
HAL Id: hal-03119275
https://hal.science/hal-03119275

Submitted on 27 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Back-to-Back Butterfly Network: an Adaptive
Permutation Network for New Communication

Standards
Hassan Harb, Cyrille Chavet

To cite this version:
Hassan Harb, Cyrille Chavet. Back-to-Back Butterfly Network: an Adaptive Permutation Network
for New Communication Standards. Journal of Signal Processing Systems, 2021, �10.1007/s11265-020-
01628-w�. �hal-03119275�

https://hal.science/hal-03119275
https://hal.archives-ouvertes.fr

Journal of Signal Processing Systems

Back-to-Back Butterfly Network, an Adaptive Permutation Network for New
Communication Standards

--Manuscript Draft--

Manuscript Number: VLSI-D-20-00270R1

Full Title: Back-to-Back Butterfly Network, an Adaptive Permutation Network for New
Communication Standards

Article Type: *ICASSP 2020

Keywords: Butterfly Network, Back-to-Back Butterfly Network, Permutation, QC-LDPC, 5G

Order of Authors: Hassan Harb

Cyrille Chavet

Corresponding Author: Cyrille Chavet, Ph.D.
Lab-STICC
Lorient, FRANCE

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Lab-STICC

Corresponding Author's Secondary
Institution:

First Author: Hassan Harb

First Author Secondary Information:

Order of Authors Secondary Information:

Funding Information:

Abstract: In this paper, we introduce a Back-to-Back Butterfly Network (B 2 BN) based on
multiplexers (MUXs) in which any kind of permutation can be performed. However, for
a given permutation, it is not an easy task to select the appropriate paths in B 2 BN
without any conflict in terms of MUXs. In this paper, we propose a formal model to
solve efficiently such conflicts. The proposed method relies on collecting the sets of
potential paths that transfer an input to an output. Then, a path from each set is
selected respecting a conflict free constraint. Once the appropriate paths are selected,
the control signals of the MUXs are generated. This model has been experimented
with 5G communication, showing how to process several frames in parallel with
different permutation constraints.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Back-to-Back Butterfly Network, an Adaptive Permutation Network for New
Communication Standards

HASSAN HARB, Universite Bretagne Sud, Lab-STICC (CNRS UMR 6285)

CYRILLE CHAVET, Universite Bretagne Sud, Lab-STICC (CNRS UMR 6285)

In this paper, we introduce a Back-to-Back Butterfly Network (B2BN) based on multiplexers (MUXs) in which any kind of permutation
can be performed. However, for a given permutation, it is not an easy task to select the appropriate paths in B2BN without any
conflict in terms of MUXs. In this paper, we propose a formal model to efficiently solve such conflicts. The proposed method relies on
collecting the sets of potential paths that transfer an input to an output. Then, a path from each set is selected respecting a conflict free
constraint. Once the appropriate paths are selected, the control signals of the MUXs are generated. This model has been experimented
with 5G communication, showing how to process several frames in parallel with different permutation constraints.

CCS Concepts: • Hardware→ Digital signal processing.

Additional Key Words and Phrases: 5G, Butterfly Network, Back-to-Back Butterfly Network, Permutation, QC-LDPC

ACM Reference Format:
Hassan Harb and Cyrille Chavet. 2020. Back-to-Back Butterfly Network, an Adaptive Permutation Network for New Communication
Standards. 1, 1 (October 2020), 11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

The impressive increase in data traffic in the wireless communication domain overloads network capacity. Researchers
are still exploring new techniques to efficiently target high throughput applications. Designed to push a step further
these technical limits of telecommunication, the incoming communication standards (5G, cognitive radio, SDR. . .) will
be the foundations of a deep revolution in our widely connected world. For example, the next 3GPP standard (the
so-called 5G) [5] gathers several different radio signals (LTE-A, Wi-Fi/WISE. . .) in a combined heterogeneous and
flexible network. In this standard, a new family of Error Correction Code (ECC) have been adopted: Quasi-Cyclic Low
Density Parity Check (QC-LDPC) decoder [22].
As any ECC decoders, they are based on parallel architectures in order to achieve high throughput requirements. In such
parallel designs, several Processing Elements (PEs) are concurrently used to decode the received information [21]. In
this context, several memory banks RAMs are connected with these PEs through a dedicated interconnection network.
This network transfers data between PEs and RAMs according to predefined access orders, i.e. the interleaving rules.
Designing efficient parallel hardware architecture (i.e., with no access conflicts in memory nor in the interconnection
network) is a very complex and time consuming task. Several approaches have been proposed in state of the art in
order to solve such "collision problem" in ECC architectures ([19][24][8][23][14][26][15]. . .).

