add additional functionalities, consum-
ing the Neutron core API or its extensions. Therefore, having
a driver to pass network information to the controller.

c

VI. MULTI-CONTROLLER SDN SOLUTIONS

Although it would be valuable, delivering a survey of all
SDN controller solutions that have been proposed [82], [83]
is beyond the scope of this article. We limited our study to
literature major solutions’ state of the art and selected the best
candidates that may fit the Distributed Cloud Infrastructure
we are investigating. For the sake of clarity, we present the
solutions we studied into two categories:
• Network-oriented SDN: Solutions designed to provide

network programmability to traditional or virtualized net-
work backbones. The controllers gathered in this category
have not been designed to provide SDN capabilities for
cloud computing networking environments.

• Cloud-oriented SDN: Solutions that proposed an SDN
way to manage the networking services of cloud comput-
ing infrastructures (as explained in Section II-A). While
some of the controllers gathered in this category have
been initially designed to manage traditional networks,
they propose extensions to provide SDN features within
the cloud networking services.

For each selected proposal, we present a qualitative analysis
and summarize their characteristics and whether they address
the DCI challenges, respectively in Table II and Table III.

A. Network-oriented (controllers for SDN domains)

In this first part, we give an overview of the seven SDN solu-
tions we investigated, namely DISCO [84], D-SDN [85], Elas-
ticon [86], FlowBroker [87], HyperFlow [88], Kandoo [89],
and Orion [90].

DISCO
DISCO (Distributed SDN Control Plane) relies on the

segregation of the infrastructure into distinct groups of el-
ements where each controller is in charge of one group
using OpenFlow as Control plane protocol. Each controller
has an intra-domain (or intra-group) part that provides lo-
cal operations like managing virtual switches, and an inter-
domain (or inter-group) part that manages communication with
other DISCO controllers to make reservations, topology state
modifications, or monitoring tasks. For the communication
between controllers, DISCO relies on an Advanced Message
Queuing Protocol (AMQP) message-oriented communication
bus where every controller has at the same time an AMQP

server and a client. The central component of every controller
is the database where all intra- and inter-domain information
is stored. We underline that there is no specific information
on how the database actually works in the article that presents
the DISCO solution.

DISCO can be considered to have a fully distributed design
because every local controller stores information of its own
SDN domain only and establish inter-domain communication
with other controllers to provide end-to-end services only if
needed. DISCO controllers do not act as a centralized entity
and instead work as independent entities peering among them.
It has a leader-less coordination because of its logically dis-
tributed condition (each controller is in charge of a subgroup,
so there is no possible conflict). DISCO’s evaluations have
been performed on a proof of concept. For this reason, we
assigned a TRL of 3 to DISCO.

Addressing the challenges:
• Information granularity: Addressed - due to the segrega-

tion of the infrastructure into distinct groups.
• Information scope: Addressed - thanks to its per-group

segregation. When an inter-domain forwarding path is
requested, DISCO controllers use the communication
channel to only contact the relevant sites for the request.
Thus, avoiding global information sharing.

• Information availability: Addressed - in case of network
disconnections, each controller would be able to pro-
vide intra-domain forwarding. Besides, controllers that
can contact each other could continue to deliver inter-
site forwarding. Finally, a recovery mode is partially
provided, given that disconnected sites only need to
contact the remote communication channels to retake the
inter-domain forwarding service when the connectivity
is reestablished. As aforementioned, we underline that
due to its implementation and the information that is
manipulated, DISCO is conflict-less. This makes the
recovery process rather simple.

• Automatized interfaces: Addressed - thanks to the bridge
presented among the northbound and east-west interfaces
to do inter-controller communication.

• Networking technologies: Not addressed since it does
not integrate other networking technologies aside from
OpenFlow.

D-SDN
D-SDN (Decentralized-SDN) distributes the SDN control

into a hierarchy of controllers, i.e., Main Controllers (MCs)
and Secondary Controllers (SCs), using OpenFlow as control
plane protocol. Similar to DISCO, SDN devices are organized
by groups and assigned to one MC. One group is then divided
into subgroups managed by one SC (each SC requests one MC
to control a subgroup of SDN devices). We underline that the
current article does not give sufficient details regarding how
states are stored within Main and Secondary Controllers. The
paper mainly discusses two protocols. The first one is related
to communications between SCs and MCs using D-SDN’s MC-
SC protocol for control delegation. The second one, entitled
D-SDN’s SC-SC, has been developed to deal with fail-over



11

TA
B

L
E

II
:

C
la

ss
ifi

ca
tio

n
of

SD
N

so
lu

tio
ns

.

Pr
op

os
al

s

M
od

el
Im

pl
em

en
ta

tio
n

In
te

ro
pe

ra
bi

lit
y

&
m

at
ur

ity
E

xt
ra

co
ns

id
er

at
io

n
C

en
tr

al
iz

ed
(S

in
gl

e)
C

on
tr

ol
le

r
D

es
ig

ns

D
is

tr
ib

ut
ed

D
es

ig
ns

C
oo

rd
in

at
io

n
St

ra
te

gy
In

te
rn

al
C

om
m

un
ic

at
io

n
Pr

ot
oc

ol
s

D
at

ab
as

e
m

an
ag

e-
m

en
t

sy
st

em

N
et

w
or

k
ty

pe
s

ta
rg

et
ed

So
ut

hb
ou

nd
Pr

ot
oc

ol
s

R
ea

di
ne

ss
L

ev
el

O
pe

nS
ta

ck
co

m
pa

tib
ili

ty

(F
la

t)
L

og
ic

al
ly

ce
nt

ra
liz

ed

(F
la

t)
L

og
ic

al
ly

di
st

ri
bu

te
d

H
ie

ra
rc

hi
ca

l
H

yb
ri

d
L

ea
de

r-
ba

se
d

L
ea

de
r-

le
ss

A
m

on
g

lo
ca

l
no

de
s

W
ith

hi
gh

er
la

ye
rs

A
m

on
g

ro
ot

no
de

s
U

nd
er

la
y

O
ve

rl
ay

N
et

w
or

k-
or

ie
nt

ed
so

lu
tio

ns

D
IS

C
O

X
X

A
M

Q
P

-
-

?
X

O
pe

nF
lo

w
&

R
SV

P-
lik

e
Po

C
(T

R
L

3)
7

D
-S

D
N

X
X

SC
-S

C
Pr

ot
oc

ol
M

C
-S

C
Pr

ot
oc

ol
-

-
X

O
pe

nF
lo

w
Po

C
(T

R
L

3)
7

E
la

st
iC

on
X

X
D

B
-i

n/
T

C
P

ch
an

ne
l

-
-

N
oS

Q
L

D
B

X
O

pe
nF

lo
w

Po
C

(T
R

L
3)

7

Fl
ow

B
ro

ke
r

X
X

-
Fl

ow
B

ro
ke

r
co

nt
ro

l
ch

an
ne

l
?

?
X

O
pe

nF
lo

w
Po

C
(T

R
L

3)
7

H
yp

er
Fl

ow
X

X
W

he
el

FS
-

-
W

he
el

FS
X

O
pe

nF
lo

w
Po

C
(T

R
L

3)
7

K
an

do
o

X
X

-
Si

m
pl

e
m

es
sa

ge
ch

an
ne

l
-

-
X

O
pe

nF
lo

w
Po

C
(T

R
L

3)
7

O
ri

on
X

?
?

N
ot

ne
ed

ed
T

C
P

ch
an

ne
l

Pu
b/

Su
b

N
oS

Q
L

D
B

X
O

pe
nF

lo
w

Po
C

(T
R

L
3)

7
C

lo
ud

-o
ri

en
te

d
so

lu
tio

ns

D
ra

go
nF

lo
w

X
X

X
D

B
-i

n
D

B
-i

n
D

B
-i

n
N

oS
Q

L
D

B
/

ot
he

rs
X

O
pe

nF
lo

w
D

em
on

st
ra

te
d

(T
R

L
6)

O
ni

x
X

X
N

oS
Q

L
D

B
?

-
SQ

L
D

B
N

oS
Q

L
D

B
X

X
O

pe
nF

lo
w

&
B

G
P

Sy
st

em
pr

ot
ot

yp
e

(T
R

L
7)

7

O
N

O
S

X
X

D
B

-i
n

-
-

A
to

m
ix

(N
oS

Q
L

fr
am

ew
or

k)
X

X
O

pe
nF

lo
w

,
N

et
C

on
f&

ot
he

rs
Pr

ov
en

sy
st

em
(T

R
L

9)

O
D

L
(F

ed
)

X
X

X
A

M
Q

P
-

-
In

-m
em

or
y

X
X

O
pe

nF
lo

w
,

B
G

P
&

ot
he

rs
Pr

ov
en

sy
st

em
(T

R
L

9)

Tu
ng

st
en

X
X

X
B

G
P

IF
M

A
P

D
B

-i
n

N
oS

Q
L

D
B

X
X

X
M

PP
,

B
G

P
&

ot
he

rs
Pr

ov
en

sy
st

em
(T

R
L

9)



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 12

Proposals
Organization of network information Inter-site networking services implementation

Information
granularity

Information
scope

Information
availability

Automatized
interfaces

Networking
technologies

Network-oriented solutions
DISCO 3 3 3 3 7
D-SDN 3 ~ ? 7 7
ElastiCon ~ ? ? ~ 7
FlowBroker 7 7 3 7 7
HyperFlow 3 ~ ~ ~ 7
Kandoo 7 7 3 7 7
Orion 7 7 ? 7 7
Cloud-oriented solutions
DragonFlow ~ ? ? ~ ~
Onix ~ ? ? ~ ~
ONOS ~ ? ? ~ 3
ODL (Fed) 3 3 ~ 3 ~
Tungsten 7 7 ? 7 3

1 3Challenge completely addressed.
2 ~ Challenge partially addressed.
3 7Challenge not addressed.
4 ? Undefined.

TABLE III: Summary of the analyzed SDN solutions.

scenarios. The main idea is to have replicas of SCs in order
to cope with network or node failures.

As stated in the proposition, D-SDN has a hierarchical
design: the MC could be seen as a root controller and SCs
as local controllers. It has a leader-based coordination, with
MC being the natural leader in the hierarchy. As D-SDN is
presented as a proof of concept, we defined a TRL of 3.
• Information granularity: Addressed - due to the segrega-

tion of the infrastructure elements into distinct groups.
• Information scope: Not addressed - the MC gathers global

knowledge, and the communication between SC appear
just for fault tolerance aspects.

• Information availability: Undefined - in case of discon-
nection, SCs controllers can continue to provide forward-
ing within its local domain at first sight. However, the
article does not specify how the MC deals with such a
disconnection. Besides, the controller does not provide
any type of recovery method as D-SDN does not consider
network partitioning issues.

• Automatized interfaces: Not addressed - D-SDN proposes
an interface for SC-SC communication only for fault tol-
erance issues. Moreover, there is no information regarding
MC-MC communication patterns.

• Networking technologies: Not addressed - since it does
not integrate any other networking technologies nor the
capacity to provide inter-group service deployment.

ElastiCon
Elasticon (i.e., elastic controller) is an SDN controller

composed of a pool of controllers. The pool can be expanded
or shrunk according to the size of the infrastructure to operate.
Each controller within the pool is in charge of a subset of the
SDN domain using OpenFlow as control plane protocol. The
elasticity of the pool varies according to a load window that
evolves over time. A centralized module triggers reconfigu-
rations of the pool like migrating switches among controllers
or adding/removing a controller based on the computed value.

While decisions are made centrally, it is noteworthy to mention
that actions are performed by the controllers. To do so, each
controller maintains a TCP channel with every other one
creating a full mesh. This protocol enables controllers to
coordinate themselves if need be. The states of Elasticon are
shared through the Hazelcast distributed data store [91], which
can be accessed by all controllers. The use of a shared back-
end by the pool gives, as a result, a physically distributed but
logically centralized design. As stated in Elasticon’s work, the
solution has been implemented as a prototype, and thus a TRL
of 3 has been assigned to it.

• Information granularity: Partially addressed - Elasticon
has been designed to distribute the control of infras-
tructure over several controllers. If the Hazelcast data
store can be deployed across several sites, it is possible
to envision distributing the pool of controllers between
the different sites. By accessing the same database, con-
trollers will be able to add information to the database
and fetch the others’ information to establish inter-site
services. However, the consistency of the data store might
be another issue to deal with.

• Information scope: Undefined - it is linked to the database
capabilities (in this case, to the way the Hazelcast
data store shards the information across the different
sites of the infrastructure). However, it is noteworthy to
mention that most advanced database systems such as
CockroachDB only favor data-locality across several geo-
distributed sites partially.

• Information availability: Undefined - similarly to the
previous challenge, it is linked to the way the database
services deals with network partitioning issues. In other
words, intra/inter-domain forwarding paths that have been
previously established should go on theoretically (net-
work equipment has been already configured). Only the
recovery mechanism to the DB is unclear.

• Automatized interfaces: Partially addressed - because
each controller already has a TCP channel to commu-



13

nicate with the other controllers. However, this commu-
nication channel is only used for coordination purposes.

• Networking technologies: Not addressed - since it only
operates in OpenFlow-based scenarios.

