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This paper is dedicated to the derivation and analysis of a Schwarz waveform relaxation domain decomposition method for solving time-dependent linear/nonlinear space fractional Schrödinger and heat equations. Along with the details of the derivation of the method and some mathematical properties, we also propose some illustrating numerical experiments and conjectures on the rate of convergence of the method.

Introduction

In this paper, we derive and analyze a Schwarz Waveform Relaxation (SWR) Domain Decomposition Method (DDM) for the time-dependent linear space Fractional Schrödinger Equation (FSE): for all (t, x) ∈ [0; T ] × Ω, with maximal time T > 0, and a one-dimensional bounded domain Ω ⊆ R, compute u := u(t, x) solution to i∂ t u + (-) α/2 u + V (x)u = 0, u(0, x) = u 0 (x), u(t, ∂Ω) = 0 ,

with fractional exponent α ∈ (0, 2) and setting i := √ -1. The spatial potential is described by a function V ∈ L ∞ (Ω). We set homogeneous Dirichlet boundary conditions but the extension to other kinds of boundary conditions can be also considered. The initial data is a given function u 0 in Ω. Let us recall that the Riemann-Liouville-based definition of the fractional Laplace operator in d-dimension reads (see [START_REF] Di Nezza | Hitchhiker's guide to the fractional Sobolev spaces[END_REF]), for α ∈ (0, 2) and any u ∈ S(R d ), as follows (-) α/2 u(x) = C(α) lim

ε→0 + R d \Bε(x) u(x) -u(y) |x -y| d+α dy, (2) 
where B ε (x) is the ball of radius ε and center x, C(α) is the constant defined by

C(α) := R d 1 -cos(ξ 1 ) |ξ| d+α dξ -1 , (3) 
with ξ := (ξ 1 , ..., ξ d ) ∈ R d . In addition, for system (1) but set in Ω := R d , i) the mass

N (t) := Ω |u| 2 dΩ = Ω |u 0 | 2 dΩ, ∀t > 0, (4) 
and ii) the total energy

E(t) := 1 2 Ω ū(-) α/2 udΩ + Ω V (x)|u| 2 dΩ = E(t = 0), ∀t > 0, (5) 
which is the sum of the fractional kinetic energy and the potential energy, are both conserved.

For Ω := R d , some definitions of the fractional Laplacian can be equivalent [START_REF] Kwásnicki | Ten equivalent definitions of the fractional laplace operator[END_REF] and, for example for the Fourier spectral definition of the fractional Laplace operator, conservations properties as well as dynamical laws can be proved for nonlinear fractional Schrödinger and Gross-Pitaevskii equations (see e.g. [START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF] and Subsection 4.2). For a bounded domain, this is less clear and strongly depends on the definition of the fractional laplacian as well as the boundary conditions, which can lead to definitions which are no longer equivalent. Finally, the well-posedness of different versions of the fractional linear and nonlinear Schrödinger equations can be found for instance in [START_REF] Cho | On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity[END_REF][START_REF] Guo | Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation[END_REF][START_REF] He | Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities[END_REF][START_REF] Shang | On fractional Schrödinger equation in R n with critical growth[END_REF][START_REF] Teng | Multiple solutions for a class of fractional Schrödinger equations in R n . Nonlinear Anal[END_REF].

The space FSE was initially introduced by Laskin [START_REF] Laskin | Fractals and quantum mechanics[END_REF][START_REF] Laskin | Fractional quantum mechanics[END_REF][START_REF] Laskin | Fractional quantum mechanics and Lévy path integrals[END_REF]. Some important impacts concern fractional quantum dynamics based on the space or/and time Fractional Schrödinger equation and some nonlinear versions [START_REF] Achar | Time fractional Schrödinger equation revisited[END_REF][START_REF] Bao | Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars[END_REF][START_REF] Bhatti | Fractional Schrödinger wave equation and fractional uncertainty principle[END_REF][START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Dong | Space-time fractional Schrödinger equation with time-independent potentials[END_REF][START_REF] Elgart | Mean field dynamics of boson stars[END_REF][START_REF] Jonsson | Effective dynamics for boson stars[END_REF][START_REF] Lomin | Fractional-time quantum dynamics[END_REF][START_REF] Naber | Time fractional Schrödinger equation[END_REF][START_REF] Pinsker | Fractional quantum mechanics in polariton condensates with velocity-dependent mass[END_REF][START_REF] Wang | Generalized fractional Schrödinger equation with space-time fractional derivatives[END_REF]. The fractional nonlinear Schrödinger equation is used to describe the nonlocal phenomena in quantum physics and to explore the quantum behaviors of either long-range interactions or timedependent processes involving many scales [START_REF] Achar | Time fractional Schrödinger equation revisited[END_REF][START_REF] Bologna | Physics of Fractal Operators[END_REF][START_REF] Kirkpatrick | Fractional Schrödinger dynamics and decoherence[END_REF][START_REF] Kusnezov | Quantum Lévy processes and fractional kinetics[END_REF][START_REF] Laskin | Fractals and quantum mechanics[END_REF][START_REF] Laskin | Fractional quantum mechanics[END_REF][START_REF] Laskin | Fractional quantum mechanics and Lévy path integrals[END_REF][START_REF] Lomin | Fractional-time quantum dynamics[END_REF][START_REF] Naber | Time fractional Schrödinger equation[END_REF][START_REF] Tarasov | Fractional Heisenberg equation[END_REF][START_REF] West | Quantum Lévy propagators[END_REF]. For example, the nonlinear FSE is met when modeling quantum fluids of light [START_REF] Carusotto | Quantum fluids of light[END_REF], boson stars [START_REF] Bao | Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars[END_REF][START_REF] Elgart | Mean field dynamics of boson stars[END_REF][START_REF] Jonsson | Effective dynamics for boson stars[END_REF] and polariton condensates [START_REF] Pinsker | Fractional quantum mechanics in polariton condensates with velocity-dependent mass[END_REF]. Additional applications can also be found in linear and nonlinear optics [START_REF] Zhang | Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes[END_REF][START_REF] Zhang | Diffraction-free beams in fractional Schrödinger equation[END_REF] to understand the propagation of super-Gaussian beams. Therefore, designing efficient and accurate schemes to numerically compute the solution to such equations is of great interest.