Authors’ addresses: Hassan Harb, hassan.harb@univ-ubs.fr, Universite Bretagne Sud, Lab-STICC (CNRS UMR 6285), rue St Maude, Lorient, 56100; Cyrille
Chavet, cyrille.chavet@univ-ubs.fr, Universite Bretagne Sud, Lab-STICC (CNRS UMR 6285), rue St Maude, Lorient, 56100.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

Manuscript Click here to
access/download;Manuscript;RevisedManuscript.pdf

Click here to view linked References
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://doi.org/10.1145/1122445.1122456
https://www.editorialmanager.com/vlsi/download.aspx?id=214536&guid=5e97d056-da8a-448a-8211-3d26fe3f44b9&scheme=1
https://www.editorialmanager.com/vlsi/download.aspx?id=214536&guid=5e97d056-da8a-448a-8211-3d26fe3f44b9&scheme=1
https://www.editorialmanager.com/vlsi/viewRCResults.aspx?pdf=1&docID=9912&rev=1&fileID=214536&msid=04e4cb38-c3ae-456d-a3ac-fa240ab18759

In the case of QC-LDPC codes, they are based on a prototype matrix where each non null elements are replaced by a
N×N circularly shifted identity matrix. This structure allows to implement a decoder with N parallel PEs without any
memory access conflict. Hence, in this case a simple Barrel Shifter of size N can be used to reorder the data between
PEs and RAMs. The particularity of the 5G standard is that the expansion factor sizes of the QC-LDPC code can take
51 values ranging betweenm = 2 andm = 384 (depending on the code rate and the size of the code). Translated in
hardware, this means that the architecture should be able to perform rotations on vectors of variable size. Moreover, in
the incoming context of heterogeneous and flexible network, this decoder must be able to process several types of code
(LTE-A, WiFi/WISE, DVB-T, DVB-S. . .).
Our objective in this paper is to propose an interconnection network architecture that could handle several different
frames in parallel, potentially from different ECC, and the permutations of these frames should be different. All these
constraints must be achieved in the minimum envelop in terms of architectural cost (i.e., area and power consumption).
Thus, this paper is organized as follows. The next section presents the state of the art related to our contribution. Then,
section III introduces a Butterfly Network and presents the basic notations and concepts for the rest of the paper. In
section IV, we describe the proposed formal model and its associated modular architecture. In the final section, we
present the application of our approach on a case study from 5G standard and we propose some comparisons with the
most relevant approaches in the literature.

2 STATE OF THE ART

As described in the introduction, the 5G QC-LDPC standard [5] is dependent on the code’s rate and size; with expansion
factor sizes of 51 values, ranging between 2 and 384. Therefore, this validates the hardware point of view concerning
the inevitable ability of the interconnection network in performing rotations on vectors of variable sizes, along with
parallel processing on several heterogeneous concurrent frames for the sake of the throughput enhancement. A classical
Barrel Shifter, as defined in the introduction, cannot handle all the required constraints of such design. For instance, the
authors in [18] suggested a high throughput 5G LDPC encoder based on a Barrel Shifter, but without the capability to
deal with different frame lengths and distinct circular shift rotation values because of the classical shifters deployed.
Hence, flexibility should be added on the encoder architecture of their work. In [25] a flexible Barrel Shifter architecture
for Quasi-Cyclic LDPC is proposed (QSN). This approach proposes an elegant solution if the frame sizem is smaller
than N . The idea is to restrict the interconnection to the firstm PEs and RAMs. To be able to perform the required shift
rotations, it relies on a smart combination of two partial size-N Barrel Shifters. However, even if the cost is relatively
small, this approach cannot process several different frames in parallel.
In [20] the authors propose an architecture that is able to deal with different standards, different frame lengths. This
architecture relies on a Butterfly Network (BN) [16], that offers much more permutation flexibility than a Barrel
Shifter. However, the main limitation of this solution is that only one single frame can be processed at a time. In [14] a
hard-wired permutation architecture is proposed, based on the fact that parity check matrix shift values are not all
consecutive integers. This solution offers good complexity reduction compared to classical barrel-shifters but it cannot
handle different parallelism. Similarly, in [15] the authors proposed combinations of fixed cyclic shifters, achieving
also good complexity reduction, but still with no frame parallelism. The most recent algorithm in this context is the
Extended Barrel Shifter (EBS) [7]. In this paper, the key idea is that the elements of the frame are split up appropriately
at the inputs of the Barrel Shifter such that after performing a circular-shift rotation, each element will be at its desired
position at the output or only one shift will still be required to be performed on it. For that, an extra stage is added
at the output of the Barrel Shifter to perform the one extra shift when it is necessary. The area consumption of [7] is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

