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Cardiac Segmentation with Strong Anatomical
Guarantees

Nathan Painchaud, Youssef Skandarani, Thierry Judge, Olivier Bernard, Alain Lalande,
and Pierre-Marc Jodoin

Abstract— Convolutional neural networks (CNN) have
had unprecedented success in medical imaging and, in
particular, in medical image segmentation. However, de-
spite the fact that segmentation results are closer than
ever to the inter-expert variability, CNNs are not immune
to producing anatomically inaccurate segmentations, even
when built upon a shape prior. In this paper, we present a
framework for producing cardiac image segmentation maps
that are guaranteed to respect pre-defined anatomical cri-
teria, while remaining within the inter-expert variability. The
idea behind our method is to use a well-trained CNN, have
it process cardiac images, identify the anatomically implau-
sible results and warp these results toward the closest
anatomically valid cardiac shape. This warping procedure
is carried out with a constrained variational autoencoder
(cVAE) trained to learn a representation of valid cardiac
shapes through a smooth, yet constrained, latent space.
With this cVAE, we can project any implausible shape into
the cardiac latent space and steer it toward the closest
correct shape. We tested our framework on short-axis MRI
as well as apical two and four-chamber view ultrasound
images, two modalities for which cardiac shapes are dras-
tically different. With our method, CNNs can now produce
results that are both within the inter-expert variability and
always anatomically plausible without having to rely on a
shape prior.

Index Terms— CNN, Variational autoencoder, Cardiac
segmentation, MRI, Ultrasound.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) and ultrasound
imagery (US) are the most widely-used cardiac image

acquisition devices in clinical routine. While MRI can produce
high-contrast, high-resolution and high-SNR images in any
orientation, the cardiac function is typically evaluated from
a series of kinetic images (cine-MRI) acquired in short-
axis orientation of the left ventricle [1]. In clinical practice,
cardiac parameters are usually estimated from the knowledge
of the endocardial and epicardial borders of the left ventricle
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(defining the left cavity (LV) and the myocardium (MYO)) and
the endocardial border of the right ventricle (RV) at the end-
diastolic (ED) and end-systolic (ES) phases. MRI is the ref-
erence exam for the evaluation of the cardiac function and of
the cardiac viability after myocardial infarction. Unfortunately,
the MRI device is bulky, expensive and cannot be operated by
one person even with the latest innovations.

On the other hand, echocardiography is an highly flexible
and low-cost exam to evaluate the cardiac function. Ultrasound
devices are small and less expensive that one can carry
around the hospital. As such, US provides physicians real-
time images in an easy way and is often described as the
modern stethoscope. Unfortunately, ultrasound images suffer
from a poor SNR, noise artifacts, local signal drop, limited
field of view, and a limited acquisition angle. The most widely-
used acquisition protocol to evaluate the cardiac function
involve a 2D+time long-axis orientation resulting into two and
four-chamber view images. As for MRI, the endocardial and
epicardial borders are outlined at the ED and ES time instant.
The volume and ejection fraction of the LV is then computed
with the biplane Simpson’s formula [2].

US and MRI are complementary by nature. US devices
can quickly evaluate the heart function, find the source of
certain symptoms and detect or exclude pathologies. MRI
is an imaging modality to further assess a disease and for
longitudinal analysis. Both MRI and US are non-invasive and
are non-irradiating imaging techniques.

CNNs have had great success at segmenting these modali-
ties [3]–[7]. Some neural nets even provide results with overall
Dice index and/or Hausdorff distance within the inter and
intra-observer variations [4], [5]. Unfortunately, these methods
still generate spurious anatomically impossible shapes with
holes inside the structures, abnormal concavities, and dupli-
cated regions to name a few. Therefore, despite their excellent
results on average, these methods are still unfit for a day-to-
day clinical use.

To reduce such errors, some authors integrate shape priors
to their model [3], [6], [7] while others simply post-process the
generated shapes with morphological operators or some con-
nected component analysis to remove small isolated regions.
Unfortunately, none of these approaches can guarantee 100%
of the time the anatomical plausibility of their results.

In this paper, we present the first deep learning formal-
ism which guarantees the anatomical plausibility of cardiac
shapes, w.r.t. well-defined criteria, under any circumstances.
Our method can be plugged at the output of any segmentation
method to reduce to zero its number of anatomically invalid
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shapes, while preserving its overall accuracy. As will be shown
in the results section, the same framework is effective for a
variety of segmentation methods both applied on echocardio-
graphic and MR images.

II. PREVIOUS WORK

Although there is more non-deep-learning cardiac segmen-
tation methods than deep learning ones (neural networks are
relatively new in the field) we shall focus on the latter due to
the very nature of our contribution.

A. MRI segmentation
CNNs: The U-Net [8] has become the de facto generic

encoder-decoder CNN for biomedical image segmentation and
is often used in cardiology. Isensee et al. [9], winner of
the 2017 MICCAI Automated Cardiac Diagnosis Challenge
(ACDC) [4], used an ensemble of 2D and 3D U-Net, with the
addition of an upscaling and aggregation of the last two convo-
lutional blocks of the decoder for the final segmentation. Also,
as mentioned by Bernard et al. [4], several other challengers
used a modified version of the UNet. Vigneault et al. proposed
a more domain specific approach, Omega-Net [10], which has,
at its heart, a localization and transformation network that
transforms the input MRI into a canonical orientation which
is subsequently segmented by a cascade of U-Nets.

