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Abstract A common belief in phenomenological strain gradient plasticity modeling is that including the
gradient of scalar variables in the constitutive setting leads to size-dependent isotropic hardening, whereas
the gradient of second-order tensors induces size-dependent kinematic hardening. The present paper
shows that it is also possible to produce size-dependent kinematic hardening using scalar-based gradient
theory. For this purpose, a new model involving the gradient of the equivalent plastic strain is developed
and compared with two reference scalar-based and tensor-based theories. Theoretical investigations using
simple monotonic loading conditions are first presented to assess the ability of the proposed model to solve
some issues related to existing scalar-based gradient theories. Simulations under cyclic loading conditions
are then provided to investigate the nature of the resulting hardening. These simulations show that the
proposed model is capable of producing size-dependent kinematic hardening effects at more affordable
costs, compared to existing tensor-based strain gradient plasticity theories.

Keywords Strain gradient plasticity · Size effects · Size-dependent isotropic hardening · Size-dependent
kinematic hardening · Equivalent plastic strain · Cumulative plastic strain

1 Introduction

The size-dependent responses of metallic materials have been observed in numerous small-scale experi-
ments typically ranging in size from a few hundreds of nanometers to a few tens of micrometers (Hayashi
et al., 2011; Liu et al., 2013; Sarac et al., 2016; Dahlberg et al., 2017). At small scales, the response of
metallic materials is characterized by the statistically stored dislocations (SSDs), the density of which
increases with the plastic strain, and the geometrically necessary dislocations (GNDs), which are pro-
duced by the heterogeneous plastic flow attributable to the gradient of plastic strains, along with the
interactions between them. At these scales, GNDs are generally necessary to accommodate the crystal
lattice curvature that arises from a nonuniform plastic deformation. It is commonly believed that material
hardening arises from SSDs, and size effects are caused by GNDs which, acting as obstacles to SSDs,
can lead to further strengthening and/or hardening. Conventional plasticity theories, which rely on the
assumption that the stress at a given point is a function of strain and internal variables at this point
only and the GNDs are negligible with respect to the SSDs, cannot predict size effects. Due to lacking
internal length scale(s), these theories cannot consider the influence of strain gradients.
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To overcome limitations of conventional theories, Aifantis (1984) has proposed in a pioneering work the
first gradient theory of plasticity with a single internal length scale embedded within the conventional J2
plasticity theory. Since then, a considerable number of enhanced phenomenological and physically-based
gradient theories, which are typically termed strain gradient plasticity (SGP) theories, have been devel-
oped for single- and poly-crystal structures (Gurtin et al., 2007; Hutchinson, 2012; Dahlberg and Boåsen,
2019; El-Naaman et al., 2019; Forest et al., 2018; Jebahi et al., 2020; Panteghini et al., 2019; Rys̀ et al.,
2020). In the present work, only phenomenological SGP theories are discussed. These theories can be di-
vided into two groups: lower-order and higher-order theories. Lower-order theories preserve the structure
of classical plasticity (with conventional stresses, equilibrium equations and boundary conditions), with
the difference that the yield condition includes strain gradient terms (Aifantis, 1984; Mühlhaus and Alfan-
tis, 1991; Acharya and Bassani, 2000). As shown by Niordson and Hutchinson (2003), these approaches
can lead to likely unacceptable behaviors with an inexplicable localization flow. Higher-order theories
substantially deviate from conventional plasticity by the inclusion of new (higher-order) stresses, which
are work-conjugate to strain gradients, and additional equilibrium equations and boundary conditions
(Fleck and Hutchinson, 2001; Forest and Sievert, 2003; Gurtin, 2004; Gudmundson, 2004; Fleck et al.,
2015; Hutchinson, 2012; Panteghini et al., 2019). It is now generally accepted that higher-order theories
offer important modeling capabilities, making them the most commonly used in the literature. Depending
on the nature of the gradient terms, these theories can be classified into scalar-based and tensor-based
gradient theories. Some representative phenomenological models in these classes are reviewed hereafter.
For more details, the reader is referred to the interesting review of Voyiadjis and Song (2019).

In spirit of the Aifantis (1984) theory, de Borst and Mühlhaus (1992) have proposed a SGP model
based on the gradient of the cumulative plastic strain to investigate localization phenomena in solids.
Implementation aspects of this model have been discussed in de Borst and Mühlhaus (1992) and reviewed
in de Borst and Pamin (1996). With the purpose of generalizing the classical J2 flow theory to account
for gradient effects at small scales, Fleck and Hutchinson (2001) have developed a SGP model based on a
generalized definition of a monotonically increasing measure of plastic strain. As formulated, the proposed
model does not respect the thermodynamic requirement of non-negative dissipation (Gudmundson, 2004;
Gurtin and Anand, 2009). A modified version of this model based on the assumption of no gradient contri-
butions to dissipation has been proposed by Hutchinson (2012) to ensure its thermodynamic consistency.
Such an assumption has been used in subsequent works to develop thermodynamically-acceptable SGP
models (e.g., Fleck et al., 2015). Fleck and Willis (2015) have investigated the energetic and dissipative
aspects of gradient contributions in SGP theories, with a focus on the phenomenon of elastic gaps. A
comprehensive mathematical study of SGP models based on the gradient of cumulative plastic strain
is proposed by Fleck and Willis (2009b). Most of the aforementioned models involve the gradient of a
scalar field variable that increases monotonically. These models generally predict size-dependent isotropic
hardening effects under classical loading conditions. Although not very common, it is worth noting here
that size-dependent kinematic-like hardening effects can also be produced by such models in some partic-
ular cases. Indeed, the gradient contributions, when taken as energetic (or recoverable in the terminology
of Hutchinson (2012)), could be canceled or inverted by applying complex boundary conditions on the
additional independent scalar field variable. However, such conditions are not common and, in most cases,
they would not have a clear physical interpretation.

The other class of phenomenological SGP models involves the gradient of a tensor field variable.
Among the earliest contributions in this class are Steinmann (1996), where the curl of the plastic strain
tensor is introduced in the free energy density as a measure of plastic incompatibility, and Forest and
Sievert (2003) and Gurtin (2003, 2004), in which the gradient of the plastic strain tensor or the plastic
distortion tensor are included. These contributions have inspired a sizable number of subsequent works
proposing tensor-based SGP models. Gudmundson (2004) have proposed a unified framework for tensor-
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based SGP models that include the gradient of the plastic strain tensor. A mathematical study of such
models can be found in Fleck and Willis (2009a). Gurtin and Anand (2005a,b) have developed tensor
plastic strain gradient models for small and large deformations. Based on the Gurtin (2004) model,
Bardella and Panteghini (2015) have applied a phenomenological distortion gradient plasticity model to
study the effects of the plastic spin on the torsional response of thin metal wires. Panteghini and Bardella
(2018) have investigated the modeling capabilities of such a model and brought light to its kinematic
hardening effects. The gradient terms that are naturally involved in tensor-based gradient models generally
lead to size-dependent kinematic hardening effects. For such models to predict size-dependent isotropic
hardening effects, it is possible to introduce higher-order dissipative stresses, which must be carefully
defined to avoid thermodynamic inconsistencies (Hutchinson, 2012). The existing thermodynamically-
consistent definitions of such stresses generally lead, under certain non-proportional loading conditions,
to elastic gaps whose real existence is questioned (Fleck et al., 2014).