During the past two decades, there has been a huge interest in computational methods for solving fractional PDEs including fractional Laplace, heat and Schrödinger equations [START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF][START_REF] Bhrawy | A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations[END_REF][START_REF] Duo | Mass conservative method for solving the fractional nonlinear Schrödinger equation[END_REF][START_REF] Hicdurmaz | A stable numerical method for multidimensional time fractional Schrödinger equation[END_REF][START_REF] Khaliq | A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations[END_REF][START_REF] Kirkpatrick | Fractional Schrödinger dynamics and decoherence[END_REF][START_REF] Liang | The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations[END_REF][START_REF] Lischke | What is the fractional Laplacian? A comparative review with new results[END_REF][START_REF] Mohebbi | The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics[END_REF][START_REF] Moret | Solving the time-fractional Schrödinger equation by Krylov projection methods[END_REF][START_REF] Ran | A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations[END_REF][START_REF] Wang | Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[END_REF][START_REF] Wang | Maximum-norm error analysis of a difference scheme for the space fractional CNLS[END_REF]. Practically, the choice of the computational method largely depends on the definition of the fractional Laplace operator. When using the spectral definition of the fractional derivatives, the numerical computation can for instance (at least with null Dirichlet boundary conditions) be reduced to solving fractional linear algebraic systems A α x = b [START_REF] Antoine | ODE-based double-preconditioning for solving linear systems A α x = b and f (A)x = b[END_REF][START_REF] Antoine | Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers[END_REF][START_REF] Lorin | A numerical study of fractional linear algebraic systems[END_REF]. Alternatively, the fractional Laplacian definition using Fourier-based fractional derivatives (Riesz) can be approximated using standard FFT [START_REF] Antoine | Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers[END_REF]. Riemann-Liouville or Caputo's based fractional derivatives are usually more difficult to numerically deal with. The latter are indeed defined by nonlocal integro-differential operators which require very special care in order to derive stable, accurate and efficient finite-difference or finite element solvers. We refer again to [START_REF] Lischke | What is the fractional Laplacian? A comparative review with new results[END_REF] for an overview of definitions and computational methods for the fractional Laplacian. Here, we use the method presented in [START_REF] Huang | Numerical methods for the fractional Laplacian: a finite difference-quadrature approach[END_REF] for approximating the fractional Laplace operator [START_REF] Ainsworth | Analysis and approximations of a fractional Cahn-Hilliard equation[END_REF].

In the present paper, we propose to derive and analyze a non-overlapping Schwarz Waveform Relaxation DDM for solving [START_REF] Achar | Time fractional Schrödinger equation revisited[END_REF] in parallel (see e.g. [START_REF] Al-Khaleel | Optimized waveform relaxation methods for longitudinal partitioning of transmission lines[END_REF][START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF][START_REF] Gander | Optimal Schwarz waveform relaxation methods for the one-dimensional wave equation[END_REF][START_REF] Gander | Optimized Schwarz methods[END_REF][START_REF] Gander | Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation[END_REF][START_REF] Halpern | Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation[END_REF][START_REF]A time-dependent Dirichlet-Neumann method for the heat equation[END_REF]). Most of the analysis and methods proposed here can actually be easily adapted to the fractional heat equation (as seen in Section 6). Let us remark that, to the best of the authors' knowledge, the only work related to DDM for fractional PDEs is [START_REF] Jiang | Domain decomposition methods for space fractional partial differential equations[END_REF]. In this contribution, the authors use additive Schwarz DDM on the algebraic discrete system for stationary fractional PDEs.

To start, we recall some basic facts about the SWR algorithm for solving a one-dimensional evolution PDE: P u = 0, with u(0, •) = u 0 , on two subdomains Ω ε ± , with boundary at ±ε/2

(ε 0) such that Ω = Ω ε + ∪ Ω ε -and overlapping region Ω ε + ∩ Ω ε -= (-ε/2, ε/2).
Solving the SWR DDM requires some transmission conditions at the subdomain interfaces. More specifically, for any Schwarz iteration k 1, the equation in

Ω ε ± reads              P u (k) ± = 0, on [0, T ] × Ω ε ± , B ± u (k) ± = B ± u (k-1) ∓ , at [0, T ] × {±ε/2}, u (k) ± (0, •) = u 0 (•) on Ω ε ± . (6) 
The notation u (k)

± stands for the solution u ± in [0, T ] × Ω ε ± at Schwarz iteration k 0. The key-point from the parallel computing point of view is the decoupling at Schwarz iteration k, of the two systems thanks to the transmission conditions involving data from the (k -1)-th Schwarz iteration on the right hand side of the second equation of [START_REF] Antoine | Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real-and imaginary-time nonlinear Schrödinger equation[END_REF]. Initially, u (0) ± are two given functions defined in Ω ε ± , typically taken null if no further information is provided. The operator B ± characterizes the type of SWR algorithm. In the Classical SWR (CSWR) case, B ± is simply the identity operator, B ± = ±∂ x + γId (γ ∈ R * + ) for the Robin SWR, and B ± is a nonlocal Dirichlet-to-Neumann-like (DtN) pseudodifferential operator for the Optimal SWR (OSWR). We refer to [START_REF] Antoine | Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves[END_REF][START_REF] Antoine | An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[END_REF][START_REF] Antoine | Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real-and imaginary-time nonlinear Schrödinger equation[END_REF][START_REF] Antoine | Asymptotic convergence rates of Schwarz waveform relaxation algorithms for Schrödinger equations with an arbitrary number of subdomains[END_REF][START_REF] Antoine | On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation[END_REF][START_REF] Besse | Domain decomposition algorithms for two-dimensional linear Schrödinger equation[END_REF][START_REF] Halpern | Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation[END_REF] for further reading for the case of the Schrödinger equation.

