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First and second-to-default options in
models with various information flows∗

Pavel V. Gapeev† Monique Jeanblanc‡

We continue to study the credit risk model of a financial market introduced in [19]
in which the dynamics of intensity rates of two default times are described by linear
combinations of three independent geometric Brownian motions. The dynamics of two
default-free risky asset prices are modeled by two geometric Brownian motions which
are dependent of the ones describing the default intensity rates. We obtain closed form
expressions for the no-arbitrage prices of some first- and second-to-default European style
contingent claims given the reference filtration initially and progressively enlarged by the
two successive default times. The accessible default-free reference filtration is generated
by the standard Brownian motions driving the model.

1 Introduction

In this paper, we derive closed form expressions for the (no-arbitrage) prices of first and second-
to-default European style contingent claims in a model of a financial market introduced in [19]
given the flows of information which are expressed by the reference filtration progressively and
initially enlarged by means of the successive default times. It is assumed that the option payoffs
depend on the default times and the current prices of the underlying default-free risky assets
taken at the times of defaults. The dynamics of market prices of the two risky assets are
described by geometric Brownian motions driven by constantly correlated standard Brownian
motions. The default times are given by the first times at which linear combinations of three
integral processes of independent geometric Brownian motions hit certain random thresholds
which are independent of each other and of the standard Brownian motions driving the model.
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The dependence between the default times is then expressed by means of the dynamics of
their intensity rates given by linear combinations of the three independent geometric Brownian
motions which are driven by standard Brownian motions constantly correlated with the ones
related to the risky asset prices. The default-free reference filtration accessible from the market
is generated by the standard Brownian motions driving the model. The prices of the resulting
defaultable European style contingent claims are explicitly expressed through the transition
densities of the marginal distributions of the geometric Brownian motions and their integral
processes describing the model.

The credit risk models in which the default times are defined as the first times at which
the associated cumulative intensity processes reach certain random thresholds were initiated
by Lando [22]. The computations of conditional distributions of the default times given the
observable filtrations in such a first passage intensity model with independent default intensi-
ties and correlated thresholds were presented in Schönbucher [24; Chapter X, Proposition 10.9].
Brigo and Chourdakis [7] studied the problem of pricing of credit default swaps (CDSs) in such
a model with counterparty risk in which the intensities of the default times are independent of
each other, but the associated random thresholds are correlated. Brigo, Capponi and Pallavicini
[6] developed the pricing framework for bilateral counterparty credit risk models and specified
the credit and debit valuation adjustments (CVAs and DVAs) in the cases in which the default
intensity rates are expressed by means of the (strictly positive) Feller’s square root diffusion
processes, and the associated thresholds are correlated through a Gaussian copula. Bielecki
et al. [3] provided the analytic basis for the quantitative methodology of dynamic hedging of
the counterparty risk and developed the main theoretical issues of dynamic hedging of credit
valuation adjustments. Assefa et al. [1] derived a model-free general counterparty risk repre-
sentation formula for the credit valuation adjustment of a netted and collateralised portfolio.
Some related discussions on modelling and computational aspects regarding managing of ex-
posure to counterparty risk are provided in the monographs by Gregory [21], Cesari, Aquilina
and Charpillon [10], Brigo, Morini and Pallavicini [8], and Crépey, Bielecki and Brigo [11].

El Karoui, Jeanblanc and Jiao [15]-[16] emphasised the roles of conditional distributions of
several default times in the intensity credit risk models given the appropriate filtrations and
presented general expressions for the prices of various defaultable European style contingent
claims. In this paper, we consider a model in which the default intensity rates are explicitly given
as linear combinations of three independent geometric Brownian motions which are dependent
of the ones describing the dynamics of the risky asset price processes. We then use the Markov
property of the resulting multi-dimensional process describing the model and apply the explicit
formula from Yor [26] for the joint marginal density of a geometric Brownian motion and its
integral process to derive closed form expressions for the prices of first- and second-to-default
options given the reference filtration progressively and initially enlarged by means of the default
times. We also note that the model proposed in the paper keeps its Markovian feature in the
filtrations which are obtained by means of the progressive and initial enlargements of the initial
Brownian reference filtration. The results of this paper can naturally be extended to the case
of credit risk models with more than two default times and more than two underlying risky
assets of a similar dependence structure. The prices of first and second-to-default options
and other European style defaultable contingent claims can then be expressed through the
transition densities of the marginal distributions of the resulting multi-dimensional continuous
Markov process describing the model. The prices of other defaultable contingent claims in some
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switching models with partial information were recently computed in [18].
The paper is organised as follows. In Section 2, we reproduce the credit risk model of a

financial market introduced in [19; Section 2] with the dependence structure of the dynamics
of prices of two risky assets and two default intensity rates described above. In Section 3, we
derive explicit expressions for the conditional distributions of the two successive default times
given the accessible default-free reference filtration and the observable filtrations. In Section 4,
we compute closed form expressions for the prices of first- and second-to-default options in the
model with two underlying risky assets given the reference filtration progressively and initially
enlarged by the ordered default times. In Section 5, we recall explicit expressions from [19;
Sections 3 and 4] for the conditional distributions of the two non-successive default times given
the accessible default-free reference filtration and the observable filtrations, these results being
used in the previous sections. The main results of the paper are stated in Propositions 4.1-4.3.

2 The model

In this section, we reproduce the model of a financial market with two defaultable risky assets
introduced in [19; Section 2]. We also define the accessible default-free reference filtration as
well as the observable filtrations and refer some known results and distribution laws.

2.1 The dynamics of default intensities and firm values

Let (Ω,G, P ) be a probability space supporting independent standard Brownian motions W l =
(W l

t )t≥0 and Bl = (Bl
t)t≥0 , l = 0, 1, 2, as well as the random variables Ui , i = 1, 2, which are

uniformly distributed on (0, 1). Suppose that the variables Ui , i = 1, 2, are independent of
each other and of the processes W l and Bl , l = 0, 1, 2. We define the random times τi , i = 1, 2,
by

τi = inf
{
t ≥ 0

∣∣ δiA0
t + λiA

i
t ≥ − lnUi

}
(2.1)

where the processes Al = (Alt)t≥0 , l = 0, 1, 2, are given by

Alt =

∫ t

0

Y l
s ds (2.2)

for all t ≥ 0, and some δi, λi ≥ 0, i = 1, 2, fixed, so that the processes (δiA
0
t + λiA

i
t)t≥0 ,

i = 1, 2, form the cumulative intensities, and the processes (δiY
0
t + λiY

i
t )t≥0 , i = 1, 2, are

the intensity rates of the random times τi , i = 1, 2. These notions mean that the processes
(I(τi ≤ t)− δiA0

t∧τi − λiA
i
t∧τi)t≥0 , i = 1, 2, are martingales in their natural filtrations. Assume

that the processes Y l = (Y l
t )t≥0 , j = 0, 1, 2, admit the representations

Y l
t = exp

((
βl −

γ2l
2

)
t+ γlW

l
t

)
(2.3)

for all t ≥ 0, and some constants βl ∈ R and γl > 0, l = 0, 1, 2. Note that the random times
τi , i = 1, 2, defined in (2.1) with (2.2) and (2.3) can occur simultaneously only with probability
zero, and thus, the property P (τ1 = τ2) = 0 holds, by construction, that we take into account
in the sequel, that is, noting that the events {τi < τ3−i} and {τi ≤ τ3−i} are equal (P -a.s.),
for every i = 1, 2.
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Suppose that the random times τi , i = 1, 2, represent the default times of two firms (ref-
erence credits) with the value dynamics described by the processes X i = (X i

t)t≥0 , i = 1, 2,
given by X i

t = (Y i
t )αi(Z0

t )ζiZi
t , for some αi and ζi ∈ R , i = 1, 2, fixed. Here, the processes

Z l = (Z l
t)t≥0 , l = 0, 1, 2, are defined by

Z l
t = exp

((
ηl −

θ2l
2

)
t+ θlB

l
t

)
(2.4)

for all t ≥ 0, and some constants ηl ∈ R and θl > 0, l = 0, 1, 2. We further assume that
the discounted firm value processes (e−rtX i

t)t≥0 , i = 1, 2, are martingales with respect to the
pricing measure P under which the processes Y l and Z l , l = 0, 1, 2, admit the representations
in (2.3) and (2.4), where r ≥ 0 is the interest rate of a riskless bank account. Thus, taking into
account the independence of the driving processes W l and Bl , l = 0, 1, 2, we may conclude
that the equality

βiαi +
γ2i
2
αi(αi − 1) + η0ζi +

θ20
2
ζi(ζi − 1) + ηi = r (2.5)

should hold, for every i = 1, 2.