In the context of phenomenological SGP, most of the existing scalar-based gradient theories lead to
size-dependent isotropic hardening effects under classical boundary conditions. To model size-dependent
kinematic hardening effects, it is generally required to use tensor-based gradient theories, which are more
expensive than scalar-based ones in terms of computational effort and CPU time, due to the larger number
of additional nodal degrees of freedom. The present work aims to show that it is possible to produce the
latter effects with the gradient of a scalar field variable. To this end, a new model based on the gradient of
the equivalent plastic strain, i.e. a norm of the plastic strain tensor, is developed, in contrast to existing
theories relying on the gradient of the cumulative plastic strain. Since kinematic hardening effects are
overwhelming in GNDs-dominated plasticity, it is believed that a simple (i.e., by adding a single scalar-
valued independent field variable) SGP model incorporating a size-dependent back-stress will be useful
for the community. It should be noted that the term “equivalent plastic strain” is sometimes used in the
literature to designate the cumulative plastic variable (Wulfinghoff and Böhlke, 2012). This term is used
here to designate the norm of the total plastic strain tensor.

Although based on similar additional independent field variables, the model proposed in this work,
which belongs to the class of flow theories, conceptually differs from the deformation theory models
proposed by Aifantis (2001); Fleck and Hutchinson (2001); Hutchinson (2012) and Fleck et al. (2014).
In the context of flow theories, to the knowledge of the authors, the gradient of the equivalent plastic
strain has only been used to develop non-local damage approaches (Peerlings et al., 2001). In the paper of
Engelen et al. (2006), a variable named “effective plastic strain” is introduced for some SGP versions. It
is not clear whether this variable corresponds to the equivalent or the cumulative plastic strain. However,
the expression of the associated consistency condition suggests that it corresponds to the cumulative one.
Indeed, as will be seen later, the use of the equivalent plastic strain modifies the expression of such a
condition. Although the “equivalent plastic strain” is introduced in the paper Fleck and Willis (2015), the
proposed incremental model used to obtain the paper results involves the gradient of the plastic strain
tensor.

After the present introduction, the paper is organized as follows. For comparison purposes, section
2 briefly recalls the main features of scalar-based and tensor-based theories. Section 3 presents the new
equivalent plastic strain gradient model. A theoretical investigation of the proposed model is given in
section 4 to assess its ability to solve some issues related to conventional scalar-based gradient theories.
Section 5 discusses the numerical implementation of the developed model. Numerical results obtained un-
der monotonic and cyclic loading conditions are provided in section 6. Comparison between the proposed
model and existing scalar-based and tensor-based theories is also given in this section. Finally, section 7
presents some concluding remarks.
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2 Scalar-based versus tensor-based strain gradient plasticity

The present section aims to review the main features of scalar-based and tensor-based SGP theories. For
this purpose, the Aifantis (1984) theory, which implies the gradient of cumulative plastic strain, and a
simplified version of the Gudmundson (2004) theory, which relies on the gradient of the plastic strain
tensor, are briefly presented.

2.1 Scalar-based strain gradient plasticity

The pioneering scalar-based SGP theory of Aifantis (1984) is derived hereafter using the generalized
power density of internal forces (Forest and Aifantis, 2010; Forest and Bertram, 2011). In the framework
of small deformation, this density can be written as:

p(i) = σ : ε̇+ a ṗ+ b ·∇ṗ (1)

where ε is the linearlized strain tensor which is additively decomposed into elastic εe and plastic εp

parts, p and ∇p are respectively the cumulative plastic strain and its first gradient, σ is the Cauchy
stress tensor, and a and b are generalized stresses acting on respectively p and ∇p. Application of the
generalized principle of virtual power (Germain, 1973; Forest, 2009) results in an additional balance
equation, complementing the classical balance equations. In static case and neglecting body forces, these
equations can be written:

divσ = 0, a = divb (2)

The entropy imbalance is expressed in local form as:

p(i) − ψ̇ ≥ 0 (3)

where ψ is the free energy potential per unit volume, assumed to be a function of εe, p and ∇p:

ψ = ψ(εe, p,∇p) (4)

Using this function, the Clausius–Duhem inequality becomes:

(σ − ∂ψ

∂εe
) : ε̇e + σ : ε̇p + (a− ∂ψ

∂p
)ṗ+ (b− ∂ψ

∂∇p ) ·∇ṗ ≥ 0 (5)

with the state laws taken as:
σ =

∂ψ

∂εe
, R =

∂ψ

∂p
, b =

∂ψ

∂∇p (6)

The residual dissipation is then:
σ : ε̇p + (a−R)ṗ ≥ 0 (7)

Choosing a simple quadratic free energy potential:

ψ(εe, p,∇p) = 1

2
εe : C : εe +

1

2
h p2 +

1

2
c∇p ·∇p (8)

the state laws become:
σ = C : εe, R = h p, b = c∇p (9)

where C is the fourth-order tensor of elastic moduli, h is the usual hardening modulus and c is an
additional material parameter (unit MPa ·mm2 = N), as in Aifantis (1984). The latter parameter is
assumed to be positive c = H l2, with H a generalized hardening modulus and l an internal length scale.
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The yield function is taken as:

f(σ) = J2(σ) + a−R−R0 with J2(σ) =

√
3

2
σ′ : σ′ (10)

where R0 is the initial yield stress and σ′ is the deviatoric part of σ. Under plastic loading, this gives

J2(σ) = σeq = R0 +R− a = R0 +R− divb = R0 + h p− c∇2p (11)

where the last term is the Laplacian of the cumulative plastic strain field. As for classical plasticity theory,
the flow rule writes:

ε̇p = ṗ
∂f

∂σ
(12)

with the plastic multiplier ṗ =
√

2
3 ε̇

p : ε̇p. Time integration of this parameter, with a given initial
condition, provides the cumulative plastic strain variable p.

2.2 Tensor-based strain gradient plasticity

The main features of tensor-based SGP theories are reviewed hereafter based on the contribution of
Gudmundson (2004). Although a quite general theoretical framework has been proposed in Gudmundson
(2004), covering a large range of strain gradient plasticity theories, only a simplified version of this
framework is presented in this subsection. In particular higher-order dissipation contributions are not
considered. For comparison purposes, this version is derived following the same methodology as the one
used in the previous subsection. Following the thermodynamic framework proposed in Forest and Bertram
(2011), the generalized power density of internal forces can be written as:

p(i) = σ : ε̇+ q : ε̇p +M
...∇ε̇p (13)

where q and M are second-order and third-order generalized stresses, work-conjugate to εp and ∇εp,
respectively. Application of the generalized principle of virtual power (Germain, 1973; Forest, 2009) results
in the following balance equations (static case, without body forces):

divσ = 0, q = divM (14)

The entropy imbalance in local form is given by:

p(i) − ψ̇ ≥ 0 (15)

with ψ assumed to be a function of εe, p and ∇εp:

ψ = ψ(εe, p, ∇εp) (16)

The Clausius–Duhem inequality can be written as:

(σ − ∂ψ

∂εe
) : ε̇e + (σ + q) : ε̇p − ∂ψ

∂p
ṗ+ (M− ∂ψ

∂∇εp )
...∇ε̇p ≥ 0 (17)

with the state laws taken as:
σ =

∂ψ

∂εe
, R =

∂ψ

∂p
, M =

∂ψ

∂∇εp (18)

The residual dissipation is:

(σ + q) : ε̇p −R ṗ ≥ 0 ⇔ (σ −X) : ε̇p −R ṗ ≥ 0 (19)
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where the back-stress is defined by:
X = −q = −divM (20)

Using a simple quadratic free energy potential:

ψ(εe, p,∇εp) = 1

2
εe : C : εe +

1

2
h p2 +

1

2
c∇εp

...∇εp (21)

the state laws become:
σ = C : εe, R = h p, M = c∇εp (22)

Using the above expression of M, the back-stress X can be obtained:

X = −c∇2εp (23)

which depends on the Laplacian of the plastic strain tensor. The yield function is taken as:

f(σ,X) = J2(σ −X)−R−R0 with J2(σ −X) =

√
3

2

(
σ′ −X′

)
:
(
σ′ −X′

)
(24)

The flow rule writes:
ε̇p = ṗ

∂f

∂σ
(25)

3 Equivalent plastic strain gradient theory

The present section details a new scalar-based strain gradient plasticity theory, in which the gradient of
the cumulative plastic strain is replaced by the gradient of the equivalent plastic strain defined by:

εeq =

√
2

3
εp : εp (26)

It must be noted that this norm of the plastic strain tensors differs from the cumulative plastic strain p
defined in the previous section by the time integration of the relation :

ṗ =

√
2

3
ε̇p : ε̇p (27)

Considering the thermodynamic framework proposed in Forest and Bertram (2011), the generalized
power density of internal forces can be written as:

p(i) = σ : ε̇+ a ε̇eq + b ·∇ε̇eq (28)

with a and b generalized stresses acting on εeq and∇εeq, respectively. Application of the generalized prin-
ciple of virtual power results in the same generalized balance of momentum equations as those obtained
using the Aifantis theory (static case, without body forces):

divσ = 0, a = divb (29)

In this section, the free energy potential is assumed to be a function of εe, p and ∇εeq1:

ψ = ψ(εe, p,∇εeq) (30)

1 In general, εeq is not considered as a physically relevant hardening variable.
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This leads to the following Clausius–Duhem inequality:

(σ − ∂ψ

∂εe
) : ε̇e + σ : ε̇p + a ε̇eq −

∂ψ

∂p
ṗ+ (b− ∂ψ

∂∇εeq
) ·∇ε̇eq ≥ 0 (31)

with the state laws taken as:
σ =

∂ψ

∂εe
, R =

∂ψ

∂p
, b =

∂ψ

∂∇εeq
(32)

The residual dissipation is:
d = σ : ε̇p + a ε̇eq −R ṗ ≥ 0 (33)

The time derivative of the equivalent plastic strain is:

ε̇eq =
2

3

εp

εeq
: ε̇p (34)

Using this expression, the residual dissipation can be rewritten:

d = (σ −X) : ε̇p −R ṗ ≥ 0 (35)

where a back–stress X arises:
X = −2

3
a
εp

εeq
= −2

3
divb

εp

εeq
(36)

Consider a simple quadratic free energy potential:

ψ(εe, p,∇εeq) =
1

2
εe : C : εe +

1

2
h p2 +

1

2
c∇εeq ·∇εeq (37)

from which the state laws are derived:

σ = C : εe, R = h p, b = c∇εeq (38)

In this case, the back-stress X becomes:

X = −2

3
c∇2εeq

εp

εeq
(39)

which depends on the Laplacian of the equivalent plastic strain and on the direction of the plastic strain
tensor. In the case of zero plastic strain,X is indeterminate since both the numerator and the denominator
vanish. This special case is treated numerically as it will be explained later. The yield function writes:

f(σ,X) = J2(σ −X)−R−R0 with J2(σ −X) =

√
3

2

(
σ′ −X′

)
:
(
σ′ −X′

)
(40)

The same flow rule as in the previous subsections is adopted:

ε̇p = ṗ
∂f

∂σ
(41)

The plastic multiplier ṗ =
√

2
3 ε̇

p : ε̇p is linked to ε̇eq by:

ε̇eq − (nε · nσ) ṗ = 0 (42)

with

nε =
2

3

εp

εeq
and nσ =

3

2

σ′ −X′

J2 (σ −X)
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Figure 1: One-dimensional model subjected to initial conditions εp0 and a small perturbation εF , of
which the direction is determined by the sign of ε.

4 Theoretical investigation

4.1 One-dimensional tension-compression test : conceptual problem of Wulfinghoff et al. (2014)

A conceptual problem of gradient plasticity theories including gradient of scalar plastic field variables
has been noticed by Wulfinghoff et al. (2014). As scalar variables generally contain no information on the
direction of the plastic flow, Wulfinghoff et al. (2014) have shown that an arbitrary small perturbation
in the boundary conditions can determine the direction of the plastic deformation in many scalar-based
gradient formulations. In this sense, the solution is not stable with respect to the boundary conditions,
which seems to be physically-unacceptable. The present subsection aims to investigate this problem in the
context of the proposed equivalent plastic strain gradient theory. To this end, a simple one-dimensional
elasto-visco-plastic model, inspired by that proposed by Wulfinghoff et al. (2014), is considered. As in
Wulfinghoff et al. (2014), in the present investigation, plasticity is assumed to be governed by a simple
power low flow rule.

Using Aifantis theory, the plastic response of the one-dimensional model under tension-compression
loading is given by:

ε̇p = ε̇0 sign(σ)

〈
f

σd

〉n
= ε̇0 sign(σ)

〈 |σ|+ c p,11 −R−R0

σd

〉n
(43)

with ε̇0 reference strain rate, n rate sensitivity parameter, σd drag stress and “〈•〉” denoting the Macaulay
brackets defined as 〈•〉 = (•+ |•|) /2 = max {•, 0}. A conceptual difficulty arises when the yield criterion
is satisfied (f = 0) at a given point and at the same time the Cauchy stress is zero. Such a situation
occurs, for example, when the higher-order term is sufficiently large (σ = 0 and c p,11 = R + R0). In
this case, the plastic strain is triggered, but the flow rule (43) cannot provide the direction of ε̇p. Indeed,
using Aifantis theory, the direction of ε̇p is given by the sign of σ. Therefore, as it will be seen later, an
arbitrary small perturbation in σ can determine the direction of the total plastic strain. On the contrary,
using the present formulation, the flow rule (43) becomes:

ε̇p = ε̇0 sign(σ + c εp,11)

〈
f

σd

〉n
= ε̇0 sign(σ + c εp,11)

〈∣∣σ + c εp,11
∣∣−R−R0

σd

〉n
(44)

For nonzero yield stress, satisfaction of the yield criterion means that
(
σ + c εp,11

)
6= 0. The direction of

ε̇p is then always well defined.