CNNs with shape prior: Although most deep segmentation
methods produce accurate segmentation results, they still
suffer from anatomical inconsistencies. As a solution, several
authors incorporate a shape prior to their model. Oktay et al.
uses an approach named anatomically constrained neural
network (ACNN) [6]. Their neural network is similar to a
3D U-Net whose segmentation output is constrained to be
close to a non-linear compact representation of the under-
lying anatomy, derived from an autoencoder network. More
recently, Zotti et al. proposed a method based on the grid-
net architecture that embeds a cardiac shape prior to segment
MR images [7]. Their shape prior encodes the probability of
a 3D location point being a member of a certain class and
is automatically registered with the last feature maps of their
network. Finally, Duan et al. implemented a shape-constrained
bi-ventricular segmentation strategy [3]. Their pipeline starts
with a multi-task deep learning approach that aims to locate
specific landmarks. These landmarks are then used to initialize
atlas propagation during a refinement stage of segmentation.
Although the use of an atlas improves the quality of the results,
their final segmented shapes strongly depend on the accuracy
of the located landmarks. From these studies, it appears that
only soft constraints are currently imposed in the literature
to steer the segmentation outputs toward a reference shape.
As will be shown in this paper, shape-prior methods are not
immune to producing anatomically incorrect results.

B. Echocardiographic segmentation
CNNs: In 2012, Carneiro et al. exploited deep belief net-

works and the decoupling of rigid and nonrigid classifiers
to improve robustness in terms of image conditions and
shape variability [11]. Later, Chen et al. used transfer learning
from cross domain to enhance feature representation [12]. In

parallel, Smistad et al. showed that the U-Net [8] could be
trained with the output of a state-of-the-art deformable model
to segment the LV in 2D ultrasound images [13]. Additionally,
Leclerc et al. showed that a simple U-Net learned from a
large annotated dataset can produce accurate results that are
much better than the state-of-the-art, on average below the
inter-observer variability and close but still above the intra-
observer variability with 18% of outliers [5]. Recently, the
same authors proposed to efficiently integrate the U-Net into
a multi-task network (the so-called ”LUNet”) designed to
optimize in parallel a localization and a segmentation pro-
cedure [14]. Their results showed that localization allows the
introduction of contextualization properties which improve the
overall accuracy of cardiac segmentation while reducing the
number of outliers to 11%.

CNNs with shape prior: The ACNN model proposed by
Oktay et al. [6] was also applied to the segmentation of the
endocardial border in 3D echocardiography. Results showed
that the use of an autoencoder network to impose soft shape
constraints allowed to obtain highly competitive scores with
respect to the state-of-the-art while learning from a limited
number of cases (30 annotated volumes). Very recently, Dong
et al. developed a deep atlas network to significantly improve
3D LV segmentation based on limited annotation data [15].
The key aspects of this architecture are a light-weight net-
work to perform registration and a multi-level information
consistency constraint to enhance the overall model’s per-
formance. This method currently has the best scores for 3D
LV segmentation in 3D echocardiography. Jafari et al. also
proposed to alter the echocardiography fed to segmentation
models using a framework that introduces soft shape priors to
Cycle-Gan [16]. By enhancing the quality of the input images
through image translation, the authors manage to improve the
worst-case performance of standard segmentation networks.

III. PROPOSED FRAMEWORK

A schematic representation of our method is given in Fig. 1.
The system is used for both short-axis MR images and long-
axis echocardiographic images, two fairly different looking
cardiac shapes. Overall, the system is made of three blocks,
namely: 1) a constrained VAE that learns the latent represen-
tation of valid cardiac shapes, 2) an anatomically-constrained
rejection sampling procedure to augment the number of latent
vectors and 3) a post-processing VAE that warps anatomically
invalid shapes toward the closest valid ones. Since the system
implements a post-processing for segmentations, the ”Segmen-
tation method” block in Fig. 1 is a placeholder for any possi-
ble cardiac segmentation method. The anatomical guarantees
come from an operation called ”Latent space transformation”
in Fig. 1, that substitutes the latent vector of an incorrect shape
by a close but valid one.

The correctness of a cardiac shape is determined by a set
of complementary anatomical criteria. These criteria allow to
identify anatomically implausible configurations regardless of
the input image. As such, the aim of our system is to output
cardiac shapes that always respect these anatomical criteria.
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Fig. 1: Schematic representation of our method. Although this figure illustrates short axis image segmentation, we use the
same framework for two and four-chamber view ultrasound images. The segmentation method is a placeholder for any cardiac
segmentation method. The parameters used by the anatomical VAE (pθ, qθ) are the same ones trained on the constrained VAE.

A. Anatomical Criteria

Because of the orientation used to acquire cine MR and
apical ultrasound images, our system uses two sets of anatom-
ical criteria, namely the short-axis and the long-axis criteria
(c.f. Fig. 2 and 3 for illustrations). When relevant, thresholds
were defined based on the datasets’ training set (ACDC for
short-axis, CAMUS for long-axis) so that no clinically relevant
segmentations were marked as invalid. Both datasets cover
healthy and pathological cases, so the thresholds take into
account a representative distribution of cardiac configurations,
and not only a subset of healthy configurations. Since these
criteria are not included in the loss, they do not need to
be differentiable. They are evaluated systematically on every
sample from the latent space, so they do however need to be
computable algorithmically using traditional image processing,
for efficiency concerns.

Short-Axis Criteria: Our system uses 16 anatomical short-
axis criteria that each highlight an invalid cardiac configura-
tion. These criteria are the following:

1) (3 criteria) hole(s) in the LV, the RV or the MYO
2) (2 criteria) hole(s) between the LV and the MYO and

between the RV and the MYO
3) (3 criteria) the presence of more than one LV, RV or

MYO
4) (1 criterion) the RV is disconnected from the MYO
5) (2 criteria) the LV touches the RV or the background
6) (3 criteria) the LV, RV and MYO has one (or more)

acute concavity
7) (2 criteria) both for the LV and the MYO, the ratio of

(a) Intra-structure holes (b) Inter-structure holes

(c) Connectivity and LV cavity touching background

(d) Fragmented structures (e) Concavity

Fig. 2: Examples of anatomically erroneous cardiac shapes for both
short and long-axis views.

their area to that of a circle having the same perimeter
(aka circularity metric) exceeds a certain threshold.