2.2 Some filtrations and distribution laws

Let us denote by (Ft)t≥0 the natural filtration of the processes Y l and Z l , l = 0, 1, 2, defined
by Ft = σ(Y l

t , Z
l
t | 0 ≤ s ≤ t, l = 0, 1, 2), for all t ≥ 0, which coincides with the one of the

driving standard Brownian motions W l and Bl , l = 0, 1, 2, given by σ(W l
t , B

l
t | 0 ≤ s ≤ t, l =

0, 1, 2), for all t ≥ 0. We define the progressively enlarged filtrations (Git)t≥0 , i = 1, 2, by
Git = Ft ∨ σ(τi ∧ t), and (Gt)t≥0 by Gt = Ft ∨ σ(τ1 ∧ t) ∨ σ(τ2 ∧ t), for all t ≥ 0. Let us
also introduce the initially enlarged filtrations (F it )t≥0 , i = 1, 2, by F it = Ft ∨ σ(τi), for all
t ≥ 0. We actually consider the smallest right-continuous completed filtrations that contain the
appropriate filtrations defined above. The default-free reference filtration (Ft)t≥0 reflects the
information flow which is accessible for the investors trading in the market, while the filtrations
(Git)t≥0 , i = 1, 2, and (Gt)t≥0 reflect the accessible information including the one about the
appearance of the default times. Note that, by virtue of the independence of the random
variables Ui , i = 1, 2, and the filtration (Ft)t≥0 , it follows that (Ft)t≥0 is immersed in the
filtrations (Git)t≥0 , i = 1, 2, and (Gt)t≥0 (see, e.g., [5] and [17]). Similarly, we also have that
(Git)t≥0 is immersed in the filtration (Git ∨σ(U3−i))t≥0 , and hence, in (Gt)t≥0 , for every i = 1, 2.
We recall that the immersion of a filtration in a larger filtration, also known as the (H)-
hypothesis for the two nested filtrations, means that any martingale for the smaller filtration
is a martingale for the larger one (see, e.g., [5], [23; Chapter V, Section 4], [4; Chapter VIII,
Section 3], or [2; Chapter III]). Note that the immersion of (Ft)t≥0 in (Git)t≥0 is equivalent to
the conditional independence of Git and F∞ with respect to Ft , for all t ≥ 0, for i = 1, 2,
while the immersion of (Ft)t≥0 in (Gt)t≥0 is equivalent to the conditional independence of Gt
and F∞ with respect to Ft , for all t ≥ 0 (see, e.g., [13]).

We now define the random times κ1 = τ1 ∧ τ2 and κ2 = τ1 ∨ τ2 . Along with the filtrations
introduced above, let us define the progressively enlarged filtrations (Hi

t)t≥0 , for i = 1, 2, by
Hi
t = Ft ∨ σ(κi ∧ t), for all t ≥ 0. We introduce Ht = Ft ∨ σ(κ1 ∧ t) ∨ σ(κ2 ∧ t), so that
Ht ( Gt , for all t ≥ 0, since the filtration (Ht)t≥0 does not contain information which default
time τi , i = 1, 2, occurred the first and which occurred the second, except in the trivial case
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in which the default times τi , i = 1, 2, are ordered. We also consider the initially enlarged
filtrations Hi

t ∨ σ(κ3−i), for i = 1, 2. By virtue of the same arguments as before, we conclude
that (Ft)t≥0 is immersed in (Hi

t)t≥0 , i = 1, 2, and in (Ht)t≥0 .

2.3 Some implications of the key lemma

Let us now consider a filtration (Kt)t≥0 larger than the filtration (Ft)t≥0 , that is, Ft ⊆ Kt , for
all t ≥ 0. Then, if Kt coincides with Ft on the event Jt ∈ Kt such that P (Jt) > 0, that is,
if for any Kt ∈ Kt , there exists an event Ft ∈ Ft such that Jt ∩ Kt = Jt ∩ Ft , then, on the
event Jt , the conditional expectation E[V | Kt] of an integrable random variable V is equal to
an Ft -measurable random variable. Hence, denoting by I(J) the indicator function of the set
J , according to the results in [12; page 122] and [4; Section 5.1], this fact leads to the equality

I(Jt)E
[
V
∣∣Kt]P (Jt | Ft) = I(Jt)E

[
V I(Jt)

∣∣Ft] (2.6)

and thus, taking into account the fact that P (Jt | Ft) > 0 on the event Jt , we have

I(Jt)E
[
V
∣∣Kt] = I(Jt)

E[V I(Jt) | Ft]
P (Jt | Ft)

(2.7)

for any integrable random variable V and all t ≥ 0. We further refer to the result in (2.6)-
(2.7) as to the generalised key lemma for the filtrations (Kt)t≥0 and (Ft)t≥0 . Observe that Git
coincides with Ft on the event {τi > t} , and Gt coincides with Ft on the event {τi∧ τ3−i > t} ,
while Git ∨ σ(τ3−i) coincides with F3−i

t ≡ Ft ∨ σ(τ3−i) on the event {τi > t} , for all t ≥ 0 and
every i = 1, 2. In these cases, the expressions in (2.6)-(2.7), together with the tower property
for conditional expectations, imply that, for each FT -measurable integrable random variable
V i
T , the equality

I(τi > t)E
[
V i
T

∣∣Git] = I(τi > t)
E[V i

TP (τi > t | FT ) | Ft]
P (τi > t | Ft)

(2.8)

holds, for all t ≥ 0 and every i = 1, 2 (see, e.g., [2; Lemma 2.9]). Moreover, it follows that, for
each (Ft)t≥0 -progressively measurable process V i = (V i

t )t≥0 , the equality

E
[
V i
τi
I(τi > t) | Git

]
= I(τi > t)E

[ ∫ ∞
t

V i
uP (τi ∈ du | Fu)
P (τi > t | Ft)

∣∣∣∣Ft] (2.9)

holds, for all t ≥ 0 and every i = 1, 2 (see, e.g. [2; Corollary 2.10]). We further refer to the
results in (2.8) and (2.9) as to the first and the second part of the key lemma for the filtrations
(Git)t≥0 and (Ft)t≥0 , for every i = 1, 2.

For any Borelian bounded function ψi , let us now compute the conditional expectation
E[ψi(τi) | Ft ∨ σ(τ3−i)], for all t ≥ 0 and every i = 1, 2. For this purpose, we apply the result
of [9; Proposition 2.7] to conclude that any (Ft ∨ σ(τ3−i))t≥0 -progressively measurable process
can be written as Φi

t(τ3−i), where Φi(v) = (Φi
t(v))t≥0 is (Ft)t≥0 -progressively measurable, for

any v ≥ 0 fixed, while the function v 7→ Φi
t(v) is Borel measurable, for all t ≥ 0 and every

i = 1, 2. In particular, there exists Ψi with the above measurability properties such that

E
[
ψi(τi) | Ft ∨ σ(τ3−i)

]
= Ψi

t(τ3−i) (2.10)
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for all t ≥ 0 and every i = 1, 2. Then, we observe that, by definition of conditional expectations,
for any event Ft ∈ Ft , and any Borelian bounded function ϕ , the equality

E

[
Ψi
t(τ3−i) I(Ft)ϕ(τ3−i)

]
= E

[
I(Ft)ψi(τi)ϕ(τ3−i)

]
(2.11)

holds, and thus, we have

E

[ ∫ ∞
v=0

Ψi
t(v) I(Ft)ϕ(v)P (τ3−i ∈ dv | Ft)

]
(2.12)

= E

[
I(Ft)

∫ ∞
u=0

∫ ∞
v=0

ψi(u)ϕ(v)P (τi ∈ du, τ3−i ∈ dv | Ft)
]

for all t ≥ 0 and every i = 1, 2. Hence, the equality in (2.12) being valid for any Borelian
bounded function ϕ and the conditional law of τ3−i being absolutely continuous with respect
to Lebesque’s measure imply that the equality

Ψi
t(v) =

∫ ∞
u=0

ψi(u)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (τ3−i ∈ dv | Ft)

(2.13)

is satisfied, for all t, v ≥ 0, and every i = 1, 2.
Similarly, for any Borelian bounded functions ψ̃i and ξ̃i , let us now compute the conditional

expectations E[ψ̃i(τi) I(τi > τ3−i) | Ft ∨ σ(κ1)] and E[ξ̃i(τi) I(τi < τ3−i) | Ft ∨ σ(κ1)], for all t ≥
0 and every i = 1, 2. We apply again the result of [9; Proposition 2.7] to conclude that any (Ft∨
σ(κ1))t≥0 -progressively measurable process can be written as Φ̃i

t(κ1), where Φ̃i(u) = (Φ̃i
t(u))t≥0

is (Ft)t≥0 -progressively measurable, for any u ≥ 0 fixed, while the function u 7→ Φ̃i
t(u) is Borel

measurable, for all t ≥ 0 and every i = 1, 2. In particular, there exist Ψ̃i and Ξ̃i such that

E
[
ψ̃i(τi) I(τi > τ3−i) | Ft ∨ σ(κ1)

]
= Ψ̃i

t(κ1) (2.14)

and
E
[
ξ̃i(τi) I(τi < τ3−i) | Ft ∨ σ(κ1)

]
= Ξ̃i

t(κ1) (2.15)

for all t ≥ 0 and every i = 1, 2. Then, we observe that, by definition of conditional expectations,
for any event Ft ∈ Ft , and any (positive measurable) bounded function ϕ̃ , the equalities

E

[ ∫ ∞
u=0

∫ ∞
v=0

ψ̃i(v) I(Ft) ϕ̃(u) I(u < v)P (τ3−i ∈ du, τi ∈ dv | Ft)
]

(2.16)

= E

[
I(Ft)

∫ ∞
u=0

∫ ∞
v=0

Ψ̃i
t(u) ϕ̃(u) I(u < v)

(
P (τ1 ∈ du, τ2 ∈ dv | Ft) + P (τ2 ∈ du, τ1 ∈ dv | Ft)

)]
= E

[
I(Ft)

∫ ∞
u=0

Ψ̃i
t(u) ϕ̃(u)

(
P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

)]
and

E

[ ∫ ∞
u=0

∫ ∞
v=0

ξ̃i(u) I(Ft) ϕ̃(u) I(u < v)P (τi ∈ du, τ3−i ∈ dv | Ft)
]

(2.17)

= E

[
I(Ft)

∫ ∞
u=0

∫ ∞
v=0

Ξ̃i
t(u) ϕ̃(u) I(u < v)

(
P (τ1 ∈ du, τ2 ∈ dv | Ft) + P (τ2 ∈ du, τ1 ∈ dv | Ft)

)]
= E

[
I(Ft)

∫ ∞
u=0

Ξ̃i
t(u) ϕ̃(u)

(
P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

)]
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hold, for all t ≥ 0 and every i = 1, 2. Hence, the equality in (2.16) being valid for any Borel
function ϕ̃ , and the conditional law P (τi > du, τ3−i > u | Ft) being absolutely continuous with
respect to the Lebesque measure (see Subsection 5.2 below), the equalities

Ψ̃i
t(u) =

∫ ∞
v=0

ψ̃i(v)I(u < v)P (τ3−i ∈ du, τi ∈ dv | Ft)
P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

(2.18)

and

Ξ̃i
t(u) =

ξ̃i(u)P (τ3−i > u, τi ∈ du | Ft)
P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

(2.19)

are satisfied, for all t, u ≥ 0, and every i = 1, 2. Here, we note that the equality
P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft) = P (κ1 ∈ du | Ft) holds, for all t, u ≥ 0, which
explain the meaning of the denominator.