The rest of the paper is organized as follows. In Section 2, we present the numerical scheme for the discretization of the FSE, preserving both the mass and energy. In addition, the error on the scheme is given and numerical simulations allow to check the main properties. In Section 3, we derive the Schwarz waveform relaxation DDM. Its computational complexity is analyzed and its convergence is stated. Some numerical experiments, for the linear and nonlinear FSE, and a conjecture on the rate of convergence are proposed in Section 4. In Section, 5, we provide a straightforward extension of the proposed SWR DDM to the fractional heat equation. We conclude in Section 6.

Numerical discretization of the space FSE

The proposed numerical scheme is based on the finite-difference discretization of the fractional Laplace operator (2) which was derived and analyzed in [START_REF] Huang | Numerical methods for the fractional Laplacian: a finite difference-quadrature approach[END_REF]. We denote by {u n j } j a sequence of approximations of {u(t n , x j )} j , for an equally spaced finite-difference grid {x j } j with mesh size ∆x, and for the discrete times t 0 < t 1 < • • • < t n := n∆t < • • • T , with fixed time step ∆t such that N ∆t = T . The proposed Crank-Nicolson(CN) based scheme for (1) hence reads

u n+1 i = u n i + i∆t 2 j 1 (2u n i -u n i+j -u n i-j )w F,G j + i∆t 2 j 1 (2u n+1 i -u n+1 i+j -u n+1 i-j )w F,G j + i∆t 2 V j (u n i + u n+1 i ) , (7) 
where according to [START_REF] Huang | Numerical methods for the fractional Laplacian: a finite difference-quadrature approach[END_REF], for any j ∈ Z the weights w F j are given by

w F j = ∆x -α    C 1,α 2 -α -F (1) + F (2) -F (1), j = ±1 , F (j + 1) -2F (j) + F (j -1), j = ±2, ±3, • • • (8) 
with

F (t) =    C 1,α α(α -1) |t| 1-α , α = 1 -C 1-α log |t|, α = 1 , C 1,α = 2 α-1 αΓ α + 1 α π 1/2 Γ 2 -α 2 
,
designating by Γ the Gamma special function. Alternatively, it is possible to get a higher order approximation of the fractional Laplacian thanks to the following weights: for any

j ∈ Z w G j = ∆x -α            C 1,α 2 -α -G (1) - G (3) + 3G (1) 2 + G(3) -G(1) j = ±1 , 2 G (j + 1) + G (j -1) -G(j + 1) + G(j -1) , j = ±2, ±4, • • • - G (j + 2) + 6G (j) + G (j -2) 6 + G(j + 2) -G(j -2), j = ±3, ±5, • • • (9) 
with

G(t) =    C 1,α α(α -1)(2 -α) |t| 2-α , α = 1 , C 1-α (t -log |t|), α = 1 .
For instance, we report in semilogscale on Fig. 1 the values of the weights {w F j } 1 j J and {w G j } 1 j J , for J = 50. Figure 1: Weights {w F j } 1 j J and {w G j } 1 j J (for J = 50) used in the fractional Schrödinger equation solver.

For n = 1, u 0 given as the projection of u 0 on the finite-difference grid {x j = j∆x} j∈J , setting J = {-J/2 + 1 j J/2}, and with homogeneous Dirichlet boundary conditions at the ghost points x -J/2 and x J/2+1 (J ∈ 2N and Ω = [x -J/2 ; x J/2+1 ]), the scheme can simply be rewritten in the form

I + i∆t 2 A V u n+1 = I - i∆t 2 A V u n , (10) 
where

A V = A + V ∈ R J×J
is the full real-valued symmetric matrix, A is the full positive definite (SPD) J × J matrix with coefficients deduced from [START_REF] Antoine | Asymptotic convergence rates of Schwarz waveform relaxation algorithms for Schrödinger equations with an arbitrary number of subdomains[END_REF] for the fractional Laplacian, and V is the diagonal matrix part representing the potential. More specifically, the entries of A are defined as follows: A i,i = 2 1 j J w F,G j and A i,i-j = -w F,G j for 1 j i -1 and A i,i+j = -w F,G j for 1 j J -i. The complex-valued vector is u n = (u n j ) T j∈J ∈ C J . This scheme trivially conserves the mass, for all n ∈ N,

N n+1 := u n+1 2 2,J = u n 2 2,J =: N n , (11) 
where the 2,J -norm is defined by

u 2,J = (u, u) 1/2 2,J := √ ∆x( j∈J |u j | 2 ) 1/2 ,
and the inner product by (u, v) 2,J := ∆x

j∈J u j v j , (12) 
with u ∈ C J and v ∈ C J . Let us define now the discrete fractional energy by

E n := 1 2 (Au n , u n ) 2,J + (V u n , u n ) 2,J . (13) 
Then, since A is SPD, we can easily deduce that the discrete fractional energy conservation holds

E n = E 0 , ∀n ∈ N, (14) 
by adapting the proof from [START_REF] Ran | A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations[END_REF][START_REF] Wang | Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[END_REF][START_REF] Wang | Maximum-norm error analysis of a difference scheme for the space fractional CNLS[END_REF]. It is also possible to use a standard first-order backward Euler scheme in time following

I + i∆tA V u n+1 = u n . ( 15 
)
Let us now define the uniform norm

||u|| ∞,J = max j∈J |u j | , (16) 
and the infinite norm error e(∆t, ∆x) := max

0 n N ||u n -u n ref || ∞,J ,
where u n ref is the exact solution at time t n evaluated at the J spatial grid points. Based on [START_REF] Huang | Numerical methods for the fractional Laplacian: a finite difference-quadrature approach[END_REF] and standard results, we get the following proposition.