interestingly low. Nevertheless, [7] can process more than one frame having same length (less than or equal N /2) and
they must have same desired circular-shift rotation value. Again, [7] has restriction in terms of parallelism.
Considering the targeted standard and for the purpose of high throughput; the authors of [10], presented a parallel
Wi-Max LDPC code architecture based on two classical Barrel Shifters of size 96 followed by a merge stage, making their
proposal relatively costly compared to our approach. Meanwhile, other existing solutions are Benes [6] or Butterfly
Networks [17] that are able to perform any permutation besides the circular-shift rotations, permitting both solutions
to be able to process more than one frame simultaneously. However, these solutions are complex in terms of MUXs
number and cost control. Furthermore, generating their control signals is not an easy task. However, Butterfly and Benes
networks can permute more than one frame in parallel having different length and different circular-shift rotation. In
[12] the authors propose to prune the Benes network in order to tailor it exactly to the requirement of the applications.
The resulting architecture can be smaller than the initial Benes network, but it requires a low number of expansion
factor, which is not the case for 5G as seen before. In order to be able to deal with all the expansion factors of the 5G
standard [26] proposes an approach to extend the parallelism of the designed network, and also to avoid some limitations
of [7], by using Banyan networks. In our paper, we will refer to [26] as Extended Banyan Network (EBN) for the sake of
simplicity. The idea behind EBN is interesting, but all the processed frames must have the same length. In this context, a
cheaper and more flexible solution than [26] has been proposed in [11]. In this work an architecture called Fully Parallel
Circular-shift rotation Network (FPCN) is introduced. This architecture has many advantages compared to state-of-art
(lost cost, high frame parallelism. . .), but it has been designed in the context of high throughput 5G communications.
Then, this means that it is able to process very efficiently more than one frame simultaneously, even with different
sizes and/or different permutation constraints. However, the expressiveness of [11] in terms of permutation besides the
circular-shift rotations, is limited.
Equally important, the writers of the study of [9] offered the combination of two partial Barrel Shifters with an addition
of a merge network. This approach can conduct circular-shift rotation on a vector of varying length. But, although its
cost is relatively low and the control signals can be generated in run-time, this approach cannot process many parallel
frames. Among the vast research field on interconnection networks, very few works (as best as we know) target our
studied drawback on how to design a low-cost parallel interconnection network architecture (in terms of area and
power consumption), with high performances in terms of throughput and flexibility/adaptability.
In this work, we adopt a Back-to-Back dual Butterfly Network (B2BN) for which we propose a new method to generate
the control signals based on constraint tools. Note that the philosophy of this work can be also extended in case of a
Benes network.

3 THE BUTTERFLY NETWORK

Let N = 2n be the size of the vector to be permuted, n ∈ N+. Hereafter, a Butterfly Network (BN) associated to a vector
of size N is called N×N -BN. In general, for a given N = 2n , there are n stages, each consisting in N MUXs. The MUX is
represented by a circle such as M00 shown in Fig.1.a). M00 is controlled by a signal s , such that if s = 0 then the output
y00 = x0, else the output y00 = x1. The generation of the control signals is a key contribution of our work. However, the
control signals are removed from the figures in order to read them easily.
The inputs of the first stage is the set X = {xN−1, . . . , x0}, the n − 2 intermediate stages are represented by the set
Y i = {yiN−1, . . . ,y

i
0} (i.e., the set of results of stage i , where i = 0, . . . ,n − 2), and the final stage is the resulting

permutation set Z = {zN−1, . . . , z0} (i.e., the results of the nth stage). Algorithm 1 shows the connections at every
stage, where Ml j (a,b) indicates that the inputs a and b are connected to MUX Ml j (i.e., MUX number j at (l + 1)th

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Fig. 1. a) 4×4-BN; b) Inverse 4×4-BN; c) 4×4-B2BN and d) 4×4-B2BN example.

stage), l = 0, . . . ,n − 1 and j = N − 1, . . . , 0.
N×N -BN can perform any circular-shift rotation value pcs , where 0 ≤ pcs < N . For a given pcs , every input xi should
be transferred to z(p−i) mod (N), i = N − 1, . . . , 0.
Fig.1.a) shows a 4×4-BN architecture. X = {x3, . . . , x0}, Y 0 = {y03, . . . ,y

0
0} and Z = {z3, . . . , z0} are respectively the

inputs set, the intermediate permutations set and the final permutation results set.

Algorithm 1: The Butterfly Network algorithm

Part 1 - At first stage of MUXs l = 0:

for j ← N − 1 Down To N /2
M0j (x j , x j−N /2)

end for
for j ← N /2 − 1 Down To 0
M0j (x j , x j+N /2)

end for

Part 2 - For the rest of n − 1 stages of MUXs:

N ′ = N

for l ← 1 to n − 1

N ′ =
N ′

2l
for k ← 0 to 2l − 1

for j ← N − 1 − k .N ′ to N − (k + 1
2l).N

′

Ml j (y
l−1
j ,y

l−1
j−N ′/2)

end for
for j ← N − 1 − (k + 1

2).N
′ to N − (k + 1

2l +
1
2).N

′

Ml j (y
l−1
j ,y

l−1
j+N ′/2)

end for
end for

end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

.
Fig.1.b shows an example of a permutation based on the 4×4-BN. This permutation is a simple circular shift of 1
(pcs = 1), i.e., {z3, z2, z1, z0} = {x0, x3, x2, x1}. Every input is being moved through the stages till it is transferred to
its appropriate position at the output. For instance, x2 should be transferred to z1 and hence y00 = x2 using M00, then
z1 = y00 = x0 using M11. The control signals of the MUXs are straightforward to be generated when BN is used to
perform circular-shift rotation permutation [13].
N×N -BN can also perform other permutations rather than circular-shift rotation. In Fig.1.c we observe that 4×4-BN
is also able to perform non-circular shift rotation where {z3, z2, z1, z0} = {x1, x2, x3, x0}. This permutation can be
executed without any conflict in terms of MUXs. A BN is unable to perform all possible permutations. For example, in
Fig.1.d there is a conflict since two different inputs must access the same MUX. In this example, z1 = x3 and z0 = x1 and
hence x3 and x1 should be at the same output of M01. Like in the context of memory access conflict (e.g., [23]), solving
conflicting access to some shared resources is a complex task. Also, since we want to perform all possible permutations
of the inputs set, we need to extend the set of permutations offered by the BN. Moreover, we want to compute several
frames in parallel, each with its own length and its own permutation constraint.
To tackle all these challenges, in this paper we propose a modular construction of a B2BN . To construct a B2BN , the
concept of Inverse BN is required [1]. Fig.1.b) shows the inverse of 4×4-BN. It is not easy to generate the control signals
of the MUXs where BN is used for non-circular-shift rotation permutation [1, 2].