Finally, for any Borelian bounded function ψ̂i and ξ̂i , let us now compute the conditional
expectations E[ψ̂i(τi) I(τi < τ3−i) | Ft ∨ σ(κ2)] and E[ξ̂i(τi) I(τi > τ3−i) | Ft ∨ σ(κ2)], for all t ≥
0 and every i = 1, 2. We apply again the result of [9; Proposition 2.7] to conclude that any (Ft∨
σ(κ2))t≥0 -progressively measurable process can be written as Φ̂i

t(κ2), where Φ̂i(v) = (Φ̂i
t(v))t≥0

is (Ft)t≥0 -progressively measurable, for any v ≥ 0 fixed, while the function v 7→ Φ̂i
t(v) is Borel

measurable, for all t ≥ 0 and every i = 1, 2. In particular, there exist Ψ̂i and Ξ̂i such that

E
[
ψ̂i(τi) I(τi < τ3−i) | Ft ∨ σ(κ2)

]
= Ψ̂i

t(κ2) (2.20)

and
E
[
ξ̂i(τi) I(τi > τ3−i) | Ft ∨ σ(κ2)

]
= Ξ̂i

t(κ2) (2.21)

for all t ≥ 0 and every i = 1, 2. Then, we observe that, by definition of conditional expectations,
for any event Ft ∈ Ft , and any Borelian bounded function ϕ̂ , the equalities

E

[ ∫ ∞
u=0

∫ ∞
v=0

ψ̂i(u) I(Ft) ϕ̂(v) I(u < v)P (τi ∈ du, τ3−i ∈ dv | Ft)
]

(2.22)

= E

[
I(Ft)

∫ ∞
u=0

∫ ∞
v=0

Ψ̂i
t(v) ϕ̂(v) I(u < v)

(
P (τ1 ∈ du, τ2 ∈ dv | Ft) + P (τ2 ∈ du, τ1 ∈ dv | Ft)

)]
= E

[
I(Ft)

∫ ∞
v=0

Ψ̂i
t(v) ϕ̂(v)

(
P (τ1 ≤ v, τ2 ∈ dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft)

)]
and

E

[ ∫ ∞
u=0

∫ ∞
v=0

ξ̂i(v) I(Ft) ϕ̂(v) I(u < v)P (τ3−i ∈ du, τi ∈ dv | Ft)
]

(2.23)

= E

[
I(Ft)

∫ ∞
u=0

∫ ∞
v=0

Ξ̂i
t(v) ϕ̂(v) I(u < v)

(
P (τ1 ∈ du, τ2 ∈ dv | Ft) + P (τ2 ∈ du, τ1 ∈ dv | Ft)

)]
= E

[
I(Ft)

∫ ∞
v=0

Ξ̂i
t(v) ϕ̂(v)

(
P (τ1 ≤ v, τ2 ∈ dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft)

)]

7



hold, for all t ≥ 0 and every i = 1, 2. Hence, the equality in (2.22) being valid for any
Borelian bounded function ϕ̂ , and the conditional law P (τi ≤ v, τ3−i ∈ dv | Ft) being absolutely
continuous with respect to the Lebesque measure (see Subsection 5.2 below), the equalities

Ψ̂i
t(v) =

∫ ∞
u=0

ψ̂i(u)I(u < v)P (τi ∈ du, τ3−i ∈ dv | Ft)
P (τ1 ≤ v, τ2 ∈ dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft)

(2.24)

and

Ξ̂i
t(v) =

ξ̂i(v)P (τ3−i ≤ v, τi ∈ dv | Ft)
P (τ1 ≤ v, τ2 ∈ dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft)

(2.25)

are satisfied, for all t, v ≥ 0, and every i = 1, 2. Here, we note that the equality P (τ1 ≤ v, τ2 ∈
dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft) = P (κ2 ∈ dv | Ft) holds, for all t, v ≥ 0, which explain the
meaning of the denominator.

3 Conditional distributions of the default times

In this section, we derive explicit expressions for the conditional distributions of two successive
default times given the accessible filtration generated by the market prices of the risky assets
as well as given the observable filtrations.

3.1 Conditional distributions of κj , j = 1, 2, under (Ft)t≥0

Let us now compute the conditional distributions P (κ1 > u,κ2 > v | Ft) of the successive
default times κj , j = 1, 2, given the reference filtration (Ft)t≥0 , for all t, u, v ≥ 0. We first
observe that the equalities

P (κ1 > u,κ2 > v | Ft) (3.1)

=

∫ ∞
u

∫ ∞
v

I(u′ < v′)
(
P (τ1 ∈ du′, τ2 ∈ dv′ | Ft) + P (τ2 ∈ du′, τ1 ∈ dv′ | Ft)

)
hold, for all t, u, v ≥ 0, where the conditional probabilities P (τi ∈ du′, τ3−i ∈ dv′ | Ft), for all
t, u′, v′ ≥ 0 every i = 1, 2, are given in Subsection 5.2 below in the expressions of (5.17), (5.19)
and (5.22), according to the positions of u′, v′ with respect to t . Moreover, it follows from the
expressions in (5.17) that the equalities

P (κ1 ∈ du,κ2 ∈ dv | F∞) (3.2)

=
(
e−δ1A

0
u−λ1A1

u−δ2A0
v−λ2A2

v (δ1Y
0
u + λ1Y

1
u ) (δ2Y

0
v + λ2Y

2
v )

+ e−δ2A
0
u−λ2A2

u−δ1A0
v−λ1A1

v (δ2Y
0
u + λ2Y

2
u ) (δ1Y

0
v + λ1Y

1
v )
)
dudv

= P (κ1 ∈ du,κ2 ∈ dv | Ft) for 0 ≤ u < v ≤ t
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are satisfied. Furthermore, according to the tower property for conditional expectations, it
follows from the representation in (3.2) that the equalities

P (κ1 ∈ du,κ2 ∈ dv | Ft) = E
[
P (κ1 ∈ du,κ2 ∈ dv | Fv)

∣∣Ft] (3.3)

= E
[(
e−δ1A

0
u−λ1A1

u−δ2A0
v−λ2A2

v (δ1Y
0
u + λ1Y

1
u ) (δ2Y

0
v + λ2Y

2
v )

+ e−δ2A
0
u−λ2A2

u−δ1A0
v−λ1A1

v (δ2Y
0
u + λ2Y

2
u ) (δ1Y

0
v + λ1Y

1
v )
) ∣∣Ft] dudv

=
(
e−δ1A

0
u−λ1A1

u−δ2A0
t−λ2A2

t (δ1Y
0
u + λ1Y

1
u )D2

v−t(Y
0
t , Y

2
t )

+ e−δ2A
0
u−λ2A2

u−δ1A0
t−λ1A1

t (δ2Y
0
u + λ2Y

2
u )D1

v−t(Y
0
t , Y

1
t )
)
du dv

for 0 ≤ u ≤ t < v

hold, where D1
v−t(y0, y1) and D2

v−t(y0, y2), are given as in (5.15) below. Finally, taking into
account the representation in (3.3), according to the tower property for conditional expectations,
we obtain that the equalities

P (κ1 ∈ du,κ2 ∈ dv | Ft) = E
[
E
[
P (κ1 ∈ du,κ2 ∈ dv | Fv)

∣∣Fu] ∣∣Ft] (3.4)

= E
[
e−(δ1+δ2)A

0
u−λ1A1

u−λ2A2
u(

(δ1Y
0
u + λ1Y

1
u )D2

v−u(Y
0
u , Y

2
u ) + (δ2Y

0
u + λ2Y

2
u )D1

v−u(Y
0
u , Y

1
u )
) ∣∣Ft] dudv

= e−(δ1+δ2)A
0
t−λ1A1

t−λ2A2
t E
[
e−(δ1+δ2)Y

0
t (A0

u−A0
t )/Y

0
t −λ1Y 1

t (A1
u−A1

t )/Y
1
t −λ2Y 2

t (A2
u−A2

t )/Y
2
t

×
((
δ1Y

0
t (Y 0

u /Y
0
t ) + λ1Y

1
t (Y 1

u /Y
1
t )
)
D2
v−u(Y

0
t (Y 0

u /Y
0
t ), Y 2

t (Y 2
u /Y

2
t ))

+
(
δ2Y

0
t (Y 0

u /Y
0
t ) + λ2Y

2
t (Y 2

u /Y
2
t )
)
D1
v−u(Y

0
t (Y 0

u /Y
0
t ), Y 1

t (Y 1
u /Y

1
t ))
) ∣∣Ft] dudv

= e−(δ1+δ2)A
0
t−λ1A1

t−λ2A2
t
(
D

2

u−t,v−u(Y
0
t , Y

2
t , Y

1
t ) +D

1

u−t,v−u(Y
0
t , Y

1
t , Y

2
t )
)
dudv

for 0 ≤ t ≤ u < v

are satisfied, where D
1

u−t,v−u(y0, y1, y2) and D
2

u−t,v−u(y0, y2, y1), are given as in (5.23) below.