FlowBroker
FlowBroker is a two layers architecture using OpenFlow

as a control plane protocol. It is composed of a series of
broker agents and semi-autonomous controllers. The broker
agents are located at the higher layer. They are in charge of
maintaining a global view of the network by collecting SDN
domain-specific network state information from the semi-
autonomous controllers deployed at the bottom layer. Semi-
autonomous controllers do not communicate among them,
so they are not aware of other controllers’ existence in the
network. These controllers are only aware of interfaces in the
controlled switches, thus, providing local-domain forwarding.
By maintaining a global view, the broker agents can define how
semi-autonomous controllers should establish flows to enable
inter-domain path forwarding.

FlowBroker presents a hierarchical design clearly, with
broker agents acting as root controllers and semi-autonomous
domain controllers as local controllers. Although semi-
autonomous controllers can establish forwarding paths inside
their own domain, communication with the broker agents is
mandatory for inter-domain forwarding. Because of this rea-
son, FlowBroker presents a leader-based coordination, where
brokers act as leaders. However, we underline that there is
not any information describing how the information is shared
between the different brokers.

Regarding maturity, we assigned a TRL of 3 to FlowBroker
because only a proof-of-concept has been implemented.

Addressing the challenges:
• Information granularity: Not addressed - the segregation

into semi-autonomous controllers enables the efficient
sharing of the information per site. However, the global
view of the information that is maintained by the brokers
does not enable the validation of this property.

• Information scope: Not addressed - although the global
view maintained by each broker allows them to contact
only the semi-autonomous controllers that are involved in
the inter-service creation, the result of each operation is
forwarded to each broker in order to maintain the global
view up-to-date.

• Information availability: Addressed - as aforementioned,
semi-autonomous controllers can continue to provide
local-domain forwarding without the need of the brokers.
In the hypothetical case of a network disconnection and
the subsequent reconnection, interconnected controllers
can still forward the traffic among them. Actually, they
only need to contact brokers in order to request the inter-
site forwarding configuration. Once the configuration of
network equipment has been done, controllers do not
need to communicate with brokers. Regarding the loss
of connectivity with brokers, the recovery process is
quite simple because the information shared between all
brokers and semi-autonomous controllers is conflict-less.

• Automatized interfaces: Not addressed - because semi-
autonomous controllers do not have an east-west interface
to communicate among them, but only communicate with
brokers. Moreover, the way brokers exchange network
knowledge to gather global network view is not discussed.

• Networking technologies: Not addressed - since its use is
only intended with OpenFlow protocol.

HyperFlow
Hyperflow is an SDN NOX-based [92] multi-controller us-

ing OpenFlow as control plane protocol. The publish/subscribe
message paradigm is used to allow controllers to share global
network state information and is implemented using WheelFS
[93]. Each controller subscribes to three channels: data chan-
nel, control channel, and its own channel. Events of local
network domains that may be of general interest are published
in the data channel. In this way, information propagates to all
controllers allowing them to build the global view. Controller
to controller communication is possible by publishing into the
target’s channel. Every controller publishes a heartbeat in the
control channel to notify about its presence on the network.

As global networking information is shared by all partici-
pant controllers, the controller topology presents a physically
distributed but logically centralized design. Every controller
manages its own domain. In the case of network partitions,
traffic forwarding can continue inside each controller domain
and between the controllers that can contact each other.
However, the dependency with respect to WheelFS is not
discussed. In other words, the behavior of a controller that
cannot contact WheelFS is undefined. More generally, the
publish/subscribe paradigm enables Hyperflow to be leader-
less. As this proposition has been implemented as a proof-of-
concept, a TRL of 3 has been assigned to HyperFlow.

Addressing the challenges:
• Information granularity: Addressed - thanks to WheelFS,

it is possible to deploy one controller per site. Each one
uses WheelsFS to share networking information in order
to create inter-domain forwarding paths.

• Information scope: Partially addressed - HyperFlow
presents both a general information data channel and the
possibility to communicate directly to specific controllers
using their respective channel. Unfortunately, the paper
does not clarify whether the establishment of inter-site
forwarding is done by contacting the relevant controllers
or if, instead, the general channel is used. In the former
case, the exchange is efficient; in the latter, the informa-
tion will be shared through all controllers.

• Information availability: Partially addressed - in case of
a network partitioning, every controller can continue to
serve their local forwarding requests. Regarding inter-
forwarding, the dependency w.r.t. to WheelFS is unclear.
Theoretically speaking, inter-forwarding channels should
survive disconnections (at least among the controllers that
can interact). Moreover, WheelFS provides a recovery
method to deal with network partitioning issues. Such
a feature should enable controllers to request new inter-
forwarding paths after disconnections without implement-
ing specific recovery mechanisms. Similar to previous



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 14

solutions, this is possible because the information shared
through WheelFS is conflict-less.

• Automatized interfaces: Partially addressed - since
WheelFS is used as both communication and storage
utility among controllers. Thus, it is used as the east-
west interface. However, HyperFlow’s authors underlined
that the main disadvantage of the solution is the use of
WheelsFS: WheelsFS can only deal with a small number
of events, leading to performance penalties in cases where
it is used as a general communication publish/subscribe
tool among controllers.

• Networking technologies: Not addressed - since it does
not integrate other networking technologies besides
OpenFlow.

Kandoo
Kandoo is a muti-controller SDN solution built around

a hierarchy of controllers and using OpenFlow as control
plane protocol. At the low level, local-domain controllers
are in charge of managing a set of SDN switches and pro-
cessing local traffic demands. At the high-level, the single
root controller gathers network state information to deal with
inter-domain traffic among the local domains. The Kandoo
proposal authors claim that there are only a few inter-domain
forwarding requests and that a single root controller is large
enough to deal with. Regarding the local controllers, they do
not know about the others’ existence, thus only communicating
with the root controller using a simple message channel to
request the establishment of inter-domain flows. Unfortunately,
the authors did not give sufficient information to understand
how this channel works and how the inter-domain flows are
set up.

By its two-level hierarchical design, Kandoo presents a
leader-based coordination (the root controller being the archi-
tecture’s natural leader). As the solution had been implemented
as a proof-of-concept, a TRL of 3 has been assigned to
Kandoo.

Addressing the challenges:
• Information granularity: Not addressed - the root con-

troller is used to get information to do inter-domain traffic
forwarding, thus gathering the global network view.

• Information scope: Not addressed - similarly to the previ-
ous challenge, there is no direct communication between
controllers: the single root controller is aware of all inter-
domain requests.

• Information availability: Addressed - similarly to Flow-
Broker solution, the root controller is only required to
configure the inter-domain traffic. Once network equip-
ment has been set up, there is no need to communicate
with the root controller. The recovery process between
local controllers and the root is simple: it consists of
just recontacting the root once the network connectivity
reappears (similarly to FlowBroker is conflict-less).

• Automatized interfaces: Not addressed - there is not an
east-west interface to communicate among local con-
trollers.

• Networking technologies: Not addressed - since Kandoo
does not implement other protocols besides OpenFlow.

Orion

Orion is presented as a hybrid SDN proposition using Open-
Flow as a control plane protocol. The infrastructure is divided
into domains that are then divided into areas. Orion leverages
area controllers and domain controllers. Area controllers are
in charge of managing a subset of SDN switches and establish
intra-area routing. Domain controllers, at the top layer, are in
charge of synchronizing global abstracted network information
among all domain controllers and to establish inter-area rout-
ing paths for their managed area controllers. Synchronization
of network states between domain controllers is done using
a scalable NoSQL database. Moreover, a publish/subscribe
mechanism is used to allow domain controllers to demand
the establishment of inter-area flows among them. Finally, it
is noteworthy to mention that area controllers are not aware of
other area controllers’ existence and only communicate with
their respective domain controller. This communication is done
via a simple TCP channel.

Orion is the only solution that presents a hybrid design:
each domain follows a two-level hierarchy, and all domain
controllers are arranged in a P2P way, using a NoSQL database
to share information between each other. Unfortunately, the
paper does not give details regarding the NoSQL database
nor the coordination protocol among the domain controllers.
Hence, it is not clear whether Orion uses a leader-based
coordination in its P2P model. As the solution had been
implemented as a proof-of-concept, a TRL of 3 has been
assigned to Orion.

Addressing the challenges:

• Information granularity: Not addressed - although the
infrastructure is divided into domains (each domain con-
troller maintains its own view of the information), each
area controller should notify its domain controller about
all changes that occur at the low level.

• Information scope: Not addressed - first, area controllers
cannot contact directly other controllers to set up inter-
site forwarding services, and second, we do not know
how information is shared between domain controllers
(i.e., it is related to the database system, see Elasticon
for instance).

• Information availability: Undefined - in case of network
disconnections, area controllers can continue to forward
intra-domain traffic and inter-domain traffic on paths that
have been previously established. In other words, domain
controllers are used only for inter-domain path forwarding
establishments. In the case of network disconnection, the
area controller only needs to reconnect to its domain con-
troller when needed and when the connection reappears.
There is no need for a specific recovery protocol because
the information shared between area controllers and their
respective domain controller is conflict-less. Only the
recovery mechanism related to the DB that is used to
share information among domain controllers is unclear.

• Automatized interfaces: Not addressed - due to the fact
that local controllers do not present an east-west interface
to communicate among them.

• Networking technologies: Not addressed - since it does



15

not integrate other networking technologies aside from
OpenFlow.

B. Cloud-Oriented

In this second part, we present the five solutions we selected
from the cloud computing area, namely DragonFlow [94],
Onix [95], ONOS [96], ODL [97], and Tungsten [98].

DragonFlow
DragonFlow is an SDN controller for the OpenStack ecosys-

tem, i.e., it implements the Neutron API and thus can replace
the default Neutron implementation (see Section II-B). Drag-
onFlow relies on a centralized server (i.e., the Neutron server)
and local controllers deployed on each compute node of the
infrastructure from the software architecture. Each local con-
troller manages a virtual switch, providing switching, routing,
and DHCP capabilities using entirely OpenFlow. A Dragon-
Flow ML2 mechanism driver and a DragonFlow service plug-
in are activated in Neutron Server in order to provide system
network information to all local controllers. Communication
between the plug-ins at the Neutron server side and local con-
trollers is done via a pluggable distributed database (currently
supporting OVSDB [99], RAMCloud [100], Cassandra [101],
and using etcd [102] as default back-end).

Local controllers periodically fetch all information of net-
work state through this database and update virtual switches,
routes, etc., accordingly.

By maintaining a global knowledge of the network elements
through its distributed database, DragonFlow can be consid-
ered as a distributed but logically centralized controller (see
Section V-A) at first sight. However, the fact that there is a
root controller (i.e., the Neutron server-side) in charge of the
management layer (i.e., updating configuration states in the
distributed database) and local controllers that implement the
control plane makes DragonFlow more a hierarchical solution
than a distributed one. In other words, for all leader-based
operations, the Neutron plug-in deployed at the server-side acts
as the leader. In conclusion, although DragonFlow is presented
as a distributed SDN controller, its design does not allow the
management of a geo-distributed infrastructure (i.e., composed
of multiple SDN controllers).

From the maturity viewpoint and according to its activity,
we believe DragonFlow has reached a TLR 6. Initially sup-
ported by Huawei, the project is rather inactive right now.

Addressing the challenges:
• Information granularity: Partially addressed - similarly

to Elasticon, if the distributed database service can be
deployed across several sites, we can envision an infras-
tructure composed of several DragonFlow Neutron plug-
in. Each one will add information to the database, and all
local controllers will be capable of fetching the necessary
information to provide end-to-end services.

• Information scope: Undefined - it is linked to the way the
distributed database system shards the information across
the different sites of the infrastructure.

• Information availability: Undefined - similarly to the
previous challenge and to the Elasticon solution, it is

linked to the way the distributed database services deals
with network partitioning issues.

• Automatized interfaces: Partially addressed - Dragon-
Flow controllers do not present an east-west interface to
communicate with remote sites. Instead, the distributed
database is used as a communication tool.

• Networking technologies: Partially addressed - the con-
troller incorporates the adaptation and reconfiguration of
networking services, but it lacks the heterogeneity of
networking protocols. Currently, DragonFlow does not
support BGP dynamic routing [103].

Onix
Onix is a multi-controller SDN platform. In other words,

Onix presents several building blocks to develop network
services in charge of operating either overlay (using OpenFlow
by default) or underlay (using BGP if needed) networks.

Onix’s architecture consists of multiple controller instances
that share information through a data store called Network
Information Base (NIB). The infrastructure is divided into do-
mains, each domain being managed by one instance. Depend-
ing on durability and consistency, a network service may use
a specific database to implement the NIB module. If durability
and strong consistency are required, a replicated transactional
SQL database should be used among the instances. Otherwise,
it is possible to use any kind of NoSQL system.

Regarding coordination aspects, the system leverages
ZooKeeper [104] to deal with instance failures (using the
Zookeeper Atomic Broadcast protocol for leader election). The
responsibility of the SDN equipment is then determined among
the controllers.

By using multiple controllers, and a global network
database, the Onix architecture corresponds to a physically
distributed but logically centralized one.

As Onix was built as a basis for Nicira’s SDN products but
was not really a commercial product, a TRL of 7 was assigned.

Finally, the Onix platform integrates some applications,
including the management of multi-tenant virtualized DCs.
This service allows the creation of tenant-specific Layer 2
networks establishing tunnels among the hypervisors hosting
VMs in one single deployment. However, this module works in
a stand-alone mode and does not interact with the OpenStack
Neutron service.

Addressing the challenges:
• Information granularity: Partially addressed - similarly to

solutions such as Elasticon or DragonFlow, it is related
to the database used to share the information between the
instances.

• Information scope: Undefined - similarly to the previ-
ous challenge, it is related to the database. In case of
strong consistency, the information should be synchro-
nized across all instances. In the case of a NoSQL system,
it depends on how the DB shards the information across
different instances.