In order to further investigate the aforementioned conceptual problem, the model of figure 1, which is
inspired by that proposed by Wulfinghoff et al. (2014), is considered in the following. A one-dimensional
bar of length a is subjected to initial conditions εp0 and an additional small perturbation εF on its right
end. The direction of the perturbation is determined by the sign of ε. For simplicity, the yield stress is set
to zero (σy = R+R0 = 0) and the rate sensitivity parameter to one (n = 1). The model is then reduced
to a visco-elastic gradient model, which is sufficient to analyze the aforementioned conceptual problem.
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The initial conditions are assumed to be:

εp(x, t = 0) = p (x, t = 0) = εp0(x) =
F

4Ac
(x− a)2 (45)

with A the cross sectional area of the bar. These initial conditions allow for a simple analytical solution
of the problem. The boundary conditions applied on the ends of the bar are assumed to be:

εp,1(x = 0, t) = − F a

2Ac
and εp,1(x = a, t) = 0 (46)

Using Aifantis theory, the evolution of the plastic strain is given by:

ε̇p = ε̇0 sign(ε)

( |ε F |+Ac p,11
Aσd

)
(47)

A possible solution of this equation, in the limit case of ε→ 0, is given by:

εp = sign(ε)
F ε̇0
2Aσd

t+ εp0(x) and p =
F ε̇0
2Aσd

t+ εp0(x) (48)

For sufficiently large time, the sign of the strain in the bar, which can be approximated by εp, is determined
by the sign of ε. This means that the prescribed perturbation εF , even though negligible, can determine
whether the bar is stretched or compressed. On the contrary, using the present theory, the evolution of
the plastic strain is governed by:

ε̇p = ε̇0
εF +Ac εp,11

Aσd
(49)

whose solution, in the limit case of ε→ 0, can be written:

εp = p =
F ε̇0
2Aσd

t+ εp0(x) (50)

This solution is independent of the sign of the introduced perturbation. Although the present theory is
based on the gradient of a scalar field variable, it takes into account the direction of the plastic strain,
making the solution stable with respect to the boundary conditions. Indeed, the back-stress resulting
from the higher-order term is a function of the direction of the plastic strain tensor.

4.2 Constrained plasticity in a sheared layer

In this subsection, the equivalent plastic strain gradient model is applied to a constrained elasto-plastic
strip subjected to monotonic shear loading. Similar problems have been investigated by Forest and
Bertram (2011) and Forest (2013) in the case of Aifantis theory. A 2D strip of length 2a and width
2w is considered (figure 2). The origin O of the coordinate system is located at the center of the strip.
To model the infinite length of this strip in e1−direction, periodic boundary conditions are applied on
its left and right edges:

ui (a, x2, t) = ui (−a, x2, t) , for i = 1, 2

εeq (a, x2, t) = εeq (−a, x2, t)
(51)

The top and bottom edges of the strip are subjected to opposite displacements in e1−direction and zero
displacements in e2−direction:

u1 (x1, w, t) = −u1 (x1, −w, t) = w γ and u2 (x1, w, t) = u2 (x1, −w, t) = 0 (52)

where γ denotes the mean simple shear applied in e1−direction. In addition to these classical conditions,
these two edges are also subjected to special boundary conditions, namely vanishing plastic strain, to
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Figure 2: 2D strip subjected to simple shear loading and vanishing plastic stain on the top and bottom
edges

mimick the piling-up of dislocations at them:

εeq (x1, w, t) = εeq (x1, −w, t) = 0 (53)

Assuming plane stain conditions, the displacement field in the strip can be written:

u1 (x2) = γ x2 + u (x2) and u2 = 0 (54)

where u, which describes the fluctuation from the homogeneous solution, is the main unknown of the
boundary value problem. The strain and stress tensors are written as:

ε = ε12 (e1 ⊗ e2 + e2 ⊗ e1) and σ = σ12 (e1 ⊗ e2 + e2 ⊗ e1) (55)

where ε12 (x2) = 1
2 [γ + u,2 (x2)] depends only on x2, and σ12 is homogeneous as a consequence of the

balance of momentum equations. After yielding, the plastic strain tensor takes the form:

εp = εp12 (e1 ⊗ e2 + e2 ⊗ e1) (56)

The equivalent plastic strain and its gradient can be expressed as:

εeq =
2√
3
|εp12| , ∇εeq = εeq,2 e2 (57)

The yield condition reads:

f(σ,X, R) =
√
3 |σ12 −X12| −R0 −R, with X12 = −2

3
c εp12,22

In the monotonic case with positive values of the variables, it gives:

σ12 =
R0 +R√

3
− 2

3
c εp12,22 (58)

This equation can be solved and provides a parabolic plastic profile when R = 0 and a cosh profile for
linear hardening R = h p. The same equation can be obtained using Aifantis theory (Forest and Bertram,
2011). Under monotonic conditions, the proposed theory is equivalent to that of Aifantis. As will be
seen later, differences will arise under cyclic loading conditions. Although solution of (58) is given in the
literature for specific boundary conditions (Forest and Bertram, 2011), it will be reproduced hereafter with
further specialization considering the boundary conditions of this subsection. The specialized solution will
be used later to validate the implementation of the proposed model. Assuming linear hardening R = h p,
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with p = εeq under monotonic conditions, equation (58) yields:
√
3σ12 −R0

h
= εeq −

c

h
εeq,22 (59)

Since σ12 is uniform in the strip, differentiation of this equation with respect to x2 leads to:

εeq,2 − λ2 εeq,222 = 0, with λ =

√
c

h
(60)

λ can be interpreted as an effective length scale. Solution of this equation has the following form:

εeq = A cosh
(x2
λ

)
+B (61)

where A and B are integration constants. The displacement fluctuation u in the strip can be obtained
from the Hooke constitutive law:

σ12 = µ
[
γ + u,2 (x2)−

√
3 εeq (x2)

]
(62)

which, considering (59), yields:

u (x2) =

(
R0√
3µ
− γ +

h+ 3µ√
3µ

B

)
x2 +

√
3Aλ sinh

(x2
λ

)
(63)

where µ represents the shear modulus. The arbitrary translation for u is set to zero. Constants A and
B can be determined based on the boundary conditions at top and bottom edges u (±w) = 0 and
εeq (±w) = 0:

A =

R0√
3µ
− γ

h+ 3µ√
3µ

cosh
(w
λ

)
−
√
3λ

w
sinh

(w
λ

)
B = −A cosh

(w
λ

) (64)

4.3 Bending of thin foil

It has been shown in the literature that scalar-based gradient theories can lead to non-smooth distribution
of plastic strains under certain loading conditions. Using bending conditions up to the limit load, Poh
et al. (2011) have pointed out that the plastic profile obtained using cumulative plastic strain gradient
theory is not smooth at the neutral axis. To overcome this difficulty, these authors have proposed to use
the gradient of the full plastic strain tensor instead of the gradient of the cumulative plastic strain. The
present section aims to investigate this point using the proposed equivalent plastic strain gradient theory.
To this end, the bending example considered by Poh et al. (2011) will be reproduced using this theory.
In this example, a foil of width 2w is bent around e3-axis to a curvature κ (figure 3). For simplicity, κ
is supposed to increase monotonically as a function of time t and the mechanical state is assumed to
evolve under plane strain conditions. Assuming, in addition, that the elastic and plastic responses are
incompressible, the displacement field can be approximated, in the case of small deformation, as:

u = κx1x2 e1 −
κ

2

(
x21 + x22

)
e2 (65)

The strain tensor ε is given by:
ε = ε11 (e1 ⊗ e1 − e2 ⊗ e2) (66)
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Figure 3: Thin foil subjected to simple bending loading and zero generalized traction on the top and
bottom edges

with ε11 = κx2. Due to the symmetry with respect to the neutral axis, the following analysis is restricted
to the upper half of the foil x2 ≥ 0; the solution for the lower half can easily be obtained using symmetry
or anti-symmetry arguments. In the regions where the yield condition is fulfilled, the plastic strain tensor
can be written as:

εp = εp11 (e1 ⊗ e1 − e2 ⊗ e2) (67)

where εp11 depends only on x2. The equivalent plastic strain and its gradient are given by:

εeq =
2√
3
|εp11| , ∇εeq = εeq,2 e2 (68)

The yield criterion reads:

f(σ,X, R) =
√
3 |σ11 −X11| −R0 −R, with X11 = −2

3
c εp11,22 (69)

In the present bending problem, the stress tensor is not uniform in the studied foil and the plastic region
evolves with loading. The problem will then be solved incrementally using the rate form of (69). Assuming
positive variables in the upper half of the studied foil and replacing εp11 by its expression in terms of εeq
(68), the rate form of equation (69) in the case of linear hardening (R = h p) can be written:

σ̇11 =
h√
3
ε̇eq −

c√
3
ε̇eq,22 (70)

Applying the Hooke constitutive law, σ̇11 can be written:

σ̇11 = µ
(
2 κ̇ x2 −

√
3 ε̇eq

)
(71)

Substituting (71) into (70), the following equation can be obtained:

ε̇eq − λ2ε̇eq,22 =
2
√
3µ

h+ 3µ
κ̇ x2 with λ =

√
c

h+ 3µ
(72)

This equation, which is obtained assuming monotonic bending conditions, is the same as the one obtained
using Aifantis theory (Engelen et al., 2006; Peerlings, 2007). The general solution of such an equation is
given by:

εeq (x2, t) =
2
√
3µ

h+ 3µ
κ (t) x2 + C1 (t) cosh(

x2
λ
) + C2 (t) sinh(

x2
λ
) + C3(x2) (73)

where C1, C2 and C3 are integration functions to be determined based on the boundary conditions.
Considering the general case with elastic and plastic regions, the position x2 of the elasto-plastic boundary
depends of time (x2 = d(t)). The function d is also to be determined based on the boundary conditions.
To identify C1, C2, C3 and d, the following boundary conditions are considered:

– Generalized traction imposed on the top edge: εeq,2 (w, t) = 0

– Continuity of εeq at x2 = d (t): εeq (d (t) , t) = 0

– Continuity of classical traction at x2 = d (t): R0

c −
2
√
3µ
c κ (t) d (t) = εeq,22 (d (t))

– Continuity of generalized traction at x2 = d (t): εeq,2 (d (t) , t) = 0
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These boundary conditions are similar to those applied by Engelen et al. (2006) and Peerlings (2007) in
the case of cumulative plastic strain gradient theory. Application of the above boundary conditions leads
to the following expression of εeq:

εeq (x2, t) =
2
√
3µ

3µ+ h

κ (t)

cosh
(
w−d(t)
λ

) [x2 cosh(w − d (t)
λ

)
− λ sinh

(
x2 − d (t)

λ

)
− d (t) cosh

(
w − x2
λ

)]
−

R0

3µ+ h

1

cosh
(
w−d(t)
λ

) [cosh(w − d (t)
λ

)
− cosh

(
w − x2
λ

)] (74)

with the function d verifying (Peerlings, 2007):

2
√
3µλκ (t)

3µ+ h

[
1− cosh

(
w − d (t)

λ

)
−
d (t)

λ
sinh

(
w − d (t)

λ

)]
+

R0

3µ+ h
sinh

(
w − d (t)

λ

)
= 0 (75)

There exists no analytical solution for equation (75). However, as demonstrated by Engelen et al. (2006)
and Peerlings (2007), numerical resolution of this equation shows a growth in the plastic region which
is faster than when using classical plasticity theory. Consequently, the elasto-plastic boundary meets the
neutral axis at a finite time. Beyond this time, the equivalent plastic strain εeq reduces to:

εeq (x2, t) =
2
√
3µ

3µ+ h

κ (t)

cosh
(
w
λ

) [x2 cosh(w
λ

)
− λ sinh

(x2
λ

)]
−

R0

3µ+ h

1

cosh
(
w
λ

) [cosh(w
λ

)
− cosh

(
w − x2
λ

)] (76)

It can be verified that εeq is zero at the neutral axis, but not εeq,2 which has a finite value. This means
that generalized traction exists at the neutral axis but it does not expend work, as εeq is zero at this axis.
Consequently, the proposed equivalent plastic strain gradient model does not overcome the problem of
non-smoothness of plastic strain at the neutral axis, which results in nonzero generalized traction at this
axis. However, the obtained traction does not contribute to the system work.

To simplify the analytical derivation of the bending solution, the above bending problem is often solved
considering half of the studied foil in the limit case for which the elasto-plastic boundary coincides with the
neutral axis. In this case, boundary conditions has to be imposed on this axis to ensure well-posedness of
the problem. By imposing zero generalized traction on the neutral axis, smooth plastic strain distribution
can be obtained (Idiart et al., 2009; Poh et al., 2011). However, this choice of boundary conditions can
lead to appearance of an internal layer originating from the neutral axis in which the stress state presents
an opposite sign with respect to the state in the rest of the foil half. This is questionable as nothing
special happens at the neutral axis to change the stress sign. Appearance of such likely-unphysical layer
seems to be an apparent problem due to the arbitrary imposition of generalized traction-free boundary
conditions on the neutral axis. The general solution, taken in the limit case of d(t) = 0, suggests that
essential boundary conditions have to be imposed on the neutral axis. Although these conditions lead
to non-smooth plastic strain distributions with nonzero generalized traction at the neutral axis, the
obtained traction does not contribute to the system work. Several scalar-based theories leading to non-
smooth plastic strain distributions under certain loading conditions can be found in the literature. Using
a minimal gradient-enhancement approach, Stupkiewicz and Petryk (2016) have obtained a non-smooth
plastic strain profiles within a constrained strip subjected to simple shear loading. This approach is
based on the so-called implicit-gradient regularization (Peerlings, 2007; Poh et al., 2011), allowing for
reproducing correctly non-smooth profiles. Very recently, Rys̀ et al. (2020) have proposed a new approach
combining the micromorphic model (Forest, 2009) and the minimal gradient-enhanced model (Stupkiewicz
and Petryk, 2016). This approach also predicts non-smooth plastic strain distributions under constrained
shear conditions. Further research effort is needed to investigate the physical nature of this kind of
distributions.
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Figure 4: C1− continuous element

5 Finite element implementation

For the sake of clarity, vector notation will be adopted in this section. In the following, bold symbols
denote the vector representation of tensor quantities. The finite element implementation of the equivalent
plastic strain gradient model involves the computation of the displacement and equivalent plastic strain
field variables (u and εeq) that verify the macroscopic balance equations (29)1 and the yield condition
(40) in a weak sense. It is worth emphasizing that the equivalent plastic strain field εeq is taken as
independent field variable. The weak forms of (29)1 and (40) can be formulated using the principle of
virtual power. Let δu̇ be a virtual velocity field kinematically admissible to zero on the portion Su of
the domain boundary where displacement is given, and let δε̇eq be a virtual equivalent plastic strain rate
field kinematically admissible to zero on the portion Sε of the domain boundary on which the equivalent
plastic strain is given. The weak forms associated with (29)1 and (40) can be written:

Gu =

∫
V

(∇δu̇)T · σ dv −
∫
St

δu̇T · t ds = 0

Gε =

∫
V

δε̇eq [J2(σ −X)−R−R0] dv = 0
(77)

where St is the boundary portion on which classical traction force t is imposed. To numerically solve
these weak forms, a User-ELement (UEL) subroutine is implemented within the commercial finite element
package ABAQUS/Standard. A compact description of the UEL algorithms is given hereafter in two-
dimensional (2D) plane strain case. Extension to three-dimensional case can easily be derived.