Proposition 2.1. The CN scheme (10) (resp. backward Euler scheme (15)) constructed from (7) is consistent with (1), unconditionally stable, and its truncation error e(∆t, ∆x) is such that

• if the weights {w j } j are given by (8), then:

e(∆t, ∆x) = O(∆x 2-α ) + O(∆t 2 ) (resp. e(∆t, ∆x) = O(∆x 2-α ) + O(∆t)).
• if {w j } j are defined from (9), then:

e(∆t, ∆x) = O(∆x 3-α )+O(∆t 2 ) (resp. e(∆t, ∆x) = O(∆x 3-α ) + O(∆t)).
In order to illustrate the order of convergence of the scheme and to check the conservation laws, we consider the discretization to (1) for α = 0.5 on the computational domain Ω = (-10, 10). The initial condition is u 0 (x) = exp(-10x 2 + 2ix) and we take V = 0. We use the F -scheme ( 8) for the Crank-Nicolson approximation in time. Theoretically, the expected order of convergence in space for the scheme ( 7) with the F -weights is 2 -α = 1.5 (see [START_REF] Huang | Numerical methods for the fractional Laplacian: a finite difference-quadrature approach[END_REF]) and 2 in time. Numerically, we test the spatial convergence by making vary the number of grid points J from 32 to 4096. The final time is set to T = 5 × 10 -1 and the time step is ∆t = 10 -2 . We report in logscale in Fig. 2 (Left) the absolute 2,J -norm error

u N ref -u N 2,J
at final time t N = T as a function of the space step ∆x, where the reference solution u N ref is computed on the finest mesh ∆x = 2 -11 . As expected, we numerically obtain a convergence order in space close to 1.5. Regarding the convergence in time, we fix the number of grid points to J = 1024 and final time to T = 2.5 × 10 -1 . The time step ∆t varies from 2 -7 to 2 -11 . We report the absolute 2,J -norm error at final time in logscale as a function of ∆t in Fig. 2 (Right). The convergence in time is close to 2, as theoretically expected. Finally, in Fig. 3 we report the relative variation of the mass (resp. energy)

|N n -N 0 |/N 0 (resp. |E n -E 0 |/E 0 )
as a function of the time iteration, n. In this test, we have taken the same data as above, with ∆t = 10 -2 and J = 500. This example numerically illustrates the very good conservation of both the discrete mass and fractional energy as functions of time.

Domain decomposition method for the space FSE

In this section, we derive the SWR method and analyze its convergence and computational complexity. Some illustrative numerical examples are then proposed and convergence properties are numerically exhibited.

Derivation of the SWR DDM for the FSE

We describe here a non-overlapping Schwarz waveform relaxation (ε = 0) method for solving [START_REF] Achar | Time fractional Schrödinger equation revisited[END_REF] on Ω = Ω -∪ Ω + (with Ω -∩ Ω + = ∅). We recall that u (k) ± denotes the solution in Ω ± at Schwarz iteration k 0. For technical reasons, u ± is defined in all [0, T ] × Ω, although it is only updated from computations in Ω ± . Moreover, u

± is initially set to zero. We then solve for k 1

i∂ t u (k) ± + (-) α/2 u (k) ± + V (x)u (k) ± = 0, (t, x) ∈ [0, T ] × Ω ± , u (k) ± = u (k-1) ∓ , (t, x) ∈ [0, T ] × Ω ∓ . Denoting by u n;(k) ±;i
the approximate solution at Schwarz iteration k, time t n and point x i , the numerical scheme, for 1 i J/2, reads as follows in Ω +

u n+1;(k) +;i = u n;(k) +;i - i∆t 2 j 1 u n;(k) +;i -u n;(k) +;i+j w j + j 1 u n+1;(k) +;i -u n+1;(k) +;i+j w j 1 j i-1 u n;(k) +;i -u n;(k) +;i-j w j + j i u n;(k) +;i -u n;(k-1) -;j w j + i∆t 2 V + i (u n;(k) +;i + u n+1;(k) +;i ), (17) 
where

V + i = V (x i )
, and in Ω -as

u n+1;(k) -;i = u n;(k) -;i - i∆t 2 j 1 u n;(k) -;i -u n;(k) -;i-j w j + j 1 u n+1;(k) -;i -u n+1;(k) -;i-j w j + 1 j J/2-i u n;(k) -;i -u n;(k-1) -;i+j w j + j>J/2-i u n;(k) -;i -u n;(k-1) +;j w j + i∆t 2 V - i (u n;(k) -;i + u n+1;(k) -;i ) , (18) 
where

V - i = V (x i-J/2
) and w j designates one of the weights (8) or [START_REF] Antoine | ODE-based double-preconditioning for solving linear systems A α x = b and f (A)x = b[END_REF]. These schemes can simply be rewritten, for all k 1 until convergence, as

I + i∆t 2 A V,± u n+1;(k) ± = I - i∆t 2 A T V,∓ u n;(k) ± + F n+1;(k-1) ± + F n;(k-1) ± , (19) 
where 17) and ( 18). Alternatively, a backward Euler scheme in time reads

