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Abstract

This paper is dedicated to the derivation and analysis of a Schwarz waveform relaxation
domain decomposition method for solving time-dependent linear/nonlinear space fractional
Schrödinger and heat equations. Along with the details of the derivation of the method and
some mathematical properties, we also propose some illustrating numerical experiments and
conjectures on the rate of convergence of the method.
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1. Introduction

In this paper, we derive and analyze a Schwarz Waveform Relaxation (SWR) Domain
Decomposition Method (DDM) for the time-dependent linear space Fractional Schrödinger
Equation (FSE): for all (t, x) ∈ [0;T ]×Ω, with maximal time T > 0, and a one-dimensional
bounded domain Ω ⊆ R, compute u := u(t, x) solution to

i∂tu+ (−4)α/2u+ V (x)u = 0, u(0, x) = u0(x), u(t, ∂Ω) = 0 , (1)

with fractional exponent α ∈ (0, 2) and setting i :=
√
−1. The spatial potential is described

by a function V ∈ L∞(Ω). We set homogeneous Dirichlet boundary conditions but the
extension to other kinds of boundary conditions can be also considered. The initial data is
a given function u0 in Ω. Let us recall that the Riemann-Liouville-based definition of the
fractional Laplace operator in d-dimension reads (see [55]), for α ∈ (0, 2) and any u ∈ S(Rd),
as follows

(−4)α/2u(x) = C(α) lim
ε→0+

∫
Rd\Bε(x)

u(x)− u(y)

|x− y|d+α
dy, (2)

where Bε(x) is the ball of radius ε and center x, C(α) is the constant defined by

C(α) :=
(∫

Rd

1− cos(ξ1)

|ξ|d+α
dξ
)−1

, (3)

with ξ := (ξ1, ..., ξd) ∈ Rd. In addition, for system (1) but set in Ω := Rd, i) the mass

N (t) :=

∫
Ω

|u|2dΩ =

∫
Ω

|u0|2dΩ,∀t > 0, (4)

and ii) the total energy

E(t) :=
1

2

∫
Ω

ū(−4)α/2udΩ +

∫
Ω

V (x)|u|2dΩ = E(t = 0),∀t > 0, (5)

which is the sum of the fractional kinetic energy and the potential energy, are both conserved.
For Ω := Rd, some definitions of the fractional Laplacian can be equivalent [41] and, for
example for the Fourier spectral definition of the fractional Laplace operator, conservations
properties as well as dynamical laws can be proved for nonlinear fractional Schrödinger and
Gross-Pitaevskii equations (see e.g. [11, 12] and Subsection 4.2). For a bounded domain, this
is less clear and strongly depends on the definition of the fractional laplacian as well as the
boundary conditions, which can lead to definitions which are no longer equivalent. Finally,
the well-posedness of different versions of the fractional linear and nonlinear Schrödinger
equations can be found for instance in [21, 29, 31, 60, 62].

The space FSE was initially introduced by Laskin [42, 43, 44]. Some important impacts
concern fractional quantum dynamics based on the space or/and time Fractional Schrödinger
equation and some nonlinear versions [1, 14, 18, 20, 22, 24, 36, 48, 53, 57, 65]. The fractional
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nonlinear Schrödinger equation is used to describe the nonlocal phenomena in quantum
physics and to explore the quantum behaviors of either long-range interactions or time-
dependent processes involving many scales [1, 13, 39, 40, 42, 43, 44, 48, 53, 61, 67]. For
example, the nonlinear FSE is met when modeling quantum fluids of light [20], boson stars
[14, 24, 36] and polariton condensates [57]. Additional applications can also be found in
linear and nonlinear optics [68, 69] to understand the propagation of super-Gaussian beams.
Therefore, designing efficient and accurate schemes to numerically compute the solution to
such equations is of great interest.

During the past two decades, there has been a huge interest in computational methods
for solving fractional PDEs including fractional Laplace, heat and Schrödinger equations [11,
12, 19, 23, 32, 38, 39, 46, 47, 52, 58, 59, 63, 64]. Practically, the choice of the computational
method largely depends on the definition of the fractional Laplace operator. When using the
spectral definition of the fractional derivatives, the numerical computation can for instance
(at least with null Dirichlet boundary conditions) be reduced to solving fractional linear
algebraic systems Aαx = b [9, 10, 49]. Alternatively, the fractional Laplacian definition
using Fourier-based fractional derivatives (Riesz) can be approximated using standard FFT
[10]. Riemann-Liouville or Caputo’s based fractional derivatives are usually more difficult
to numerically deal with. The latter are indeed defined by nonlocal integro-differential
operators which require very special care in order to derive stable, accurate and efficient
finite-difference or finite element solvers. We refer again to [47] for an overview of definitions
and computational methods for the fractional Laplacian. Here, we use the method presented
in [35] for approximating the fractional Laplace operator (2).

