Dominik Phillips
email: dphillips@ernw.de

Aleksandar Milenkoski
email: amilenkoski@ernw.de

Windows Defender Application Control: Initialization

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows

Introduction

This section describes the process for initializing Windows Defender Application Control (WDAC) performed by the Windows loader and the kernel when Windows 10 is booted (see Figure 1). Windows loader The OslPrepareTarget function implemented as part of the Windows loader performs WDAC initialization activities. These activites are performed by the functions: OslpProcessSIPolicy, OslpLoadAllModules, and OslBuildCodeIntegrityLoaderBlock. These functions are invoked by OslPrepareTarget.

The OslpProcessSIPolicy function initializes and loads the WDAC policy in the context of the Windows loader. This involves verifying the integrity of the WDAC policy, if signed. Once OslpProcessSIPolicy is finished executing, the WDAC policy may be used for image verification by the Windows loader. Among other images, the Windows loader verifies the integrity of the ci.dll file.

The functions OslBuildCodeIntegrityLoaderBlock and OslpLoadAllModules populate with WDAC initialization parameters the CodeIntegrityLoaderBlock (see Figure 17) and LoadOrderListHead fields ultimately referenced by the _LOADER_PARAMETER_BLOCK structure ([RSI12], Chapter 13). The _LOADER_PARAMETER_BLOCK structure is ultimately passed to the Windows kernel at execution transfer between the Windows loader and the kernel. Once _LOADER_PARAMETER_BLOCK is populated with WDAC initialization parameters, the Windows loader transfers the execution control to the Windows kernel. To this end, it executes the OslArchTransferToKernel function.

Windows kernel

Once the Windows loader has transferred the execution control to the kernel, it uses the populated _LOADER_PARAMETER_BLOCK structure to initialize WDAC in the context of the kernel. The kernel is initialized in two phases: Phase 0 and Phase 1 ([RSI12], Chapter 13). The kernel invokes in Phase 0 the MiReload-BootLoadedDrivers function. This function allocates a memory region in the virtual address space assigned to the kernel for the ci.dll file. The starting address of this space is referred to as the image base address of ci.dll.

Once Phase 0 is finished, the kernel starts Phase 1. In this phase, the kernel continues initializing WDAC. This involves for example, invoking the SeCodeIntegrityInitializePolicy function, which initializes the WDAC policy. Once SeCodeIntegrityInitializePolicy is finished executing, the WDAC policy may be used for image verification by the Windows kernel.

Windows Loader: OslpProcessSIPolicy

OslpProcessSIPolicy loads and processes the SIPolicy.p7b file, that is, the WDAC policy. If the WDAC policy is signed, OslpProcessSIPolicy verifies the integrity of the policy. This section discusses this verification process. The SIPolicy.p7b is in the (Public Key Cryptography Standards) PKCS#7 file format.1 This format allows for specifying file-specific cryptographic data, such as digital signatures. Figure 2 depicts the Abstract Syntax Notation One (ASN.1) format of a digitally signed PKCS#7 file. The SignedData data structure contains the overall data content, including related cryptographic data. This section focusses on the digestAlgorithms, contentInfo, certificates, and signerInfos fields of SignedData. certificates stores the certificate chain used to sign WDAC content. The certificates are stored in the X.509 format.

signerInfos stores values that describe the certificate of the signer of the WDAC content, the hash value of the WDAC content, and the signed hash of the WDAC content. Some fields referenced by signerInfos are:

• issuerAndSerialNumber, which stores the issuer and the serial number of the signing certificate;

• encryptedDigest, which stores the signed hash of the WDAC content;

• digestAlgorithm, which stores the hash algorithm used to calculate the hash value of the WDAC content; and

• authenticatedAttributes, which stores, among other things, the hash value of the WDAC content.

Figure 3 depicts a portion of a signed WDAC policy as viewed with the openssl utility. WDAC is considered disabled if no WDAC policy is returned by BlSIPolicyReadPolicies. If a WDAC policy is returned, WDAC is considered enabled. Only users with administrative privileges can delete a WDAC policy and therefore, disable WDAC. When BlSIPolicyReadPolicies is finished executing, BlSIPolicyCheckPolicyOnDevice invokes BlSIPolicyParsePolicyData. This function processes the loaded WDAC policy.