• Information availability: Undefined - established services
can go on, and disconnected sites can continue to operate
in isolated mode. The main issue is related to the NIB



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 16

that should provide the necessary consistency algorithms
to allow recovery in case of network disconnection.

• Automatized interfaces: Partially addressed - similarly to
DragonFlow, the use of distributed DB to share informa-
tion among instances can be seen as an east-west interface
allowing communication among controllers.

• Networking technologies: Partially addressed - the so-
lution has been designed to use several networking
technologies and protocols. Although the initial Onix
proposition only supported OpenFlow, Onix design does
not impose a particular southbound protocol but rather
the use of the NIB as an abstraction entity for network
elements.

ONOS
ONOS (Open Network Operating System) is a modular and

distributed SDN framework consisting of several network ap-
plications build on top of Apache Karaf OSGi container [105].
It supports the use of multiple control plane protocols like
OpenFlow, NetConf, and others. ONOS has been created for
overlay and underlay networks of service providers. Network
states’ information is stored using the Atomix database [106],
a NoSQL framework developed for ONOS, which is also used
for coordination tasks among controllers.

Similar to other proposals, the infrastructure is divided into
domains with one controller per domain. Considering the
shared back-end and the multiple controller instances, ONOS
presents a physically distributed but logically centralized de-
sign. As aforementioned, ONOS has a leader-based coordina-
tion approach, leveraging the Atomix DB (more precisely, it
uses the RAFT algorithm). Considering that ONOS is one of
the most popular SDN open-source controllers and is used by
several key actors in telecommunications [107], a TRL of 9
has been assigned to ONOS.

Finally, the modular design of ONOS allows the implemen-
tation of the Neutron API. Concretely, there are three applica-
tions, which consume Neutron API and provide ML2 drivers
and Services plug-ins: SONA (Simplified Overlay Network
Architecture), VTN (Virtual Tenant Network), and CORD
(Central Office Re-architected as a Datacenter) VTN. Each
application has been designed with different targets [108],
[109]. SONA provides an ML2 driver and an L3 service plug-
in implementation. VTN provides service function chaining
capabilities. CORD VTN extends VTN with its own interfaces
for switching and routing configuration [110].

Addressing the challenges:
• Information granularity: Partially addressed - similarly

to previous solutions that are composed around several
instances and a global shared database.

• Information scope: Undefined - it is linked to the way the
Atomix database system shards the information across the
different instances.

• Information availability: Undefined - similarly to the
previous challenge, it is linked to the Atomix system.

• Automatized interfaces: Partially addressed - ONOS con-
trollers use the Atomix framework for coordination tasks
among controllers and to communicate among them.

• Networking technologies: Addressed - ONOS includes
several networking technologies.

OpenDayLight
OpenDayLight (ODL) is a modular SDN platform support-

ing a wide range of protocols such as OpenFlow, OVSDB,
NETCONF, BGP, among others. Originally, OpenDayLight
was developed as a centralized controller to merge legacy
networks with SDN in data centers, but its modularity al-
lows users to build their own SDN controller to fit specific
needs [111]. The internal controller architecture is composed
of three layers: The southbound interface, which enables
communication with network devices. The Service Adaptation
Layer adapts the southbound plug-in’s functions to higher-
level application/service functions. Finally, the northbound
interface provides the controller’s API to applications or
orchestration tools. Network states are stored through a tree
structure using a dedicated in-memory data store (i.e., devel-
oped for ODL). While the default implementation of ODL can
be used in cluster mode for redundancy and high availability,
its modularity allows the introduction of features aiming to
allow different instances of the controller to peer among them
like the SDNi [112] or the more recent Federation [113]
projects. ODL Federation service facilitates the exchange of
state information between multiple OpenDayLight instances.
It relies on AMQP to send and receive messages to/from other
instances. A controller could be at the same time producer and
consumer.

The Federation project of ODL corresponds to a physical
and logical distributed design (each instance maintains its own
view of the system). Moreover, it is a leader-less coordination
approach because there is a flat on-demand communication be-
tween controllers, and no leader is needed for these exchanges.

The modularity of the controller allows multiple projects
to implement the Neutron API. For instance, ODL comes
with the OpenStack Neutron API application. This application
provides the abstractions that are mandatory for the imple-
mentation of the Neutron API inside the controller. Among
those implementations, we found: Virtual Tenant Network
Manager (VTN), Group-Based Policy (GBP), and OVSDB-
based Network Virtualization Services (NetVirt) [114].

By leveraging the Federation and NetVirt projects, it is
possible to create virtual network resources spreading across
several OpenStack instances. When the Federation manager
receives a request to create an inter-site service between
two OpenStack instances, it realizes the interconnection at
the ODL level (i.e., creating shadow elements, etc.) and
performs the matching with the OpenStack Neutron resources
on the different sites. Although this enables to interconnect
multiple instances of OpenStack, it is noteworthy to mention
that Neutron instances remain unconscious of the information
shared at the ODL level. In other words, there is no coordi-
nation mechanism that will prevent overlapping information
at the Neutron level. This is rather critical as it may lead to
consistency issues where an IP, for instance, can be allocated
on each site without triggering any notification.

Since ODL is a community leader and industry-supported
framework presented in several industrial deployment and



17

continuous development, a TRL of 9 has been assigned to
ODL [115].

Addressing the challenges:

• Information granularity: Addressed - through the Feder-
ation project, it is possible to leverage several controllers
to operate an infrastructure (each controller maintains its
own view).

• Information scope: Addressed - each controller can inter-
act with another one by using AMQP. In other words,
there is not any information that is shared between
controllers unless needed.

• Information availability: Partially addressed - in case of
network disconnection, ODL instances can satisfy local
networking services (including the VIM ones). At the
same time, the non-disconnected controllers can con-
tinue to provide the inter-site services. Since the inter-
site services are proposed outside the VIM networking
module’s knowledge, ODL assumes that there are no
conflicts between networking objects when establishing
the service. Actually, ODL cannot provide a recovery
method in case of incoherence since it is not the entity in
charge of the networking information management. This
is an important flaw for the controller when it needs to
recover from networking disconnections.

• Automatized interfaces: Addressed - thanks to the use of
AMQP as east-west interface among the controllers.

• Networking technologies: Addressed - ODL implements
several networking technologies allowing to reconfigure
each controller’s networking services.

Tungsten (Open-Contrail)

Tungsten Fabric (previously known as Juniper’s Open-
Contrail) is the open-source version of Juniper’s Contrail SDN
controller, an industry leader for commercial SDN solutions
targeting overlay and underlay Networks. Tungsten has two
main components: an SDN controller and a virtual Router
(vRouter). The SDN controller is composed of three types
of nodes:

• Configuration nodes that are responsible for the manage-
ment layer. They provide a REST API [116] that can
be used to configure the system or extract operational
status. Multiple nodes of this type can be deployed for
HA purposes. Note that configuration states are stored in
a Cassandra database (NoSQL).

• Control nodes are in charge of implementing decisions
made by the configuration nodes. They receive config-
uration states from the configuration nodes using the
IF-MAP protocol and use IBGP to exchange routing
information with other control nodes. They are also
capable of exchanging routes with gateway nodes using
BGP.

• Analytic nodes are responsible for collecting, collating,
and presenting analytic information.

The vRouter is a forwarding plane of a distributed router that
runs in a virtualized server’s hypervisor. It is responsible for
installing the forwarding state into the forwarding plane. It

exchanges control states such as routes and receives low-level
configuration states from control nodes using XMPP.

Although there is no constraint on how the different nodes
should be deployed, Tungsten architecture can be considered
a two-level hierarchical design. Configuration nodes could be
seen as root controllers and control nodes as local controllers
(hence the configuration nodes can be considered as the
leaders). Given the fact that the solution is used by several
of the most important actors in the industry and that anyone
can test the code, a TRL of 9 has been assigned to Tungsten.
Tungsten integrates closely with Neutron consuming its API.
Since Tungsten supports a large set of networking services, it
is configured as a Core plug-in in Neutron.

Addressing the challenges:
• Information granularity: Not addressed - although mul-

tiple configuration nodes can share the network informa-
tion through Cassandra, the internal design of Tungsten
prevents the deployment of different configuration nodes
across different sites. An extension has been proposed
to handle multi-region scenarios [117]. However, the ex-
tension exposes a centralized entity to orchestrate remote
controllers.

• Information scope: Not addressed - the configuration
nodes share a global knowledge base. One operation is
visible by all configuration nodes.

• Information availability: Undefined - because Tungsten
has been designed for a single deployment, the impact
of network disconnections between the configuration and
control nodes has not been discussed in detail. It is
unclear what could happen if a control node cannot
interact with the site that hosts the configuration nodes
for a long period.

• Automatized interfaces: Not addressed - although control
nodes can interact with each other, there is no east-west
interface to communicate among configuration nodes of
different Tungsten deployments.

• Networking technologies: Addressed - Tungsten incor-
porates several networking technologies and is able to
configure a different kind of network equipment.

C. Summary
This section described twelve solutions that propose lever-

aging on several controllers to manage virtualized networking
infrastructure. Solutions such as FlowBroker, D-SDN, Tung-
sten, and Kandoo use a hierarchy of controllers to gather
networking states and maintain a global view of the infras-
tructure. To avoid the SPOF issue of the root controller (see
Section V-A, most of these systems propose to deploy multiple
instances. By deploying as many root controllers as local ones,
it is possible to transform such a hierarchical architecture into
a distributed one and envision direct communication between
each root controller when needed. The pending issue is related
to the global view of the system that needs to be maintained by
continuously exchanging messages among the root controllers
(i.e., distributed but logically centralized architecture).

To deal with such an issue, solutions such as Elasticon,
HyperFlow, Orion, DragonFlow, Onix, and ONOS, use a dis-
tributed database, which enables controllers to easily maintain



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 18

and share global networking information. While it is one more
step to fulfill the system’s requirements, the efficiency of these
systems depends on the capabilities offered by the database
system. Even if dedicated systems have been designed for
some of them (e.g., ONOS), they do not cope with the
requirements we defined in terms of data locality awareness
or network partitioning issues.

The two remaining systems, i.e., DISCO and ODL, propose
a fully distributed architecture (i.e., without the need for a
global view). More precisely, DISCO respects the principle of
locality awareness and independence of every group compos-
ing the infrastructure: Each controller manages its respective
group and peers with another only when traffic needs to
be routed to it, thus sharing only service-concerning data
and not necessarily global network information. This way
of orchestrating network devices is also well fitted in cases
of network partitions as an isolated DISCO controller will
be capable of providing local domain services. The flaw of
DISCO is to provide networking services without the scope
of the VIM (i.e., it delivers mainly domain-forwarding oper-
ations, which includes only conflict-less exchanges). Offering
the VIM expected operations (such as dynamic IP assignment)
is prone to conflict and thus might be harder to implement in
such an architecture. We discussed this point for ODL, which
has a lot of similarities with DISCO (data locality awareness,
AMQP to communicate among controllers, etc.). Through the
Federation and Netvirt projects, ODL offers premises of a DCI
networking service but at a level that does not enable it to
solve conflicts. Leveraging the DISCO or ODL architecture
and investigating how conflicts can be avoided is a future
direction of this survey, as underlined in the following section.

VII. New cloud ecosystems: the Kubernetes case

Although OpenStack still remains the de facto opensource
solution to operate private cloud platforms, it is noteworthy
that the popularity of VMs as the main unit to execute
workloads has been decreasing in favor of lighter technologies
such as Docker-based containers [118]. By promising low-
overhead virtualization and improved performance, containers
have become the new center of interest of DevOps [119].
Consequently, a couple of new frameworks in charge of man-
aging the life cycle of container-based applications have been
developed [120]. Released by Google in 2016, Kubernetes
[32] (a.k.a. K8s) has become the default solution to manage
containers on top of a distributed infrastructure. In addition
to help DevOps create, deploy, and destroy containers, K8s
proposes several abstractions that hide the distributed infras-
tructure’s complexity. The way it manages network resources,
for instance, differs from the OpenStack solution. K8s does
not propose means to virtualize and control multiple network
segments but rather expose services that relieve DevOps with
the burden of managing network low-level aspects (e.g., IP
assignments, L2 and L3 management, load balancing, etc.).
While Kubernetes significantly from its network abstractions,
the challenges at the low level remain close to the ones
discussed previously in this article. After summarizing the

Kubernetes architecture and networking capabilities, we dis-
cuss three projects that aim to deliver inter-site connectivity
between multiple K8s instances. By introducing these pro-
posals, we aim to underline that the management of multiple
K8s clusters in a DCI context is still an ongoing study field
that can benefit from a further discussion around distributed
management.

A. Kubernetes overview

According to the ETSI standards, K8s can be considered
as a Container Infrastructure Service (CIS), a service that
provides a runtime environment for one or more container
technologies [121]. 2.

Concretely, K8s divides a cluster into two parts: a set of
worker machines called Nodes, where containerized applica-
tions are executed, and a set of control plane machines called
the Master nodes, in charge of managing the aforementioned
Nodes. Figure 6 depicts the K8s default architecture. Each
Node has an agent called kubelet that is in charge of creating
and configuring containers according to the Master orders,
an agent called kube-proxy that is used to define networking
rules. Finally, a container runtime such as Docker [123], Linux
Containers [124], or any other implementation of Kubernetes
Container Runtime Interface (CRI) [125] to effectively start
and execute containers. The Master is composed of the API
server, the scheduler that assigns workloads to Nodes, the
controller managers that maintain the cluster’s expected state
using control loops, and etcd, a key-value store used as
Kubernetes backend.