In the present paper, we propose to derive and analyze a non-overlapping Schwarz Wave-
form Relaxation DDM for solving (1) in parallel (see e.g. [3, 25, 26, 27, 28, 30, 50]). Most of
the analysis and methods proposed here can actually be easily adapted to the fractional heat
equation (as seen in Section 6). Let us remark that, to the best of the authors’ knowledge,
the only work related to DDM for fractional PDEs is [37]. In this contribution, the authors
use additive Schwarz DDM on the algebraic discrete system for stationary fractional PDEs.

To start, we recall some basic facts about the SWR algorithm for solving a one-dimensional
evolution PDE: Pu = 0, with u(0, ·) = u0, on two subdomains Ωε

±, with boundary at ±ε/2
(ε > 0) such that Ω = Ωε

+ ∪ Ωε
− and overlapping region Ωε

+ ∩ Ωε
− = (−ε/2, ε/2). Solving

the SWR DDM requires some transmission conditions at the subdomain interfaces. More
specifically, for any Schwarz iteration k > 1, the equation in Ωε

± reads
Pu

(k)
± = 0, on [0, T ]× Ωε

±,

B±u(k)
± = B±u(k−1)

∓ , at [0, T ]× {±ε/2},

u
(k)
± (0, ·) = u0(·) on Ωε

±.

(6)

The notation u
(k)
± stands for the solution u± in [0, T ]× Ωε

± at Schwarz iteration k > 0. The
key-point from the parallel computing point of view is the decoupling at Schwarz iteration k,
of the two systems thanks to the transmission conditions involving data from the (k− 1)-th
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Schwarz iteration on the right hand side of the second equation of (6). Initially, u
(0)
± are

two given functions defined in Ωε
±, typically taken null if no further information is provided.

The operator B± characterizes the type of SWR algorithm. In the Classical SWR (CSWR)
case, B± is simply the identity operator, B± = ±∂x + γId (γ ∈ R∗+) for the Robin SWR,
and B± is a nonlocal Dirichlet-to-Neumann-like (DtN) pseudodifferential operator for the
Optimal SWR (OSWR). We refer to [4, 5, 6, 7, 8, 16, 30] for further reading for the case of
the Schrödinger equation.

The rest of the paper is organized as follows. In Section 2, we present the numerical
scheme for the discretization of the FSE, preserving both the mass and energy. In addition,
the error on the scheme is given and numerical simulations allow to check the main properties.
In Section 3, we derive the Schwarz waveform relaxation DDM. Its computational complexity
is analyzed and its convergence is stated. Some numerical experiments, for the linear and
nonlinear FSE, and a conjecture on the rate of convergence are proposed in Section 4.
In Section, 5, we provide a straightforward extension of the proposed SWR DDM to the
fractional heat equation. We conclude in Section 6.

2. Numerical discretization of the space FSE

The proposed numerical scheme is based on the finite-difference discretization of the
fractional Laplace operator (2) which was derived and analyzed in [35]. We denote by {unj }j
a sequence of approximations of {u(tn, xj)}j, for an equally spaced finite-difference grid {xj}j
with mesh size ∆x, and for the discrete times t0 < t1 < · · · < tn := n∆t < · · · 6 T , with
fixed time step ∆t such that N∆t = T . The proposed Crank-Nicolson(CN) based scheme
for (1) hence reads

un+1
i = uni +

i∆t

2

∑
j>1(2uni − uni+j − uni−j)w

F,G
j +

i∆t

2

∑
j>1(2un+1

i − un+1
i+j − un+1

i−j )wF,Gj

+
i∆t

2
Vj(u

n
i + un+1

i ) ,

(7)

where according to [35], for any j ∈ Z the weights wFj are given by

wFj = ∆x−α

 C1,α

2− α
− F ′(1) + F (2)− F (1), j = ±1 ,

F (j + 1)− 2F (j) + F (j − 1), j = ±2,±3, · · ·
(8)

with

F (t) =


C1,α

α(α− 1)
|t|1−α, α 6= 1

−C1−α log |t|, α = 1

, C1,α =
2α−1αΓ

(α + 1

α

)
π1/2Γ

(2− α
2

) ,

designating by Γ the Gamma special function. Alternatively, it is possible to get a higher
order approximation of the fractional Laplacian thanks to the following weights: for any
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j ∈ Z

wGj = ∆x−α


C1,α

2− α
−G′′(1)−

G′(3) + 3G′(1)

2
+G(3)−G(1) j = ±1 ,

2
(
G′(j + 1) +G′(j − 1)−G(j + 1) +G(j − 1)

)
, j = ±2,±4, · · ·

−
G′(j + 2) + 6G′(j) +G′(j − 2)

6
+G(j + 2)−G(j − 2), j = ±3,±5, · · ·

(9)

with

G(t) =


C1,α

α(α− 1)(2− α)
|t|2−α, α 6= 1 ,

C1−α(t− log |t|), α = 1 .

For instance, we report in semilogscale on Fig. 1 the values of the weights {wFj }16j6J and
{wGj }16j6J , for J = 50.