3.2 Conditional distributions of κj , j = 1, 2, under (Hk
t )t≥0 , k = 1, 2,

and (Ht)t≥0

Let finally compute the conditional distributions P (κj > u |Hk
t ) of the successive default times

κj , j = 1, 2, given the filtration (Hk
t )t≥0 , k = 1, 2, for all t, u ≥ 0. In this case, we apply the

first part of the key lemma in (2.8) for the filtrations (H1
t )t≥0 and (Ft)t≥0 , where H1

t coincides
with Ft ∨ σ(κ1) on the event {κ1 ≤ t} and with Ft on {κ1 > t} , for all t ≥ 0, to get

P (κ1 > u |H1
t ) = I(u < κ1 ≤ t) + I(κ1 > t)

P (κ1 > u ∨ t | Ft)
P (κ1 > t | Ft)

for t, u ≥ 0 (3.5)

where the conditional probability P (κ1 > u ∨ t | Ft) is computed as in (3.1) above, while

P (κ2 > v |H1
t ) = I(κ1 ≤ t)P (κ2 > v | Ft ∨ σ(κ1)) + I(κ1 > t)

P (κ1 > t,κ2 > v | Ft)
P (κ1 > t | Ft)

(3.6)

for t, v ≥ 0
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where the conditional probability P (κ1 > t,κ2 > v | Ft) is computed as in (3.1) above and, by
means of the arguments applied for derivation of equalities in (2.14)-(2.19), we have

P (κ2 > v | Ft ∨ σ(κ1))[= P (κ2 > v ∨ κ1 | Ft ∨ σ(κ1))]] (3.7)

= P (τ1 > v, τ1 > τ2 | Ft ∨ σ(κ1)) + P (τ2 > v, τ2 > τ1 | Ft ∨ σ(κ1))

=
P (τ1 > u ∨ v, τ2 ∈ du | Ft) + P (τ2 > u ∨ v, τ1 ∈ du | Ft)

P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

∣∣∣∣
u=κ1

for t, v ≥ 0

where the conditional densities P (τi ∈ du, τ3−i ∈ dv | Ft), for every i = 1, 2, are given in the
expressions of (5.17), (5.19), (5.22) below.

Now, we apply the first part of the key lemma in (2.8) for the filtrations (H2
t )t≥0 and (Ft)t≥0 ,

where H2
t coincides with Ft ∨ σ(κ2) on the event {κ2 ≤ t} and with Ft on {κ2 > t} , for all

t ≥ 0, to get

P (κ1 > u |H2
t ) = I(κ2 ≤ t)P (κ1 > u | Ft ∨ σ(κ2)) + I(κ2 > t)

P (κ1 > u,κ2 > t | Ft)
P (κ2 > t | Ft)

(3.8)

for t, u ≥ 0

where the conditional probability P (κ1 > u,κ2 > t | Ft) is computed as in (3.1) above and, by
means of the arguments applied for derivation of equalities in (2.20)-(2.25), we have

P (κ1 > u | Ft ∨ σ(κ2))[= P (κ2 > κ1 > u | Ft ∨ σ(κ2))]] (3.9)

= P (τ1 > u, τ1 < τ2 | Ft ∨ σ(κ2)) + P (τ2 > u, τ2 < τ1 | Ft ∨ σ(κ2))

=
P (u ∧ v < τ1 ≤ v, τ2 ∈ dv | Ft) + P (u ∧ v < τ2 ≤ v, τ1 ∈ dv | Ft)

P (τ1 ≤ v, τ2 ∈ dv | Ft) + P (τ2 ≤ v, τ1 ∈ dv | Ft)

∣∣∣∣
v=κ2

for t, u ≥ 0

and the conditional densities P (τi ∈ du, τ3−i ∈ dv | Ft), for every i = 1, 2, are given in the
expressions of (5.17), (5.19), (5.22) below, while

P (κ2 > v |H2
t ) = I(v < κ2 ≤ t) + I(κ2 > t)

P (κ2 > v ∨ t | Ft)
P (κ2 > t | Ft)

for t, v ≥ 0 (3.10)

where the conditional probability P (κ2 > v ∨ t | Ft) is computed as in (3.1) above.
Finally, we apply the first part of the key lemma in (2.8) for the filtrations (Ht)t≥0 and

(Ft)t≥0 , where Ht coincides with Ft∨σ(κ1)∨σ(κ2) on the event {κ1 < κ2 ≤ t} , with Ft∨σ(κ1)
on {κ1 ≤ t < κ2} , and with Ft on {κ2 > κ1 > t} , for all t ≥ 0, to get

P (κ1 > u,κ2 > v |Ht) = I(u < κ1 < κ2 ≤ t,κ2 > v) (3.11)

+ I(u < κ1 ≤ t < κ2)
P (κ2 > v ∨ t | Ft ∨ σ(κ1))

P (κ2 > t | Ft ∨ σ(κ1))

+ I(κ2 > κ1 > t)
P (κ1 > u ∨ t,κ2 > v ∨ t | Ft)

P (κ2 > κ1 > t | Ft)
for t, u, v ≥ 0

where the conditional probabilities P (κ1 > u∨ t,κ2 > v∨ t | Ft) and P (κ2 > v∨ t | Ft∨σ(κ1))
are computed as in the expressions of (3.1) and (3.7) above, respectively.
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4 The prices of first and second-to-default claims (Main

results)

In this section, we derive explicit expressions for the prices of first and second-to-default options
in the model defined above with some (non-negative measurable) deterministic recovery payoff
functions Rt(x1, x2), for all 0 ≤ t ≤ T . In order to simplify the notations, without loss of
generality, we further assume that the payoffs are already discounted by the dynamics of the
bank account, that is equivalent to letting the interest rate r equal to zero. We compute the
prices for the option holders in various particular cases of available information contained in
the filtrations (Hk

t )t≥0 , or (Ht)t≥0 , or (Hk
t ∨ σ(κ3−k))t≥0 defined above, for every k = 1, 2.

In those cases, the option holders can observe only the default time κk , or observe the both
default times κk , k = 1, 2, or observe the default time κk but know the default time κ3−k , for
every k = 1, 2, from the beginning of observations, respectively.

Recall that the conditional probabilities P (κ1 > u ∨ t,κ2 > v ∨ t | Ft), for all t, u, v ≥ 0,
were computed in (3.1) above.

4.1 The case of filtrations (Hk
t )t≥0 , k = 1, 2

Let us begin by computing the price P j,k = (P j,k
t )t≥0 for the holder of a first- and second-to-

default option in the model with the filtration (Hk
t )t≥0 given by

P j,k
t = E

[
Rκj

(X1
κj
, X2

κj
) I(t < κj ≤ T )

∣∣Hk
t

]
(4.1)

for all 0 ≤ t ≤ T ∧ κj and every j, k = 1, 2.
In order to compute closed-form expressions for P 1,k in (4.1), we provide the decomposition

P 1,k
t = E

[
Rκ1(X

1
κ1
, X2

κ1
) I(t < κ1 ≤ T )

∣∣Hk
t

]
(4.2)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi < τ3−i, t < τi ≤ T )

∣∣Hk
t

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i < τi, t < τ3−i ≤ T )
∣∣Hk

t

]
= E

[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣Hk
t

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t < τ3−i < τi ∧ T )
∣∣Hk

t

]
for all 0 ≤ t ≤ T and every i, k = 1, 2. Then, we can apply the second part of the key lemma
in (2.9) for the filtrations (Hk

t )t≥0 and (Ft)t≥0 , where Hk
t coincides with Ft on {κk > t} , for

all t ≥ 0, and use Fubini’s theorem for interchanging the order of conditional expectation and
integration along with the tower property for conditional expectations, and using the fact that,
on the set {t > τk} , the quantity I(t < τi < τ3−i ∧ T ) is equal to zero, to get the expression

E
[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣Hk
t

]
(4.3)

= I(κk > t)
E[Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T ) | Ft]
P (κk > t | Ft)

= I(κk > t)E

[ ∫ T

t

∫ ∞
t

I(u < v)
Ru(X

1
u, X

2
u)P (τi ∈ du, τ3−i ∈ dv | Fv)
P (κk > t | Ft)

∣∣∣∣Ft]
= I(κk > t)

∫ T

t

∫ ∞
t

I(u < v)
E[Ru(X

1
u, X

2
u)P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (κk > t | Ft)
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for all 0 ≤ t ≤ T and every i, k = 1, 2. Thus, taking into account the expressions in (5.19),
according to the tower property for conditional expectations, we obtain that

E
[
Ru(X

1
u, X

2
u)P (τi ∈ du, τ3−i ∈ dv | Fu)

∣∣Ft] (4.4)

= E
[
Ru(X

1
u, X

2
u) e−(δi+δ3−i)A

0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)D3−i

v−u(Y
0
u , Y

3−i
u )

∣∣Ft] dudv
= e−(δi+δ3−i)A

0
t−λiAi

t−λ3−iA
3−i
t

× E
[
Ru

(
X1
t (Y i

u/Y
i
t )αi(Z0

u/Z
0
t )ζi(Zi

u/Z
i
t), X

2
t (Y 3−i

u /Y 3−i
t )α3−i(Z0

u/Z
0
t )ζ3−i(Z3−i

u /Z3−i
t )