4 BACK-TO-BACK BUTTERFLY NETWORK

A B2BN is a combination of a BN and its corresponding inverse. A modification should be done on the inverse BN. The
first stage of inverse BN is removed since it is similar to last stage of BN (see Fig.1.a) and Fig.1.b). A B2BN has the same
expressiveness that a Benes network, which means that all possible permutations can be generated with this model [2].
Once again, for a given N , we refer to B2BN associated to a vector of size N as N×N -B2BN . This N×N -B2BN requires
2.n − 1 stages each of N parallel MUXs. The intermediate results are called Y l = {ylN−1, . . . ,y

l
0}, l = 0, . . . , 2.n − 2.

Fig.1.c) shows the 4×4-B2BN architecture. Two complementary parts can be observed, a 4×4-BN connected to the
”modified” inverse 4×4-BN.
Fig.1.d) shows an example of a permutation: z3 = x2, z2 = x0, z1 = x3 and z0 = x1. The inputs are being transferred
through the stages to perform the desired permutation as shown in Fig.1.d). The ”line” that transfers an input xi to an
output zj is called a path Txi→zj , with i, j = N − 1, . . . , 0.
It is not an easy task to find out the paths of the inputs through the stages given a desired permutation. In other
words, it is not easy to generate the control signals of the MUXs to perform all the desired permutations. N ! possible
permutations are possible in case of N×N -B2BN . Thus, the higher the N value the higher the number of stages, and
hence the more complex is the problem to find out the appropriate paths for every desired permutation with no conflict
along the path. In this paper, we also propose a formal approach to solve this problem.

4.1 Proposed Method to Generate the Control Signals

For a given permutation, the proposed method relies on collecting all the possible paths from xi to zj , where
i, j = N −1, . . . , 0. We call this setTxi→zj , where→ refers to a transition. In total, there will be N sets (one set of path for
every inputs) each of 2n−1 possible paths. In more details, to transmit xi to zj we have: xi → y0k0

→ · · · → y2.n−2k2.n−2
→ zj ,

where i,k0, . . . ,k2.n−2 and j ∈ [N − 1, . . . , 0]. Thus, the path is presented as (i,k0, . . . ,k2.n−2, j).
For example, let x2 should be transferred to z3 as shown in Fig.1.d). We have z3 = y11 = y

0
0 = x2 and hence the path is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(2, 0, 1, 3). Considering the permutation shown in Fig.1.d), the original set of all possible paths is reduced to the subsets
in which the input xi corresponds to the output zj , i, j = 3, . . . , 0, with respect to the required permutation:
Tx3→z1 = {(3, 3, 3, 1), (3, 1, 1, 1)}
Tx2→z3 = {(2, 2, 3, 3), (2, 0, 1, 3)}
Tx1→z0 = {(1, 1, 0, 0), (1, 3, 2, 0)}
Tx0→z2 = {(0, 2, 2, 2), (0, 0, 0, 2)}

The solution shown in Fig.1.d) is found based on Tx3→z1 , Tx2→z3 , Tx1→z0 and Tx0→z2 . Let A be a matrix of size
N × 2.n where:

A =

©«
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

ª®®®®®¬
=

©«
3 3 3 1
2 0 1 3
1 1 0 0
0 2 2 2

ª®®®®®¬
The elements of the first row of A belong to Tx3→z1 (i.e., (a00,a01,a02,a03) is equal to (3, 3, 3, 1) or (3, 1, 1, 1)). The
elements of the second row ofA belong toTx2→z3 , the elements of the third row ofA belong toTx1→z0 and the elements
of the fourth row of A belong to Tx0→z2 . The elements of every column of A should be different, i.e., no conflict in
terms of MUXs at every stage. Thus, one possible solution is the solution that A equal to. Therefore, A is the matrix
representation of the solution shown in Fig.1.d).

4.2 Control Signals Generation

As described previously, the generation of the control signals consists in fixing the control signal s of each MUX. We
recall that the output of M00 shown in Fig.1.a) is equal to x0 (direct input) when s = 0 while it is equal to x2 (indirect
input) when s = 1 (every MUX has its own s). In other words, to compute the s control value of a given MUX, we have
to check whether the output is equal to the direct input or the indirect input. This can be done by analyzing Amatrix.
Let B be the matrix that contains the control signals of every MUX in B2BN . Thus, B is of size equal to N × 2.n − 1.
Algorithm 2 shows how the control signals are being generated Based on A. In this algorithm, the jth column in B is
associated to jth stage of MUXs in B2BN .