Long-Axis Criteria: We use 12 anatomical long-axis criteria
to highlight invalid configurations. These criteria are:

1) (3 criteria) hole(s) in the LV, MYO and left atrium (LA)
2) (2 criteria) hole(s) between the LV and the MYO or
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between the LV and the LA
3) (3 criteria) the presence of more than one LV, MYO or

LA
4) (2 criteria) the size of the area by which the LV touches

the background or the MYO touches the LA exceeds a
certain threshold.

5) (1 criterion) the ratio between the minimal and maximal
thickness of the MYO is below a given threshold

6) (1 criterion) the ratio between the width of the LV and
the average thickness of the MYO exceeds a certain
threshold. Both width and thickness are computed as
the total width of the structure at the middle-point of the
embeded bounding box. The goal is to identify situations
for which the MYO is too thin with respect to the size
of the LV.

B. Constrained Variational Autoencoder (cVAE)
VAEs [17] are unsupervised neural networks trained to learn

the latent representation of a set of data. These neural nets are
made of an encoder, which projects an input signal x to the
latent space, and a decoder, which converts a latent vector ~z
back into the input space. More specifically, the VAE encoder
outputs the parameters (~µ and Σ) of a Gaussian distribution
pθe(~z|x) where ~z ∈ Rk is a latent vector (k = 32 in our
case, and θe are the parameters of the encoder network). The
decoder takes in a latent variable ~z sampled from pθe(~z|x) and
outputs x̂, the reconstruction of the input vector x. As such,
the decoder gets to learn the conditional distribution qθd(x|~z)
with θd as the decoder parameters.

In this work, x and x̂ are 2D cardiac shapes, both ∈
Rn×n. Since our overarching objective is to learn the latent
representation of valid cardiac shapes, we train our VAE with
input values x that are groundtruth cardiac shapes outlined by
a medical expert, and thus without any anatomical aberrations.
As such, after the VAE has been trained, Gaussian centroids
~µi encoded from groundtruth cardiac shapes x will also lead
to an anatomically valid reconstructed shape x̂. In fact, any
point ~z sampled on the manifold of valid cardiac vectors can
be decoded to an anatomically valid cardiac shape x̂. As such,
we call these vectors valid latent vectors.

However, as will be shown later, our method needs to
linearly interpolate latent vectors. It follows that a latent vector
~z interpolated between two anatomically valid vectors ~zi, ~zj
should also be valid (at least most of the time). Furthermore,
our method needs that a small translation ~δz performed on
a valid latent vector ~z leads to a smooth and anatomically
coherent transformation on the resulting decoded image.

These constraints can be fulfilled with a linear manifold
that we approach with a constrained VAE (cVAE) [18]. The
constraint comes in the form of a single-neuron regression
network [19] yθc(~z) trained simultaneously with the encoder
and the decoder (c.f. Fig. 1). The goal of the linear regression
network is to reproduce a domain-specific target t associated
to the input image x. Since a single-neuron network with no
activation can only learn a linear function, the gradient from
the regression loss forces the encoder to learn a more linear
(and thus less convoluted) manifold of valid shapes in the
latent space.

The resulting loss function of our cVAE is:

IEqθe (~z|x)[− log qθd(x|~z)] +KL(pθe(~z|x)‖p(~z)) + (1)

‖yθc(~z)− t‖2

where the first two terms make up the usual ELBO (Evidence
Lower BOund) VAE loss function [17], with p(~z) as the unit-
variance zero-mean Gaussian prior. The last term is the L2
regression loss of the one-neuron net.

MRI short-axis linear constraint: Since cine-MR short-axis
images x are 2D+time arrays stacked into two 3D volumes,
in our study, only the ES and ED phases are considered and
then the target predicted by the one-neuron regression network
yθc(~z) is the slice index of x normalized between 0 (base) and
1 (apex).

Ultrasound long-axis linear constraint: The ultrasound signal
is a 2D+time sequence of images. In this case, the regression
network is designed to predict the time instant of the input
image x. Here as well, the target value is normalized between
0 and 1, where 0 stands for the end-diastolic time instant and
1, the end-systolic time instant.

C. Anatomically-Constrained Data Augmentation
As mentioned before, once the cVAE is trained, the 2D

groundtruth cardiac shapes x can be projected in the 32D
latent space, where they form a manifold of valid latent
vectors. These latent vectors are ”anatomically correct”, since
the deterministic cVAE decoder can convert them back to
anatomically valid cardiac shapes.

The idea behind our method is to warp invalid cardiac
shapes toward a close but valid configuration. This is done
by projecting any invalid cardiac shape x to the latent space,
project its associated invalid latent vector to the closest point
on the manifold of valid latent vectors, and then decode the
resulting vector. Unfortunately, with 32 dimensions, the latent
space has a whopping number of 232 quadrants, which is
orders of magnitude larger than any annotated cardiac dataset.
As such, with too few valid latent vectors, the manifold is too
sparse to be effective.

One solution to that problem is to increase the number
of valid latent vectors through data augmentation. Since the
manifold in the latent space is roughly linear, one can easily
sample it with a rejection sampling (RS) method [20]. The
goal is to generate a new set of latent vectors Z ′ such that the
distribution P (~z′) of these newly generated samples is close
to P (~z), the distribution from which the original valid latent
vectors are identically independent and identically distributed
(iid) from. Since sampling P (~z) directly is difficult, RS
samples a second, and yet easier, probability density function
Q(~z). A common choice for Q(~z) is a Gaussian of mean and
variance equal to the distribution of the original valid latent
vector derived from the groundtruth segmentation. A key idea
with RS is that P (~z) > MQ(~z) where M > 1. Given P (~z)
and Q(~z), the sampling procedure first generates a random
sample ~zj , iid of Q(~z), as well as a uniform random value
u ∈ [0, 1]. If u <

P (~zj)
MQ(~zj)

then ~zj is kept, otherwise it is
rejected. Since in our case P (~z) is unknown a priori, we
estimate it with a Parzen window distribution [19].
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(a) MRI (ACDC)

(b) US (CAMUS)

Fig. 3: Samples generated through anatomically-constrained data
augmentation for MRI (short-axis view) and US (long-axis view).