0 10 20 30 40 50
10

-3

10
-2

10
-1

Figure 1: Weights {wFj }16j6J and {wGj }16j6J (for J = 50) used in the fractional Schrödinger equation
solver.

For n 6= 1, u0 given as the projection of u0 on the finite-difference grid {xj = j∆x}j∈J ,
setting J = {−J/2+1 6 j 6 J/2}, and with homogeneous Dirichlet boundary conditions at
the ghost points x−J/2 and xJ/2+1 (J ∈ 2N and Ω = [x−J/2;xJ/2+1]), the scheme can simply
be rewritten in the form(

I +
i∆t

2
AV

)
un+1 =

(
I −

i∆t

2
AV

)
un , (10)

where AV = A + V ∈ RJ×J is the full real-valued symmetric matrix, A is the full positive
definite (SPD) J × J matrix with coefficients deduced from (7) for the fractional Laplacian,
and V is the diagonal matrix part representing the potential. More specifically, the entries
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of A are defined as follows: Ai,i = 2
∑

16j6J w
F,G
j and Ai,i−j = −wF,Gj for 1 6 j 6 i− 1 and

Ai,i+j = −wF,Gj for 1 6 j 6 J − i. The complex-valued vector is un = (unj )Tj∈J ∈ CJ . This
scheme trivially conserves the mass, for all n ∈ N,

N n+1 := ‖un+1‖2
2,J = ‖un‖2

2,J =: N n, (11)

where the `2,J -norm is defined by

‖u‖2,J = (u,u)
1/2
2,J :=

√
∆x(

∑
j∈J

|uj|2)1/2,

and the inner product by

(u,v)2,J := ∆x
∑
j∈J

ujvj , (12)

with u ∈ CJ and v ∈ CJ . Let us define now the discrete fractional energy by

En :=
1

2
(Aun,un)2,J + (V un,un)2,J . (13)

Then, since A is SPD, we can easily deduce that the discrete fractional energy conservation
holds

En = E0,∀n ∈ N, (14)

by adapting the proof from [59, 63, 64]. It is also possible to use a standard first-order
backward Euler scheme in time following(

I + i∆tAV

)
un+1 = un . (15)

Let us now define the uniform norm

||u||∞,J = max
j∈J
|uj| , (16)

and the infinite norm error

e(∆t,∆x) := max
06n6N

||un − unref||∞,J ,

where unref is the exact solution at time tn evaluated at the J spatial grid points. Based on
[35] and standard results, we get the following proposition.

Proposition 2.1. The CN scheme (10) (resp. backward Euler scheme (15)) constructed
from (7) is consistent with (1), unconditionally stable, and its truncation error e(∆t,∆x) is
such that

• if the weights {wj}j are given by (8), then: e(∆t,∆x) = O(∆x2−α) + O(∆t2) (resp.
e(∆t,∆x) = O(∆x2−α) +O(∆t)).
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• if {wj}j are defined from (9), then: e(∆t,∆x) = O(∆x3−α)+O(∆t2) (resp. e(∆t,∆x) =
O(∆x3−α) +O(∆t)).

In order to illustrate the order of convergence of the scheme and to check the conservation
laws, we consider the discretization to (1) for α = 0.5 on the computational domain Ω =
(−10, 10). The initial condition is u0(x) = exp(−10x2 + 2ix) and we take V = 0. We use
the F -scheme (8) for the Crank-Nicolson approximation in time. Theoretically, the expected
order of convergence in space for the scheme (7) with the F -weights is 2−α = 1.5 (see [35])
and 2 in time. Numerically, we test the spatial convergence by making vary the number of
grid points J from 32 to 4096. The final time is set to T = 5 × 10−1 and the time step is
∆t = 10−2. We report in logscale in Fig. 2 (Left) the absolute `2,J -norm error ‖uNref−uN‖2,J

at final time tN = T as a function of the space step ∆x, where the reference solution uNref is
computed on the finest mesh ∆x = 2−11. As expected, we numerically obtain a convergence
order in space close to 1.5. Regarding the convergence in time, we fix the number of grid
points to J = 1024 and final time to T = 2.5 × 10−1. The time step ∆t varies from 2−7 to
2−11. We report the absolute `2,J -norm error at final time in logscale as a function of ∆t in
Fig. 2 (Right). The convergence in time is close to 2, as theoretically expected.

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

0.1 0.2 0.3 0.4 0.5 0.6

10
-3

10
-2

Figure 2: (Left) Theoretical and numerical `2,J -norm error vs ∆x. (Right) Theoretical and numerical `2,J -
norm error vs ∆t.

Finally, in Fig. 3 we report the relative variation of the mass (resp. energy) |N n−N 0|/N 0

(resp. |En − E0|/E0) as a function of the time iteration, n. In this test, we have taken the
same data as above, with ∆t = 10−2 and J = 500. This example numerically illustrates the
very good conservation of both the discrete mass and fractional energy as functions of time.