A V,+ = A T V,-∈ R J/2×J/2 and F n;(k-1) ± ∈ C J/2 are constructed from (
I + i∆tA V,± u n+1;(k) ± = u n;(k) ± + F n+1;(k-1) ± . ( 20 
)
Regarding the convergence criterion, we denote by

v n;(k) = {v n;(k) j } j the concatenation of u n;(k) - and u n;(k) +
. We stop the iteration in k when the following relative error is less than a small enough prescribed parameter δ > 0, max

1 n N T v n;(k) -v n;(k-1) 2;J v n;(k) 2;J δ , (21) 
where we have defined

v n;(k) j = u n;(k) -;j+J/2 , if -J/2 + 1 j 0, u n;(k) +;j , if 1 j J/2.
There are three main advantages of the proposed method:

• No overlap is needed (Ω + ∩ Ω -= ∅).
• The algorithm is embarrassingly parallel, thanks to the Schwarz waveform relaxation approach.

• The transmission condition is trivial to implement and is computationally very cheap.

Computational complexity

In order to compute the local solution u (see also [START_REF] Bhrawy | A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations[END_REF]). In order to specify the overall computational complexity, let us discuss this question for P non-overlapping subdomains ∪ P p=1 Ω p = Ω, with corresponding solutions u n;(k) p on a P node/processor computer. By default on a spatial grid with J points and for N T time iterations, the overall complexity of the direct implicit Crank-Nicolson fractional Schrödinger equation solver is O(N T J 3 ), since (I + i∆t/2A V ) ∈ R J×J is a full matrix. The SWR method requires to solve in parallel P local FSEs on grids involving J/P points. However, in addition to solving these local FSEs, it is also necessary to compute the transmitted information via the right hand sides (corresponding for instance to F n+1;(k-1) ± in [START_REF] Bhrawy | A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations[END_REF] when P = 2). For each processor l ∈ {1, • • • , P}, at each Schwarz iteration k and any time step n + 1, we need

• to solve a full J/P × J/P linear system, which requires O (J/P) 3 operations,

• to compute F n;(k-1) lp
for each p ∈ {1, • • • , P}\{l}, corresponding to the contribution from the (k -1)-th Schwarz iteration which must be sent to the (P-1) other processors for computing the solution in Ω p . Each term F n;(k) lp requires O(J/P) operations, for a total of O(J) operations for Processor l.

This leads to the following proposition. Proposition 3.1. Consider the backward Euler [START_REF] Carusotto | Quantum fluids of light[END_REF] or the Crank-Nicolson scheme [START_REF] Bhrawy | A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations[END_REF] for solving the FSE (1). Then, for N T time iterations and for a spatial grid with J points, the computational complexity of the sequential solver [START_REF] Antoine | Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers[END_REF] is O(N T J 3 ). On P processors, and assuming that the SWR method requires k δ iterations to converge up to a prescribed tolerance δ, the overall computational complexity is O N T k δ (J 3 /P 2 + PJ) . The SWR DDM is hence efficient as long as k δ = o(P 2 ) and k δ = o J 2 /P .

Regarding the data transmission, for each processor l ∈ {1, • • • , P}, each Schwarz iteration and each time iteration, it is necessary to transmit P -1 vectors of size J/P to the other P -1 processors, while it is needed to store the local solutions at anytime, which can potentially be problematic from the memory point of view.

Convergence analysis of the SWR DDM for the FSE

We now establish the convergence of the SWR DDM derived above. Proof. Let us study the convergence of [START_REF] Carusotto | Quantum fluids of light[END_REF]. The Crank-Nicolson version is a little bit more technical but is fundamentally similar. In order to study the convergence of the algorithm, let us rewrite the scheme (20) as follows

I + i∆tA ± u n+1;(k) ± = u n;(k) ± -i∆tB ± u n+1;(k-1) ∓ , (22) 
where the matrices B + and -= B T + ∈ R J/2×J/2 correspond to the contribution of the coefficients {w j } |j|>J/2 . Let us define v

n;(k) = (u n;(k) - , u n;(k) + ) T and B = I + i∆tA T + O O I + i∆tA + , C = -i∆t O B T + B + O .
Thus, we have

Bv n+1;(k) = v n;(k) + Cv n+1;(k-1) .
Then, for k 2, we obtain

v n+1;(k) -v n+1;(k-2) = B -1 v n;(k) -v n;(k-2) + B -1 C v n+1;(k-1) -v n;(k-3) .
We deduce that for any k 2

v n+1;(k) -v n+1;(k-2) 2,J |||B -1 ||| × v n;(k) -v n;(k-2) 2,J +|||B -1 C||| × v n+1;(k-1) -v n+1;(k-3) 2,
J . An induction argument on n < N T allows to conclude: indeed for n = 1, we simply use that v

0;(k) ± = u (k) ± (0, •) = u 0|Ω ± .
Assuming that the convergence occurs at time iteration n 1, there exists 0 < c n < 1, such that

v n+1;(k) -v n+1;(k-2) 2,J = |||B -1 |||c k n + |||B -1 C||| × v n+1;(k-1) -v n;(k-3) 2,J .
It is easy to deduce that there exists a positive constant D > 0, such that

v n+1;(k) -v n+1;(k-2) 2,J = Dc k n + |||B -1 C||| k-1 × v n+1, (1) 
v n,(0) 2,J . By construction (see for instance Fig. 1), we trivially have |||B -1 C||| < 1, which allows us to conclude.