Fig. 6: Kubernetes cluster components.

K8s does not directly deal with containers but works at
the granularity of Pods. A Pod is a group of one or more
containers with shared networking and storage resources and
a specification defining how to run the workload (number of
replicas, etc.).

2This interpretation is open to debate since it can also be defined as
a Container Infrastructure Service Management (CISM), a function that
manages one or more CISs [122]



19

In addition to basic operation on Pods (creation, deploy-
ment, etc.), K8s proposes several abstractions (objects or
resources in the K8s terminology) to hide the architecture’s
distribution. In other words, DevOps do not have to deal with
low-level aspects of the infrastructure but use K8s predefined
objects. For instance, Volumes are storage units accessible in
a Pod wherever they are deployed. Similarly, Services are
used to logically abstract a Pods group with a DNS name
and a virtual IP. Finally, a Namespace enables DevOps to
isolate Pods within a cluster. Additional objects have been built
on top of these abstractions in order to offer supplementary
functionalities. For instance, ReplicaSet enables DevOps to
define many replicas for a Pod and let the K8s controller
maintain this number. Because of the modularity of K8s, more
objects can be exposed by the API (for an up-to-date list,
please refer to [126]). This philosophy of using predefined
abstractions is a major change concerning the OpenStack
solution where DevOps should deal with many infrastructure
details.

B. Kubernetes networking

From the network point of view, there are four types
of communications in K8s: (i) Highly coupled container-
to-container, (ii) Pod-to-Pod, (iii) Pod-to-Service, and (iv)
External-to-Service.

Rather than imposing a single implementation and in order
to leverage modularity, K8s supports its networking function-
ality through the Container Network Interface (CNI) [127],
an open-source project proposing a specification and libraries
for writing plug-ins to configure network interfaces on Linux
containers. A CNI plug-in is responsible for inserting a net-
work interface into the container network, making necessary
changes on the host, assigning an IP address to the interface,
and configuring routes for the traffic exchange. A second plug-
in called the IP Address Management plug-in (IPAM) is used
for the IP and routes configurations. Several CNI as well as
IPAM plug-in implementations have been proposed to abstract
the network within a K8s cluster [128]–[135]. It is noteworthy
to mention that the split between the CNI plug-in and the
IPAM module provides more flexibility as it is possible to use
a combination of two different solutions.

By default, implementing a plug-in should deliver the
four types of communications with the following properties.
Regarding Pod-to-Pod communications, a Pod on a Node
can communicate with all Pods on all Nodes without NAT
communications. Regarding Pod-to-Service communications,
the virtual IP associated with a Service needs to be cor-
rectly translated and load-balanced to Pods registered to this
Service (using technologies such as iptables or IP virtual
servers (IPVS) [136]). Finally, for the External-to-Service
exchanges, the configuration of the different routes exposing
Services should be achieved (implementing the logic of the
K8s NodePort, Load or Ingress controller objects).

C. Multi-Cluster Kubernetes

Like OpenStack, Kubernetes has been designed in a stand-
alone manner: it exposes the resources of a single cluster.

Hence, being able to execute container-based applications
across multiple sites (i.e., a DCI as we defined in this ar-
ticle) raises different questions in the Kubernetes ecosystem
also [137]. From the network viewpoint, a K8s Multi-Cluster
architecture should deliver means to provide the aforemen-
tioned communications. More precisely, since Container-to-
Container communication is limited at Pod’s scope, solu-
tions for the three latest communications are required. We
discuss in the following three projects, namely Kubernetes
Federation [138], Istio Multi-Cluster service mesh [139] and
Cilium MultiCluster CNI implementation [140]. From our
point of view, these projects are the most advanced among
a large number of proposals [141]–[145]. In addition to a
brief description, we present whether they address the DCI
challenges introduce in Section IV.

1) Kubernetes Federation: Kubernetes Federation (a.k.a.
Kubefed) is a project developed by the multi-cluster work-
ing group of K8s, providing an easy-to-use way to manage
multiple K8s clusters. Kubefed does not target the inter-
site networking connectivity but rather a global approach
for deploying container-based applications across multi-sites
through a common API. In other words, it does not leverage
nor integrate SDN technologies but rather proposes a broker-
like approach to partially deal with the DCI challenges.

In detail, Kubefed relies on a two-layer architecture where a
central cluster called host cluster will propagate its application
configuration to a series of independent clusters called member
clusters. To make this possible, the host leverages a federation
API using custom resource definitions (CRDs), an object pro-
vided by the vanilla Kubernetes that allows DevOps to define
their own data types. These new federated objects are then
used to wrap basic objects. For example, FederatedService
and FederatedDeployment objects are abstractions to wrap the
vanilla Service and Deployment objects.

When a FederatedService is created, Kubefed creates match-
ing K8s Services in the selected member clusters. To propagate
each cluster’s DNS records, Kubefed gathers all the locally
generated DNS records in the host cluster and then pushes
the records to each of the concerning clusters. This implies
that Services must be exposed using a publicly available IP
address. From the network point of view, Kubefed can only
provide cross-cluster Pod-to-Service and External-to-Service
communications, relying on the public routable IP addresses
in both cases. Since it proposes management at the API
level, no coordination is possible at the low-level network-
ing implementation. In consequence, cross-cluster Pod-to-Pod
communication is not proposed. More generally, Kubefed
presents important flaws for the DCI context. In addition
to the host cluster’s limitation that is the only entry point
for federated resources (SPOF), there is no collaboration
among the different K8s instances. In other words, there is no
mechanism to propagate modifications done on one particular
K8s object to the other sites, even if this object has been
created through a federated abstraction.

Addressing the challenges:
• Information granularity: Not addressed - the segregation

of information into each cluster enables the efficient
sharding of the information per site. However, the host



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 20

cluster gathers global information about federated re-
sources.

• Information scope: Partially addressed - while Kubefed
only contacts the relevant sites when deploying a feder-
ated resource, this is only done by the host cluster.

• Information availability: Addressed - in case of network
disconnection, each cluster is fully independent of the
others, with the worst-case scenario being the isolation of
the host cluster. Since a federated resource is deployed on
the concerned clusters, the local resources’ information
remains locally available.

• Automatized interfaces: Not addressed - because member
clusters do not have an east-west interface to communi-
cate among them, but only receive requests from the host
cluster.

• Networking technologies: Not addressed - Kubefed relies
on a broker-like approach. Consequently, no connectivity
at the networking level is established among the member
clusters, and no networking technology is used.

2) Istio Multi-Cluster service mesh: Istio is an open-source
implementation of a service mesh that provides traffic manage-
ment, security, and monitoring. In the microservices context, a
service mesh is a complementary layer to the application, and
it is responsible for traffic management, policies, certificates,
and service security [146]. To provide this, a service mesh
introduces a set of network proxies that will be used to route
requests among services. The idea is to inject a special sidecar
container in the Pod of every microservice and route traffic
through these sidecars instead of doing it through the Service.
A central authority will then exerts control over the proxies
to route traffic at the application layer (L7 of the OSI model).
Hence, a service mesh follows a design pattern familiar to the
SDN principles [147].

From the architecture viewpoint, an Istio deployment is
logically composed by a control plane, which manages and
configures the proxies and elements such as gateways to route
traffic, and a data plane, which is composed of a set of
intelligent proxies (Envoy [148]) deployed as sidecars. Istio
also proposes an Ingress Gateway object that acts as a load
balancer at the mesh’s edge receiving incoming or outgoing
traffic.

This concept of service meshes can be extended to take
account of multiple clusters. The idea is then to have a logical
service mesh composed of several clusters [149]. For this to
be done, Services from remote clusters are created locally via
ServiceEntries, an Istio resource that is not proposed by vanilla
Kubernetes. The Istio Ingress Gateway is then used as an entry
point for requests to the cluster’s Services.

The Istio service mesh operates at the application layer.
Offering its functionalities at this level implies that Istio
specific resource definitions need to be used in deployments.
Besides, considering all hops, a request must go through
from containers to sidecars in a DCI context along with all
the ServiceEntry rules treatment and processing requests on
remote gateways could greatly add latency and potentially add
a performance overhead [150], [151].

Regarding the three communication types, since Istio is
a service mesh-oriented solution, it can only provide cross-

cluster Pod-to-Service and External-to-Service communica-
tions using the replication of ServiceEntries. In the case of
Pod-to-Service communication, Services with private virtual
IPs are reachable through the Istio Ingress gateways.

Addressing the challenges:

• Information granularity: Addressed - due to the segre-
gation of the infrastructure in independent clusters while
proposing strategies to share the information related to
external Services using the replication of remote Services
as ServiceEntries.

• Information scope: Addressed - since Istio proposes the
creation of ServiceEntries to reference remote Services,
only the relevant clusters are taking into account to do
the information exchange.

• Information availability: Partially addressed - in case of
network disconnections clusters remain locally operative.
However, considering that ServiceEntries are replicated
on demand, Istio does not provide mechanisms to ensure
the consistency between K8S Services and the informa-
tion related to the ServiceEntries.

• Automatized interfaces: Not addressed - Istio does not
implement an east-west interface allowing cluster collab-
oration. Instead, the user is in charge of mirroring the
Istio configuration between the different clusters in order
to deliver a Multi-Cluster service mesh.

• Networking technologies: Not addressed - although the
network routing logic is implemented at the Envoy proxy
and at the Istio Ingress Gateway, Istio is independent of
the low-level network technology used by the cluster.

3) Cilium Multi-Cluster: Cilium is a CNI plug-in that
implements the Kubernetes networking API by leveraging the
extended Berkeley Packet Filter (eBPF). EBPF is used to
forward data within the Linux kernel. It is an alternative of IP
Tables, which delivers better performance [152], [153].

In addition to the Cilium plug-in, each K8s node executes a
Cilium agent. (This agent is in charge of interacting with the
CRI to setup networking and security for containers running
on the node. Finally, a key-value store, global to the cluster,
is used to share data between Cilium Agents deployed on
different nodes.

Cilium proposes a multi-cluster implementation called Clus-
terMesh. It provides Pod IP routing among multiple Kuber-
netes clusters thanks to tunneling techniques through eBPF
(i.e., without dedicated proxies or gateways). Concretely, the
Cilium key-value store of each cluster must be exposed
as a public Service. This enables Cilium agents to collect
information from all stores in order to create tunnels with
all other clusters. Moreover, Cilium allows the creation of a
Global Service by creating at each cluster a Service with an
identical name and namespace. An additional Cilium anno-
tation defining the Service as global is mandatory on each
cluster. Cilium uses this annotation to automatically load-
balance requests throughout all Pods exposing the Service in
the different clusters.

Thanks to its relation with K8S at the CNI level, Cilium
effectively provides the three aforementioned communications
types. However, such a model’s scalability is questionable



21

as ClusterMesh initiates a tunnel (e.g., VXLAN or Geneve)
between each worker nodes pair.

Addressing the challenges:

• Information granularity: Addressed - Cilium ClusterMesh
leverages several independent clusters operating the in-
frastructure, each one only managing its own deployment.

• Information scope: Not addressed - because Cilium Clus-
terMesh requires to connect all clusters before deploying
applications, agents create tunnels to all remote Nodes at
the cluster setup. In this sense, information is exchanged
even before a user requires an inter-site resource to be
deployed.

• Information availability: Addressed - due to clusters
being independent among them. In the case of networking
partitioning, the isolated sites continue to propose their
services locally, and sites still connected can continue to
provide the ClusterMesh capabilities.

• Automatized interfaces: Addressed - Cilium proposes to
expose the local database to remote clusters to exchange
information. The way remote clusters consume this infor-
mation could inspire more propositions leveraging their
databases’ exposition as an east-west interface among
clusters. It is noteworthy to mention that the user still
needs to deploy applications and Services in each cluster
to provide a Multi-Cluster Service.

• Networking technologies: Partially addressed - While
the solution leverages eBPF as networking technology
incorporating its adaptation and reconfiguration, it lacks
the heterogeneity of networking protocols.

D. Summary

Building a system capable of providing a native distributed
DCI management from scratch is not an easy task. As we
have demonstrated for OpenStack, Kubernetes also needs to
be extended.

While some ongoing works try to propose ways to make
independent Kubernetes collaboration, we consider that there
is still plenty of innovation and improvement opportunities.
Kubernetes Federation proposes to leverage a "master" cluster
exposing a federated API that will translate the application
deployment to a series of worker clusters. The problem with
this approach is that worker clusters are not aware of each
other presence and the "master" cluster is the only entry point
for federated resources. Other projects such as Istio and Cilium
require the user to deploy applications independently in each
cluster, which can be costly when needed in hundreds or
thousand clusters [150], [154].

VIII. DIRECTIONS FOR DCI NETWORKING RESEARCH

In the previous sections, we have studied major decen-
tralized SDN technologies in the DCI context. While we
identified that DISCO and ODL are good candidates, several
open questions and challenges need further investigation. We
discuss the most important ones in the following.

A. East-West SDN-based interfaces

While the East-West interface has been considered as
the principal element to provide inter-controller communica-
tions [155], there is still no standard to communicate between
controllers, and some proposals co-exist [156]–[159]. This is
an issue as such a standard is critical for delivering collabora-
tions between networking modules of multiple VIM instances
of a DCI. Moreover, this lack of standardization impacts the
communication and automation between North and East-West
interfaces. This leads to multiple ad-hoc solutions [40], [157].