Algorithm 2: Algorithm of control signals generation
for i ← 0 to N − 1
for j ← 0 to 2.n − 2

if ai j+1 = ai j
bi j = 0

else
bi j = 1

end if
end for

end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Using Algorithm 2, the control signals of the MUXs of the example shown in Fig.1.d) are:

B =

©«
b00 b01 b02
b10 b11 b12
b20 b21 b22
b30 b31 b32

ª®®®®®¬
=

©«
0 0 1
1 1 1
0 1 0
1 0 0

ª®®®®®¬
b00 is the control signal of M03, b01 is the control signal of M13, b02 is the control signal of M23, . . . and b32 is the
control signal of M20. Then, it is clear that as soon as we have the set of paths required by the applications, the control
signals generation is straightforward. Hence, the key problem of our approach is to be able to explore the set of all
possible paths.

4.3 Path-Finder Generation Approach

Our solution exploits the modularity offered by the B2BN architecture. More formally, every xi , i = N − 1, . . . , 0, can be
transferred to any zj , j = N − 1, . . . , 0. We recall that Txi→zj is the set of possible paths that transfer xi to zj . Txi→zj

is of length equal to 2n−1. Thus, there are 2n−1 × N = 2n−1 × 2n = 22.n−1 paths that connect xi to {zN−1, . . . , z0}.
Therefore, in total, there are 22.n−1 ×N = 22.n−1 × 2n = 23.n−1 paths that connect {xN−1, . . . , x0} to {zN−1, . . . , z0} in
N×N -B2BN . The sets that are having the 23.n−1 paths is called TN×N .
To extend the case from N×N -B2BN up to N ′×N ′-B2BN (N ′ = 2.N), N×N -B2BN should be duplicated and a stage
of MUXs at the inputs and a stage of MUXs at the outputs should be added. The connections at the inputs of both
added stages are being done based on the initialization loops described in part 1 of algorithm 1 (N is then replaced
by N ′). This modularity allows to derive all possible N ′×N ′-B2BN paths from TN×N . Algorithm 3 shows how the
N ′×N ′-B2BN paths are generated from the N×N -B2BN paths.
For a given permutation to be performed by N ′×N ′-B2BN , the relevant set of paths Txi→zj are selected from TN ′×N ′

and the solution is found depending on them as shown previously.

Algorithm 3: Generation of the N ′×N ′-B2BN paths
Read all paths associated to N×N -B2BN called T N×N .
N ′ = 2.N , i = 0 and LTN×N = 23.n−1 is the length of T N×N .

for j ← 0 to LTN×N − 1
V0 = T N×N (j)
T N ′×N ′ (i) = {V0(0),V0,V0(2.n − 1)}
T N ′×N ′ (i + 1) = {V0(0) + N ,V0,V0(2.n − 1)}
T N ′×N ′ (i + 2) = {V0(0),V0,V0(2.n − 1) + N }
T N ′×N ′ (i + 3) = {V0(0) + N ,V0,V0(2.n − 1) + N }

V1 = V0 + N
T N ′×N ′ (i + 4) = {V1(0),V1,V1(2.n − 1)}
T N ′×N ′ (i + 5) = {V1(0) + N ,V1,V1(2.n − 1)}
T N ′×N ′ (i + 6) = {V1(0),V1,V1(2.n − 1) + N }
T N ′×N ′ (i + 7) = {V1(0) + N ,V1,V1(2.n − 1) + N }
i = i + 8

end for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Fig.2.a shows 8×8-B2BN designed from 4×4-B2BN . The bold MUXsMi j , i = 1, 2, 3 and j = 3, 2, 1, 0, constitute 4×4-B2BN
as well as Mi j , i = 1, 2, 3 and j = 7, 6, 5, 4, constitute another 4×4-B2BN . T 8×8 can be generated from T 4×4 based on
algorithm 3. The eight pointed paths shown in Fig.2.a) are derived from the pathV0 = {1, 3, 2, 0} associated to 4×4-B2BN .
Of course, for real life test cases, it is not possible to solve such problem by hand. In the next section shows how to
execute the proposed method using dedicated tools. Fig.2.b) shows an example where two sets of elements are processed

Fig. 2. a) 8 × 8-B2BN shuffling 8 inputs and b) 8 × 8-B2BN example shuffling two sets of elements with two different permutations.

simultaneously. A set X ′ = {x ′7, . . . , x
′
3} where p

′
cs = 2 is performed and hence {z7, z6, z5, z4, z3} = {x ′5, x

′
4, x
′
3, x
′
7, x
′
6}

(straight lines) and X ′′ = {x ′′2 , x
′′
1 } where p

′′
cs = 1 is performed and hence {z2, z1} = {x ′′1 , x

′′
2 } (pointed lines).