The primary objective with RS is to increase the number
of latent vectors. However, since these newly generated points
need to lie on the manifold of valid vectors, we want those new
vectors to correspond to anatomically valid cardiac shapes. As
such, we redefine the RS criterion as follows:

u < 1 (dec(~zi))
P (~zj)

MQ(~zj)
(2)

where dec(~zj) is the VAE decoder that converts the latent
vector ~zj into a segmentation map and 1 is an indicator
function which returns 1 when the input segmentation map
respects the defined anatomical criteria and zero otherwise.
In Fig. 1, this operation is called anatomically-constrained
rejection sampling augmentation. This sampling procedure is
repeated up until the desired number of samples is reached.
At the end, a total number of 4 million latent vectors have
been generated, both for the MRI and the ultrasound datasets.
Each of these vectors have a corresponding valid cardiac
shape that respects the aforementioned anatomical criteria
(c.f. Section III-A). Samples of cardiac shapes generated with
anatomically-constrained rejection sampling augmentation are
provided in Fig. 3.

D. Cardiac shape warping
Our system can be seen as a post-processing operator that

one can plug after any segmentation method that sometimes
generates anatomically erroneous segmentation maps. This is
illustrated at the bottom right of Fig. 1, where a VAE is used to
convert erroneous segmentation maps into anatomically valid
segmentations. This post-processing VAE is in fact the trained
cVAE. Thus, any anatomically invalid segmentation map x
fed to the VAE encoder gets projected into the latent space
where 4 million valid vectors lie. Furthermore, since the VAE
decoder is deterministic, any anatomically valid latent vector
~z is guaranteed to be converted into an anatomically plausible
cardiac shape.

As mentioned before, our aim is to warp an anatomically in-
correct cardiac shape toward a close but correct configuration.
We do so by translating the latent vector ~z of an erroneous
cardiac shape to a near but anatomically valid latent vector ẑ.
This operation can be summarized as:

ẑopt = arg min
ẑ
||~z − ẑ||2, s.t. 1 (dec(ẑ)) = 1. (3)

Fig. 4: [Top] Method used to generate invalid cardiac shape from
valid ones. [Bottom] The valid/invalid pair of images are then used
to train the Robust VAE.

The result of this optimization is a valid latent vector ẑ that is
the closest to ~z. However, since 1 (dec(ẑ)) = 1 involves non-
differentiable anatomical criteria, the optimization formulation
of Eq. (3) cannot be solved with a usual Lagrangian solution.
An alternative solution is to redefine the problem of finding
ẑ as the problem of finding the smallest vector ~δz′ such that
ẑ = ~z+α~δz′ with α ∈ [0, 1]. In our case, we recover ~δz′ based
on the nearest neighbor of ~z in the augmented latent space, i.e.
~δz′ = (~z′N1 − ~z) where ~z′N1 corresponds to the nearest latent
vector. This leads to an easier 1D optimization problem:

αopt = arg min
α
|α|, s.t. 1

(
~z + α~δz′

)
= 1 (4)

that we solve with a dichotomic search. Starting with α = 0.5,
at each iteration, the anatomical criterion 1

(
dec(~z + α~δz′)

)
dictates which half of the search space should be explored
further: lower values of α if 1 (dec(ẑ)) = 1, and higher values
of α if 1 (dec(ẑ)) = 0.

Since the dichotomic search reduces the search space ex-
ponentially fast, the optimization algorithm is stopped after
five iterations. At the end, the selected α is the smallest that
validates the anatomical criterion.

E. Robust VAE

Current limitations of the proposed method are the need
for millions of latent vectors to be stored in memory and the
nearest neighbor search to perform each time a segmentation
result is anatomically flawed. In this section, we present an
alternative method that does not require the storage of latent
vectors, nor the search for nearest neighbors. This method
allows for faster processing and reduced memory usage, but
without the previous method’s anatomical guarantees. The use
of either method depends on the application at hand.

Instead of using the post-processing VAE with cardiac shape
warping as in Fig. 1, we implemented a robust VAE (rVAE).
The goal of this new VAE is to directly convert erroneous seg-
mentation maps x into anatomically plausible configurations
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TABLE I: Ablation study of our cVAE showing the average %
of anatomical errors while navigating through the latent space.

Dataset
AE VAE

- Registered Const. Reg. + const.

ACDC 64.76 5.84 5.85 8.48 1.25
CAMUS 41.25 1.48 0.52 3.32 0.12

x̂. To do so, we added a step to the VAE training procedure.
Starting with a pretrained cVAE, we fixed the weights of
the decoder and of the single-neuron regression network, and
fine-tuned the cVAE like a denoising autoencoder, i.e. by
feeding it with anatomically implausible maps and training it
to reproduce valid segmentations (c.f. bottom of Fig. 4). Since
the decoder is fixed, this forces the new encoder of the cVAE
(θ′e) to learn to project erroneous segmentation maps close to
their corresponding valid latent vectors.

In practice, we generated a synthetic training set of 10,000
pairs of anatomically valid and invalid cardiac shapes, using
the generative capabilities of the cVAE. As shown at the top
of Fig. 4, we added some noise to the latent vectors obtained
from the training data, and decoded the resulting vectors. More
precisely, the valid latent vector ~z of an input image is shifted
along the axis defined by the single-neuron regression network
parameters to obtain the noisy latent vector ~z∗ = ~z+αθc. This
warped latent vector is decoded to produce a segmentation map
x∗ = dec(~z∗). Because of the linear constraint, the distribution
is stretched along a plane perpendicular to the the axis defined
by the single-neuron regression network, to allow for a linear
separation of the domain-specifc target. At equal magnitude,
warping the latent vector along the normal of the plane that
defines the stretch of the distribution is more likely to produce
samples out of distribution than along any other direction in
the latent space. Since out-of-distribution samples are more
likely to be decoded into implausible segmentation maps, this
perturbation of the latent vector is a suitable way to obtain
an artificial anatomically invalid cardiac shape paired with the
original valid cardiac shape.