3. Domain decomposition method for the space FSE

In this section, we derive the SWR method and analyze its convergence and computa-
tional complexity. Some illustrative numerical examples are then proposed and convergence
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Figure 3: Evolution of the relative variation of the discrete mass and energy vs n.

properties are numerically exhibited.

3.1. Derivation of the SWR DDM for the FSE

We describe here a non-overlapping Schwarz waveform relaxation (ε = 0) method for

solving (1) on Ω = Ω− ∪Ω+ (with Ω− ∩Ω+ = ∅). We recall that u
(k)
± denotes the solution in

Ω± at Schwarz iteration k > 0. For technical reasons, u± is defined in all [0, T ]×Ω, although

it is only updated from computations in Ω±. Moreover, u
(0)
± is initially set to zero. We then

solve for k > 1

i∂tu
(k)
± + (−4)α/2u

(k)
± + V (x)u

(k)
± = 0, (t, x) ∈ [0, T ]× Ω± ,

u
(k)
± = u

(k−1)
∓ , (t, x) ∈ [0, T ]× Ω∓ .

Denoting by u
n;(k)
±;i the approximate solution at Schwarz iteration k, time tn and point xi,

the numerical scheme, for 1 6 i 6 J/2, reads as follows in Ω+

u
n+1;(k)
+;i = u

n;(k)
+;i −

i∆t

2

[∑
j>1

(
u
n;(k)
+;i − u

n;(k)
+;i+j

)
wj +

∑
j>1

(
u
n+1;(k)
+;i − un+1;(k)

+;i+j

)
wj∑

16j6i−1

(
u
n;(k)
+;i − u

n;(k)
+;i−j

)
wj +

∑
j>i

(
u
n;(k)
+;i − u

n;(k−1)
−;j

)
wj

]
+
i∆t

2
V +
i (u

n;(k)
+;i + u

n+1;(k)
+;i ),

(17)
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where V +
i = V (xi), and in Ω− as

u
n+1;(k)
−;i = u

n;(k)
−;i −

i∆t

2

[∑
j>1

(
u
n;(k)
−;i − u

n;(k)
−;i−j

)
wj +

∑
j>1

(
u
n+1;(k)
−;i − un+1;(k)

−;i−j
)
wj

+
∑

16j6J/2−i
(
u
n;(k)
−;i − u

n;(k−1)
−;i+j

)
wj +

∑
j>J/2−i

(
u
n;(k)
−;i − u

n;(k−1)
+;j

)
wj

]
+
i∆t

2
V −i (u

n;(k)
−;i + u

n+1;(k)
−;i ) ,

(18)

where V −i = V (xi−J/2) and wj designates one of the weights (8) or (9). These schemes can
simply be rewritten, for all k > 1 until convergence, as(

I +
i∆t

2
AV,±

)
u
n+1;(k)
± =

(
I −

i∆t

2
AT
V,∓

)
u
n;(k)
± + F

n+1;(k−1)
± + F

n;(k−1)
± , (19)

where AV,+ = AT
V,− ∈ RJ/2×J/2 and F

n;(k−1)
± ∈ CJ/2 are constructed from (17) and (18).

Alternatively, a backward Euler scheme in time reads(
I + i∆tAV,±

)
u
n+1;(k)
± = u

n;(k)
± + F

n+1;(k−1)
± . (20)

Regarding the convergence criterion, we denote by vn;(k) = {vn;(k)
j }j the concatenation of

u
n;(k)
− and u

n;(k)
+ . We stop the iteration in k when the following relative error is less than a

small enough prescribed parameter δ > 0,

max
16n6NT

‖vn;(k) − vn;(k−1)‖2;J

‖vn;(k)‖2;J

6 δ , (21)

where we have defined

v
n;(k)
j =

{
u
n;(k)
−;j+J/2, if − J/2 + 1 6 j 6 0,

u
n;(k)
+;j , if 1 6 j 6 J/2.

There are three main advantages of the proposed method:

• No overlap is needed (Ω+ ∩ Ω− = ∅).

• The algorithm is embarrassingly parallel, thanks to the Schwarz waveform relaxation
approach.

• The transmission condition is trivial to implement and is computationally very cheap.

3.2. Computational complexity

In order to compute the local solution u
(k)
± at Schwarz iteration k in a given domain

Ω±, it is necessary to have access to the solution u
(k−1)
∓ at the previous iteration (k − 1) in

the complementary subdomain Ω∓; this is indeed necessary to compute both F
n;(k−1)
± and

F
n+1;(k−1)
± . The term F

(k−1)
± is computed by the processors of the node where u

(k−1)
∓ is stored

9



and updated. Then, at time iteration n + 1, we only transfer F
n;(k−1)
± and F

n+1;(k−1)
± from

Ω∓ to Ω± in order to update u
n+1;(k−1)
± (see also (19)).