5 APPLICATION OF OUR MODEL ON A 5G TEST CASE

During experimentations, we used the proposed approach to design architectures relying on the QC-LDPC code
proposed in the 5G standard [3]. The resulting interconnection network should be able to permutes distinct frames in
parallel, with distinct permutation constraints. As previously mentioned, the design space is too huge to be explored by
hand, that is why we decided to provide our constraint model to a constraints solver tool. Many constraints solver tool
exist in the literature, depending on the problem to solve. For example, if the constraints are correctly defined, a solver
could find solutions to SAT isfaction problems, linear inequality. . .
In our context, from a N ′×N ′-B2BN for a given permutation P , we defined the matrix A (see previous section) in which
each of the N rows is considered as a variable . Then, from the set of all possible path TN×N (generated by Algorithm
3), we extract all the paths that match with permutation P for each variable in matrix A. In this way, we define the
N domains for the N variables in matrix A. Then we provide the matrix A, the associated domains and the constraint
defined in section III (i.e., each element in a column of Amust be different) to a constraint solver (in our experiments
we used Gecode [4]). Finally, the generation of the control signal is performed by applying Algorithm 3 on the resulting

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1. Network complexity comparison (number of MUXs)

N Based On Parallelism Nb. of MUXs Critical path
(×TMUX)

15

Our model 4 112 8
[QSN] 1 104 5
[EBS] 1 75 5
[FPCN] 2 117 5
[EBN] 2 120 5

80

Our model 11 1664 14
[QSN] 1 945 8
[EBS] 1 640 8
[FPCN] - 640 8
[EBN] - 880 8

384
Our model 27 8704 18
[QSN] 1 6273 10

(5G) [EBS] 1 3840 10
[FPCN] 22 4800 10
[EBN] 22 4992 10

matrix. If the architecture has to deal with several permutations, the idea is to generate the control signals for every
permutations off line, and store them in a ROM. The time consumption to find out a solution varies depending on the
size N and the desired permutation.
The lifting size of the 5G LDPC codes varies from 2 up to 384 [3]. Thus, since N is a power of 2, a 512×512-B2BN should
be designed to cover all lifting sizes. However, since B2BN can perform all kind of permutations, and thanks to its
modular construction, the parallelism can be covered where more than one frame has to be permuted simultaneously.
For instance, a frame of 384 elements can be processed simultaneously with a frame of 512 − 384 = 128 elements.
Table 1 shows the order of parallelism, the number of MUXs and the critical path of our model compared to QSN [25],
EBS [7], FPCN [11] and EBN [26]. Recalling that QSN cannot perform several frames in parallel and that EBS, EBN and
FPCN have some limitations in this context. It can be observed that our approach presents a limited over-cost between
around ×0.92 to ×0.72 in these 5G test cases compared to QSN. While comparing to EBS, the limited over-cost varies
between ×0.67 and ×0.44. Comparing to FPCN, the over-cost of this work varies between ×1.04 and ×0.55. Finally, the
comparison with EBN shows that the over-cost varies between ×1.07 and ×0.57. These additional complexities are the
minimal investment to take advantage of the high flexibility offered by our architectural model.
In terms of parallelism, the proposed model provides wider range in all cases of N . However, in terms of critical path,
the proposed model requires more stages of MUXs and hence more critical path compared to the existing algorithms.
The number of stages is equal to the number shown in Table I while the critical path is the number of stages multiplied
by TMUX (the time required to perform a multiplexer). For example, in case of N = 15, the proposed model consists of
8 stages and hence the critical path is equal to 8 ×TMUX .

6 CONCLUSION

In this paper, we proposed a new method to resolve the problem of finding the appropriate paths for a given permutation
using B2BN . The solution should take into account that the output of a MUX should not present two different data. We
have shown how the sets of all possible paths can be generated and how a solution can be found using these sets, with

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

a dedicated constraints model. B2BN can be employed for different applications such as 5G LDPC codes where the
parallelism is needed to increase the throughput rate.
Of course, the reader should have noticed that the efficiency of our approach depends on the choice of the initial path
provided to the constraints solver tool. This is a well-known NP-complete problem we already targeted in previous
work, but in the particular context of B2BN this aspect is going to be explored in incoming research.

7 ACKNOWLEDGEMENTS

This work has been founded the Brittany region and the EU that funded the project through the FEDER program in the
frame of the FLEXDEC-5G project. The authors would like also to thank Jeremie Nadal (Post-Doc. IMT Atlantique) and
Cedric Marchand (PhD - Engineer / Lab-STICC) for their corrections and suggestions to improve the paper.

REFERENCES
[1] [n. d.]. http://programming.sirrida.de/bit_perm.html.
[2] [n. d.]. http://pages.cs.wisc.edu/~tvrdik/10/html/Section10.html.
[3] [n. d.]. http://www.3gpp.org.
[4] [n. d.]. https://www.gecode.org/doc-latest/MPG.pdf.
[5] 3GPP 2020. 3rd Generation Partnership Project (3GPP). Retrieved June 06, 2020 from http://www.3gpp.org
[6] V. Benes. 1964. Optimal rearrangeable multistage connecting networks. Bell Syst. Tech. J. 43, 7 (1964), 1641–1656.
[7] E. Boutillon and H. Harb. 2020. Extended Barrel-Shifter for Versatile QC-LDPC Decoders. IEEE Wireless Communications Letters (2020), 1–1.