The assumption on the potential easily ensures the convergence of the algorithm thanks to the fact that |||B -1 C||| < 1. In presence of a potential, we still expect this inequality to be satisfied, as long as ∆t (or V ∞ ) is small enough. Otherwise, the proof of convergence may require additional technical steps. At the purely continuous level, the convergence rate of the SWR method could possibly be improved by the construction of "local-in-space" transmission conditions, as it is the case for standard SWR methods applied to classical and quantum wave equations. The principle of the derivation of efficient (for fast convergence of the SWR solver) transmission conditions is often based on a Nirenberg factorization of the considered operator [START_REF] Hörmander | Linear Partial Differential Operators[END_REF][START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF][START_REF] Nirenberg | Lectures on Linear Partial Differential Equations[END_REF]. Such factorizations then allow to construct transparent-like transmission conditions. For the classical Schrödinger equation, these transmission conditions are typically Dirichlet-to-Neumann operators. We refer to [START_REF] Antoine | Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves[END_REF][START_REF] Antoine | An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation[END_REF][START_REF] Halpern | Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation[END_REF] for more details. Transparent-like transmission conditions for fractional Schrödinger equations will be investigated in future works. The starting point would then be, for constant potentials, the factorization of the fractional operator

P := ∂ t -iV -i(-∂ 2 x ) α/2 as follows P = ∂ t -iV -e iπ/4 (-∂ 2 x ) α/4 ∂ t -iV + e iπ/4 (-∂ 2 x ) α/4
, which would lead to the corresponding transparent operators used as the transmission conditions based on √ ∂ t -iV ± e iπ/4 (-∂ 2 x ) α/4 . Space-dependent potentials would require more advanced symbolic computation and pseudodifferential calculus (see for instance [START_REF] Antoine | An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[END_REF][START_REF] Antoine | Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real-and imaginary-time nonlinear Schrödinger equation[END_REF][START_REF] Nirenberg | Lectures on Linear Partial Differential Equations[END_REF]).

Numerical examples

In this subsection, we propose some numerical examples illustrating the convergence of the SWR DDM, and we exhibit some properties related to the rate of convergence depending on α, ∆t, and ∆x. We start by analyzing in details the case of the linear FSE and then extend the algorithm to the nonlinear case to show its behavior.

The linear fractional Schrödinger equation

We propose a first convergence test for the non-overlapping SWR method previously developed with α = 0.5 for the case of the linear FSE. The computational domain is Ω = (-4, 4), the initial data is u 0 (x) = exp -20x 2 + 5ix and the potential V is given by a gaussian well: V (x) = V 0 exp(-40x 2 ). The final time is T = 5 and the time step is ∆t = 10 -2 , corresponding to N T = 500 time iterations. The space step is set to ∆x = 4 × 10 -2 . We report the solution of reference in Ω at final time T = 5 for V 0 = 0 (free-space FSE), and the solutions in Ω ± after the first Schwarz (k = 1) iteration in Fig. 4 (Top-Left) and at convergence (k = k δ ) in Fig. 4 (Top-Right). We also plot in Fig. 4 (Bottom-Left) the error between the mass (resp. total energy) of the reconstructed global solution v (from u ± ) at each Schwarz iteration k and the mass (resp. total energy) of the converged solution v N T ;(k∞) , i.e.

∆N (k) = |N N T ;(k) -N N T ;(k∞) | , and ∆E N T ;(k) = |E N T ;(k) -E N T ;(k∞) | ,
at final time iteration N T . This shows that the two conservation laws hold at convergence. In Fig. 4 (Bottom-Right), we report the graph of convergence of the SWR method, i.e. the relative 2 -norm error given by ( 21) as function of k for both the free-space case V 0 = 0 and for V 0 = 100. The presence of the potential does not really affect the convergence rate. In this first example, we fixed the stopping criterion to an error less than δ = 10 -14 . From this first example, we can see that the SWR DDM is an efficient convergent algorithm. We consider the same data as before except that α varies from 0.2 to 1.4, and we fix V 0 = 0. We observe on Fig. 5 (Top-Left) that the convergence of the SWR algorithm strongly depends on the value of α : more specifically, the larger α, the slower the convergence. Let us now consider again the same parameters but for the fixed value α = 0.3, and we let the time (resp. space) step varies, for ∆x = 8/199 (resp. ∆t = 1/40). We plot in Fig. 5 (Top-Right and Bottom) the convergence rate of the SWR method vs the time and space steps, illustrating that the larger (resp. smaller) the space (resp. time) step, the faster the convergence.

In fact, we can extract some specific information from this test. It is well-known that for classical Schrödinger equations (α = 2), the rate of convergence (in the asymptotic regime) of the SWR methods corresponds to the contraction factor K of a fixed point algorithm [START_REF] Antoine | Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves[END_REF][START_REF] Antoine | An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[END_REF][START_REF] Antoine | Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real-and imaginary-time nonlinear Schrödinger equation[END_REF][START_REF] Antoine | On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation[END_REF][START_REF] Besse | Schwarz waveform relaxation method for one-dimensional Schrödinger equation with general potential[END_REF][START_REF] Halpern | Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation[END_REF]. We hereafter assume that the contraction factor K for the proposed SWR method is of the form K(α, ∆t, ∆x) := exp -f (α, ∆t, ∆x) . In order to estimate the dependence in ∆t and ∆x through the function f , at fixed iterations k = 12, 14, 16 and ∆x, we report in Fig. 6 (Left) the following graph ∆t, log log K(α, ∆t, ∆x) .

We find that this graph is a straight line, with a slope given by ≈ -0.3, that is -α. This was numerically confirmed by performing the same test with different values of α. This suggests that the dependence in ∆t within the contraction factor is of the form ∝ exp(-α∆t).

Similarly, in order to estimate the dependence in ∆x in K, we report in Fig. 6 (Right) at fixed iterations k = 11, 12, 13 and fixed ∆t = 1/20, the following graph log(∆x), log log(K α, ∆t, ∆x) .