The rVAE is trained to recreate x from x∗. An additional
constraint is used to incite the encoder to project erroneous
segmentations close to their corresponding valid latent vectors.
This constraint is implemented as an additional KL loss term.
This KL loss term minimizes the distance between the latent
vector obtained by the rVAE on the noisy data and the original
latent vector generated by the cVAE on the clean training data.

For a given x, x∗ and t the loss function is:

IEqθ′e (~z|x
∗)[− log qθ′d(x|~z)] +KL(pθ′e(~z|x)‖p(~z)) + (5)

‖yθ′c(~z)− t‖
2 +KL(pθ′e(~z|x

∗)‖pθe(~z|x))

F. Implementation Details

The encoder of our cVAE is made up of 4 convolutional
blocks, followed by two fully-connected heads that output
the ~µ and Σ parameters of the posterior distribution. Each
convolutional block consists of two 3×3 convolutional layers

with ELU [21] activations: the first one with stride 2 (to
downsample by half in lieu of pooling), and the second with
stride 1 and same padding. The dimensionality of the latent
space was fixed at 32, to remain as low as possible while
allowing for high reconstruction accuracy.

The decoder follows a similar structure, first using a fully-
connected layer to project to the same volume as the output
of the last convolutional block in the encoder. After the FC
layer comes a 4-block structure mirroring the encoder. Each
block now consists of 2 layers with ELU [21] activations: the
first one is a 2 × 2 transposed convolution with stride 2 (to
upsample by 2), and the second one is a 3 × 3 convolution
with stride 1 and same padding. A final 3 × 3 convolution
layer with stride 1 and same padding outputs the pixel-wise
score for each class.

The number of feature maps is set to 48 for the first layer,
and doubles at each successive block in the encoder. It follows
the reverse logic in the decoder, where it is reduced by half in
each block in order to reach 48 just before the final convolution
with softmax. The encoder and decoder are trained end-to-
end with the Adam optimizer [22], using a learning rate of
6×10−5 for ACDC and 5×10−4 for CAMUS. In both cases,
a L2 weight regularization with λ = 0.01 was applied.

The AE mentioned in the ablation study of Table I uses
the exact same architecture and hyperparameter values, except
for one adaptation. At the end of the encoder, a single fully-
connected head is used to directly obtain the latent vector,
instead of the parameters of the posterior distribution.

The segmentations maps were resized to 256 × 256 and
registered. In the case of ACDC, the registration process
implied centering image on the LV, and aligning the LV and
RV on an horizontal line (i.e. aligning according to the centers
of the cavities). With CAMUS, registering meant centering
the image on the union of the LV and MYO, and vertically
aligning the principal axis of the LV. During inference, the
registration is based on the results of the segmentation method
rather than the groundtruth. Because this is done prior to
any of our post-processing, our method is dependent on the
original segmentation being at least somewhat accurate w.r.t.
the position and orientation of the heart.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Datasets, evaluation criteria, and other methods

1) MRI dataset: The MRI dataset is the 2017 ACDC
dataset [4], which contains short-axis cine-MR images of 150
patients: 100 for training and 50 for testing. Particularly, a
series of short axis slices cover the LV from the base to
the apex, with one image every 5 or 10 mm, according
to the examination. The spatial resolution goes from 1.37
to 1.68 mm2/pixel and 28 to 40 images cover the cardiac
cycle. The end-diastolic and end-systolic phases were visually
selected. As shown in Fig. 6(a), the LV, RV and MYO of
every patient has been manually segmented. We report the
average Hausdorff distance (HD) and 3D Dice index for
the LV, RV and MYO as well as the LV and RV ejection
fraction (EF) absolute error. Since our approach can post-
process any segmentation method, we tested it on the test
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TABLE II: Number of anatomically invalid segmentation re-
sults on the ACDC test set (1076 images) for 11 segmentation
methods with and without our post-processing methods (w/o
RS: without rejection sampling, w/ RS: with rejection sam-
pling, Dicho: dichotomic search).

Methods
Original VAE Nearest Neighbors

- Robust w/o RS w/ RS Dicho

Zotti-2 [7] 55 16 7 0 0 0
Khened [23] 55 16 9 0 0 0
Baumgartner [24] 79 17 8 0 0 0
Zotti [25] 82 15 7 0 0 0
Grinias [26] 89 12 6 0 0 0
Isensee [9] 128 21 7 0 0 0
Rohé [27] 287 40 21 0 0 0
Wolterink [28] 324 42 16 0 0 0
Jain [29] 185 28 17 0 0 0
Yang [30] 572 182 137 0 0 0
ACNN [6] 139 41 21 0 0 0

results reported by ten ACDC challengers. Their methods are
summarized by Bernard et al. [4] except for Zotti-2 [7] whose
results have been uploaded after the challenge. We also report
results for the ACNN method of Oktay et al. [6] that uses a
latent anatomical prior together with their segmentation CNN.
Results from our best ACNN implementation (which involves
a U-Net and our VAE) are very close to that of the original
paper, despite the fact that the ACDC training set is smaller
than in the original paper [6]. HD values are also slightly larger
since we use a 3D HD instead of a 2D HD as in the original
paper.

2) Echocardiographic dataset: The CAMUS dataset [5] con-
sists of conventional clinical exams from 500 patients acquired
with a GE Vivid E95 ultrasound scanner. The acquisitions were
optimized to perform measurements of the left ventricular
ejection fraction. For each patient, 2D apical four-chamber
and two-chamber view sequences were acquired with the same
acquisition protocol and exported from EchoPAC analysis
software (GE Vingmed Ultrasound, Horten, Norway). The
corresponding videos are expressed in native polar coordinates.
The same resampling scheme was applied on each sequence to
express the corresponding images into a cartesian coordinate
system with a constant grid resolution of λ/2 (i.e. 0.31
mm) in the lateral direction and λ/4 (i.e. 0.15 mm) in the
axial direction, where λ corresponds to the wavelength of
the ultrasound probe. The dataset is divided in 10 folds of
equal size, nine of which are used for training and one for
testing. The image quality (poor, good, and medium) and
ejection fraction (≤ 45%, ≥ 55% or in between) are uniformly
distributed across every fold. A senior cardiologist manually
annotated the endocardium and epicardium borders of the left
ventricle as well as the atrium of the end-diastolic (ED) and
end-systolic (ES) images of every patient.