)
× e−(δi+δ3−i)Y

0
t (A0

u−A0
t )/Y

0
t −λiY i

t (A
i
u−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

u −A3−i
t )/Y 3−i

t

×
(
δiY

0
t (Y 0

u /Y
0
t ) + λiY

i
t (Y i

u/Y
i
t )
)
D3−i
v−u(Y

0
t (Y 0

u /Y
0
t ), Y 3−i

t (Y 3−i
u /Y 3−i

t ))
∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t Q

1,3−i
t,u−t,v−u(X

1
t , X

2
t , Y

0
t , Y

3−i
t , Y i

t ) dudv

holds, for each 0 ≤ t < u < v ≤ T , for every i = 1, 2. Here, by virtue of the Markov property
of the processes (Y l, Al) and Z l , l = 0, 1, 2, and the fact that the random variables Y l

u/Y
l
t and

Z l
u/Z

l
t have the same laws as Y l

u−t and Z l
u−t , l = 0, 1, 2, for each 0 ≤ t < u , respectively, we

have

Q
1,3−i
t,u−t,v−u(x1, x2, y0, y3−i, yi) (4.5)

= E
[
Ru

(
x1(Y

i
u−t)

αi(Z0
u−t)

ζiZi
u−t, x2(Y

3−i
u−t )

α3−i(Z0
u−t)

ζ3−iZ3−i
u−t
)

× e−(δi+δ3−i)y0A
0
u−t−λiyiAi

u−t−λ3−iy3−iA
3−i
u−t (δiy0Y

0
u−t + λiyiY

i
u−t)D

3−i
v−u(y0Y

0
u−t, y3−iY

3−i
u−t )

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Ru

(
x1(y

′
i)
αi(z′0)

ζiz′i, x2(y
′
3−i)

α3−i(z′0)
ζ3−iz′3−i

)
× e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i (δiy0y

′
0 + λiyiy

′
i)D

3−i
v−u(y0y

′
0, y3−iy

′
3−i) g

0
u−t(y

′
0, a0)

× giu−t(y′i, ai) g3−iu−t(y
′
i, ai)h

0
u−t(z

′
0)h

i
u−t(z

′
i)h

3−i
u−t(z

′
3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−idz

′
0dz
′
idz
′
3−i

for all 0 ≤ t < u < v ≤ T and every i = 1, 2, where the functions gl , for l = 0, 1, 2, stand for
g defined in (5.7) and the functions hl , for l = 0, 1, 2, stand for h defined in (5.9). There, β
and γ stand for βl and γl , for l = 0, 1, 2, defined in (2.3), while η and θ stand for ηl and θl ,
for l = 0, 1, 2, defined in (2.4).

In order to compute closed-form expressions for P 2,k in (4.1), we provide the decomposition

P 2,k
t = E

[
Rκ2(X

1
κ2
, X2

κ2
) I(t < κ2 ≤ T )

∣∣Hk
t

]
(4.6)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi > τ3−i, t < τi ≤ T )

∣∣Hk
t

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i > τi, t < τ3−i ≤ T )
∣∣Hk

t

]
= E

[
Rτi(X

1
τi
, X2

τi
) I(t ∨ τ3−i < τi ≤ T )

∣∣Hk
t

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣Hk

t

]
for all 0 ≤ t ≤ T and every i, k = 1, 2. Then, we can apply the second part of the key lemma
in (2.9) for the filtrations (H1

t )t≥0 and (Ft)t≥0 , where H1
t coincides with Ft ∨ σ(κ1) on the

event {κ1 ≤ t} and with Ft on {κ1 > t} , for all t ≥ 0, as well as the arguments applied
for derivation of equalities in (2.14)-(2.19), and use Fubini’s theorem for interchanging the
order of conditional expectation and integration along with the tower property for conditional
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expectations to obtain that

E
[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣H1

t

]
(4.7)

= I(κ1 ≤ t)E[Rτ3−i
(X1

τ3−i
, X2

τ3−i
) I(t ∨ τi < τ3−i ≤ T )

∣∣Ft ∨ σ(κ1)]

+ I(κ1 > t)
E[Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t < τi < τ3−i ≤ T ) | Ft]
P (κ1 > t | Ft)

= I(κ1 ≤ t)

∫ T

v=t∨u

E[Rv(X
1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (τ1 > u, τ2 ∈ du | Ft) + P (τ2 > u, τ1 ∈ du | Ft)

∣∣∣∣
u=κ1

+ I(κ1 > t)

∫ T

t

∫ T

t

I(u < v)
E[Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (κ1 > t | Ft)

holds, for all 0 ≤ t ≤ T and every i = 1, 2. Hence, we can apply the second part of the
key lemma in (2.9) for the filtrations (H2

t )t≥0 and (Ft)t≥0 , where H2
t coincides with Ft on

{κ1 > t} , for all t ≥ 0, and use Fubini’s theorem for interchanging the order of conditional
expectation and integration along with the tower property for conditional expectations to get
the expression

E
[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣H2

t

]
(4.8)

= I(κ2 > t)
E[Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T ) | Ft]
P (κ2 > t | Ft)

= I(κ2 > t)E

[ ∫ T

t

∫ ∞
t

I(u < v)
Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv)
P (κ2 > t | Ft)

∣∣∣∣Ft]
= I(κ2 > t)

∫ T

t

∫ ∞
t

I(u < v)
E[Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (κ2 > t | Ft)

since it is obvious that the left-hand side of (4.8) is equal to zero on the event {κ2 ≤ t} , for all
0 ≤ t ≤ T and every i = 1, 2. Thus, taking into account the expressions in (5.17), according
to the tower property for conditional expectations, we obtain that

E
[
Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv)

∣∣Fu] (4.9)

= e−δiA
0
u−λiAi

u (δi Y
0
u + λi Y

i
u)E

[
Rv(X

1
v , X

2
v ) e−δ3−iA

0
v−λ3−iA

3−i
v (δ3−i Y

0
v + λ3−i Y

3−i
v )

∣∣Fu] dudv
= e−(δi+δ3−i)A

0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)

× E
[
Rv

(
X1
u(Y i

v /Y
i
u)αi(Z0

v/Z
0
u)ζi(Zi

v/Z
i
u), X

2
u(Y 3−i

v /Y 3−i
u )α3−i(Z0

v/Z
0
u)ζ3−i(Z3−i

v /Z3−i
u )

)
× e−δ3−iY

0
u (A0

v−A0
u)/Y

0
u−λ3−iY

3−i
u (A3−i

v −A3−i
u )/Y 3−i

u
(
δ3−i Y

0
u (Y 0

v /Y
0
u ) + λ3−i Y

3−i
u (Y 3−i

v /Y 3−i
u )

) ∣∣Fu] dudv
= e−(δi+δ3−i)A

0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)Q2,3−i

u,v−u(X
1
u, X

2
u,Y

0
u , Y

3−i
u , Y i

u) dudv

holds, for each 0 ≤ t < u < v ≤ T and every i = 1, 2. Here, by virtue of the Markov property
of the processes (Y l, Al) and Z l , l = 0, 1, 2, and the fact that the random variables Y l

v/Y
l
u and

Z l
v/Z

l
u have the same laws as Y l

v−u and Z l
v−u , l = 0, 1, 2, for each 0 ≤ u < v , respectively, we
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have

Q2,3−i
u,v−u(x1, x2,y0, y3−i, yi) (4.10)

= E
[
Rv

(
x1(Y

i
v−u)

αi(Z0
v−u)

ζiZi
v−u, x2(Y

3−i
v−u)α3−i(Z0

v−u)
ζ3−iZ3−i

v−u
)

× e−δ3−iy0A
0
v−u−λ3−iy3−iA

3−i
v−u (δ3−iy0Y

0
v−u + λ3−iy3−iY

3−i
v−u)

]
=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Rv

(
x1(y

′
i)
αi(z′0)

ζiz′i, x2(y
′
3−i)

α3−i(z′0)
ζ3−iz′3−i

)
× e−δ3−iy0a0−λ3−iy3−ia3−i (δ3−iy0y

′
0 + λ3−iy3−iy

′
3−i) g

0
v−u(y

′
0, a0) g

i
v−u(y

′
i, ai) g

3−i
v−u(y

′
3−i, a3−i)

× h0v−u(z′0)hiv−u(z′i)h3−iv−u(z
′
3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−idz

′
0dz
′
idz
′
3−i

for all 0 ≤ t < u < v ≤ T and every i = 1, 2, while the functions gl and hl , l = 0, 1, 2,
are given in (5.7) and (5.9) below, with an adequate choice of the parameters. Hence, taking
into account the expressions in (4.9) and applying again the tower property for conditional
expectations, we obtain that

E
[
E
[
Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv)

∣∣Fu] ∣∣Ft] (4.11)