In order to specify the overall computational complexity, let us discuss this question
for P non-overlapping subdomains ∪Pp=1Ωp = Ω, with corresponding solutions u

n;(k)
p on a

P node/processor computer. By default on a spatial grid with J points and for NT time
iterations, the overall complexity of the direct implicit Crank-Nicolson fractional Schrödinger
equation solver is O(NTJ

3), since (I+i∆t/2AV ) ∈ RJ×J is a full matrix. The SWR method
requires to solve in parallel P local FSEs on grids involving J/P points. However, in addition
to solving these local FSEs, it is also necessary to compute the transmitted information via
the right hand sides (corresponding for instance to F

n+1;(k−1)
± in (19) when P = 2). For each

processor l ∈ {1, · · · , P}, at each Schwarz iteration k and any time step n+ 1, we need

• to solve a full J/P× J/P linear system, which requires O
(
(J/P)3

)
operations,

• to compute F
n;(k−1)
lp for each p ∈ {1, · · · , P}\{l}, corresponding to the contribution

from the (k−1)-th Schwarz iteration which must be sent to the (P−1) other processors

for computing the solution in Ωp. Each term F
n;(k)
lp requires O(J/P) operations, for a

total of O(J) operations for Processor l.

This leads to the following proposition.

Proposition 3.1. Consider the backward Euler (20) or the Crank-Nicolson scheme (19) for
solving the FSE (1). Then, for NT time iterations and for a spatial grid with J points, the
computational complexity of the sequential solver (10) is O(NTJ

3). On P processors, and
assuming that the SWR method requires kδ iterations to converge up to a prescribed tolerance
δ, the overall computational complexity is O

(
NTkδ(J

3/P2 + PJ)
)
. The SWR DDM is hence

efficient as long as kδ = o(P2) and kδ = o
(
J2/P

)
.

Regarding the data transmission, for each processor l ∈ {1, · · · , P}, each Schwarz iteration
and each time iteration, it is necessary to transmit P−1 vectors of size J/P to the other P−1
processors, while it is needed to store the local solutions at anytime, which can potentially
be problematic from the memory point of view.

3.3. Convergence analysis of the SWR DDM for the FSE

We now establish the convergence of the SWR DDM derived above.

Proposition 3.2. For any u
n;(0)
± , the algorithms (19) and (20) with null potential (V = 0)

are convergent.

Proof. Let us study the convergence of (20). The Crank-Nicolson version is a little bit more
technical but is fundamentally similar. In order to study the convergence of the algorithm,
let us rewrite the scheme (20) as follows(

I + i∆tA±
)
u
n+1;(k)
± = u

n;(k)
± − i∆tB±u

n+1;(k−1)
∓ , (22)
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where the matrices B+ and B− = BT
+ ∈ RJ/2×J/2 correspond to the contribution of the

coefficients {wj}|j|>J/2. Let us define vn;(k) = (u
n;(k)
− ,u

n;(k)
+ )T and

B =

(
I + i∆tAT

+ O
O I + i∆tA+

)
, C = −i∆t

(
O BT

+

B+ O

)
.

Thus, we have

Bvn+1;(k) = vn;(k) +Cvn+1;(k−1) .

Then, for k > 2, we obtain

vn+1;(k) − vn+1;(k−2) = B−1
(
vn;(k) − vn;(k−2)

)
+B−1C

(
vn+1;(k−1) − vn;(k−3)

)
.

We deduce that for any k > 2

‖vn+1;(k) − vn+1;(k−2)‖2,J 6 |||B−1||| × ‖vn;(k) − vn;(k−2)‖2,J

+|||B−1C||| × ‖vn+1;(k−1) − vn+1;(k−3)‖2,J .

An induction argument on n < NT allows to conclude: indeed for n = 1, we simply use that
v

0;(k)
± = u

(k)
± (0, ·) = u0|Ω± . Assuming that the convergence occurs at time iteration n > 1,

there exists 0 < cn < 1, such that

‖vn+1;(k) − vn+1;(k−2)‖2,J = |||B−1|||ckn + |||B−1C||| × ‖vn+1;(k−1) − vn;(k−3)‖2,J .

It is easy to deduce that there exists a positive constant D > 0, such that

‖vn+1;(k) − vn+1;(k−2)‖2,J = Dckn + |||B−1C|||k−1 × ‖vn+1,(1) − vn,(0)‖2,J .

By construction (see for instance Fig. 1), we trivially have |||B−1C||| < 1, which allows us
to conclude. �

The assumption on the potential easily ensures the convergence of the algorithm thanks
to the fact that |||B−1C||| < 1. In presence of a potential, we still expect this inequality
to be satisfied, as long as ∆t (or ‖V ‖∞) is small enough. Otherwise, the proof of conver-
gence may require additional technical steps. At the purely continuous level, the convergence
rate of the SWR method could possibly be improved by the construction of “local-in-space”
transmission conditions, as it is the case for standard SWR methods applied to classical and
quantum wave equations. The principle of the derivation of efficient (for fast convergence of
the SWR solver) transmission conditions is often based on a Nirenberg factorization of the
considered operator [33, 34, 56]. Such factorizations then allow to construct transparent-like
transmission conditions. For the classical Schrödinger equation, these transmission condi-
tions are typically Dirichlet-to-Neumann operators. We refer to [4, 5, 8, 30] for more details.
Transparent-like transmission conditions for fractional Schrödinger equations will be inves-
tigated in future works. The starting point would then be, for constant potentials, the
factorization of the fractional operator P := ∂t − iV − i(−∂2

x)
α/2 as follows

P =
(√

∂t − iV − eiπ/4(−∂2
x)
α/4
)(√

∂t − iV + eiπ/4(−∂2
x)
α/4
)
,

which would lead to the corresponding transparent operators used as the transmission con-
ditions based on