We tested our framework on the output of 7 methods: four
conv nets (U-Net [5], [8], LUNet, ENet [31] and SHG [32])
and three non-deep learning methods (SRF [33], BEASM-
auto [34], [35], and BEASM-semi [5], [34]). Note the non-
deep-learning methods were state-of-the-art up until 2017.

(a) MRI (ACDC)

(b) US (CAMUS)

Fig. 5: The left-most and right-most images are groundtruth config-
urations for both MRI and US while the other configurations were
obtained though a linear interpolation.

B. Experimental Results

1) Constrained variational autoencoder: We gauged the lin-
earity property of the latent space generated by our cVAE
through the ablation study in Table I. Since our post-processing
method relies on latent vector interpolation (c.f. Eq (4)),
we computed the percentage of anatomically incorrect re-
sults obtained after interpolating a series of two valid latent
vectors chosen at random. To do so, we iteratively selected
two random groundtruth images from two random patients,
projected it to the latent space with the cVAE encoder and
linearly interpolated 25 new latent vectors. We then converted
these 25 vectors back into the image space with the cVAE
decoder and computed their percentage of anatomical errors.
This procedure is illustrated in Fig. 5.

We repeated that process 300 times, i.e. combinations
between 25 random vectors, (both for Camus and ACDC) for
the cVAE with and without registration and with and without
the one-neuron regression net. We first tested our full method
(i.e. with image registration and a L2 regression constraint),
then removed the image registration but kept the regression
constraint, then removed the regression and kept the image
registration and finally only used the VAE without registration
nor regression. As shown in Table I, the combination of image
registration and regression constraint reduces the percentage
of anatomically implausible results down to 1.25% for ACDC
and a negligeable 0.12% for CAMUS, which is more than 4x
lower than for any other configuration. As for a simple autoen-
coder (c.f the AE column), since it provides no constraint on
the latent space whatsoever, the percentage of errors is orders
of magnitude larger.

2) ACDC Postprocessing results: Results on the ACDC
test set are in Table II and Table III. Table II contains the
total number of slices with at least one anatomical error
for 11 different methods, the first ten being official ACDC
challengers. Results without our post-processing are under the
Original column. As for Table III, we report for the same
methods their associated Dice index and Hausdorff distance
(HD) [top] as well as their LV and RV ejection fraction
absolute error [bottom].

As can be seen from the ”VAE” column in Table II, feeding
every erroneous segmentation map to our VAE without trans-
forming the latent vector ~z, significantly reduces the number
of anatomical errors, without affecting too much the average
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TABLE III: Accuracy and clinical metrics of SOTA segmentation methods, with and without our post-processing, on the ACDC
test set. [Top] Average Dice index and Hausdorff distance (in mm). [Bottom] Average error (in %) on LV and RV ejection
fraction (EF).

Methods
Original VAE Nearest Neighbors

- Robust w/o RS w/ RS Dicho

Zotti-2 [7] .913 / 9.7 .910 / 10.1 .910 / 11.3 .899 / 14.4 .909 / 11.0 .910 / 10.1
Khened [23] .915 / 11.3 .912 / 12.3 .912 / 11.8 .894 / 15.2 .909 / 12.7 .912 / 10.9
Baumgartner [24] .914 / 10.5 .911 / 11.2 .912 / 10.8 .889 / 18.2 .907 / 12.6 .910 / 10.6
Zotti [25] .910 / 9.7 .907 / 10.9 .907 / 11.3 .878 / 19.6 .903 / 12.6 .907 / 11.0
Grinias [26] .835 / 15.9 .833 / 19.3 .834 / 15.7 .752 / 32.5 .825 / 16.9 .833 / 15.8
Isensee [9] .926 / 9.1 .923 / 10.7 .923 / 9.7 .881 / 18.4 .917 / 11.2 .923 / 9.2
Rohé [27] .891 / 12.2 .887 / 14.6 .886 / 16.3 .756 / 32.2 .874 / 15.1 .887 / 12.8
Wolterink [28] .907 / 10.8 .903 / 13.0 .902 / 11.6 .752 / 32.8 .887 / 13.5 .903 / 11.0
Jain [29] .891 / 12.2 .886 / 12.6 .885 / 13.0 .820 / 31.9 .878 / 14.2 .886 / 11.6
Yang [30] .800 / 27.5 .752 / 21.7 .742 / 24.3 .455 / 29.7 .722 / 11.5 .752 / 10.2
ACNN [6] .892 / 12.3 .886 / 26.2 .885 / 21.6 .885 / 12.0 .885 / 12.2 .889 / 13.1