https://doi.org/10.1109/LWC.2020.2964208
[8] C. Chavet and P. Coussy (Eds.). 2015. Advanced Hardware Design for Error Correcting Codes (springer-verlag ed.). 177–192, ISBN 978–3–319–10568–0.
[9] X. Chen, S. Lin, and V. Akella. 2010. QSN—A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders. IEEE Trans. on Circuits

and Systems II: Express Briefs 57, 10 (Oct 2010), 782–786. https://doi.org/10.1109/TCSII.2010.2067811
[10] Y. Cui, X. Peng, Z. Chen, X. Zhao, Y. Lu, D. Zhou, and S. Goto. 2011. Ultra low power QC-LDPC decoder with high parallelism. In 2011 IEEE Int. SOC

Conference. 142–145.
[11] H. Harb and C. Chavet. 2020. Fully Parallel Circular-Shift Rotation Network for Communication Standards. IEEE Transactions on Circuits and

Systems II: Express Briefs (2020), 1–1.
[12] J. Lin, Z. Wang, L. Li, J. Sha, and M. Gao. 2009. Efficient Shuffle Network Architecture and Application for WiMAX LDPC Decoders. IEEE Transactions

on Circuits and Systems II: Express Briefs 56, 3 (March 2009), 215–219. https://doi.org/10.1109/TCSII.2009.2015353
[13] W. Lin, T. . Sheu, C. R. Das, T. . Feng, and C. . Wu. 1988. Fast data selection and broadcast on the Butterfly network. In [1988] Proceedings. Workshop

on the Future Trends of Distributed Computing Systems in the 1990s. 65–72. https://doi.org/10.1109/FTDCS.1988.26681
[14] M. Milicevic and P. G. Gulak. 2018. A Multi-Gb/s Frame-Interleaved LDPC Decoder With Path-Unrolled Message Passing in 28-nm CMOS. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 26, 10 (2018), 1908–1921.
[15] H. Motozuka, N. Yosoku, T. Sakamoto, T. Tsukizawa, N. Shirakata, and K. Takinami. 2015. A 6.16Gb/s 4.7pJ/bit/iteration LDPC decoder for IEEE

802.11ad standard in 40nm LP-CMOS. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 1289–1292.
[16] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel. 2007. Butterfly and Benes-Based on-Chip Communication Networks for Multiprocessor Turbo

Decoding. In 2007 Design, Automation Test in Europe Conference Exhibition. 1–6. https://doi.org/10.1109/DATE.2007.364668
[17] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel. 2007. Butterfly and Benes-Based on-Chip Communication Networks for Multiprocessor Turbo

Decoding. In 2007 Design, Automation Test in Europe Conference Exhibition. 1–6. https://doi.org/10.1109/DATE.2007.364668
[18] T.; Lee H. Nguyen, T.T.B.; Nguyen Tan. 2019; 8(6):668.. Efficient QC-LDPC Encoder for 5G New Radio. Electronics. (2019; 8(6):668.).
[19] S. U. Reehman, C. Chavet, P. Coussy, and A. Sani. 2015. In-place memory mapping approach for optimized parallel hardware interleaver architectures.

In 2015 Design, Automation Test in Europe Conference Exhibition (DATE). 896–899. https://doi.org/10.7873/DATE.2015.1055
[20] A. Sani, P. Coussy, and C. Chavet. 2016. A dynamically reconfigurable ECC decoder architecture. In 2016 Design, Automation Test in Europe Conference

Exhibition (DATE). 1437–1440.
[21] A. H. Sani, P. Coussy, and C. Chavet. 2013. A First Step Toward On-Chip Memory Mapping for Parallel Turbo and LDPC Decoders: A Polynomial

Time Mapping Algorithm. IEEE Transactions on Signal Processing 61, 16 (Aug 2013), 4127–4140. https://doi.org/10.1109/TSP.2013.2264057
[22] K. T. Sarika and P. P. Deepthi. 2014. A channel coder design for a high speed and less complex communication system using QC-LDPC codes. In

2014 International Conference on Communication and Signal Processing. 326–330. https://doi.org/10.1109/ICCSP.2014.6949855
[23] A. Tarable, S. Benedetto, and G. Montorsi. 2004. Mapping interleaving laws to parallel turbo and LDPC decoder architectures. IEEE Transactions on

Information Theory 50, 9 (Sep. 2004), 2002–2009. https://doi.org/10.1109/TIT.2004.833353

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://programming.sirrida.de/bit_perm.html
http://pages.cs.wisc.edu/~tvrdik/10/html/Section10.html
http://www.3gpp.org
https://www.gecode.org/doc-latest/MPG.pdf
http://www.3gpp.org
https://doi.org/10.1109/LWC.2020.2964208
https://doi.org/10.1109/TCSII.2010.2067811
https://doi.org/10.1109/TCSII.2009.2015353
https://doi.org/10.1109/FTDCS.1988.26681
https://doi.org/10.1109/DATE.2007.364668
https://doi.org/10.1109/DATE.2007.364668
https://doi.org/10.7873/DATE.2015.1055
https://doi.org/10.1109/TSP.2013.2264057
https://doi.org/10.1109/ICCSP.2014.6949855
https://doi.org/10.1109/TIT.2004.833353

[24] M. J. Thul, F. Gilbert, and N. Wehn. 2002. Optimized concurrent interleaving architecture for high-throughput turbo-decoding. In 9th International
Conference on Electronics, Circuits and Systems, Vol. 3. 1099–1102 vol.3. https://doi.org/10.1109/ICECS.2002.1046443

[25] S. Lin X. Chen and V. Akella. 2010. QSN : A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders. IEEE Trans. on Circuits
and Systems II: Express Briefs 57, 10 (Oct 2010), 782–786.