= E
[
e−(δi+δ3−i)A

0
u−λiAi

u−λ3−iA
3−i
u (δi Y

0
u + λi Y

i
u)Q2,3−i

u,v−u(X
1
u, X

2
u, Y

0
u , Y

3−i
u , Y i

u)
∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t E

[
e−(δi+δ3−i)Y

0
t (A0

v−A0
t )/Y

0
t −λiY i

t (A
i
v−Ai

t)/Y
i
t −λ3−iY

3−i
t (A3−i

v −A3−i
t )/Y 3−i

t

×
(
δi Y

0
t (Y 0

u /Y
0
t ) + λi Y

i
t (Y i

u/Y
i
t )
)
Q2,3−i
u,v−u

(
X1
t (Y i

u/Y
i
t )αi(Z0

u/Z
0
t )ζi(Zi

u/Z
i
t), X

2
t (Y 3−i

u /Y 3−i
t )α3−i

× (Z0
u/Z

0
t )ζ3−i(Z3−i

u /Z3−i
t ), Y 0

t (Y 0
u /Y

0
t ), Y 3−i

t (Y 3−i
u /Y 3−i

t , Y i
t (Y i

u/Y
i
t )
) ∣∣Ft] dudv

= e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t Q̂2,3−i

t,u−t,v−u(X
1
t , X

2
t , Y

0
t , Y

3−i
t , Y i

t ) dudv

is satisfied, for each 0 ≤ t < u < v and every i = 1, 2. Here, by virtue of the Markov property
of the processes (Y l, Al) and Z l , l = 0, 1, 2, and the fact that the random variables Y l

u/Y
l
t and

Z l
u/Z

l
t have the same laws as Y l

u−t and Z l
u−t , l = 0, 1, 2, for each 0 ≤ t < u , respectively, we

have

Q̂2,3−i
t,u−t,v−u(x1, x2,y0, y3−i, yi) (4.12)

= E
[
e−(δi+δ3−i)y0A

0
u−t−λiyiAi

u−t−λ3−iy3−iA
3−i
u−t (δiy0Y

0
u−t + λiyiY

i
u−t)

×Q2,3−i
u,v−u

(
x1(Y

i
u−t)

αi(Z0
u−t)

ζiZi
u−t, x2(Y

3−i
u−t )

α3−i(Z0
u−t)

ζ3−iZ3−i
u−t, y0Y

0
u−t, y3−iY

3−i
u−t , yiY

i
u−t
)]

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i (δ3−iy0y
′
0 + λ3−iy3−iy

′
3−i)

×Q2,3−i
u,v−u

(
x1(y

′
i)
αi(z′0)

ζiz′i, x2(y
′
3−i)

α3−i(z′0)
ζ3−iz′3−i, y0y

′
0, y3−iy

′
3−iyiy

′
i

)
g0u−t(y

′
0, a0)

× giu−t(y′i, ai) g3−iu−t(y
′
3−i, a3−i)h

0
u−t(z

′
0)h

i
u−t(z

′
i)h

3−i
u−t(z

′
3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−idz

′
0dz
′
idz
′
3−i

for all 0 ≤ t < u < v ≤ T and every i = 1, 2, while the functions gl and hl , l = 0, 1, 2, are
given in (5.7) and (5.9) below, with an adequate choice of the parameters, as before.

Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.1. Suppose that r = 0. The no-arbitrage price for the holders of the first- or
second-to-default options in (4.1) are given by the sum of the expressions in (4.2) or (4.6) with
(4.3) or (4.7)-(4.8), respectively. The latter terms are computed by means of the expressions in
(4.4) or (4.9), (4.11) with (4.5) or (4.10), (4.12), respectively.
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4.2 The case of filtration (Ht)t≥0

Let us now continue by computing the price P̂ j = (P̂ j
t )t≥0 for the holder of a first- or second-

to-default option in the model with the filtration (Ht)t≥0 given by

P̂ j
t = E

[
Rκj

(X1
κj
, X2

κj
) I(t < κj ≤ T )

∣∣Ht

]
(4.13)

for all 0 ≤ t ≤ T ∧ κj and j = 1, 2.

In order to compute closed-form expressions for P̂ 1 in (4.13), we provide the decomposition

P̂ 1
t = E

[
Rκ1(X

1
κ1
, X2

κ1
) I(t < κ1 ≤ T )

∣∣Ht

]
(4.14)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi < τ3−i, t < τi ≤ T )

∣∣Ht

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i < τi, t < τ3−i ≤ T )
∣∣Ht

]
= E

[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣Ht

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t < τ3−i < τi ∧ T )
∣∣Ht

]
for all 0 ≤ t ≤ T and every i = 1, 2. Then, we can apply the second part of the key lemma
in (2.9) for the filtrations (Ht)t≥0 and (Ft)t≥0 , where Ht coincides with Ft on the event
{κ2 > κ1 > t} , for all t ≥ 0, and use Fubini’s theorem for interchanging the order of conditional
expectation and integration along with the tower property for conditional expectations to get
the expression

E
[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣Ht

]
(4.15)

= I(κ2 > κ1 > t)
E[Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T ) | Ft]

P (κ2 > κ1 > t | Ft)

= I(κ2 > κ1 > t)E

[ ∫ T

t

∫ ∞
t

I(u < v)
Ru(X

1
u, X

2
u)P (τi ∈ du, τ3−i ∈ dv | Fv)
P (κ2 > κ1 > t | Ft)

∣∣∣∣Ft]
= I(κ2 > κ1 > t)

∫ T

t

∫ ∞
t

I(u < v)
E[Ru(X

1
u, X

2
u)P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (κ2 > κ1 > t | Ft)

taking into account that the left-hand side of (4.15) is equal to zero on the event {κk ≤ t} , for
all 0 ≤ t ≤ T and every i, k = 1, 2. Here, the conditional expectations of interest are computed
in (4.4) with (4.5) above.

In order to compute closed-form expressions for P̂ 2 in (4.13), we provide the decomposition

P̂ 2
t = E

[
Rκ2(X

1
κ2
, X2

κ2
) I(t < κ2 ≤ T )

∣∣Ht

]
(4.16)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi > τ3−i, t < τi ≤ T )

∣∣Ht

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i > τi, t < τ3−i ≤ T )
∣∣Ht

]
= E

[
Rτi(X

1
τi
, X2

τi
) I(t ∨ τ3−i < τi ≤ T )

∣∣Ht

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣Ht

]
for all 0 ≤ t ≤ T and every i = 1, 2. Then, we can apply the second part of the key lemma in
(2.9) for the filtrations (Ht)t≥0 and (Ft)t≥0 , where Ht coincides with Ft ∨ σ(κ1) on the event
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{κ1 ≤ t < κ2} and with Ft on {κ2 > κ1 > t} , for all t ≥ 0, as well as the arguments applied
for derivation of equalities in (2.14)-(2.19), and use Fubini’s theorem for interchanging the
order of conditional expectation and integration along with the tower property for conditional
expectations to get the expression

E
[
Rτi(X

1
τi
, X2

τi
) I(t ∨ τ3−i < τi ≤ T )

∣∣Ht

]
(4.17)

= I(κ1 ≤ t < κ2)
E[Rτi(X

1
τi
, X2

τi
) I(t ∨ τ3−i < τi ≤ T ) | Ft ∨ σ(κ1)]

P (κ2 > t | Ft ∨ σ(κ1))

+ I(κ2 > κ1 > t)
E[Rτi(X

1
τi
, X2

τi
) I(t < τ3−i < τi ≤ T ) | Ft]

P (κ2 > κ1 > t | Ft)

= I(κ1 ≤ t < κ2)

∫ T

v=t∨u

E[Rv(X
1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (τ1 > t ∨ u, τ2 ∈ du | Ft) + P (τ2 > t ∨ u, τ1 ∈ du | Ft)

∣∣∣∣
u=κ1

+ I(κ2 > κ1 > t)

∫ T

t

∫ T

t

I(u < v)
E[Rv(X

1
v , X

2
v )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]
P (κ2 > κ1 > t | Ft)

taking into account that the left-hand side of (4.17) is equal to zero on the event {κ2 ≤ t} , for
all 0 ≤ t ≤ T and every i = 1, 2. Here, the conditional expectations of interest are computed
in (4.9), (4.11) with (4.10), (4.12) above.

Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.2. Suppose that r = 0. The no-arbitrage price for the holders of the first-
or second-to-default options in (4.13) are given by the sum of the expressions in (4.14) or (4.16)
with (4.15) or (4.17), respectively. The latter terms are computed by means of the expressions
in (4.4) or (4.9), (4.11) with (4.5) or (4.10), (4.12), respectively.

4.3 The case of filtrations (Hk
t ∨ σ(κ3−k)))t≥0 , k = 1, 2

Let us finally compute the price P̃ j,k(κ3−k) = (P̃ j,k(κ3−k))t≥0 for the holder of a first- and
second-to-default options in the model with the filtration (Hk

t ∨ σ(κ3−k))t≥0 given by

P̃ j,k
t (κ3−k) = E

[
Rκj

(X1
κj
, X2

κj
) I(t < κj ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
(4.18)

for all 0 ≤ t ≤ T ∧ κj and j, k = 1, 2.