Assuming that the dependence inside the contraction factor is ∝ ∆x β , we find a slope ≈ 0.14 which is close to β = α/2; this allows us to conjecture that the dependence inside the contraction factor is ∝ ∆x α/2 , which is actually consistent with the case of the SWR method for the standard Schrödinger equation (α = 2) (see e.g. [START_REF] Antoine | Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves[END_REF][START_REF] Antoine | An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations[END_REF][START_REF] Antoine | Multilevel preconditioning technique for Schwarz waveform relaxation domain decomposition method for real-and imaginary-time nonlinear Schrödinger equation[END_REF][START_REF] Antoine | On the rate of convergence of Schwarz waveform relaxation methods for the time-dependent Schrödinger equation[END_REF][START_REF] Halpern | Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation[END_REF]) where is proven the dependence ∝ ∆x inside the function f . This conjecture was yet confirmed through more computations with other values of α. In fine, these experiments, in particular the fact that the convergence rate is a decreasing function of α, lead to the following conjecture.

Conjecture 1. The convergence rate K(α, ∆t, ∆x) of the SWR method [START_REF] Bhrawy | A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations[END_REF] for the onedimensional free-space FSE (1) is of the form

K(α, ∆t, ∆x) ∝ exp -c(α)e -α∆t ∆x α/2 ,
for some positive function c of α.

This conjecture will be mathematically investigated in a future work. 

The nonlinear fractional Schrödinger equation

For completeness, we propose an extension of the proposed method to nonlinear fractional Schrödinger equations (NFSE)

i∂ t u + (-) α/2 u + V (x)u + F(u)u = 0, u(0, x) = u 0 (x), u(t, ∂Ω) = 0 , (23) 
where F(u) is a nonlinear potential. For such an equation, both the mass and the total fractional energy are conserved (see also [START_REF] Gander | Optimized Schwarz methods[END_REF] 

-;i + u n+1;(k) -;i . (25) 
The discretization of the nonlinearity is based on a relaxation scheme which was developed in [START_REF] Besse | A relaxation scheme for the nonlinear Schrödinger equation[END_REF] for α = 2. Here, we fixed the initial values as follows v

-1/2;(k) i;± = v 1/2;(k) i;± = F(u 0;(k) i;±
). For the standard integer case, the relaxation scheme scheme allows for a mass and modified total energy conservation for the power-law nonlinearity case F(u) = κ|u| 2σ , where κ is the nonlinearity strength and σ 1 (σ = 1 corresponds to the cubic case). When discretizing by the relaxation scheme, then the total discrete mass [START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF] is still conserved as well as the modified discrete fractional total energy defined by

E n := 1 2 (Au n , u n ) 2,J + (V u n , u n ) 2,J + κ 2 2σ (v n-1/2 , v n+1/2 ) 2,J , (26) 
where A is the matrix related to the fractional Laplacian and V to the potential. The discretization [START_REF] Gander | Optimal Schwarz waveform relaxation methods for the one-dimensional wave equation[END_REF] provides an approximation of the continuous fractional energy given by

E(t) := 1 2 Ω ū(-) α/2 udΩ + Ω V |u| 2 dΩ + κ 2 + 2σ Ω |u| 2+2σ dΩ, ∀t > 0, (27) 
which is proved to be conserved [START_REF] Antoine | On the numerical solution and dynamical laws of nonlinear fractional Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF] when Ω = R d .

In the following example, we consider the cubic NFSE (σ = 1) with nonlinearity strength κ = ±5, ±50 and fractional exponent α = 1.9. The computational domain is (-5/2, 5/2), ∆t = 10 -4 , N T = 5 × 10 2 , J = 100, and the initial data is exp(-5x 2 + 10ix). We report the solution for κ = 5 after the first and last (converged) SWR iterations in Fig. 7, as well as the graph of convergence for the different values of κ. Interestingly, the convergence rate of the SWR method in this case seems independent of the value of κ. This is relatively coherent with the conclusion from the linear case where the potential V does not seem to affect the convergence rate. Here, within the relaxation scheme, the nonlinearity is indeed considered as a potential. The graphs of the relative error for both the discrete mass and modified fractional energy of the converged solution are also represented in Fig. 7 (Bottom-Right) for κ = 5. This shows that both the mass and modified energy are very well conserved, suggesting that the relaxation scheme [START_REF] Besse | A relaxation scheme for the nonlinear Schrödinger equation[END_REF] is still applicable to the cubic NFSE. 

Extension to fractional heat equations

It is worthwhile remarking that the DDM which was proposed in this paper is actually directly applicable to the Fractional Heat Equation (FHE)

∂ t u + (-) α/2 u + V (x)u = 0, u(0, x) = u 0 (x), u(t, ∂Ω) = 0 , (28) 
with α ∈ (0, 2). The FHE has been introduced to model anomalous diffusion [START_REF] Metzler | The random walk's guide to anomalous diffusion: a fractional dynamics approach[END_REF] when the stochastic process driving the medium is a Lévy α-stable flight. Other applications can also involved nonlinear versions of the FHE as fractional Cahn-Allen [START_REF] Lee | The fractional Allen-Cahn equation with the sextic Ginzburg-Landau potential[END_REF][START_REF] Nec | Front-type solutions of fractional Allen-Cahn equation[END_REF] and Cahn-Hillard equations [START_REF] Ainsworth | Analysis and approximations of a fractional Cahn-Hilliard equation[END_REF][START_REF] Weng | A Fourier spectral method for fractional-in-space Cahn-Hilliard equation[END_REF] where our SWR DDM may apply. The numerical schemes for solving [START_REF] Gander | Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation[END_REF] are trivially adapted from [START_REF] Antoine | Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers[END_REF] and [START_REF] Besse | A relaxation scheme for the nonlinear Schrödinger equation[END_REF], where now the 2 -norm is naturally not preserved anymore