In the above integral equations, there appear at most first-order derivatives of the displacements and
second-order derivatives of the equivalent plastic strain. Therefore, the discretization of the displacement
field u requires C0 − continuous interpolation functions and the discretization of the equivalent plastic
strain field εeq requires C1 − continuous interpolation functions. In the context of scalar-based gradient
theories, the C1 − continuity requirement of the additional scalar field variable has been discussed by de
Borst and Pamin (1996). In the present theory, this requirement is all the more necessary, due to the
nonlinear dependence of the yield condition on the Laplacian term (∇2εeq). Because of this nonlinear
dependence, it is not easy to eliminate the Laplacian term from the associated weak form by a simple
application of the divergence theorem. To ensure C1 − continuity of εeq, the C1 − continuous element
formulation, which has been initiated by de Borst and Mühlhaus (1992), is applied. Figure 4 presents
the finite element used in this formulation. This element employs eight-noded (quadratic) interpolation
of u , four-noded cubic Hermitian interpolation of εeq and 2× 2 Gauss integration. Such an element has
been tested in the context of Aifantis theory by de Borst and Pamin (1996). According to these authors,
it is the most reliable among several tested C1 − continuous elements, with a satisfactory convergence
behavior and an exact fulfillment of the yield condition at the integration points. However, because of
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the presence of the cross-derivative degrees of freedom εeq,xy, this element is required to be parallel to
the global reference system, restricting its use to simple geometrical problems.

Within a finite element, the displacements and equivalent plastic strain fields can be approximated
by:

u = Nu ·Ue and εeq = NT
ε ·Eeeq

Nu is the interpolation matrix associated with the displacement field, Nε is the interpolation vector
associated with the equivalent plastic strain field, Ue and Eeeq are respectively the element nodal variables
of displacement and equivalent plastic strain. The strain vector ε can be written as:

ε = Bu ·Ue

with Bu the gradient matrix associated with the displacement field. The gradient and the Laplacian of
the equivalent plastic strain can be approximated as:

∇εeq = BT
ε ·Eeeq and ∇2εeq = PTε ·Eeeq

where BT
ε is the gradient matrix associated with the equivalent plastic strain field and PTε contains the

Laplacian terms of the C1 − continuous interpolation functions. Using these approximations, the above
weak forms can be written within an element as:

Geu =
(
δU̇

e
)T
·
(∫

V e

BT
u · σ dv −

∫
Se
t

NT
u · t ds

)
= 0

Geε =
(
δĖ

e

eq

)T
·
(∫

V e

[J2 (σ −X)−R−R0] Nε dv

)
= 0

(78)

The principle of virtual power implies that Geu and Geε are zero for any virtual variations of the element
nodal variables δU̇

e
and δĖ

e

eq, which results in:

Reu =

∫
V e

BT
u · σ dv −

∫
Se
t

NT
u · t ds = 0

Reε =

∫
V e

[J2 (σ −X)−R−R0] Nε dv = 0
(79)

These equations are linearized with respect to the variations of the element nodal variables Ue and Eeeq,
which leads to an elementary system of linear equations:[

Ke
uu Ke

uε

Ke
εu Ke

εε

][
∆Ue

∆Eeeq

]
=

[
−Re

u

−Re
ε

]

with:
Ke
uu =

∂Re
u

∂Ue , Ke
uε =

∂Re
u

∂Eeeq
, Ke

εu =
∂Re

ε

∂Ue , Ke
εε =

∂Re
ε

∂Eeeq

The global system of linear equations can be obtained by assembling all the elementary systems associated
with the overall finite elements. This system is solved by means of a Newton-Raphson iterative solution
scheme for the overall increments of the displacement and equivalent plastic strain fields. At each iteration,
updated values of these increments are obtained and used to numerically solve the constitutive equations
at the Gauss points. Using Aifantis theory, where the cumulative plastic strain increments ∆p at the
Gauss points can be determined from the nodal values, these equations can easily be solved using, for
example, the procedure detailed in de Borst and Pamin (1996). However, this procedure cannot directly
be applied to the present theory, where only equivalent plastic strain increments ∆εeq at the Gauss points
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can be determined from the nodal values. An additional step to calculate ∆p from ∆εeq is needed. This
can be done by solving the nonlinear equation given by (42), which can be expressed in discretized form
as:

∆εeq −
(
nTε · nσ

)
∆p = 0 (80)

This equation is solved using implicit backward Euler integration scheme. Note that nε, which provides
the direction of the back-stress, is indeterminate at zero plastic strain. This particular case is treated
numerically as follows. Assuming εeq = 0,

– if, in addition, ∆εeq = 0 (elastic regime), there is no need to calculate nε and the back-stress is given
by:

Xn+1 = Xn, with X0 = 0

– if ∆εeq 6= 0, ∆εp is first updated and used to calculate nε:

nε=
2

3

εp

εeq
≈ 2

3

∆εp

∆εeq

The integration procedure of the constitutive equations is detailed in algorithm 1.

Algorithm 1: Integration of the equivalent plastic strain gradient constitutive equations
Input: ∆ε, εp, εeq, ∆εeq, ∇2εeq, p, σ, X
Compute ∆σtrial = C ·∆ε, σtrial = σ +∆σtrial, f(σtrial,X) = J2(σtrial −X)−R(p)−R0 if
f(σtrial,X) < 0 then

Set σ = σtrial;
Set h = E;

else
Initialize ∆P = 0, dp = 0, Flag = 0;
while (dp > ε or Flag = 0) do

Update Flag = 1;
Compute nε and nσ;
Compute ∆P+ = dp, εp+ = dpnσ;
Compute σ = σtrial − dpC · nσ, X = −c∇2 (εeq) nε;
Compute L = ∆εeq −

(
nTε · nσ

)
∆p;

Compute Kp =
∂(dL)
∂(dp) ;

Compute dp = −L/Kp;
end

end

6 Numerical results

After validation of the model implementation, the present section aims at investigating the nature of
the hardening effects produced by the proposed equivalent plastic strain gradient model. To this end,
results obtained by this model under cyclic loading conditions will be compared with those obtained
using Aifantis and Gudmundson theories.

6.1 Validation of the model implementation

To validate the implementation of the equivalent plastic strain gradient model, it is applied to simulate
the simple shear problem of subsection 4.2, using a special choice of material parameters oriented towards
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Table 1: Geometrical and material parameters for the simple shear test

a (mm) w (mm) µ (GPa) R0 (MPa) h (GPa) c (N)
0.005 0.005 300 20 10 0.0025

(a) Shear stress vs imposed shear response
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(b) Equivalent plastic strain distribution along e2−direction

Figure 5: Simple shear results obtained using the present model

small-scale plasticity of metals (table 1) and a prescribed mean simple shear of γ = 0.01. The geometrical
model involved in this validation study is discretized using 50 × 50 elements. The boundary conditions
are the same as in Fig. 2 and as described in Section 4.2. Figure 5 presents the obtained results in terms
of shear stress versus imposed shear and distribution of equivalent plastic strain along e2−direction.
The associated analytical results are also presented in this figure. The numerical results are in perfect
agreement with the analytical ones, which validates the model implementation.