As we outlined in the last section, the East-West interface
proposed by DISCO and ODL provides some references
to design an efficient horizontal interface for inter-VIMs
networking modules communications. Although the analyzed
solutions leveraged AMQP as technology to do the East-
West interface implementation, other technologies such as
REST APIs could be used to provide synchronization and
information exchanges among VIMs.

If we consider the model proposed by DISCO and ODL,
the use of independent and local databases implies managing
consistency at the application level (i.e., between the different
controllers). This entails that the East-West interface should
deliver additional calls to resolve conflicts depending on the
controllers’ inter-site service logic. Since neither DISCO nor
ODL proposes a way to manage conflicts at the East-West
interface level, this remains an open question, as already
highlighted. Another solution could consist of leveraging dis-
tributed databases.

B. Leveraging new kinds of databases

As we highlighted in the summary of Section VI, solutions
such as Elasticon, HyperFlow, Orion, DragonFlow, Onix, and
ONOS, use a distributed database to share global networking
information among controllers. While this approach is useful
as it is intended to avoid a single point of failures and
bottlenecks by logically splitting the database, it does not
respect the principles of data locality and is not resilient
enough in case of network partitions.

To illustrate this point, one can consider the Cassandra
database [101]. Cassandra is based on a distributed hash
table (DHT) principles to uniformly distribute states across
multiple locations based on the computed hash. This means
that one specific controller’s states are not necessarily stored
in the same geographical location as the controller (e.g., a
controller in site A will have states stored in remote sites B,
C, and so forth). Thus, the principle of locality awareness is
not respected as information belonging to site A will be spread
to other sites with no possibility to control the location.

Likewise, an SDN-based cloud architecture that leverages
Cassandra will not be resilient to network isolation. It will be
impossible for the local controller to retrieve its states, which
may have been spread over non-reachable sites.

However, data-related approaches different from traditional
SQL and NoSQL engines can be relevant. In the last years, the
concept of NewSQL has been gaining popularity and notoriety
as an approach mixing the advantages of both traditional SQL
and NoSQL systems. These kinds of engines search to propose



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 22

the same scalability of NoSQL systems while keeping the
relational model of traditional SQL (i.e., maintaining the ACID
guarantees) engines [160]. NewSQL engines generally try to
leverage different memory storage modes, modes of partition-
ing, and concurrency control to provide the aforementioned
properties.

While historically, database engines have used disk-oriented
storage, today, NewSQL engines can profit from memory cost
reduction and leverage memory-oriented approaches. Using
this approach, new engines can get better performance because
slow reads and writes to disk can be avoided [161]. Moreover,
almost all engines used to scale out splitting a database up into
subsets, called partitions or shards.

NewSQL engines can be gathered in three main
classes [162]: new architectures, transparent sharding middle-
wares, and Databases-as-a-Service.
• New architectures: This group gathers engines build from

scratch and that mostly use a distributed shared-nothing
architecture [163]. Most of them are also capable of
sending intra-query data directly between nodes rather
than having to route them to a central location. In this
group we find solutions such as Clustrix [164], Cock-
RoachDB [165], Google Spanner [166] and its related
solutions such as Google F1 [167], VoltDB [168], or
HyPer [169].

• Transparent sharding middleware: This group gathers
engines that split a database into multiple shards that are
stored across a cluster of single node instances. In this
sharding, each node runs the same database management
system. Each one has only a portion of the overall
database, and data does not mean being accessed and
updated independently by separate applications. Then, a
centralized middleware component routes queries, coor-
dinates transactions, and manages data placement, repli-
cation, and partitioning across the nodes. In this group we
find solutions such as AgilData Scalable Cluster [170] or
MariaDB MaxScale [171].

• Database-as-a-Service (DBaaS): While there are already
DBaaS propositions, there are only a few NeWSQL
DBaaS engines available. In this group we find solutions
such as Amazon Aurora [172] or ClearDB [173]. For
instance, Amazon Aurora does a decoupling between the
engine storage and compute. In this sense, the network
becomes the constraint because all input and outputs (I/O)
will be written over it. In order to do this operation,
Aurora relies upon a log-structured storage manager
capable of improving I/O parallelism [174].

In order to measure the value of these new engines in the
DCI context, an SDN-based application needs to be built on
top of the selected solution to analyze the pros and cons of
each one and verify if they can satisfy the DCI requirements
highlighted in Section I.

On the other hand, solutions such AntidoteDB [175] or
Riak [176] that have been designed on top of conflict-free
replicated data type (CRDT) [177] could be leveraged by
SDN controllers in order to address the aforementioned DCI
challenges while respecting the principal characteristics of
DCI architectures such as data locality awareness. A CRDT is

a data structure that can be replicated across multiple nodes
in a network. Each replica can be updated independently and
concurrently. This means that each replica will be locally
accessible and ready to use in the case of network partitions.
The richness of the CRDT structure is that it is possible to
eventually resolve the inconsistency between multiple replicas.
However, CRDTs come with two important limitations. First,
it requires to replicate the state of every site of the DCI infras-
tructure. Second, only elementary values can be structured as
CRDT right now. For instance, it is not sure that a CIDR can be
modeled as a CRTD. If solutions for these two problems might
be found, CRDT may represent a step forward to provide a
distributed solution while respecting the DCI properties.

C. Data plane technologies

The ecosystem to deliver traffic forwarding between virtual
instances is old and extremely rich, with multiple propos-
als since the initial OpenFlow protocol [36] (BGP [178],
SoftRouter [179], RCP [180], as well as RouteFlow [181]
to name a few). This eco-system continues to grow with
more recent solutions [182]–[184]. Since heterogeneity in
networking protocols may be present in a DCI, the possibility
to agree on which mechanisms to use when establishing an
inter-site networking service needs to be considered in future
works. While being only a theoretical proposition, the works
presented in [185] for Neutron to Neutron Interconnections
proposes such kind of mechanism agreement. In this sense,
two Neutron instances will identify the mechanism to use
and the corresponding parameters that will be exchanged
(e.g., VLANs IDs, BGPVPN RT identifiers, VXLAN IDs, or
L2GWs addresses).

D. Performance analysis

This survey focuses on defining a general distributed model
for DCI networking management based on SDN technologies.
While it gives valuable information, it would be relevant to
evaluate the selected solutions under the performance per-
spective. Depending on the analyzed element (e.g., East-West
interface, database, or networking protocols) of new proposals,
the metrics and analyzed characteristics may vary:
• East-West interfaces: The use of a horizontal interface

implies that besides the time expended by the system
to answer a user request locally (e.g., CPU consump-
tion, memory consumption, threads utilization), the time
needed to synchronize with remote sites and provide
a final result needs to be taken into account [159].
Such delay will impact the total inter-site service creation
time and may depend on the technical implementation
of the solution (e.g., protocol used). In the architectural
design, the quantity of messages needed to establish a
service, needs to be optimized to minimize the overhead.
Thus, future works should analyze the impact on the
performance of their inter-site communication model and
the technology used to implement it.

• New kinds of databases: Like the East-West interface,
the use of new kinds of database engines will add an
extra delay to communicate with remote sites. NewSQL



23

benchmarking studies such as the ones proposed in [186],
[187] could be extended to take into account the DCI
case. Additionally, a comparison can be made w.r.t.
traditional SQL database replication systems and dis-
tributed databases in two different aspects: the local
execution time spent by the database executing CRUD ac-
tions (e.g., CPU consumption, memory consumption,...),
and the time needed to communicate with remote sites in
order to replicate data or synchronize them. Moreover,
an important analysis should be done to clarify how
the database will deal with conflicts or inconsistencies
in network partitions. Although new database engines
provide models based on theoretical assumptions, there
are side effects that can be identified only by conducting
experimental activities The aforementioned studies [1],
[10] can be taken as a good example of such kind of
experimental-driven research needed in this context.

• Networking protocols: Since the networking route ex-
change and traffic forwarding and routing will also impact
the time needed for an inter-site service to be effectively
deployed, the performance of the data plane technologies
needs to be taken into account. For instance, in the case
of BGP VPN routes exchanges, prior works analyzed
the benefits and disadvantages of their use in several
contexts [188], [189]. Although the implementation of
several different networking protocols is a very chal-
lenging and complex task, solutions supported by large
communities such as OpenStack, ODL, or ONOS could
promote such development to perform further tests and
analysis. Work such as [28], [190] proposing the compar-
ison of virtual networking implementations in SDN-based
scenarios can be used as guidelines to identify major in-
dicators (i.e., throughput, CPU utilization, latency, packet
loss, etc.).

• Consensus protocols application: If a consensus protocol
is mandatory, further investigations will be needed in
order to quantify the overall performance of the protocol.
While works such as [191]–[194] already analyzed the
use of consensus protocols in SDN, they mostly targeted
traditional SDN networks and not DCI architectures. In-
deed, the round-trip times in a geo-distributed infrastruc-
ture, composed by hundreds or thousands of nodes, could
affect the protocol performance by adding latency for
which the consensus protocol may not be designed [68].
Moreover, tasks such as leader election may create traffic
overload due to the number of messages exchanged. For
this reason, compared with a static master election or
leaderless protocols will be needed to understand the
different trade-offs that may be involved.

E. Security
Some of the open questions in SDN-based cloud computing

solutions rely on security issues. While security in cloud data
centers has been explored in the last decade [195], [196],
more research in security for SDN and SDN-based solutions
is needed [46]. Obviously, the decentralization reduces the
impact of having a single point of failure into an architec-
ture (e.g., DoS attacks), but some other components need to

be revised. For instance, the inter-site communication needs
to be secure enough to avoid uncontrolled or non-desired
intrusions. The protocols allowing the database distribution
may also be deeply studied in order to evaluate the impact of
encryption technologies in the overall performance of future
solutions. Finally, as a great number of tenants may share the
same network medium to access DCI networking services, the
isolation and security provided by the networking protocols
used will need further studies.

IX. CONCLUSIONS

Leveraging each Point of Presence (PoPs) in Telcos’ archi-
tectures as part of a Distributed Cloud Infrastructure (DCI)
is an approach that will be mandatory soon to address the
requirements posed by trends like NFV, IoT, and MEC.
Although some resource management systems for this kind
of infrastructure have been proposed, providing inter-site net-
working services in a distributed fashion is still a challenge to
be addressed.

This paper explained the problems of centralized networking
management in VIMs and how decentralized SDN approaches
could represent an opportunity to tackle the inter-site connec-
tivity management challenges. We then presented a survey of
several multi-controller SDN solutions and their possible use
and limitations as a DCI network management tool.

Solutions such as FlowBroker, D-SDN, Tungsten, or Kan-
doo propose maintaining a global view of the system through
a hierarchy of controllers that does not enable to address the
identified challenges.

The use of a distributed database to share global informa-
tion among the controller proposed by Elasticon, HyperFlow,
Orion, DragonFlow, Onix or ONOS does not entirely address
the proposed challenges as the use of the database in a DCI
context and under network partitioning is unclear and do
not respect the general requirements. We, however, do not
eliminate such an approach as new database engines have been
recently proposed [175], [186]. In particular, we should better
understand how these systems behave according to the DCI
challenges (data granularity, scope, and network partitioning
issues) while respecting the DCI general requirements (such
as the locality awareness).

Solutions following fully distributed architectures address
several challenges while guaranteeing the general require-
ments. In particular, we would like to underline the potential
of a solution like DISCO or ODL to distribute the connectivity
management in a scalable, locality-aware, resilient, and easy
manner. The work we should address in the short term is
to investigate how VIM-related operations can be developed.
In particular, a proposal should include creating on-demand
Layer 2 extensions and Layer 3 to span overlay networks
among the requested sites at the VIM-level, avoiding or
solving the possible management conflicts.

We concluded our survey by analyzing the Kubernetes
ecosystem. Kubernetes has gained important popularity in the
DevOps community, in particular, due to its way of hiding
low-level technical details thanks to high-level abstractions
(e.g., DevOps no longer have to deal with IP assignments).



ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 24

Although Kubernetes significantly differs from IaaS solutions,
it has been designed to operate a single cluster. Similarly to
OpenStack, the development of inter-site networking services
at a low level is mandatory to enable K8s abstractions to be
visible and consistent between multiple sites. Like DISCO
or ODL, some proposals have been proposed. For instance,
the Cilium ClusterMesh proposes such inter-site capabilities
for the network in a decentralized manner. However, the
requirement of interconnecting all worker nodes affects the
scalability.

Whether we consider a resource management system for
IaaS or CaaS solutions, the implementation of a distributed
tool in which network devices are automatically configured,
provisioned, and managed may represent a huge contribution
to favor the advent of DCIs such as envisioned in Fog and
Edge Computing platforms. Through this survey, our goal was
to identify key elements that can be used to guide the design
and implementation of such a tool.

REFERENCES

[1] A. Bousselmi, J. F. Peltier, and A. Chari, “Towards a Massively
Distributed IaaS Operating System: Composition and Evaluation of
OpenStack,” IEEE Conference on Standards for Communications and
Networking, 2016.

[2] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Revising OpenStack
to Operate Fog/Edge Computing Infrastructures,” IEEE International
Conference on Cloud Engineering, 2017.

[3] “Deploying Distributed Compute Nodes to Edge Sites.”
https://access.redhat.com/documentation/en-us/red_hat_openstack_
platform/13/html/deploying_distributed_compute_nodes_to_edge_
sites/deploying_distributed_compute_nodes_to_edge_sites. Accessed:
02/2020.