√
∂t − iV ± eiπ/4(−∂2

x)
α/4. Space-dependent potentials would require more

advanced symbolic computation and pseudodifferential calculus (see for instance [5, 6, 56]).
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4. Numerical examples

In this subsection, we propose some numerical examples illustrating the convergence of
the SWR DDM, and we exhibit some properties related to the rate of convergence depending
on α, ∆t, and ∆x. We start by analyzing in details the case of the linear FSE and then
extend the algorithm to the nonlinear case to show its behavior.

4.1. The linear fractional Schrödinger equation

We propose a first convergence test for the non-overlapping SWR method previously
developed with α = 0.5 for the case of the linear FSE. The computational domain is Ω =
(−4, 4), the initial data is u0(x) = exp

(
− 20x2 + 5ix

)
and the potential V is given by a

gaussian well: V (x) = V0 exp(−40x2). The final time is T = 5 and the time step is ∆t = 10−2,
corresponding to NT = 500 time iterations. The space step is set to ∆x = 4 × 10−2. We
report the solution of reference in Ω at final time T = 5 for V0 = 0 (free-space FSE), and
the solutions in Ω± after the first Schwarz (k = 1) iteration in Fig. 4 (Top-Left) and at
convergence (k = kδ) in Fig. 4 (Top-Right). We also plot in Fig. 4 (Bottom-Left) the error
between the mass (resp. total energy) of the reconstructed global solution v (from u±) at
each Schwarz iteration k and the mass (resp. total energy) of the converged solution vNT ;(k∞),
i.e.

∆N (k) = |NNT ;(k) −NNT ;(k∞)| ,
and

∆ENT ;(k) = |ENT ;(k) − ENT ;(k∞)| ,
at final time iteration NT . This shows that the two conservation laws hold at convergence.
In Fig. 4 (Bottom-Right), we report the graph of convergence of the SWR method, i.e. the
relative `2-norm error given by (21) as function of k for both the free-space case V0 = 0 and
for V0 = 100. The presence of the potential does not really affect the convergence rate. In
this first example, we fixed the stopping criterion to an error less than δ = 10−14. From this
first example, we can see that the SWR DDM is an efficient convergent algorithm.

We consider the same data as before except that α varies from 0.2 to 1.4, and we fix
V0 = 0. We observe on Fig. 5 (Top-Left) that the convergence of the SWR algorithm strongly
depends on the value of α : more specifically, the larger α, the slower the convergence. Let
us now consider again the same parameters but for the fixed value α = 0.3, and we let
the time (resp. space) step varies, for ∆x = 8/199 (resp. ∆t = 1/40). We plot in Fig. 5
(Top-Right and Bottom) the convergence rate of the SWR method vs the time and space
steps, illustrating that the larger (resp. smaller) the space (resp. time) step, the faster the
convergence.

In fact, we can extract some specific information from this test. It is well-known that for
classical Schrödinger equations (α = 2), the rate of convergence (in the asymptotic regime)
of the SWR methods corresponds to the contraction factor K of a fixed point algorithm
[4, 5, 6, 8, 17, 30]. We hereafter assume that the contraction factor K for the proposed SWR
method is of the form

K(α,∆t,∆x) := exp
(
− f(α,∆t,∆x)

)
.
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Figure 4: Solutions at final time T = 5 (Top-Left) at iteration k = 1 and (Top-Right) at convergence k = kδ.
(Bottom-Left) Error on the total mass and total energy at final time, in semi-logscale. (Bottom-Right)
Convergence of the SWR method : relative `2-norm error as a function of Schwarz iterations.

In order to estimate the dependence in ∆t and ∆x through the function f , at fixed iterations
k = 12, 14, 16 and ∆x, we report in Fig. 6 (Left) the following graph{

∆t, log
∣∣ log

(
K(α,∆t,∆x)

)∣∣} .
We find that this graph is a straight line, with a slope given by ≈ −0.3, that is −α. This
was numerically confirmed by performing the same test with different values of α. This
suggests that the dependence in ∆t within the contraction factor is of the form∝ exp(−α∆t).
Similarly, in order to estimate the dependence in ∆x in K, we report in Fig. 6 (Right) at
fixed iterations k = 11, 12, 13 and fixed ∆t = 1/20, the following graph{

log(∆x), log
∣∣ log(K

(
α,∆t,∆x)

)∣∣} .
Assuming that the dependence inside the contraction factor is ∝ ∆xβ, we find a slope
≈ 0.14 which is close to β = α/2; this allows us to conjecture that the dependence inside the
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Figure 5: Convergence of the SWR method for different values of α (Top-Left), for different time steps ∆t
(Top-Right) and for different space discretizations ∆x (Bottom).

contraction factor is ∝ ∆xα/2, which is actually consistent with the case of the SWR method
for the standard Schrödinger equation (α = 2) (see e.g. [4, 5, 6, 8, 30]) where is proven the
dependence ∝ ∆x inside the function f . This conjecture was yet confirmed through more
computations with other values of α. In fine, these experiments, in particular the fact that
the convergence rate is a decreasing function of α, lead to the following conjecture.