Before BlSIPolicyParsePolicyData processes the WDAC policy, it verifies its integrity. The MinCryptVerifySigned-DataLMode function initiates the verification of the WDAC policy. MinCryptVerifySignedDataLMode receives as parameters the size of the WDAC policy and the ASN.1 formatted WDAC policy. Figure 5 depicts the invocation of MinCryptVerifySignedDataLMode. The integrity verification of the WDAC policy can be structured into two phases. In the first phase, the certificate of the signer of the WDAC policy is verified. In the second phase, the integrity of the WDAC policy itself is verified.

MinCryptVerifySignedDataLMode first invokes the MinCryptVerifyCertificateWithRootInfo function. MinCryptVeri-fyCertificateWithRootInfo verifies the certificate of the signer of the WDAC policy signer certificate against its root certificate. The verified certificate is stored in the certificates field of the SignedData structure. MinCryptVeri-fyCertificateWithRootInfo uses the root certificates embedded in the Windows loader, in the RootTable structure.

The fact that certificates embedded in the Windows loader are used for verifying the certificate used to sign the WDAC policy shows that the root of trust for verifying the integrity of the WDAC policy is the Windows loader itself. It is important to emphasize that in the scenario, where the WDAC policy is signed with a certificate that cannot be verified against a root certificate stored in RootTable, the certificate is considered valid without verification against an alternative root certificate.

Once MinCryptVerifyCertificateWithRootInfo is finished executing, the WDAC policy, that is, the WDAC content, is verified. To this end, MinCryptVerifySignedDataLMode first invokes the MinCryptHashMemory function. Min-CryptHashMemory computes the hash value of the WDAC content, which stored in the contentInfo field of the SignedData structure. The algorithm used to calculate the hash value of the WDAC content is stored in digestAlgorithms.

MinCryptVerifySignedDataLMode then invokes the I_MinCryptVerifySignerAuthenticatedAttributes function. This function verifies the computed hash value against the hash value stored in authenticatedAttributes. Finally, Min-CryptVerifySignedDataLMode invokes MinCryptVerifySignedHash in order to verify the signed hash of the WDAC content stored in encryptedDigest. To this end, it uses the previously verified signer certificate and the verified computed hash value. Only if the verifications performed by I_MinCryptVerifySignerAuthenticatedAttributes and MinCryptVerifySignedHash are successful, the WDAC content is considered authentic.

Windows Loader: OslpLoadAllModules

OslpLoadAllModules performs image loading and integrity verification activities. OslpLoadAllModules invokes OslLoadDrivers for loading driver executables, and OslLoadImage for loading any other type of image. The Windows loader loads the ci.dll library file in the LoadImports function, invoked by OslLoadImage. All of the previously mentioned functions ultimately invoke BlImgLoadPEImageEx, which performs image loading and integrity verification. Figure 6 depicts the BlImgLoadPEImageEx function loading ci.dll and its image base address (fffff803'99b1e000).

Windows Loader: OslBuildCodeIntegrityLoaderBlock

OslBuildCodeIntegrityLoaderBlock first populates the _LOADER_PARAMETER_CI_EXTENSION structure with WDAC initialization parameters. These parameters are used by the kernel to further initialize WDAC. A reference to _LOADER_PARAMETER_CI_EXTENSION and its size are stored in the _LOADER_PARAMETER_EXTENSION structure, in the CodeIntegrityLoaderBlockSize and the CodeIntegrityLoaderBlock, respectively (see Figure 8). The _LOADER_PARAMETER_EXTENSION structure is referenced by the Extension variable. This variable is stored in _LOADER_PARAMETER_BLOCK, at offset 0xF0 (see Figure 8). The OslBuildCodeIntegrityLoaderBlock function populates _LOADER_PARAMETER_CI_EXTENSION with WDAC initialization parameters, such as:

• CodeIntegrityPolicyHash: This parameter stores the hash value of the WDAC content. This hash is calculated in the OslpCalculateCodeIntegrityPolicyHash function, invoked by OslBuildCodeIntegrityLoaderBlock;

• CodeIntegrityPolicySize: This parameter stores the size of the WDAC content; and

• CodeIntegrityPolicy: This parameter stores the WDAC content extracted from contentInfo.