Zotti-2 [7] 2.54 / 5.11 2.63 / 5.12 2.59 / 5.08 2.49 / 5.57 2.58 / 5.18 2.62 / 5.18
Khened [23] 2.39 / 5.24 2.41 / 4.96 2.43 / 5.18 2.70 / 5.36 2.63 / 5.07 2.42 / 5.27
Baumgartner [24] 2.58 / 6.00 2.62 / 6.30 2.54 / 6.18 2.83 / 6.72 2.85 / 6.48 2.64 / 6.33
Zotti [25] 2.98 / 5.48 2.98 / 5.42 3.04 / 5.57 3.06 / 5.72 3.10 / 5.71 3.06 / 5.59
Grinias [26] 4.14 / 7.39 4.18 / 7.86 3.94 / 7.59 4.67 / 8.00 4.33 / 7.35 4.01 / 7.43
Isensee [9] 2.16 / 4.85 2.15 / 4.61 2.18 / 4.85 2.49 / 5.58 2.35 / 4.48 2.20 / 4.82
Rohé [27] 2.84 / 8.18 2.95 / 7.85 2.85 / 8.34 3.13 / 8.93 3.39 / 7.97 2.91 / 8.11
Wolterink [28] 2.75 / 6.59 2.82 / 6.39 2.83 / 6.42 3.40 / 6.93 3.48 / 6.07 2.84 / 6.44
Jain [29] 4.36 / 8.49 4.35 / 8.83 4.46 / 9.09 4.98 / 9.63 4.59 / 8.69 4.40 / 8.72
Yang [30] 6.22 / 15.99 6.80 / 20.56 5.40 / 21.58 7.57 / 27.9 7.77 / 22.09 9.10 / 21.76
ACNN [6] 2.46 / 3.68 2.53 / 4.09 2.59 / 4.05 2.51 / 3.89 2.96 / 3.82 2.50 / 3.71

clinical metrics (Table III). This comes as no surprise, since the
VAE was trained to output similar anatomically correct cardiac
shapes (the ACDC test set has a total of 1078 slices). The
rVAE further reduces, by a factor of almost 2, the number of
anatomical errors, without significantly impacting the overall
anatomical metrics. With a processing time 10 times faster
than our most accurate method, the rVAE can be seen as a
good compromise for real-time applications.

However, like any neural network, a VAE (be it robust or
not) comes with no guarantee on the validity of its output. To
completely eliminate erroneous segmentations, we tested three
variants of our method. At first, we swap erroneous latent vec-
tors with their nearest neighbor (thus forcing α = 1 in Eq. 4)
without and with rejection sampling (cf. columns ”w/o RS”
and ”w/ RS”). As mentioned in Section III-C, we increased
to 4 million the number of anatomically correct latent vectors
with the rejection sampling. Despite the fact that both methods
reduce to zero the number of anatomical errors, we can see
from Table III that data augmentation systematically produces
better results. Also, while the improvements are incremental
for top performing methods (e.g. the Dice index of Zotti-2
went from .899 to .909 and its HD from 14.4 to 11.0), they
are drastic for methods with a large number of anatomical
errors (e.g. Wolterink saw its Dice index go from .752 to .887
and its HD from 32.2 to 13.5). We can thus conclude that our
method without a data augmented latent space could hurt the
overall accuracy of certain methods.

The last column of Tables II and III shows the results of
our complete method, i.e. Eq.( 4) optimized with a dichotomic
search on a data augmented latent space. While all results
respect the anatomical criteria, the EF error and the Dice
index are almost identical to that of the original methods. The

TABLE IV: Number of anatomically invalid segmentation
results in cross-validation on CAMUS (2000 images) for 7
segmentation methods with and without our post-processing
methods. The methods in the upper half segment all 3 classes
(LVendo, LVepi and LA), whereas the methods in the lower half
only segment 2 classes (LVendo and LVepi).

Methods
Original VAE Nearest Neighbors

- Robust w/o RS w/ RS Dicho

U-Net [5], [8] 84 16 14 0 0 0
LUNet [14] 25 11 6 0 0 0
ENet [31] 69 21 22 0 0 0
SHG [32] 38 5 5 0 0 0
SRF [33] 101 46 48 1 2 2
BEASM-auto [34], [35] 12 2 3 0 0 0
BEASM-semi [5], [34] 10 4 7 0 0 0

HD also never increases more than 1.3 mm. Considering that
the average voxel size is near 1.4x1.4x10 mm3, the increase
corresponds to less than 1 pixel in the image. This shows that
our approach does not degrade the overall results of a given
approach.

Fig. 6 (a) shows erroneous predictions before and after our
post-processing. While the correct areas are barely affected
by our method, erroneous sections, big or small, get smoothly
warped. Our method takes roughly 1 sec to process a 2D image
on a mid-end computer equipped with a Titan X GPU.

3) CAMUS Postprocessing results: We perform a similar set
of experiments on the CAMUS dataset. Results are reported
in Table IV (number of anatomically invalid slices) and Table
V (clinical metrics). As for ACDC, the use of a simple
VAE significantly reduces the number of anatomical errors,
without affecting too much the average Dice index, HD and
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TABLE V: Accuracy and clinical metrics of SOTA segmentation methods, with and without our post-processing, in cross-
validation on CAMUS dataset. [Top] Average Dice index and Hausdorff distance (in mm). [Bottom] Average error (in %) on
LV ejection fraction (EF).

Methods
Original VAE Nearest Neighbors

- Robust w/o RS w/ RS Dicho

U-Net [5], [8] .921 / 6.0 .923 / 5.7 .923 / 5.7 .922 / 5.7 .922 / 5.7 .923 / 5.7
LUNet [14] .922 / 5.9 .921 / 5.9 .922 / 5.9 .921 / 5.9 .921 / 6.0 .921 / 6.0
ENet [31] .923 / 5.8 .921 / 5.9 .921 / 5.9 .920 / 5.9 .920 / 5.9 .921 / 5.9
SHG [32] .915 / 6.2 .915 / 6.2 .916 / 6.2 .915 / 6.2 .915 / 6.2 .915 / 6.2
SRF [33] .879 / 13.1 .877 / 13.2 .878 / 13.2 .879 / 13.0 .879 / 13.0 .879 / 13.0
BEASM-auto [34], [35] .868 / 10.5 .868 / 10.5 .867 / 10.5 .868 / 10.5 .868 / 10.5 .868 / 10.5
BEASM-semi [5], [34] .899 / 7.8 .899 / 7.8 .899 / 7.8 .899 / 7.8 .899 / 7.8 .899 / 7.8

U-Net [5], [8] 5.4 5.6 5.6 5.9 5.9 5.7
LUNet [14] 5.1 5.1 5.1 5.4 5.2 5.2
ENet [31] 5.6 5.4 5.4 5.5 5.6 5.4
SHG [32] 5.8 5.9 5.9 6.1 6.1 6.0
SRF [33] 12.7 14.5 14.3 14.4 14.4 14.3
BEASM-auto [34], [35] 10.5 10.5 10.5 10.6 10.5 10.5
BEASM-semi [5], [34] 9.8 9.8 9.8 9.8 9.8 9.8

EF absolute error. However, unlike for ACDC, the robust VAE
did not succeed at further reducing errors, especially for the
non-deep-learning methods. This may be explained by the fact
that the number of anatomical errors are already low with a
basic VAE.