Conjecture 1. The convergence rate K(α,∆t,∆x) of the SWR method (19) for the one-
dimensional free-space FSE (1) is of the form

K(α,∆t,∆x) ∝ exp
(
− c(α)e−α∆t∆xα/2

)
,

for some positive function c of α.

This conjecture will be mathematically investigated in a future work.
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4.2. The nonlinear fractional Schrödinger equation

For completeness, we propose an extension of the proposed method to nonlinear fractional
Schrödinger equations (NFSE)

i∂tu+ (−4)α/2u+ V (x)u+ F(u)u = 0, u(0, x) = u0(x), u(t, ∂Ω) = 0 , (23)

where F(u) is a nonlinear potential. For such an equation, both the mass and the total
fractional energy are conserved (see also (27)) when Ω := Rd.

The extension of the SWR DDM is straightforward, if we use an explicit representation
of the nonlinear potential, that is F(un±). Denoting by u

n;(k)
±;i the approximate solution at

Schwarz iteration k, time tn and point xi, the numerical scheme that we propose for the
nonlinear case, for 1 6 i 6 J/2, reads in Ω+

v
n+1/2;(k)
i;+ + v

n−1/2;(k)
i;+

2
= F(u

n;(k)
+;i )

u
n+1;(k)
+;i = u

n;(k)
+;i −

i∆t

2

[∑
j>1

(
u
n;(k)
+;i − u

n;(k)
+;i+j

)
wj +

∑
j>1

(
u
n+1;(k)
+;i − un+1;(k)

+;i+j

)
wj∑

16j6i−1

(
u
n;(k)
+;i − u

n;(k)
+;i−j

)
wj +

∑
j>i

(
u
n;(k)
+;i − u

n;(k−1)
−;j

)
wj

]
=

i∆t

2
v
n+1/2;(k)
+;i (u

n;(k)
+;i + u

n+1;(k)
+;i ), (24)
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and as follows in Ω−

v
n+1/2;(k)
i;− + v

n−1/2;(k)
i;−

2
= F(u

n;(k)
+;− )

u
n+1;(k)
−;i = u

n;(k)
−;i −

i∆t

2

[∑
j>1

(
u
n;(k)
−;i − u

n;(k)
−;i−j

)
wj +

∑
j>1

(
u
n+1;(k)
−;i − un+1;(k)

−;i−j
)
wj

+
∑

16j6J/2−i

(
u
n;(k)
−;i − u

n;(k−1)
−;i+j

)
wj +

∑
j>J/2−i

(
u
n;(k)
−;i − u

n;(k−1)
+;j

)
wj

]
+

i∆t

2
v
n+1/2;(k)
−;i

(
u
n;(k)
−;i + u

n+1;(k)
−;i

)
. (25)

The discretization of the nonlinearity is based on a relaxation scheme which was developed
in [15] for α = 2. Here, we fixed the initial values as follows v

−1/2;(k)
i;± = v

1/2;(k)
i;± = F(u

0;(k)
i;± ).

For the standard integer case, the relaxation scheme scheme allows for a mass and modified
total energy conservation for the power-law nonlinearity case F(u) = κ|u|2σ, where κ is the
nonlinearity strength and σ > 1 (σ = 1 corresponds to the cubic case). When discretizing
by the relaxation scheme, then the total discrete mass (11) is still conserved as well as the
modified discrete fractional total energy defined by

En :=
1

2
(Aun,un)2,J + (V un,un)2,J +

κ

2 + 2σ
(vn−1/2,vn+1/2)2,J , (26)

where A is the matrix related to the fractional Laplacian and V to the potential. The
discretization (26) provides an approximation of the continuous fractional energy given by

E(t) :=
1

2

∫
Ω

ū(−4)α/2udΩ +

∫
Ω

V |u|2dΩ +
κ

2 + 2σ

∫
Ω

|u|2+2σdΩ,∀t > 0, (27)

which is proved to be conserved [11, 12] when Ω = Rd.
In the following example, we consider the cubic NFSE (σ = 1) with nonlinearity strength