[26] Z. Zhong, Y. Huang, Z. Zhang, X. You, and C. Zhang. 2020. A Flexible and High Parallel Permutation Network for 5G LDPC Decoders. IEEE
Transactions on Circuits and Systems II: Express Briefs (2020), 1–1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://doi.org/10.1109/ICECS.2002.1046443

Response to the Reviewer’s Comments

Hassan Harb Cyrille Chavet

October 28, 2020

1 Answer to the comments of the editor and reviewers

First of all, we would like to thank the editor and the reviewers for their interest in our
work and for their positive opinions. We took into account the suggestions and comments
coming from three different reviewers. We appreciate the opportunity to clarify our research
objectives and results.
Finally, we also want to mention that between the submission of the first version of this
paper and the reception of the reviewer’s comments, we found some interesting papers. As
a consequence, we decided to update the state of the art in this revised version. One of this
new papers targets the same problem we are tackling in our works. Hence, this paper has
been included in our experimental section, and we discussed the strength and weaknesses
of this proposed solution versus our model.

2 Answers to Reviewer 1’s comments

This paper proposed an interconnection network architecture that can handle several types

of code with different permutation requirements with multiple frames in parallel. The pro-
posed scheme is based on a back-to-back butterfly network with the path finding mechanism
that finds the conflict-free path via appropriate constraints solver tools.

Your positive feedback is highly appreciated.

Although the authors presented the motivation and the challenges of this work well, and

the proposed method sounds reasonable for addressing the challenges, there is lack of per-
formance evaluation for the readers to understand the superiority of the proposed method.

Note that there is only one table showing the comparison of the required number of MUXs

with the other networks. Let alone the proposed method is not the most efficient one in
terms of the number of MUXs, it is not clear how such complexity comparison affects the
overall processing speed. It would be desirable to include more performance evaluation,

1

Response to Reviewer Comments

such as the maximum frame parallelism for different frame lengths as it is shown in [11].

In this revised paper, we add more information in the result table. We try to follow your
advice concerning the lack of information, and we also add comparison with a new paper
we found in September.

3 Answers to Reviewer 2’s comments

In this work, the authors proposed a formal model for selecting appropriate paths in a
Back-to-Back Butterfly Network, a network which can be applied to 5G. The manuscript
is an extended version of authors’ ICASSP 2020 paper. The differences, between the
current version and the previous one, are basically a new section for related work and
an updated Table I. The new section 2 gives a better background for the state of the
art. In the new Table I, the authors compare the network complexities (in terms of MUX
numbers) between the proposed model and QSN/EBS/FPCN, which makes their results
more convincing than the one reported in ICASSP.

Thank you so much for your positive feedback.

Though there are limits in QSN/EBS/FPCN, I would like to see the computing time
required by these models as well.

In this version of the paper, the computing time analysis for each algorithm is added to
Table I. As mentioned earlier, we also added new results in this section.

4 Answers to Reviewer 3’s comments

Thank you for your submission. There are many emerging communication standards,
and in particular, 5G requires several different configurations of error-control decoders.
This paper addresses the hardware aspects of this issue by exploring techniques based on
butterfly networks to make QC-LDPC decoder permutations configurable. The paper is
fairly well written (albeit with some minor language issues that should be fixed but do not
hinder the underlying technical aspects of the paper), with clear figures and pseudocode.

We highly appreciate your positive opinion. Thank you.

Please see my minor comments/suggestions below (line numbers according to the ones
inserted on the left when submitting the paper):
p.1 line 19: ”to solve efficiently” ⇒ ”to efficiently solve”
p.1 line 29: ”in wireless communication domain” ⇒ ”in the wireless communication do-
main”
p.1 line 38: put ”PEs” in parentheses

2

p.2 line 22: ”5G QC-LDPC” ⇒ ”the 5G QC-LDPC”
p.3 lines 6 and 9: Should it be ”down to”? (Algorithm 1)
p.5 line 50: ”2.n” looks like ”two point n”. Is the dot really a multiplication? This also
appears in Algorithms 1 and 3 and in many places in the text, e.g., p.6 lines 19-20.
p.7 line 28: ”our experimentation’s” ⇒ ”experimentations”
p.8: properly capitalize all acronyms in the Reference list, e.g., ref [7] should have ”QC-
LDPC”

Thank you for highlighting these points.
All the desired modifications are considered except the one that is related to the dot
(multiplication). In fact, we decided to assign the dot as a multiplication symbol in order
to mitigate the algorithms.

3