I + ∆t 2 A V u n+1 = I - ∆t 2 A V u n ,
where A V is the full real matrix deduced from [START_REF] Antoine | Asymptotic convergence rates of Schwarz waveform relaxation algorithms for Schrödinger equations with an arbitrary number of subdomains[END_REF] removing the i-term, and u n+1 2,J u n 2,J . It is of course possible to use a standard backward Euler scheme in time following

I + ∆tA V u n+1 = u n .
The conclusions of Proposition 2.1 remain valid. The SWR DDM derived and analyzed in Section (3) are also still applicable to the fractional heat equation and reads

I + ∆t 2 A V,± u n+1;(k) ± = I - ∆t 2 A T V,∓ u n;(k) ± + F n+1;(k-1) ± + F n;(k-1) ± , where A V,+ = A T V,-∈ R J/2×J/2 and F n;(k-1) ± ∈ C J/2
are constructed from ( 17) and ( 18) by simply removing the i-term. Alternatively, a backward Euler scheme in time, reads

I + ∆tA V,± u n+1;(k) ± = u n;(k) ± + F n+1;(k-1) ± .
As a simple illustration of this DDM over (-4, 4) and T = 5, with an initial data given by u 0 (x) = exp(-20x 2 ), we report in Fig. 9 (Left), the graph of convergence of the DDM method for the heat equation with α = 0.5, V 0 = 0, J = 200 and ∆t = 10 -2 . In Fig. 9 (Right), the corresponding converged solution is also plotted. Finally, we compare the rate of convergence of the SWR DDM for the FHE with α close to 2, here α = 1.99, and for the standard heat equation (corresponding to α = 2) on (-4, 4) with the classical SWR (Dirichlet-based SWR) using a non-overlapping Crank-Nicolson scheme [START_REF] Gander | Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems[END_REF]. We take V (x) = V 0 exp(-10x 2 ), with V 0 = 5, 50, 500, and J = 200, ∆t = 10 -3 , N T = 10 2 . Interestingly for large values of V 0 , the convergence rate of both SWR methods seems to be comparable. However, the smaller the magnitude of the potential, the slower the convergence rate of the SWR method for the FHE (for α = 1.99). Notice that the SWR method for the FHE can be improved for α close to 2, since in this case the sequence {w j } is rapidly decreasing to 0, suggesting that most of the coefficients could be dropped (corresponding to a localization of the approximate fractional Laplacian) while still keeping a good accuracy. 

Conclusion

In this paper, we have derived, analyzed and implemented a simple DDM for computing in parallel the numerical solution of the one-dimensional linear and nonlinear space fractional Schrödinger equations, as well as fractional heat equation. The convergence of the method was established, as well as its computational complexity. An estimation of its convergence rate was also proposed thanks to numerical experiments and using the standard theory of SWR methods for classical Schrödinger equations. Due to the structure of the fractional Schrödinger operator, the transmission conditions are non-local in space but local in time. In order to improve the efficiency of the method, local-in-space transmission conditions should then be investigated. Regarding the acceleration of the convergence rate, a natural approach would be to develop transparent or absorbing transmission conditions, as commonly done for standard Schrödinger equations, while however keeping locality in time. Future works will also focus on the analysis of the SWR methods for multi-dimensional equations.
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 2 Figure 2: (Left) Theoretical and numerical 2,J -norm error vs ∆x. (Right) Theoretical and numerical 2,Jnorm error vs ∆t.
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 3 Figure 3: Evolution of the relative variation of the discrete mass and energy vs n.
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  at Schwarz iteration k in a given domain Ω ± , it is necessary to have access to the solution u (k-1) ∓ at the previous iteration (k -1) in the complementary subdomain Ω ∓ ; this is indeed necessary to compute both F n;(k-1) ± and F n+1;(k-1) ± . The term F (k-1) ± is computed by the processors of the node where u (k-1) ∓ is stored and updated. Then, at time iteration n + 1, we only transfer F n;(k-1) ± and F n+1;(k-1) ± from Ω ∓ to Ω ± in order to update u n+1;(k-1) ±
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 32 For any u n;(0) ± , the algorithms (19) and (20) with null potential (V = 0) are convergent.
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 4 Figure 4: Solutions at final time T = 5 (Top-Left) at iteration k = 1 and (Top-Right) at convergence = k δ . (Bottom-Left) Error on the total mass and total energy at final time, in semi-logscale. (Bottom-Right) Convergence of the SWR method : relative 2 -norm error as a function of Schwarz iterations.
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 5 Figure 5: of the SWR method for different values of α (Top-Left), for different time steps ∆t (Top-Right) and for different space discretizations ∆x (Bottom).
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 6 Figure 6: Dependence of the contraction factor K in ∆t (Left) and ∆x (Right).
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 7 Figure 7: Solutions at final time T = 0.25 (Top-Left) at iteration k = 1 and (Top-Right) at convergence k = k δ . (Bottom-Left) Graph of convergence of the SWR method for κ = ±5, ±50: relative 2 -norm error as a function of Schwarz iterations k. (Bottom-Right) Mass and energy of the converged solution for κ = 5.
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 8 Figure 8: (Left) Convergence of Schwarz waveform relaxation method for the FHE (α = 0.5): relative 2 -norm error as a function of the Schwarz iterations k. (Right) Converged solution.
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 9 Figure 9: Convergence of Schwarz waveform relaxation method: relative 2 -norm error as a function of Schwarz iterations: comparison between the FHE with α = 1.99 and standard heat equation with Crank-Nicolson discretization.

  time t n and point x i , the numerical scheme that we propose for the nonlinear case, for 1 i J/2, reads in Ω +
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