κ = ±5,±50 and fractional exponent α = 1.9. The computational domain is (−5/2, 5/2),
∆t = 10−4, NT = 5× 102, J = 100, and the initial data is exp(−5x2 + 10ix). We report the
solution for κ = 5 after the first and last (converged) SWR iterations in Fig. 7, as well as the
graph of convergence for the different values of κ. Interestingly, the convergence rate of the
SWR method in this case seems independent of the value of κ. This is relatively coherent
with the conclusion from the linear case where the potential V does not seem to affect the
convergence rate. Here, within the relaxation scheme, the nonlinearity is indeed considered
as a potential. The graphs of the relative error for both the discrete mass and modified
fractional energy of the converged solution are also represented in Fig. 7 (Bottom-Right)
for κ = 5. This shows that both the mass and modified energy are very well conserved,
suggesting that the relaxation scheme [15] is still applicable to the cubic NFSE.
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5. Extension to fractional heat equations

It is worthwhile remarking that the DDM which was proposed in this paper is actually
directly applicable to the Fractional Heat Equation (FHE)

∂tu+ (−4)α/2u+ V (x)u = 0, u(0, x) = u0(x), u(t, ∂Ω) = 0 , (28)

with α ∈ (0, 2). The FHE has been introduced to model anomalous diffusion [51] when the
stochastic process driving the medium is a Lévy α-stable flight. Other applications can also
involved nonlinear versions of the FHE as fractional Cahn-Allen [45, 54] and Cahn-Hillard
equations [2, 66] where our SWR DDM may apply.

The numerical schemes for solving (28) are trivially adapted from (10) and (15), where
now the `2-norm is naturally not preserved anymore(

I +
∆t

2
AV

)
un+1 =

(
I −

∆t

2
AV

)
un,
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where AV is the full real matrix deduced from (7) removing the i-term, and ‖un+1‖2,J 6
‖un‖2,J . It is of course possible to use a standard backward Euler scheme in time following(

I + ∆tAV

)
un+1 = un .

The conclusions of Proposition 2.1 remain valid. The SWR DDM derived and analyzed in
Section (3) are also still applicable to the fractional heat equation and reads(

I +
∆t

2
AV,±

)
u
n+1;(k)
± =

(
I −

∆t

2
AT
V,∓

)
u
n;(k)
± + F

n+1;(k−1)
± + F

n;(k−1)
± ,

where AV,+ = AT
V,− ∈ RJ/2×J/2 and F

n;(k−1)
± ∈ CJ/2 are constructed from (17) and (18) by

simply removing the i-term. Alternatively, a backward Euler scheme in time, reads(
I + ∆tAV,±

)
u
n+1;(k)
± = u

n;(k)
± + F

n+1;(k−1)
± .

As a simple illustration of this DDM over (−4, 4) and T = 5, with an initial data given
by u0(x) = exp(−20x2), we report in Fig. 9 (Left), the graph of convergence of the DDM
method for the heat equation with α = 0.5, V0 = 0, J = 200 and ∆t = 10−2. In Fig. 9
(Right), the corresponding converged solution is also plotted.
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Figure 8: (Left) Convergence of Schwarz waveform relaxation method for the FHE (α = 0.5): relative
`2-norm error as a function of the Schwarz iterations k. (Right) Converged solution.

Finally, we compare the rate of convergence of the SWR DDM for the FHE with α
close to 2, here α = 1.99, and for the standard heat equation (corresponding to α = 2)
on (−4, 4) with the classical SWR (Dirichlet-based SWR) using a non-overlapping Crank-
Nicolson scheme [25]. We take V (x) = V0 exp(−10x2), with V0 = 5, 50, 500, and J = 200,
∆t = 10−3, NT = 102. Interestingly for large values of V0, the convergence rate of both SWR
methods seems to be comparable. However, the smaller the magnitude of the potential, the
slower the convergence rate of the SWR method for the FHE (for α = 1.99). Notice that the
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SWR method for the FHE can be improved for α close to 2, since in this case the sequence
{wj} is rapidly decreasing to 0, suggesting that most of the coefficients could be dropped
(corresponding to a localization of the approximate fractional Laplacian) while still keeping
a good accuracy.
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Figure 9: Convergence of Schwarz waveform relaxation method: relative `2-norm error as a function of
Schwarz iterations: comparison between the FHE with α = 1.99 and standard heat equation with Crank-
Nicolson discretization.

6. Conclusion

In this paper, we have derived, analyzed and implemented a simple DDM for computing
in parallel the numerical solution of the one-dimensional linear and nonlinear space fractional
Schrödinger equations, as well as fractional heat equation. The convergence of the method
was established, as well as its computational complexity. An estimation of its convergence
rate was also proposed thanks to numerical experiments and using the standard theory
of SWR methods for classical Schrödinger equations. Due to the structure of the fractional
Schrödinger operator, the transmission conditions are non-local in space but local in time. In
order to improve the efficiency of the method, local-in-space transmission conditions should
then be investigated. Regarding the acceleration of the convergence rate, a natural approach
would be to develop transparent or absorbing transmission conditions, as commonly done
for standard Schrödinger equations, while however keeping locality in time. Future works
will also focus on the analysis of the SWR methods for multi-dimensional equations.
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