[4] “StarlingX, a complete cloud infrastructure software stack for the
edge.” https://www.starlingx.io. Accessed: 02/2020.

[5] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-Edge Computing architecture: The role of MEC in the Internet
of Things,” IEEE Consumer Electronics Magazine, vol. 5, pp. 84–91,
Oct 2016.

[6] OpenStack Foundation, “Cloud Edge Computing: Beyond the
Data Center (White Paper).” https://www.openstack.org/assets/edge/
OpenStack-EdgeWhitepaper\-v3-online.pdf, Jan 2018. (Accessed:
2020-02-10).

[7] Microsoft Azure, “Azure Global Network.” https://azure.microsoft.
com/en-ca/global-infrastructure/global-network/, 2020. Accessed:
06/2020.

[8] Google Cloud, “Google Cloud Locations.” https://cloud.google.com/
cdn/docs/locations, 2020. Accessed: 06/2020.

[9] AWS, “AWS global infrastructure.” https://aws.amazon.com/about-
aws/global-infrastructure/?nc1=h_ls, 2020. Accessed: 06/2020.

[10] R.-A. Cherrueau, “A POC of OpenStack Keystone over CockroachDB.”
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2017/
12/22/a-poc-of-openstack-keystone-over-cockroachdb.html, 2017.

[11] J. Soares, F. Wuhib, V. Yadhav, X. Han, and R. Joseph, “Re-designing
Cloud Platforms for Massive Scale using a P2P Architecture,” IEEE 9th
International Conference on Cloud Computing Technology and Science,
2017.

[12] OpenStack, “Neutron - Openstack Networking Service.” https://docs.
openstack.org/neutron/latest/, 2020. Accessed: 02/2020.

[13] A. Chari, T. Morin, D. Sol, and K. Sevilla, “Approaches for on-demand
multi-VIM infrastructure services interconnection,” Tech. Rep. 2489-1,
Orange Labs Networks, Lannion, France, 2018.

[14] S. Subramanian and S. Voruganti, Software-Defined Networking (SDN)
with OpenStack. Packt, 2016.

[15] ETSI, “Network Functions Virtualisation (NFV) Ecosystem, Report on
SDN Usage in NFV Architectural Framework,” Tech. Rep. DGS/NFV-
EVE005, European Telecommunications Standards Institute, 2015.

[16] M. Mechtri, I. Houidi, W. Louati, and D. Zeghlache, “SDN for Inter
Cloud Networking,” in Proceedings of the 2013 IEEE SDN for Future
Networks and Services, pp. 1–7, 2013.

[17] I. Petri, M. Zou, A. Reza-Zamani, J. Diaz-Montes, O. Rana, and
M. Parashar, “Software Defined Networks within a Cloud Federation,”
in Proceedings of the 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 179–188, 2015.

[18] A. Sanhaji, P. Niger, P. Cadro, C. Ollivier, and A.-L. Beylot,
“Congestion-based API for cloud and WAN resource optimization,”
2016 IEEE NetSoft Conference and Workshops, 2016.

[19] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, pp. 3–14, 2013.

[20] K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering,” 2017.

[21] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu, “Software-Defined Wide Area
Network (SD-WAN): Architecture, Advances and Opportunities,” 28th
International Conference on Computer Communication and Networks,
2019.

[22] ETSI, “Network Functions Virtualisation (NFV); Management and
Orchestration ,” Tech. Rep. DGS/NFV-MAN001, European Telecom-
munications Standards Institute, 2014.

[23] P. Marsch, Ömer Bulakci, O. Queseth, and M. Boldi, 5G System
Design: Architectural and Functional Considerations and Long Term
Research. John Wiley & Sons, 2018.

[24] M.-A. Kourtis, M. McGrath, G. Gardikis, G. Xilouris, V. Riccobene,
P. Papadimitriou, E. Trouva, F. Liberati, M. Trubian, J. Batallé,
H. Koumaras, D. Dietrich, A. Ramos, J. Ferrer, J. Bonnet, A. Pietra-
bissa, A. Ceselli, and A. Petrini, “T-NOVA: An Open-Source MANO
Stack for NFV Infrastructures,” IEEE Transactions on Network and
Service Management, 2017.

[25] T. Soenen, S. V. Rossem, W. Tavernier, F. Vicens, D. Valocchi,
P. Trakadas, P. Karkazis, G. Xilouris, P. Eardley, S. Kolometsos, M.-A.
Kourtis, D. Guija, S. Siddiqui, P. Hasselmeyer, J. Bonnet, and D. Lopez,
“Insights from SONATA: Implementing and integrating a microservice-
based NFV service platform with a DevOps methodology,” 2018
IEEE/IFIP Network Operations and Management Symposium, 2018.

[26] T. Das, V. Sridharan, and M. Gurusamy, “A Survey on Controller
Placement in SDN,” IEEE Communications Surveys Tutorials, vol. 22,
no. 1, pp. 472–503, 2020.

[27] M. A. Togou, D. A. Chekired, L. Khoukhi, and G. Muntean, “A Hier-
archical Distributed Control Plane for Path Computation Scalability
in Large Scale Software-Defined Networks,” IEEE Transactions on
Network and Service Management, vol. 16, no. 3, pp. 1019–1031, 2019.

[28] S. Azodolmolky, P. Wieder, and R. Yahyapour, “SDN-based Cloud
Computing Networking,” ICTON 2013, 2013.

[29] Patel, Parveen and Bansal, Deepak and Yuan, Lihua and Murthy,
Ashwin and Greenberg, Albert and Maltz, David A. and Kern, Randy
and Kumar, Hemant and Zikos, Marios and Wu, Hongyu and Kim,
Changhoon and Karri, Naveen, “Ananta: Cloud Scale Load Balanc-
ing,” in Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, (New York, NY, USA), p. 207–218,
Association for Computing Machinery, 2013.

[30] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2014.

[31] X. Leng, K. Hou, Y. Chen, K. Bu, L. Song, and Y. Li, “"A lightweight
policy enforcement system for resource protection and management in
the SDN-based cloud",” Computer Networks, vol. 161, pp. 68 – 81,
2019.

[32] Linux Foundation, “Kubernetes.” https://kubernetes.io/docs/home/,
2020.

[33] L. Yang, R. Dantu, T. Anderson, and R. Gopal, “Forwarding and
Control Element Separation (ForCES) Framework,” RFC 3746, RFC
Editor, April 2004.

[34] J. E. van der Merwe, S. Rooney, L. Leslie, and S. Crosby, “The
tempest-a practical framework for network programmability,” IEEE
Network, vol. 12, no. 3, pp. 20–28, 1998.

[35] D. Tennenhouse and D. Wetherall, “Toward an active network archi-
tecture,” Proceedings of SPIE - The International Society for Optical
Engineering, pp. 2–16, 03 1996.

[36] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
JenniferRexford, S. Shenker, and J. Turner, “OpenFlow: Enabling

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/deploying_distributed_compute_nodes_to_edge_sites/deploying_distributed_compute_nodes_to_edge_sites
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/deploying_distributed_compute_nodes_to_edge_sites/deploying_distributed_compute_nodes_to_edge_sites
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/13/html/deploying_distributed_compute_nodes_to_edge_sites/deploying_distributed_compute_nodes_to_edge_sites
https://www.starlingx.io
https://www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper\ -v3-online.pdf
https://www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper\ -v3-online.pdf
https://azure.microsoft.com/en-ca/global-infrastructure/global-network/
https://azure.microsoft.com/en-ca/global-infrastructure/global-network/
https://cloud.google.com/cdn/docs/locations
https://cloud.google.com/cdn/docs/locations
https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls
https://aws.amazon.com/about-aws/global-infrastructure/?nc1=h_ls
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2017/12/22/a-poc-of-openstack-keystone-over-cockroachdb.html
https://beyondtheclouds.github.io/blog/openstack/cockroachdb/2017/12/22/a-poc-of-openstack-keystone-over-cockroachdb.html
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/neutron/latest/
https://kubernetes.io/docs/home/


25

innovation in campus networks,” ACM SIGCOMM Computer Com-
munications Review, 2008.

[37] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: an intellec-
tual history of programmable networks,” ACM SIGCOMM Computer
Communication Review, vol. 44, no. 2, pp. 87–98, 2014.

[38] Cisco, “OpFlex: An Open Policy Protocol White Paper,” Tech. Rep.
1538025281906783, Cisco, San Jose, California, 2014.

[39] B. Medeiros, M. S. Jr., T. Melo, M. Torrez, F. Redigolo, E. Rodrigues,
and D. Cristofoleti, Applying Software-defined Networks to Cloud
Computing. 33rd Brazilian Symposium on Computer Networks and
Distributed Systems, 2015.

[40] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2014.

[41] VMware, “VMware NSX Data Center.” https://www.vmware.com/
products/nsx.html, 2020.

[42] Juniper networks, “Contrail SDN controller.” https://www.juniper.net/
us/en/products-services/sdn/contrail/, 2020.

[43] Nuage networks, “Nuage SDN controller.” https://www.nuagenetworks.
net/solutions/telco-cloud/, 2020.

[44] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[45] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Cloud Computing
Networking: Challenges and Opportunities for Innovations,” IEEE
Communications Magazine, 2013.

[46] J. SON and R. BUYYA, “A Taxonomy of SDN-enabled Cloud Com-
puting,” ACM Computing Surveys, 2017.

[47] OpenStack, “OpenStack.” https://docs.openstack.org/latest/, 2020.
[48] OpenStack, “OpenStack Nova Project.” https://docs.openstack.org/

nova/latest/, 2020.
[49] Linux Foundation, “OpenvSwitch.” https://www.openvswitch.org/,

2018.
[50] Linux Foundation, “Linux Bridges.” https://wiki.linuxfoundation.org/

networking/bridge, 2018.
[51] OpenStack Foundation, “Open Virtual Network.” https:

//docs.openstack.org/networking-ovn/latest/, 2020.
[52] OpenStack, “Neutron Networking-L2GW.” https://docs.openstack.org/

networking-l2gw/latest/readme.html, 2018.
[53] OpenStack, “Neutron BGPVPN Interconnection.” https:

//docs.openstack.org/networking-bgpvpn/latest/, 2018.
[54] OpenStack, “Neutron VPNaaS.” https://docs.openstack.org/neutron-

vpnaas/latest/, 2019.
[55] OpenStack Foundation, “Networking API v2.0.” https://docs.openstack.

org/api-ref/network/v2/, 2020.
[56] OpenStack, “Tricircle Project.” https://wiki.openstack.org/wiki/

Tricircle, 2018.
[57] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:

Survey, Taxonomy and Challenges,” IEEE Communications Surveys &
Tutorials, 2018.

[58] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN),” Computer
Networks 112, 2016.

[59] H. Yang, J. Ivey, and G. F. Riley, “Scalability Comparison of SDN
Control Plane Architectures Based on Simulations,” International Per-
formance Computing and Communications Conference, 2017.

[60] O. Blial, M. B. Mamoun, and R. Benaini, “An Overview on SDN
Architectures with Multiple Controllers,” Hindawi, vol. 2016, 2016.

[61] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed SDN controller
system: A survey on design choice,” Computer Networks 121, 2017.

[62] OSRG, “GoBGP.” https://osrg.github.io/gobgp/, 2018. Tokyo, Japan.
[63] Z. Li, Z. Duan, and W. Ren, “Designing Fully Distributed Consensus

Protocols for Linear Multi-agent Systems with Directed Graphs,” IEEE
Transactions on Automatic Control 60, 2014.

[64] I. Moraru, D. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” pp. 358–372, 11 2013.

[65] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, “Be general and
don’t give up consistency in geo-replicated transactional systems,”
pp. 33–48, 12 2014.

[66] L. Lamport, “The Part-Time Parliament,” ACM Transactions on Com-
puter Systems 16, 1998.

[67] D. Ongaro and J. Ousterhout, “In Search of an Understandable Con-
sensus Algorithm,” USENIX Annual Technical Conference, 2014.

[68] A. Ailijiang, A. Charapko, and M. Demirbas, “Consensus in the
Cloud: Paxos Systems Demystified,” 25th International Conference on
Computer Communication and Networks, 2016.

[69] Y. Zhang, E. Ramadan, H. Mekky, and Z.-L. Zhang, “When Raft
Meets SDN: How to Elect a Leader and Reach Consensus in an
Unruly Network,” Proceedings of the First Asia-Pacific Workshop on
Networking, 2017.

[70] R. Palmieri, “Leaderless consensus: The state of the art,” pp. 1307–
1310, 05 2016.

[71] S. Binani, A. Gutti, and S. Upadhyay, “Sql vs. nosql vs. newsql- a
comparative study,” Communications on Applied Electronics, vol. 6,
pp. 43–46, 10 2016.

[72] M. Ronstrom and L. Thalmann, “Mysql cluster architecture overview,”
MySQL Technical White Paper, vol. 8, 2004.

[73] T. Khasawneh, M. Alsahlee, and A. Safia, “Sql, newsql, and nosql
databases: A comparative survey,” pp. 013–021, 04 2020.

[74] K. Banker, MongoDB in action. Manning Publications Co., 2011.
[75] M. Paksula, “Persisting objects in redis key-value database, white

paper,” 2010. University of Helsinki, Department of Computer Science,
Helsinki, Finland.

[76] J. Webber, “A programmatic introduction to neo4j,” pp. 217–218, 10
2012.

[77] A. Lakshman and P. Malik, “Cassandra — a decentralized structured
storage system,” Operating Systems Review, vol. 44, pp. 35–40, 04
2010.