In order to compute closed-form expressions for P̃ 1,k(κ3−k) in (4.18), we provide the de-
composition

P̃ 1,k
t (κ3−k) = E

[
Rκ1(X

1
κ1
, X2

κ1
) I(t < κ1 ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
(4.19)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi < τ3−i, t < τi ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i < τi, t < τ3−i ≤ T )
∣∣Hk

t ∨ σ(κ3−k)
]

= E
[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣Hk
t ∨ σ(κ3−k)

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t < τ3−i < τi ∧ T )
∣∣Hk

t ∨ σ(κ3−k)
]

for all 0 ≤ t ≤ T and every i, k = 1, 2. Then, we can apply the second part of the key lemma in
(2.9) for the filtrations (H1

t ∨ σ(κ2))t≥0 and (Ft ∨ σ(κ2))t≥0 , where H1
t ∨ σ(κ2) coincides with
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Ft∨σ(κ2) on the event {κ1 > t} , for all t ≥ 0, as well as the arguments applied for derivation
of equalities in (2.20)-(2.25), and use Fubini’s theorem for interchanging the order of conditional
expectation and integration along with the tower property for conditional expectations to get
the expression

E
[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣H1
t ∨ σ(κ2)

]
(4.20)

= I(κ1 > t)
E[Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T ) | Ft ∨ σ(κ2)]

P (κ1 > t | Ft ∨ σ(κ2))

= I(κ2 > κ1 > t)E

[ ∫ ∞
u=t

Ru(X
1
u, X

2
u) I(t < u < v ∧ T )P (τi ∈ du, τ3−i ∈ dv | Fv)

P (t < τ1 ≤ v, τ2 ∈ dv | Ft) + P (t < τ2 ≤ v, τ1 ∈ dv | Ft)

∣∣∣∣Ft]∣∣∣∣
v=κ2

= I(κ2 > κ1 > t)

∫ ∞
u=t

E[Ru(X
1
u, X

2
u) I(t < u < v ∧ T )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (t < τ1 ≤ v, τ2 ∈ dv | Ft) + P (t < τ2 ≤ v, τ1 ∈ dv | Ft)

∣∣∣∣
v=κ2

for all 0 ≤ t ≤ T and every i, k = 1, 2.
Now, we can apply the second part of the key lemma in (2.9) for the filtrations (H2

t ∨
σ(κ1))t≥0 and (Ft ∨ σ(κ1))t≥0 , where H2

t ∨ σ(κ1) coincides with Ft ∨ σ(κ1) on the event
{κ2 > t} , for all t ≥ 0, as well as the arguments applied for derivation of equalities in (2.14)-
(2.19), and use Fubini’s theorem for interchanging the order of conditional expectation and
integration along with the tower property for conditional expectations to get the expression

E
[
Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T )

∣∣H2
t ∨ σ(κ1)

]
(4.21)

= I(κ2 > t)
E[Rτi(X

1
τi
, X2

τi
) I(t < τi < τ3−i ∧ T ) | Ft ∨ σ(κ1)]

P (κ2 > t | Ft ∨ σ(κ1))

= I(κ2 > κ1 > t)E

[ ∫ ∞
v=u

Ru(X
1
u, X

2
u) I(t < u < v ∧ T )P (τi ∈ du, τ3−i ∈ dv | Fv)

P (τ1 > u ∨ t, τ2 ∈ du | Ft) + P (τ2 > u ∨ t, τ1 ∈ du | Ft)

∣∣∣∣Ft]∣∣∣∣
u=κ1

= I(κ2 > κ1 > t)

∫ ∞
v=u

E[Ru(X
1
u, X

2
u) I(t < u < v ∧ T )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (τ1 > u ∨ t, τ2 ∈ du | Ft) + P (τ2 > u ∨ t, τ1 ∈ du | Ft)

∣∣∣∣
u=κ1

on the event {κ1 ≤ T} , for all 0 ≤ t ≤ T and every i, k = 1, 2. Here, the conditional
expectations of interest are computed in (4.4) with (4.5) above.

In order to compute closed-form expressions for P̃ 2,k(κ3−k) in (4.18), we provide the de-
composition

P̃ 2,k
t (κ3−k) = E

[
Rκ2(X

1
κ2
, X2

κ2
) I(t < κ2 ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
(4.22)

= E
[
Rτi(X

1
τi
, X2

τi
) I(τi > τ3−i, t < τi ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(τ3−i > τi, t < τ3−i ≤ T )
∣∣Hk

t ∨ σ(κ3−k)
]

= E
[
Rτi(X

1
τi
, X2

τi
) I(t ∨ τ3−i < τi ≤ T )

∣∣Hk
t ∨ σ(κ3−k)

]
+ E

[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣Hk

t ∨ σ(κ3−k)
]

for all 0 ≤ t ≤ T and every i, k = 1, 2. Then, we can apply the second part of the key lemma
in (2.9) for the filtrations (H1

t ∨ σ(κ2))t≥0 and (Ft ∨ σ(κ2))t≥0 , where H1
t ∨ σ(κ2) coincides

with Ft∨σ(κ1)∨σ(κ2) on the event {κ1 ≤ t} and with Ft∨σ(κ2) on {κ1 > t} , for all t ≥ 0,
as well as the arguments applied for derivation of equalities in (2.20)-(2.25), and use Fubini’s
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theorem for interchanging the order of conditional expectation and integration along with the
tower property for conditional expectations to get

E
[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣H1

t ∨ σ(κ2)
]

(4.23)

= I(κ1 ≤ t)E[Rτ3−i
(X1

τ3−i
, X2

τ3−i
) I(t ∨ τi < τ3−i ≤ T ) | Ft ∨ σ(κ1) ∨ σ(κ2)]

+ I(κ1 > t)
E[Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t < τi < τ3−i ≤ T ) | Ft ∨ σ(κ2)]

P (κ1 > t | Ft ∨ σ(κ2))

= I(κ1 ≤ t < κ2)E
[
Rv(X

1
v , X

2
v ) I(t ∨ u < v ≤ T )

∣∣Ft]∣∣u=κ1,v=κ2

+ I(κ2 > κ1 > t)

∫ ∞
u=t

E[Rv(X
1
v , X

2
v ) I(t < u < v ≤ T )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (t < τ1 ≤ v, τ2 ∈ dv | Ft) + P (t < τ2 ≤ v, τ1 ∈ dv | Ft)

∣∣∣∣
v=κ2

on the event {κ2 ≤ T} , for all 0 ≤ t ≤ T and every i = 1, 2. Thus, by virtue of the Markov
property of the processes (Y l, Al) and Z l , l = 0, 1, 2, and the fact that the random variables
Y l
v/Y

l
t and Z l

v/Z
l
t have the same laws as Y l

v−t and Z l
v−t , l = 0, 1, 2, for each 0 ≤ t < v ,

respectively, we have

E
[
Rv(X

1
v , X

2
v )
∣∣Ft] = E

[
Rv

(
x1(Y

i
v−t)

αi(Z0
v−t)

ζiZi
v−t, x2(Y

3−i
v−t )α3−i(Z0

v−t)
ζ3−iZ3−i

v−t
)]

(4.24)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Rv

(
x1(y

′
i)
αi(z′0)

ζiz′i, x2(y
′
3−i)

α3−i(z′0)
ζ3−iz′3−i, yiy

′
i, y3−iy

′
3−i
)

× giv−t(y′i, ai) g3−iv−t(y
′
3−i, a3−i)h

0
v−t(z

′
0)h

i
v−t(z

′
i)h

3−i
v−t(z

′
3−i) dy

′
idaidy

′
3−ida3−idz

′
0dz
′
idz
′
3−i

for all 0 ≤ t < v ≤ T and every i = 1, 2, while the functions gl and hl , l = 0, 1, 2, are given
in (5.7) and (5.9) above. Here and after, the other conditional expectations of interest are
computed in (4.9), (4.11) with (4.10), (4.12) above.

Finally, we can apply the second part of the key lemma in (2.9) for the filtrations (H2
t ∨

σ(κ1))t≥0 and (Ft ∨ σ(κ1))t≥0 , where H2
t ∨ σ(κ1) coincides with Ft ∨ σ(κ1) on the event

{κ2 ≤ t} and with Ft ∨ σ(κ1) on {κ2 > t} , for all t ≥ 0, as well as the arguments applied
for derivation of equalities in (2.14)-(2.19), and use Fubini’s theorem for interchanging the
order of conditional expectation and integration along with the tower property for conditional
expectations to get

E
[
Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T )
∣∣H2

t ∨ σ(κ1)
]

(4.25)

= I(κ2 ≤ t)E[Rτ3−i
(X1

τ3−i
, X2

τ3−i
) I(t ∨ τi < τ3−i ≤ T ) | Ft ∨ σ(κ1) ∨ σ(κ2)]

+ I(κ2 > t)
E[Rτ3−i

(X1
τ3−i

, X2
τ3−i

) I(t ∨ τi < τ3−i ≤ T ) | Ft ∨ σ(κ1)]

P (κ2 > t | Ft ∨ σ(κ1))

= I(κ1 < κ2 ≤ t)E
[
Rv(X

1
v , X

2
v ) I(t ∨ u < v ≤ T )

∣∣Ft]∣∣u=κ1,v=κ2

+ I(κ2 > t ∨ κ1)

∫ ∞
v=u

E[Rv(X
1
v , X

2
v ) I(t ∨ u < v ≤ T )P (τi ∈ du, τ3−i ∈ dv | Fv) | Ft]

P (τ1 > u ∨ t, τ2 ∈ du | Ft) + P (τ2 > u ∨ t, τ1 ∈ du | Ft)

∣∣∣∣
u=κ1

on the event {κ1 ≤ T} , for all 0 ≤ t ≤ T and every i = 1, 2.
Therefore, summarising the facts proved above, we now formulate the following assertion.

Proposition 4.3. Suppose that r = 0. The no-arbitrage price for the holders of the first-
or second-to-default options in (4.18) are given by the sum of the expressions in (4.19) or (4.22)
with (4.20), (4.21) or (4.23), (4.25), respectively. The latter terms are computed by means of
the expressions in (4.4) or (4.9), (4.11) with (4.5) or (4.10), (4.12), and (4.24), respectively.
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5 Appendix

In this section, we reproduce explicit expressions from [19; Sections 3 and 4] for the conditional
distributions of two non-successive default times given the accessible filtration generated by the
market prices of the risky assets as well as given the observable filtrations.