After OslBuildCodeIntegrityLoaderBlock has finished executing, the Windows loader transfers the execution control to the kernel. The kernel uses the populated _LOADER_PARAMETER_CI_EXTENSION structure, ultimately referenced by _LOADER_PARAMETER_BLOCK to further initialize WDAC.

Windows Kernel: MiReloadBootLoadedDrivers

After execution control has been transferred to the kernel, it invokes the InitBootProcessor function. This function is responsible for conducting relevant tasks, for example, initializing memory management functionalities.

InitBootProcessor ultimately invokes the memory management routine MmInitSystem. This routine, in turn, invokes MiReloadBootLoadedDrivers. This function allocates ci.dll in the context of the kernel based on the image base address of ci.dll (see, for example, fffff803'99b1e000 in Figure 6), passed by the Windows loader.

MiReloadBootLoadedDrivers invokes the MiUpdateThunks function, which allocates ci.dll in the context of the kernel. Figure 9 depicts the invocation of MiUpdateThunks. The second parameter of MiUpdateThunks (rdx in Figure 9) is the image base address of ci.dll passed by the Windows loader, whereas the third (r8 and fffff808'c5fd0000 in Figure 9) is an address in the context of the kernel, where ci.dll is to be allocated.

Once ci.dll is allocated in the kernel's context, the kernel invokes the SepInitializeCodeIntegrity function. This function initializes the interface exposed by ci.dll, after which the kernel can use code integrity functionalities.

It is important to emphasize that the integrity of ci.dll is verified by the Windows loader. This shows that the root of trust for verifying the integrity of ci.dll is the Windows loader.

Figure 1 :

 1 Figure 1: WDAC initialization

Figure 2 :

 2 Figure 2: ASN.1 format of a PKCS#7 file contentInfo stores the user-generated file rules and policy rule options in binary format. This work refers to these file rules and policy rule options as WDAC content. OslpProcessSIPolicy verifies the integrity of the WDAC content.

Figure 3 :

 3 Figure 3: Portion of a signed WDAC policyOslpProcessSIPolicy first invokes the BlSIPolicyCheckPolicyOnDevice function, which invokes BlSIPolicyReadPolicies. BlSIPolicyReadPolicies loads SIPolicy.p7b and returns the size and ASN.1 formatted WDAC policy. The former is stored at offset 0x30, and the latter at 0x28 of the rsp register (see Figure4).

Figure 4 :Figure 5 :

 45 Figure 4: Loaded SIPolicy.p7b

Figure 6 :

 6 Figure 6: The image base address of ci.dll

Figure 7 :

 7 Figure 7: A portion of _LOADER_PARAMETER_BLOCK and LoadOrderListHead Once the Windows loader has transferred execution control to the kernel, it uses the populated LoadOrderList-Head variable to pass the image base address of ci.dll (fffff803'99b1e000) to the Windows kernel for allocation of ci.dll in kernel's context.

Figure 8 :

 8 Figure 8: Relevant _LOADER_PARAMETER_* structures

Figure 9 :

 9 Figure 9: Relocated ci.dll file

Figure 10 :

 10 Figure 10: Pseudo-code of the implementation of SeCodeIntegrityInitializePolicy SeCodeIntegrityInitializePolicy invokes the CiInitializePolicy function. This function receives the _LOADER_PA-RAMETER_CI_EXTENSION structure as parameter. CiInitializePolicy populates the ci.dll variables g_SiPolicyHandles and g_SiPolicyHash with the values stored in the CodeIntegrityPolicy and CodeIntegrityPolicyHash variables,respectively. An analysis of the WDAC initialization functionalities showed that the hash value stored in CodeIn-tegrityPolicyHash is not used for verifying the integrity of the WDAC content stored in CodeIntegrityPolicy.

Figure 11

 11 Figure11depicts a portion of a populated g_SiPolicyHandles variable. Once g_SiPolicyHandles is populated, the Windows kernel can use the WDAC content stored in g_SiPolicyHandles for verification purposes. The description of each of the fields of g_SiPolicyHandles is out of the scope of this work.

Figure 11: g_SiPolicyHandles

 Figure 11: g_SiPolicyHandles

https://tools.ietf.org/html/rfc2315 [Retrieved: 13/9/2018]

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

operating system. For general inquiries contact Aleksandar Milenkoski (amilenkoski