[78] A. Davoudian, L. Chen, and M. Liu, “A survey on nosql stores,” ACM
Comput. Surv., vol. 51, Apr. 2018.

[79] M. Stonebraker, “Sql databases v. nosql databases,” Commun. ACM,
vol. 53, pp. 10–11, 04 2010.

[80] Open Networking Foundation, “OpenFlow Switch Specifications,” tech.
rep., Open Networking Foundation, 2015.

[81] European Commission, “Horizon work programme 2020.”
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_
2015/annexes/h2020-wp1415-annex-g-trl_en.pdf, 2014.

[82] SDXCentral, “SDN Controller Comparison Part 1: SDN Controller
Vendors (SDN Controller Companies).” https://www.sdxcentral.com/
sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/,
2014.

[83] SDXCentral, “SDN Controller Comparison Part 2: Open Source
SDN Controllers.” https://www.sdxcentral.com/sdn/definitions/sdn-
controllers/open-source-sdn-controllers/, 2014.

[84] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-
domain SDN Controllers,” Network Operations and Management Sym-
posium, 2014.

[85] M. Santos, B. Nunes, K. Obraczka, and T. Turletti, “Decentralizing
SDN’s Control Plane,” IEEE Conference on Local Computer Networks,
2014.

[86] A. Dixit, F. Hao, S. Mukherjee, Lakshman, and R. K. t, “Towards an
Elastic Distributed SDN Controller,” HotSDN, 2013.

[87] D. Marconett and S. Yoo, “FlowBroker: A Software-Defined Network
Controller Architecture for Multi-Domain Brokering and Reputation,”
Journal of Network System Management, 2015.

[88] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” IEEE Proceedings of the 2010 internet network
management conference on Research on enterprise networking, 2010.

[89] S. Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient and
Scalable Offloading of Control Applications,” HotSDN, 2012.

[90] Y. Fu, J. Bi, K. Gao, Z. Chen, J. Wu, and B. Hao, “Orion: A Hybrid
Hierarchical Control Plane of Software-Defined Networking for Large-
Scale Networks,” IEEE 22nd International Conference on Network
Protocols, 2014.

[91] “Hazelcast Project.” https://hazelcast.org/. (Accessed: 06/2020-).
[92] Nicira Networks, “NOX Network Control Platform.” https://github.

com/noxrepo/nox, 2009.
[93] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, F. Kaashoek, and

R. Morris, “Flexible, Wide-Area Storage for Distributed Systems with
WheelFS,” 6th USENIX Symposium on Networked Systems Design and
Implementation, 2009.

[94] OpenStack, “DragonFlow : Distributed implementation of Neutron
within a large DC.” https://wiki.openstack.org/wiki/Dragonflow, 2015.

[95] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A Distributed Control Platform for Large-scale Production Networks,”
OSDI, 2012.

[96] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” HotSDN ’14, 2014.

[97] J. Medved, A. Tkacik, R. Varga, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller Architecture,” IEEE WoWMoM, 2014.

[98] Juniper, “Contrail Architecture,” 2015.

https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.juniper.net/us/en/products-services/sdn/contrail/
https://www.juniper.net/us/en/products-services/sdn/contrail/
https://www.nuagenetworks.net/solutions/telco-cloud/
https://www.nuagenetworks.net/solutions/telco-cloud/
https://docs.openstack.org/latest/
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/nova/latest/
https://www.openvswitch.org/
https://wiki.linuxfoundation.org/networking/bridge
https://wiki.linuxfoundation.org/networking/bridge
https://docs.openstack.org/networking-ovn/latest/
https://docs.openstack.org/networking-ovn/latest/
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://docs.openstack.org/networking-l2gw/latest/readme.html
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/networking-bgpvpn/latest/
https://docs.openstack.org/neutron-vpnaas/latest/
https://docs.openstack.org/neutron-vpnaas/latest/
https://docs.openstack.org/api-ref/network/v2/
https://docs.openstack.org/api-ref/network/v2/
https://wiki.openstack.org/wiki/Tricircle
https://wiki.openstack.org/wiki/Tricircle
https://osrg.github.io/gobgp/
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/sdn-controllers-comprehensive-list/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/
https://www.sdxcentral.com/sdn/definitions/sdn-controllers/open-source-sdn-controllers/
https://hazelcast.org/
https://github.com/noxrepo/nox
https://github.com/noxrepo/nox
https://wiki.openstack.org/wiki/Dragonflow


ESPINEL et al.:DECENTRALIZED SDN CONTROL PLANE FOR DISTRIBUTED CLOUD-EDGE INFRASTRUCTURE: A SURVEY 26

[99] Linux Foundation, “The Open vSwitch Database.” http://docs.
openvswitch.org/en/latest/ref/ovsdb.7/, 2013.

[100] J. Ousterhout, M. Rosenblum, S. Rumble, R. Stutsman, S. Yang,
A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. On-
garo, S. Park, and H. Qin, “The RAMCloud Storage System,” ACM
Transactions on Computer Systems, vol. 33, pp. 1–55, 08 2015.

[101] Apache Software Foundation, “Apache Cassandra.” http://cassandra.
apache.org/, 2016.

[102] Cloud Native Computing Foundation, “etcd.” http://etcd.io/, 2016.
[103] OpenStack, “DragonFlow : BGP dynamic routing.” https://docs.

openstack.org/dragonflow/latest/specs/bgp_dynamic_routing.html,
2018.

[104] Apache Software Foundation, “ZooKeeper: A Distributed Coordina-
tion Service for Distributed Applications.” https://zookeeper.apache.
org/doc/r3.4.13/zookeeperOver.html, 2008.

[105] Apache Software Foundation, “Apache Karaf.” https://karaf.apache.
org/, 2010.

[106] Open Networking Foundation, “Atomix.” https://atomix.io/docs/latest/
user-manual/introduction/what-is-atomix/, 2019.

[107] ONOS, “ONOS - Community.” https://www.opennetworking.org/onos/,
2020.

[108] ONOS, “SONA architecture ONOS.” https://wiki.onosproject.org/
display/ONOS/SONA+Architecture, 2018.

[109] ONOS, “CORD VTN ONOS.” https://wiki.onosproject.org/display/
ONOS/CORD+VTN, 2018.

[110] ONOS, “ONOS - OpenStack (Neutron) Integration.” https:
//groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-
discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-
discuss, 2017.

[111] The New Stack, “OpenDaylight is One of the Best Con-
trollers for OpenStack.” https://thenewstack.io/opendaylight-is-one-of-
the-best-controllers-for-openstack-heres-how-to-implement-it/, 2015.

[112] OpenDayLight, “OpenDaylight SDNi Application.” https://wiki.
opendaylight.org/view/ODL-SDNi_App:Main, 2014.

[113] OpenDayLight, “OpenDaylight Federation Application.” https://wiki.
opendaylight.org/view/Federation:Main, 2016.

[114] OpenDayLight, “OpenDaylight NetVirt Application.” https://wiki.
opendaylight.org/display/ODL/NetVirt, 2020.

[115] OpenDayLight, “User stories OpenDaylight.” https://www.
opendaylight.org/use-cases-and-users/user-stories, 2018.

[116] R. Fielding, Chapter 5: Representational State Transfer (REST). Ar-
chitectural Styles and the Design of Network-based Software Architec-
tures(Dissertation). UNIVERSITY OF CALIFORNIA, 2000.

[117] Juniper, “Contrail Global Controller.” https://www.juniper.net/
documentation/en_US/contrail3.2/topics/concept/global-controller-
vnc.html, 2016.

[118] A. Randal, “The ideal versus the real: Revisiting the history of virtual
machines and containers,” ACM Comput. Surv., vol. 53, Feb. 2020.

[119] S. Singh and N. Singh, “Containers & Docker: Emerging roles & future
of Cloud technology,” pp. 804–807, 01 2016.

[120] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and
Virtual Machines at Scale: A Comparative Study,” in Proceedings of
the 17th International Middleware Conference, Middleware ’16, (New
York, NY, USA), Association for Computing Machinery, 2016.

[121] ETSI, “Network Functions Virtualisation (NFV) Release 3; Architec-
ture; Report on the Enhancements of the NFV architecture towards
"Cloud-native" and "PaaS" ,” Tech. Rep. DGR/NFV-IFA029, European
Telecommunications Standards Institute, 2019.

[122] Cloud iNfrastructure Telco Task Force, “Define the place of Kubernetes
in the ETSI NFV MANO stack and document the result.” https://github.
com/cntt-n/CNTT/issues/450, 2019. online.

[123] Docker, “Docker.” https://www.docker.com/, 2020.
[124] Canonical, “Linux containers.” https://linuxcontainers.org/, 2020.
[125] Linux Foundation, “CRI: the Container Runtime In-

terface.” https://github.com/kubernetes/kubernetes/blob/
242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-
runtime-interface.md, 2016.

[126] Linux Foundation, “Kubernetes API overview.” https://kubernetes.io/
docs/reference/generated/kubernetes-api/v1.18/, 2020.

[127] Cloud Native Computing Foundation, “Container Network Interface
specification.” https://github.com/containernetworking/cni/blob/master/
SPEC.md, 2020.

[128] Linux Foundation, “Kubernetes Network Plugins.” https:
//kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/, 2019.

[129] Linux Foundation, “Cluster Networking: Kubernetes.”
https://kubernetes.io/docs/concepts/cluster-administration/networking/,
2019.

[130] Tigera, “Calico for Kubernetes.” https://docs.projectcalico.org/v2.0/
getting-started/kubernetes/, 2020.

[131] Isovalent, “Cilium.” https://cilium.io/, 2019. Mountain View, Califor-
nia.

[132] Cisco, “Contiv.” https://contiv.io/, 2019.
[133] CoreOS, “Flannel.” https://github.com/coreos/flannel, 2019.
[134] Weave-Works, “Weave Net.” https://www.weave.works/blog/weave-

net-kubernetes-integration/, 2016.
[135] OpenStack, “OpenStack kuryr.” https://docs.openstack.org/kuryr-

kubernetes/latest/, 2019.
[136] Jun Du and Haibin Xie and Wei Liang, “IPVS-Based In-Cluster

Load Balancing Deep Dive.” https://kubernetes.io/blog/2018/07/09/
ipvs-based-in-cluster-load-balancing-deep-dive/, 2018.

[137] Andrew Jenkins, “To Multicluster, or Not to Multicluster: Inter-
Cluster Communication.” https://www.infoq.com/articles/kubernetes-
multicluster-comms/, 2019.

[138] SIG Multicluster, “Kubernetes Cluster Federation.” https://github.com/
kubernetes-sigs/kubefed, 2020. San Francisco, California.

[139] Istio, “Multicluster Deployments .” https://istio.io/v1.2/docs/concepts/
multicluster-deployments/, 2020. Mountain View, California.

[140] Cilium, “Cilium Cluster Mesh.” https://docs.cilium.io/en/v1.8/
gettingstarted/clustermesh/, 2020. Mountain View, California.

[141] Admiralty, “Multi Cluster Scheduler.” https://github.com/admiraltyio/
multicluster-scheduler, 2020. Seattle, Washington.

[142] Linkerd, “Multicluster Kubernetes with Service Mirroring.”
https://linkerd.io/2020/02/25/multicluster-kubernetes-with-service-
mirroring/, 2020.

[143] Rancher, “Submariner.” https://submariner.io//, 2020.
[144] HashiCorp, “Multi-Cluster Federation overview.” https://www.consul.

io/docs/k8s/installation/multi-cluster/overview, 2020.
[145] Submariner, connected Kubernetes overlay networks, 2020. https://

github.com/submariner-io/submariner.
[146] Istio, “Istio: What is a service mesh?.” https://istio.io/latest/docs/

concepts/what-is-istio/#what-is-a-service-mesh, 2020. Mountain View,
California.

[147] G. Antichi and G. Rétvári, “Full-Stack SDN: The Next Big Chal-
lenge?,” in Proceedings of the Symposium on SDN Research, SOSR
’20, (New York, NY, USA), p. 48–54, Association for Computing
Machinery, 2020.

[148] Envoy Project, “Envoy.” https://www.envoyproxy.io/docs/envoy/latest/
intro/what_is_envoy, 2020. San Francisco, California.

[149] Istio, “Istio Replicated Control Planes.” https://istio.io/latest/docs/setup/
install/multicluster/gateways/, 2020. Mountain View, California.

[150] Venkat Srinivasan, “Connecting multiple Kubernetes Clusters
on vSphere with Istio Service Mesh.” https://medium.com/faun/
connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-
service-mesh-a017a0dd9b2e, 2020.

[151] Istio, “Istio Performance and Scalability.” https://istio.io/latest/docs/
ops/deployment/performance-and-scalability/, 2020. Mountain View,
California.

[152] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture
for user-level packet capture.,”

[153] Jonathan Corbet, “Extending extended BPF.” https://lwn.net/Articles/
603983/, 2014.

[154] Venkat Srinivasan, “Connecting multiple Kubernetes clusters on
vSphere with the Cilium Cluster Mesh.” https://medium.com/faun/
connecting-multiple-kubernetes-clusters-on-vsphere-with-the-cilium-
cluster-mesh-964f95267df4, 2020.

[155] E. Haleplidis, K. Pentikousis, S. Denazis, J. Hadi-Salam, D. Meyer,
and O. Koufoupavlou, “Software-Defined Networking (SDN): Layers
and Architecture Terminology,” RFC 7426, RFC Editor, January 2015.