To study the capability of the proposed C1− continuous element implementation to capture the non-
smooth distribution of equivalent plastic strain at the neutral axis, it is applied to simulate the bending
problem of subsection 4.3. To numerically reproduce bending loading, four-point flexural conditions are
applied on a foil of length 8 a and width 2w (a and w are given in table 1). Figure 6 presents the associated
results in terms of equivalent plastic strain profiles along e2−direction at different imposed curvatures.
These results are obtained with a discretization of 80×20 elements and using the material parameters given
in table 1, except for c which is set as c = 0.25N in this example. For κ = 1.17×10−2 mm−1, relatively good
results, which compare favorably with the theoretical ones, are obtained. The small differences between
the theoretical and numerical plastic strain distributions could be due to the numerical approximation of
the bending loading conditions. For κ = 3.67 ×10−2 mm−1, which corresponds to the curvature at which
the theoretical plasticity reaches the neutral axis, far from the foil center, the plastic strain distributions
also compare favorably with the theoretical ones. On the contrary, poor results with non-smooth plastic
strain profiles are obtained in the vicinity of the neutral axis. Mesh effects on these results are presented
in figure 7, which is obtained using two mesh refinements (80× 20 elements for coarse mesh and 200× 50

elements for fine mesh). The smoothness of the plastic strain distributions in the vicinity of the neutral axis
can be enhanced by using finer mesh. However, an excessively fine mesh is required to faithfully reproduce
the smooth distributions as obtained theoretically. Beyond the limit curvature, convergence problems are
encountered. Actually, the proposed model implementation, which is based on C1 − continuous element
formulation, is not adequate to capture non-smooth plastic strain distributions. Indeed, this formulation
is based on the assumption of continuous plastic strains and their gradients. An alternative approach to
capture non-smooth plastic strain distributions is to use a micromorphic approach for which the plastic
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Figure 6: Equivalent plastic strain profiles along e2−direction at different imposed curvatures

Figure 7: Effects of the mesh refinement on the plastic strain distributions in the vicinity of the neutral
axis for κ = 3.67× 10−2 mm−1

strain is non-smooth but the micromorphic variable remains smooth (Peerlings, 2007; Poh et al., 2011).
This is however a different model. In SGP, one could use discontinuous Galerkin methods (Di Pietro and
Ern, 2012) or hybrid higher-order (HHO) methods (Di Pietro and Ern, 2015) which allow for modeling
discontinuities.

6.2 Cyclic shear response of a constrained layer: Equivalent SGP versus Cumulative SGP

To investigate the nature of the higher-order hardening (i.e., coming from the Laplacian term in the yield
condition), the present subsection provides a comparison between the proposed and the Aifantis models
under cyclic simple shear loading. The shear model involved in the present simulations is similar to that
presented in figures 2, with the monotonic loading replaced by a complete cycle of loading-unloading. For
a better illustration of the higher-order hardening, the first-order one (i.e., coming from plastic strains)
is neglected in the following (h = 0). The other material parameters are the same as those presented
in table 1, except for c which is taken as variable parameter. The value of this parameter (c = H l2) is
adjusted via the internal length scale l, assuming fixed higher-order hardening parameter H = 10GPa.
To better analyze the nature of the obtained hardening, the results of the present theory are compared
with those of the Aifantis theory. The latter theory has previously been implemented within a UEL
subroutine in ABAQUS/Standard, using the procedure detailed in de Borst and Pamin (1996). This
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Figure 8: Cyclic shear results obtained using the present and the Aifantis theories for different values
of l

procedure is also based on C1 − continuous element formulation. Therefore, the only differences between
the two implementations are the choice of the independent plastic variable (equivalent or cumulative
plastic strain) and the consequence of this choice on the integration of the constitutive laws. This makes
the comparison between the two theories more reliable.

Figure 8 compares the cyclic shear results of these theories for different values of l. For both theories,
the internal length scale l contributes to hardening which increases with increasing l. Using Aifantis
theory, isotropic hardening is obtained. On the contrary, although based on the gradient of a scalar field
variable, the present theory leads to kinematic hardening with classical Bauschinger effects. Figure 9
shows the profiles of the additional independent scalar field variables involved in the present and the
Aifantis theories (i.e., equivalent plastic strain and cumulative plastic strain, respectively) at the loading
stages depicted in figure 9a. It can be noted that, contrary to what is presented in figure 5b, these profiles
display a parabolic shape which is a consequence of ignoring the first-order hardening (h = 0). In figure
9b, the equivalent plastic strain, on which the present theory relies, presents the same distribution at
stages 1 and 3 and vanishes at stage 2. This variable increases within the studied strip up to stage 1.
Under reverse shear loading, it decreases until stage 2 where it vanishes before again increasing between
stages 2 and 3. The resulting back-stress exhibits a similar non-monotonic evolution, leading to kinematic
hardening. On the contrary, the cumulative plastic strain, on which the Aifantis theory relies, increases
monotonically regardless the loading direction, leading to isotropic hardening.

6.3 Cyclic tension-shear response of a constrained plate: Equivalent SGP versus Tensorial SGP

A constrained layer subjected to combined tension-shear loading is considered in this subsection to com-
pare the present theory with the tensor-based SGP theory of Gudmundson (2004). The proposed loading
allows for activating all components of the plastic strain tensor, making it possible to draw solid con-
clusions about the capability of the present model to reproduce the size-dependent effects classically
produced by tensor-based SGP theories, while considering the gradient of a scalar field variable. The
geometrical model involved in this subsection is similar to that presented in figure 2, with the top edge
displacement in e1−direction replaced by two-component loading-unloading displacement in e1−direction
and e2−direction:

u1 (x1, w, t) = −u1 (x1, −w, t) = w γ(t) and u2 (x1, w, t) = −u2 (x1, −w, t) = w ε(t)
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(a) Cyclic shear response obtained using the present and the
Aifantis theories for l/w = 0.5
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(b) Equivalent plastic strain profiles at stages 1 to 3 of figure 9a,
obtained using the proposed model
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(c) Cumulative plastic strain profiles at stages 1′ to 3′ of figure
9a, obtained using the Aifantis model

Figure 9: Profiles of the additional scalar field variables involved in the present and the Aifantis theories
at different loading stages for l/w = 0.5
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(c) Tensorial SGP model

Figure 10: Distribution of cumulative plastic strain within the studied plate, obtained using imposed
tensile strain ε = 2 γ = 0.02 and l/w = 0.4

where γ and ε are respectively the mean shear and tensile strains. To ensure that the components of
the plastic strain tensor have the same level, the imposed tensile strain ε is set twice the imposed shear
stain γ (ε = 2 γ). The remaining boundary conditions are those described in Fig. 2 and Section 4.2.
In particular the equivalent plastic strain is set to zero at the top and bottom lines. In the case of the
tensor-based SGP model, these latter conditions are replaced by prescribed vanishing components of the
plastic strain tensor, excepted εp33 which is left free under plane strain conditions (ε33 = 0). The material
parameters are similar to those given in table 1, except for the first-order hardening parameter h (taken
as zero h = 0) and c (taken as a variable parameter). The value of this parameter (c = H l2) is adjusted
via the internal length scale l, assuming fixed higher-order hardening parameter H = 10GPa. The same
mesh refinement, consisting of 20 × 20 finite elements, is adopted for both the equivalent and tensorial
SGP simulations. However, different types of finite elements are used. In the equivalent SGP simulations,
C1 − continuous finite elements are applied. Application of the same type of finite elements for the
tensorial SGP simulations would be extremely costly, as this will result in 64 degrees of freedom per finite
element. Eight-noded fully quadratic elements with 2 × 2 Gauss integration are chosen to perform the
latter simulations. This choice represents a good compromise between accuracy and computation cost.
Numerical implementation based on this type of elements has been performed in ABAQUS/Standard
using UEL subroutine. For more details about the numerical procedure, the reader is referred to the
paper of Martínez-Pañeda et al. (2019), which is used as basis to perform the present implementation.