5.1 Transition densities

Let us give the expressions for the transition density functions of the processes (Y l, Al), l =
0, 1, 2, defined in (2.2)-(2.3) above. For this purpose, deleting the index l in the notation for
simplicity, we recall from [26; page 527] that, for a standard Brownian motion W , the random

variable A
(ν)
t =

∫ t
0
e2(Ws+νs)ds has the conditional distribution

P
(
A

(ν)
t ∈ da

∣∣∣Wt + νt = x
)

= p(t, x, a) da (5.1)

where the density function p(t, x, a) is given by

p(t, x, a) =
1

πa2
exp

(
x2 + π2

2t
+ x− 1 + e2x

2a

)
(5.2)

×
∫ ∞
0

exp

(
−w

2

2t
− ex

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw

with t, a > 0 and x ∈ R , and ν ∈ R given and fixed. This fact yields that the random vector
(2(Wt + νt), A

(ν)
t ) has the distribution:

P
(

2(Wt + νt) ∈ dx,A(ν)
t ∈ da

)
= q(t, x, a) dxda (5.3)

where the density function q(t, x, a) is given by

q(t, x, a) = p
(
t,
x

2
, a
) 1

2
√
t

1√
2π

exp

(
− 1

2

(x− 2νt

2
√
t

)2)
(5.4)

=
1

(2π)3/2a2
√
t

exp

(
π2

2t
+
(ν + 1

2

)
x− ν2

2
t− 1 + ex

2a

)
×
∫ ∞
0

exp

(
−w

2

2t
− ex/2

a
cosh(w)

)
sinh(w) sin

(πw
t

)
dw

with t, a > 0 and x ∈ R (see also [14] and [25] for related expressions in terms of Hermite
functions). Therefore, defining the Markov process (Y,A) = (Yt, At)t≥0 by

Yt = exp

((
β − γ2

2

)
t+ γ Wt

)
and At =

∫ t

0

Ys ds (5.5)

for all t ≥ 0, one obtains that the random vector (YT/Yt, (AT − At)/Yt) has the distribution

P
(
YT/Yt ∈ dy, (AT − At)/Yt ∈ da

)
= P

(
YT−t ∈ dy,AT−t ∈ da

)
= gT−t(y, a) dyda (5.6)
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where the density function gT−t(y, a) is given by

gT−t(y, a) =
γ2

4y
q

(
γ2

4
(T − t), ln(y),

γ2a

4

)
(5.7)

=
2
√

2

π3/2γ3
1

a2y
√
T − t

exp

(
2π2

γ2(T − t)
+
β

γ2
ln(y)−

(
β

γ
− γ

2

)2
(T − t)

2
− 2(1 + y)

γ2a

)
×
∫ ∞
0

exp

(
− 2w2

γ2(T − t)
−

4
√
y

γ2a
cosh(w)

)
sinh(w) sin

(
4πw

γ2(T − t)

)
dw

for all T − t, y, a > 0. Note that the formulas above were also used in [20; Section 4] for the
computation of the marginal density of the posterior probability process in the one-dimensional
quickest change-point detection problem.

We also recall the transition density functions of the geometric Brownian motions Z , defined
as in (2.4) above. It follows that the random variable ZT/Zt has the distribution

P
(
ZT/Zt ∈ dz

)
= P

(
ZT−t ∈ dz

)
= hT−t(z) dz (5.8)

where the density function hT−t(z) is given by

hT−t(z) =
1

θz
√

2π(T − t)
exp

(
− (ln(z)− (η − θ2/2)(T − t))2

2θ2(T − t)

)
(5.9)

for all T − t, z > 0.

5.2 Conditional distributions of τi , i = 1, 2, under (Ft)t≥0

We first recall the computations of the conditional distributions P (τi > u | Ft) of the default
times τi , i = 1, 2, given the reference filtration (Ft)t≥0 , for all t, u ≥ 0, from [19; Section 3].
The equalities

P (τi > u | F∞) = e−δiA
0
u−λiAi

u = P (τi > u | Ft) for 0 ≤ u ≤ t (5.10)

hold, so that the equality

P (τi ∈ du | F∞) = e−δiA
0
u−λiAi

u (δiY
0
u + λiY

i
u) dt = P (τi ∈ du | Ft) for 0 ≤ u ≤ t (5.11)

is satisfied, for every i = 1, 2 (see [19; Formulae (3.1)-(3.3)]). Furthermore, the equality

P (τi > u | Ft) = e−δiA
0
t−λiAi

t Ci
u−t(Y

0
t , Y

i
t ) for 0 ≤ t < u (5.12)

holds, where

Ci
u−t(y0, yi) =

∫ ∞
0

∫ ∞
0

e−δiy0a0 g0u−t(y
′
0, a0) dy

′
0da0

∫ ∞
0

∫ ∞
0

e−λiyiai giu−t(y
′
i, ai) dy

′
idai (5.13)

for all 0 ≤ t < u ≤ T and every i = 1, 2, where the functions gl , l = 0, 1, 2, stand for g (5.7),
while β and γ stand for βl and γl , for l = 0, 1, 2, defined in (2.3) (see [19; Formulae (3.4)-
(3.5)]). Moreover, the equality

P (τi ∈ du | Ft) = e−δiA
0
t−λiAi

t Di
u−t(Y

0
t , Y

i
t ) du for 0 ≤ t < u (5.14)
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is satisfied, for every i = 1, 2, where

Di
u−t(y0, yi) (5.15)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−δiy0a0−λiyiai (δiy0y
′
0 + λiyiy

′
i) g

0
u−t(y

′
0, a0) g

i
u−t(y

′
i, ai) dy

′
0da0dy

′
idai

for all 0 ≤ t < u ≤ T and every i = 1, 2 (see [19; Formulae (3.6)-(3.7)]).
We now continue with the results of [19; Sections 3 and 4], which tell that the equalities

P (τi > u, τ3−i > v | F∞) = e−δiA
0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v = P (τi > u, τ3−i > v | Ft) (5.16)

for 0 ≤ u, v ≤ t

hold, so that the equalities

P (τi ∈ du, τ3−i ∈ dv | F∞) (5.17)

= e−δiA
0
u−λiAi

u−δ3−iA
0
v−λ3−iA

3−i
v (δiY

0
u + λiY

i
u) (δ3−iY

0
v + λ3−iY

3−i
v ) dudv

= P (τi ∈ du, τ3−i ∈ dv | Ft) for 0 ≤ u, v ≤ t

are satisfied, for every i = 1, 2 (see [19; Formulae (3.8)-(3.10)]). Furthermore, the equality

P (τi > u, τ3−i > v | Ft) = e−δiA
0
u−λiAi

u−δ3−iA
0
t−λ3−iA

3−i
t C3−i

v−t(Y
0
t , Y

3−i
t ) (5.18)

for 0 ≤ u ≤ t < v

holds, where C3−i
v−t(y0, y3−i) is given as in (5.13) above, for every i = 1, 2 (see [19; Formu-

lae (3.11)-(3.12)]). Then, the equality

P (τi ∈ du, τ3−i ∈ dv | Ft) = e−δiA
0
t−λiAi

t−δiA0
u−λiAi

u (δiY
0
u + λiY

3−i
u )D3−i

v−t(Y
0
t , Y

3−i
t ) dudv (5.19)

for 0 ≤ u ≤ t < v

is satisfied, where D3−i
v−t(y0, y3−i) is given in (5.15) above, for every i = 1, 2 (see [19; For-

mula (3.13)]).
Finally, we have that the equality

P (τi > u, τ3−i > v | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t C

3−i
u−t,v−u(Y

0
t , Y

3−i
t , Y i

t ) (5.20)

for 0 ≤ t < u < v

holds, where

C
3−i
u−t,v−u(y0, y3−i, yi) (5.21)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i C3−i
v−u(y0y

′
0, y3−iy

′
3−i)

× g0u−t(y
′
0, a0) g

i
u−t(y

′
i, ai) g

3−i
u−t(y

′
3−i, a3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−i

for all 0 ≤ t < u < v ≤ T and every i = 1, 2 (see [19; Formulae (3.16)-(3.18)]). Hence, the
equality

P (τi ∈ du, τ3−i ∈ dv | Ft) = e−(δi+δ3−i)A
0
t−λiAi

t−λ3−iA
3−i
t D

3−i
u−t,v−u(Y

0
t , Y

3−i
t , Y i

t ) dudv (5.22)

for 0 ≤ t ≤ u < v
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is satisfied, where

D
3−i
u−t,v−u(y0, y3−i, yi) (5.23)

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−(δi+δ3−i)y0a0−λiyiai−λ3−iy3−ia3−i (δiy0y
′
0 + λiyiy

′
i)

×D3−i
v−u(y0y

′
0, y3−iy

′
3−i) g

0
u−t(y

′
0, a0) g

i
u−t(y

′
i, ai) g

3−i
u−t(y

′
3−i, a3−i) dy

′
0da0dy

′
idaidy

′
3−ida3−i

for all 0 ≤ t < u < v ≤ T and every i = 1, 2 (see [19; Formulae (4.12)-(4.14)]).
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[5] Brémaud, P. and Yor, M. (1978). Changes of filtrations and of probability measures.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 45 (269-295).

[6] Brigo, D., Capponi, A. and Pallavicini, A. (2014). Arbitrage-free bilateral coun-
terparty risk valuation under collateralization and application to credit default swaps.
Mathematical Finance 24 (125–146).

[7] Brigo, D. and Chourdakis, K. (2009). Counterparty risk for credit default swaps:
impact of spread volatility and default correlation. International Journal of Theoretical
and Applied Finance 12 (1007–1026).

[8] Brigo, D., Morini, M. and Pallavicini, A. (2013). Counterparty Credit Risk,
Collateral and Funding: with Pricing Cases for all Asset Classes. Wiley.

[9] Callegaro, G., Jeanblanc, M. and Zargari, B. (2013). Carthagian enlargement
of filtrations. ESAIM: Probability and Statistics 17 (550–566).

22



[10] Cesari, G., Aquilina, J. and Charpillon, N. (2010). Modelling, Pricing, and
Hedging Counterparty Credit Exposure. Springer.
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