[156] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A
Message Exchange Protocol for Software Defined Networks (SDNS)
across Multiple Domains.” Internet Draft, June 2012.

[157] P. Lin, J. Bi, and Y. Wang, East-West bridge for SDN network peering,
vol. 401, pp. 170–181. Springer, 01 2013.

[158] H. Yu, K. Li, H. Qi, W. Li, and X. Tao, “Zebra: An East-West
Control Framework For SDN Controllers,” International Conference
on Parallel Processing, 2015.

[159] F. Benamrane, M. B. Mamoun, and B. Redouane, “An East-West
interface for distributed SDN control plane: Implementation and eval-
uation,” Computers & Electrical Engineering, 2016.

[160] M. Aslett, “How will the database incumbents respond to NoSQL and
NewSQL? ,” Tech. Rep. 451:1–5, 451 Group, April 2011.

http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
http://docs.openvswitch.org/en/latest/ref/ovsdb.7/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://etcd.io/
https://docs.openstack.org/dragonflow/latest/specs/bgp_dynamic_routing.html
https://docs.openstack.org/dragonflow/latest/specs/bgp_dynamic_routing.html
https://zookeeper.apache.org/doc/r3.4.13/zookeeperOver.html
https://zookeeper.apache.org/doc/r3.4.13/zookeeperOver.html
https://karaf.apache.org/
https://karaf.apache.org/
https://atomix.io/docs/latest/user-manual/introduction/what-is-atomix/
https://atomix.io/docs/latest/user-manual/introduction/what-is-atomix/
https://www.opennetworking.org/onos/
https://wiki.onosproject.org/display/ONOS/SONA+Architecture
https://wiki.onosproject.org/display/ONOS/SONA+Architecture
https://wiki.onosproject.org/display/ONOS/CORD+VTN
https://wiki.onosproject.org/display/ONOS/CORD+VTN
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://groups.google.com/a/onosproject.org/forum/?oldui=1#!msg/onos-discuss/NIS-m-mpp3E/dO1wHCeSAwAJ;context-place=forum/onos-discuss
https://thenewstack.io/opendaylight-is-one-of-the-best-controllers-for-openstack-heres-how-to-implement-it/
https://thenewstack.io/opendaylight-is-one-of-the-best-controllers-for-openstack-heres-how-to-implement-it/
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/ODL-SDNi_App:Main
https://wiki.opendaylight.org/view/Federation:Main
https://wiki.opendaylight.org/view/Federation:Main
https://wiki.opendaylight.org/display/ODL/NetVirt
https://wiki.opendaylight.org/display/ODL/NetVirt
https://www.opendaylight.org/use-cases-and-users/user-stories
https://www.opendaylight.org/use-cases-and-users/user-stories
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/global-controller-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/global-controller-vnc.html
https://www.juniper.net/documentation/en_US/contrail3.2/topics/concept/global-controller-vnc.html
https://github.com/cntt-n/CNTT/issues/450
https://github.com/cntt-n/CNTT/issues/450
https://www.docker.com/
https://linuxcontainers.org/
https://github.com/kubernetes/kubernetes/blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md
https://github.com/kubernetes/kubernetes/blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md
https://github.com/kubernetes/kubernetes/blob/242a97307b34076d5d8f5bbeb154fa4d97c9ef1d/docs/devel/container-runtime-interface.md
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://github.com/containernetworking/cni/blob/master/SPEC.md
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
https://docs.projectcalico.org/v2.0/getting-started/kubernetes/
https://cilium.io/
https://contiv.io/
https://github.com/coreos/flannel
https://www.weave.works/blog/weave-net-kubernetes-integration/
https://www.weave.works/blog/weave-net-kubernetes-integration/
https://docs.openstack.org/kuryr-kubernetes/latest/
https://docs.openstack.org/kuryr-kubernetes/latest/
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/
https://kubernetes.io/blog/2018/07/09/ipvs-based-in-cluster-load-balancing-deep-dive/
https://www.infoq.com/articles/kubernetes-multicluster-comms/
https://www.infoq.com/articles/kubernetes-multicluster-comms/
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://istio.io/v1.2/docs/concepts/multicluster-deployments/
https://istio.io/v1.2/docs/concepts/multicluster-deployments/
https://docs.cilium.io/en/v1.8/gettingstarted/clustermesh/
https://docs.cilium.io/en/v1.8/gettingstarted/clustermesh/
https://github.com/admiraltyio/multicluster-scheduler
https://github.com/admiraltyio/multicluster-scheduler
https://linkerd.io/2020/02/25/multicluster-kubernetes-with-service-mirroring/
https://linkerd.io/2020/02/25/multicluster-kubernetes-with-service-mirroring/
https://submariner.io//
https://www.consul.io/docs/k8s/installation/multi-cluster/overview
https://www.consul.io/docs/k8s/installation/multi-cluster/overview
https://github.com/submariner-io/submariner
https://github.com/submariner-io/submariner
https://istio.io/latest/docs/concepts/what-is-istio/#what-is-a-service-mesh
https://istio.io/latest/docs/concepts/what-is-istio/#what-is-a-service-mesh
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://istio.io/latest/docs/setup/install/multicluster/gateways/
https://istio.io/latest/docs/setup/install/multicluster/gateways/
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-istio-service-mesh-a017a0dd9b2e
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://lwn.net/Articles/603983/
https://lwn.net/Articles/603983/
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-the-cilium-cluster-mesh-964f95267df4
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-the-cilium-cluster-mesh-964f95267df4
https://medium.com/faun/connecting-multiple-kubernetes-clusters-on-vsphere-with-the-cilium-cluster-mesh-964f95267df4


27

[161] S. Harizopoulos, D. Abadi, S. Madden, and M. Stonebraker, “Oltp
through the looking glass, and what we found there,” pp. 981–992, 01
2008.

[162] A. Pavlo and M. Aslett, “What’s really new with newsql?,” SIGMOD
Rec., vol. 45, p. 45–55, Sept. 2016.

[163] M. Stonebraker, “The case for shared nothing,” IEEE Database Eng.
Bull., vol. 9, pp. 4–9, 1985.

[164] MariaDB, “A NEW APPROACH TO SCALE-OUT RDBMS.”
https://mariadb.com/wp-content/uploads/2018/10/Whitepaper-
ANewApproachtoScaleOutRDBMS.pdf, Oct 2018. (Accessed:
06/2020-).

[165] CockRoachLab, “CockRoachDB.” https://www.cockroachlabs.com/
product/, 2018.

[166] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, and D. Woodford, “Spanner: Google’s globally distributed
database,” ACM Transactions on Computer Systems (TOCS), vol. 31,
08 2013.

[167] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, J. Cieslewicz,
I. Rae, T. Stancescu, and H. Apte, “F1: A distributed sql database
that scales,” in VLDB, 2013.

[168] L. VoltDB, “Voltdb technical overview,” Whitepaper, 2010.
[169] A. Kemper and T. Neumann, “Hyper: A hybrid oltp olap main memory

database system based on virtual memory snapshots,” in 2011 IEEE
27th International Conference on Data Engineering, pp. 195–206,
2011.

[170] AgilData, “AgilData Scalable Cluster for MySQL.” https://www.
agildate.com/product/, 2020.

[171] MariaDB, “MariaDB MaxScale.” https://mariadb.com/resources/
datasheets/mariadb-maxscale/, 2019.

[172] Amazon, “Amazon Aurora.” https://aws.amazon.com/rds/aurora/, 2019.
[173] Navisite, “ClearDB.” https://www.cleardb.com/, 2019.
[174] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,

S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Ama-
zon aurora: Design considerations for high throughput cloud-native
relational databases,” in Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, (New York, NY,
USA), p. 1041–1052, Association for Computing Machinery, 2017.

[175] INRIA, “AntidoteDB.” https://www.antidotedb.eu/, 2017.
[176] Riak, “Riak database.” https://riak.com/, 2019.
[177] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirsk, “Conflict-

Free Replicated Data Types,” in Stabilization, Safety, and Security of
Distributed Systems, vol. 6976, Springer, 2011.

[178] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4),” RFC 4271, RFC Editor, January 2006.

[179] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The SoftRouter Architecture,” Proceedings of the ACM SIGCOMM
Workshop on Hot Topics in Networking, 2004.

[180] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and Implementation of a Routing Con-
trol Platform,” Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, 2005.

[181] M. Nascimento, C. Rothenberg, M. Salvador, C. Correa, S. de Lucena,
and M. Magalhaes, “Virtual Routers as a Service: The RouteFlow
Approach Leveraging Software-Defined Networks,” Proceedings of the
6th International Conference on Future Internet Technologies, 2011.

[182] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feld-
mann, and S. Schmid, “Taking Control of SDN-based Cloud Systems
via the Data Plane,” Proceedings of the Symposium on SDN Research,
2018.

[183] A. Wion, M. Bouet, L. Iannone, and V. Conan, “Distributed Function
Chaining with AnycastRouting,” Proceedings of the 2019 ACM Sym-
posium on SDN Research, 2019.

[184] A. Wang, Z. Chen, T. Yang†, and M. Yu, “Enabling Policy Innovation
in Interdomain Routing:A Software-Defined Approach,” Symposium on
SDN Research 2019, 2019.

[185] OpenStack, “Neutron-Neutron Interconnections.” https://specs.
openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html,
2018.

[186] K. Kaur and M. Sachdeva, “Performance evaluation of NewSQL
databases,” in 2017 International Conference on Inventive Systems and
Control (ICISC), pp. 1–5, IEEE, 2017.

[187] G. A. Schreiner, R. Knob, D. Duarte, P. Vilain, and R. d. S.
Mello, “Newsql through the looking glass,” in Proceedings of the

21st International Conference on Information Integration and Web-
Based Applications & Services, iiWAS2019, (New York, NY, USA),
p. 361–369, Association for Computing Machinery, 2019.

[188] F. Palmieri, “VPN scalability over high performance backbones eval-
uating MPLS VPN against traditional approaches,” Proceedings of the
Eighth IEEE International Symposium on Computers and Communi-
cation, 2003.

[189] J. Mai and J. Du, “BGP performance analysis for large scale VPN,”
2013 IEEE Third International Conference on Information Science and
Technology, 2013.

[190] A. Risdianto, J.-S. Shin, and J. Kim, “Deployment and evaluation
of software-defined inter-connections for multi-domain federated sdn-
cloud,” pp. 118–121, 06 2016.

[191] E. Sakic and W. Kellerer, “Response time and availability study of
raft consensus in distributed sdn control plane,” IEEE Transactions on
Network and Service Management, vol. 15, no. 1, pp. 304–318, 2018.

[192] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The role
of the inter-controller consensus in the placement of distributed sdn
controllers,” Computer Communications, vol. 113, pp. 1 – 13, 2017.

[193] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Net-
paxos: Consensus at network speed,” in Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research,
SOSR ’15, (New York, NY, USA), Association for Computing Ma-
chinery, 2015.

[194] C. Ho, K. Wang, and Y. Hsu, “A fast consensus algorithm for mul-
tiple controllers in software-defined networks,” in 2016 18th Interna-
tional Conference on Advanced Communication Technology (ICACT),
pp. 112–116, 2016.

[195] J. Rittinghouse and J. Ransome, Cloud Computing Implementation,
Management, and Security. CRC Press, 2009.

[196] M. Almorsy, J. Grundy, and I. Müller, “An Analysis of the Cloud
Computing Security Problem,” Proceedings of the APSEC 2010 Cloud
Workshop, pp. 1–6, 2010.

https://mariadb.com/wp-content/uploads/2018/10/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://mariadb.com/wp-content/uploads/2018/10/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://www.cockroachlabs.com/product/
https://www.cockroachlabs.com/product/
https://www.agildate.com/product/
https://www.agildate.com/product/
https://mariadb.com/resources/datasheets/mariadb-maxscale/
https://mariadb.com/resources/datasheets/mariadb-maxscale/
https://aws.amazon.com/rds/aurora/
https://www.cleardb.com/
https://www.antidotedb.eu/
https://riak.com/
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/neutron-inter.html

	Introduction
	SDN and VIMs networking: Background
	Software-Defined-Network
	SDN-based Cloud networking: The Neutron example
	Neutron architecture
	Neutron networking
	Multi-instance Neutron
	Summary


	Reviews on work & surveys on SDN and SDN-based cloud computing
	Distributed network control management Challenges
	Network information's challenges
	Identifying how information should be shared (information granularity)
	Sharing networking information on-demand and in an efficient manner (information scope)
	Facing network disconnections (information availability)

	Technological challenges regarding inter-site networking services
	Standard automatized and distributed interfaces (automatized interfaces)
	Support and adaptation of networking technologies (networking technologies)


	Distributed SDN design principles
	Architecture
	Leader-based operations
	Internal communication protocols
	Database management system
	SQL Databases
	NoSQL Databases

	SDN interoperability and maturity
	Network types targeted
	Supported Southbound protocols
	Readiness Level
	Additional considerations: OpenStack compatibility


	Multi-controller SDN Solutions
	Network-oriented (controllers for SDN domains)
	Cloud-Oriented
	Summary

	New cloud ecosystems: the Kubernetes case
	Kubernetes overview
	Kubernetes networking
	Multi-Cluster Kubernetes
	Kubernetes Federation
	Istio Multi-Cluster service mesh
	Cilium Multi-Cluster

	Summary

	Directions for DCI networking research
	East-West SDN-based interfaces
	Leveraging new kinds of databases
	Data plane technologies
	Performance analysis
	Security

	Conclusions
	References