Figures 10 and 11 present the simulation results, in terms of distributions of cumulative plastic strain
and plastic strain components within the studied plate, obtained using the equivalent and the tensorial
SGP models, with imposed tensile strain ε = 2 γ = 0.02 and energetic length scale l/w = 0.4. It can be
verified that all the plastic strain components are activated in the considered plate. The computation
times to obtain such results are approximately 71 min for the proposed model and 150 min for the
tensorial model. This difference between the computation times is explained by the difference between
the total number of degrees of freedom involved in the simulations (4180 degrees of freedom for the present
model simulations versus 6200 for the tensorial model simulations) and the resolution steps involved in
each model implementation. The proposed model has allowed for approximately a twofold reduction of
computation time. Qualitatively, the plastic strain distributions from both models are in good agreement.
However, differences can be observe from a quantitative point of view. In particular the thicknesses of
the boundary layers differ for both models. Figure 12 illustrates the simulation results in terms of overall
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(b) Tensorial SGP model

Figure 11: Distributions of plastic strain components within the studied plate, obtained using imposed
tensile strain ε = 2 γ = 0.02 and l/w = 0.4

shear stress as a function of imposed shear strain, obtained using the equivalent and the tensorial SGP
models under a tension-shear loading to ε = 2 γ = 0.01 followed by unloading. The kinematic nature of
the size-dependent hardening generated by the two models is illustrated in this figure. Using the same
energetic length scale l, different levels of size-dependent kinematic hardening effects are obtained. The
present model underestimates such effects. This is, in fact, expected as the back-stresses involved in both
models are not the same. The back-stress implied in the present model is based on the Laplacian of the
equivalent plastic strain (39), whereas that implied in the tensorial model is based on the Laplacian of
plastic strain tensor (23). By applying the Laplacian on the equivalent plastic strain, certain second-order
derivatives of this variable can overlap or offset each other, which can result in increasing or decreasing
the back-stress. Figure 12 shows that the proposed model can produce the same level of size-dependent
kinematic hardening effects as for the tensorial model by adjusting the energetic length scale l (figure
12). Interestingly, with this choice of intrinsic length, we find that the profiles of cumulative plastic strain
are the same for both models, which indicates that the differences in the models’ responses stem from
the distribution among plastic components and not from the cumulative strain.

7 Conclusion

The present paper deals with the development of a new scalar-based strain gradient approach allowing
for predicting size-dependent kinematic hardening effects. Unlike conventional scalar-based gradient the-
ories, the present one is based on the gradient of the equivalent plastic strain which does not increase
monotonically. The proposed theory was first analyzed theoretically using simple monotonic loading con-
ditions. Then, numerical simulations under cyclic loading conditions were performed to investigate the
nature of the resulting hardening. Comparison with the classical Aifantis (scalar-based) and Gudmund-
son (tensor-based) theories was given. These theories were implemented in the commercial finite element
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Figure 12: Overall shear stress versus imposed shear strain for different values of energetic length scale
l and three different models

package ABAQUS/Standard, using UEL subroutines. The same C1 − continuous element formulation
(de Borst and Pamin, 1996) was applied to implement the present and the Aifantis theories, making the
comparison between them more reliable. This formulation is widely used in the context of scalar-based
gradient theories. Using the same formulation to implement the tensor-based theory of Gudmunson would
be computationally expensive. An implementation based on eight-noded fully quadratic finite elements
is proposed for the latter theory. This choice represents a good compromise between accuracy and com-
putation cost. Main analytical and numerical results obtained in this work are recalled hereafter.

Using the gradient of the equivalent plastic strain instead of the usual gradient of the cumulative
plastic strain, the developed theory overcomes the conceptual problem of scalar-based theories regarding
the indeterminacy of the plastic flow direction under certain loading conditions (Wulfinghoff et al., 2014).
Although based on the gradient of a scalar field variable, the proposed theory takes into account the
plastic flow direction, making the solution stable with respect to the boundary conditions. Indeed, the
back-stress resulting from the gradient of the equivalent plastic strain is calculated based on the direction
of the plastic strain tensor.

Under monotonic loading conditions, it was found that the results of the proposed model mirror those
of the classical Aifantis theory. The same results were obtained under monotonic shear and bending
conditions. Under bending conditions beyond the limit load, both models predict non-smooth plastic
strain distributions at the neutral axis. Poh et al. (2011) have shown that this non-smooth distribution
can be avoided by using the gradient of the plastic strain tensor. However, with the current understanding
of small scale plasticity, it is early to confirm whether this kind of non-smooth distributions is physically
acceptable. Other works showing non-smooth plastic strain distributions in the context of generalized
continua can be found in the literature (Stupkiewicz and Petryk, 2016; Rys̀ et al., 2020). The C1 −
continuous element formulation adopted in this work is not able to capture non-smooth distributions. To
overcome this difficulty, an alternative approach is to use a micromorphic model for which the plastic
strain is non-smooth but the micromorphic variable remains smooth (Peerlings, 2007; Poh et al., 2011). In
SGP, one could use implementation techniques allowing for discontinuities, such as discontinuous Galerkin
methods (Di Pietro and Ern, 2012; Eymard and Guichard, 2018) or hybrid higher-order (HHO) methods
(Di Pietro and Ern, 2015). This point will be treated in a future work.

Application of cyclic shear loading conditions raised a strong difference between the proposed and
Aifantis theories, regarding the nature of the resulting hardening. Using cumulative plastic strain gradient,
the internal length scale leads to size-dependent isotropic hardening, which increases with increasing l. On
the contrary, using equivalent plastic strain gradient, size-dependent kinematic hardening with classical
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Bauschinger effects is obtained. The kinematic hardening modulus increases with l. In the context of
phenomenological strain gradient plasticity, the latter type of hardening is generally obtained using tensor-
based gradient theories (Poh et al., 2011), which are generally costly compared to scalar-based ones.

Comparison between the proposed theory and the tensor-based theory of Gudmundson (2004) has
shown that the former is more advantageous in terms of computation time. However, the models provide
different levels of size-dependent kinematic hardening effects. This is expected as the models employ
different expressions of back-stress. The level of the size-dependent kinematic hardening can be adjusted
by appropriate choice of the energetic length scale.

The model proposed in this work can be viewed as a scalar-based counterpart of tensor-based theories,
allowing for predicting size-dependent kinematic hardening effects at more affordable costs. For the price of
two additional independent scalar field variables (equivalent and cumulative plastic strains), a model can
now be proposed combining size-dependent kinematic and isotropic hardening effects using two distinct
length scales. Although the present work is presented within small deformation framework, it can easily
be extended to finite deformation, in particular to study strain localization phenomena in plasticity. Note
also that illustrations of gradient extensions of the J2 flow theory were given, but the approach equally
applies to other equivalent stress measures. This includes plastic compressibility effects induced by the
presence of the hydrostatic pressure in addition to invariants of the deviatoric part of the stress tensor.
The equivalent plastic strain measure would then incorporate the possibly non-vanishing trace of the
plastic strain tensor.
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