Another difference with ACDC is the results for our three
nearest neighbors methods. While they reduce to zero the
number of anatomical errors, all three methods have almost
the same Dice index, HD and anatomical errors. This can be
explained by the fact that the long-axis cardiac shapes are
roughly similar from one patient to another, regardless of the
time instant (c.f. Fig. 5). This is unlike the short-axis view,
where the shape varies greatly between the basis of the heart
down to the apex. As such, the long-axis valid latent vectors
are probably closer together, so a simple nearest neighbor swap
is enough to enforce our anatomical criteria on the output
while preserving the overall anatomical shape.

However, as can be seen from Table V, like for ACDC,
our method does not degrade by a significant manner the
anatomical nor the clinical metrics.

4) Inter-observer variability: The inter-observer variability of
cardiac MRI and echocardiographic image segmentation was
reported by Bernard et al. [4] and Leclerc et al. [5]. For MRI
segmentation, on average the inter-observer Dice score for the
LV, the RV and the MYO at the end-systolic and end-diastolic
time instant is 0.90 while the average Hausdorff distance is 9.3
mm [4] . As can be seen from Table III, the methods with a
dice score above 0.90 (column Original) are also above 0.90
after our processing (column Dicho). Also, the only method
with a Hausdorff distance below 9.3 mm is that of Isensee [9],
which is also below 9.3 after our processing.

As for the echocardiographic segmentation, the average
inter-observer Dice score reported in [5] is 0.899 and the
average Hausdorff distance is 7.34 mm. Again, as can be seen
from the Original column of Table V, the first four methods
are within the observer-variability, and still are after our post-
processing (column Dicho).

This reveals that while our method guarantees to produce

results that follow pre-defined anatomical guidelines, it does
not degrade the overall accuracy of highly effective methods.

5) Post-processsing degenerated results: Our method has
its own limits and cannot be regarded as a solution to every
harm. While our method guarantees the anatomical validity,
w.r.t. the hardcoded criteria, of the output, it by no means
guarantees that the produced output is close to the groundtruth.
As such, if the erroneous segmentation map x′ it has to correct
has little to no overlap with the groundtruth, our method will
not necessarily warp x′ in the direction of the groundtruth. It
will only warp x′ to the closest correct cardiac shape. Three
such examples are provided in Fig. 7 where the result of our
method is not closer to the groundtruth than x′. In fact, the
cardiac shape of Fig. 7(c) is so degenerated that the produced
output is perpendicular to the groundtruth (because the inverse
registering operation is based on the principal axis of the LV,
which in this case is horizontal). Also, despite the fact that
the produced shape is anatomically valid, the segmentation
is sideways, causing the computation for the LV’s width and
MYO’s thickness (c.f. criterion 6 in sec. III-A) to be inaccurate
and to detect an anomaly, hence the 1 and 2 errors reported
for the SRF method in Table IV. This particular example also
illustrates what can happen when the original segmentation is
so bad that even the inference-time registering is inaccurate,
as mentioned at the end of sec. III-F. That said, even for
inaccurate segmentation methods (e.g. Grinias and Yang in
Table III), our method does not worsen their overall scores.
Metrics obtained solely on the anatomically incorrect images
are provided in the supplementary materials and also show
that our method does not reduce the overall metrics.

V. CONCLUSION
We proposed a post-processing cVAE that converts invalid

cardiac shapes into close but correct shapes. This is done
by replacing the latent vector of an invalid shape by a
close but valid latent vector. Intensive tests performed on the
output of 18 segmentation methods reveal that our method
is effective on both short-axis views from MRI as well as
on long-axis views from US. Our method relies on a series
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(a) MRI (ACDC)

Input US Groundtruth Prediction Post Prediction

LA

LV

MYO

(b) US (CAMUS)

Fig. 6: Groundtruth and erroneous maps before and after our post-processing method.

(a) Valid but inaccurate post-processed segmentation for MRI

(b) Valid but inaccurate post-processed segmentation for US

(c) Invalid post-processed segmentation for US

Fig. 7: Groundtruth and erroneous maps before and after our post-
processing method, when original segmentations are degenerated.
From left to right, the images in all 3 figures are: input (MRI
or US), groundtruth, original prediction, prediction after anatomical
postprocessing.

of anatomical criteria (16 for SA and 12 for LA) that we
use both to detect abnormalities and populate a cVAE latent
space. One appealing feature of the proposed framework is
that anatomical criteria do not need to be differentiable as
they are not included in the loss. Furthermore, it has been
shown that the warping of the incorrect segmentation shapes

did not change significantly the overall geometrical metrics
(Dice index and Hausdorff) nor the clinical metrics (the RV
and LV ejection fraction). As such, according to the inter
and intra-expert variations reported by Bernard et al. [4] and
Leclerc et al. [5], methods such as Isensee, Zotti-2, Khened
and Baumgartner for ACDC and LUNet for CAMUS are
within the inter-expert variation and, with our method, are now
guaranteed to produce results that follow anatomical guidelines
defined by the user. From the point of view of a clinical
expert, it is preferable to have a plausible segmentation close
to the expected one than an efficient system that spuriously
provide aberrant segmentations. In that case, users cannot trust
the provided physiological parameters that is calculated from
these latest data, even if implausible segmentations do not
significantly change the parameter values.
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