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On how swarm robotics can be used to 
describe particle system’s deformation  

Ramiro dell’Erba  
ENEA Technical Unit technologies for energy and industry – Robotics Laboratory  

 
Abstract  

 
In previous works we have described time evolution of a two-dimensional particles lattice, subject to 
deformation, without the use of Newton’s law. According to our experience, in control of robotic swarm, the new 
position of a particle is determined by the spatial position of its neighbours; therefore we have used an 
interaction law based on the spatial position of the particles themselves. The tool that we have realized 
reproduced some behaviour of deformable bodies both according to the standard Cauchy model and second 
gradient theory. In this paper we try to stress what is still under investigation, like the relationship describing 
the interaction rule and its physical meaning; moreover, we shall describe as some solutions does not agree 
with the behaviour of the classical solution coming out from differential equations. 
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1. Introduction 

Position based dynamics (PBD) [1] has been widely used in computer animation due to its efficiency, robustness 
and simplicity. Aim of the PBD is not to compute physical process but to generate visually plausible simulation 
results with low computational cost [2], sacrificing some accuracy, with respect of solution of heavy differential 
equations by finite element methods (FEM). This method do not determine forces and solve differential 
equations but use a position-based approach, where the new position of a particle is determined by its 
neighbour’s positions and can be easily be used to describe complex objects. System control of a robotic swarm 
is often based, like in Nature fish school, on the same principle [3,4]. Therefore, starting from the flocking rules 
governing the behaviour of single elements in underwater robotic swarms, to reach an assigned geometric 
configuration, we have adapted the control algorithm in PBD problems [5-7]. An attempt to describe a lattice by 
self organizing swarm can be also find in [8] So far we tried to describe the deformation of a Continuum medium 
obtaining a useful tool for complex micro-structures not easily analyzed by Cauchy Continuum theory 
generating big quantity of experimental data. It is known as Classical Cauchy continua are not able to give 
accuracy prediction in highly non-homogeneous microstructure; to this aim generalizations have to be 
introduced, either considering additional degrees of freedom to account for the kinematics at the level of the 
microstructure, [9-21], or including in the deformation energy density higher gradients of the displacement 
than the first one [22-34]. The latter is a particularly relevant topic considering the technological interest in 
developing exotic mechanical metamaterials able to perform targeted tasks [35-42], and therefore the 
investigation of new and efficient algorithms is of great interest at the moment. 
The tool we have proposed can exhibit a rich range of behaviours just changing lattice type and its internal 
parameters. This methodology may be useful in many contexts: for instance in studying the motion (in the case 
of large displacements and deformations) of many complex mechanical systems as those studied in [43]. In this 
paper we resume the work performed focussing on what still need of investigation. In particular we study a 
plate under shear load, to stress the importance of the parameter’s choices and we outline the differences with 
the solution of the ordinary differential equations. The system considered here can be treated as an active 



material as done by Konstantin Lurie works [43]. One of the main advantages of the proposed algorithm is the 
fact that it automatically takes into account large deformation elasticity; moreover the limited computational 
costs is low, because the algorithm is based on a linear operation, so it increases only linearly with the number 
of particles of the system 
 
 

1. Method 

The two dimensional continuum body is discretized into a finite number of particles occupying, in their initial 
configuration, the nodes of a lattice. The kind of lattice is chosen between the five plane Bravais lattices more 
honey comb lattice. This is the first choice we have to do (Choice 1); changing lattice, and the other choices, we 
can obtain different results with the same displacement. (for a more detailed description the reader is referred 
to[5-7]). 
We consider four kinds of particles but it is possible to generalize, to describe other behaviours, owing the 
modular structure of the algorithm. Moreover the role can be changed during the deformation of the body.  

1. The leaders; their motion is assigned and determine the displacement of the other particles. 
2. The followers; their motion is determined by the interaction rule with other particles. 
3. The frame; they are introduced so that any particle have the same number of neighbours, to avoid edge 

effects. Their motion is determined by the frame rule. 
4. The ghost; they are introduce to describe fracture mechanism.  

The displacements of the leaders is assigned so does not need any explanation. 
How we determine the displacement of the followers? First we have to choice the neighbours of any particles 
(Choice 2). Typically we used the firs nc particles, where nc is the coordination number of the lattice. This is the 
case of first gradient theory; but we can also choice a larger set of neighbours, like the neighbours of the 
neighbours: this is the second gradient theory case. So far we enlarge the set of points with a supplementary 
shell and this can be generalized to nth order interaction. Later we have to choice the interacting rule (Choice 3) 
between the particles. The rule describes the position of a particle as function of the neighbour’s positions. As 
example we can decide to use the centre of gravity rule where the new x coordinate of the particle j is 

𝑥𝑗(𝑡) =
∑ 𝑥𝑘(𝑡)

𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗
𝑘=2

𝑁
                                                (1) 

 

Where N is the total number of neighbours. Similar equation can be used for the y coordinate. By this way 

displacement of a follower point is the average value of the displacements of its neighbours; the number of 

shells determine the order interaction. We can use different rules in order to approximate different constitutive 

equations, i.e. we can introduce relative distance between the points into the rule, to weight their influence on 

the follower’s displacement and simulate Hook law, where force is increased with increasing deformation: 

𝑥𝑗(𝑡) =
∑ 𝑑𝑖𝑠(𝑘,𝑗)𝑥𝑘(𝑡)

𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗
𝑘=2

∑ 𝑑𝑖𝑠(𝑘,𝑗)
𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗
𝑘=2

                                                   (2) 

 

Where dis(k,j) is the Euclidean distance between the particles k and j.  

Or we can mix x-y coordinates into the rules to make the movement in x direction have effect on the y coordinate 

and obtain lateral contraction.  

𝑦𝑗(𝑡) = 𝐾 ∗ (𝑥𝑗(𝑡) − 𝑥𝑗(𝑡0)) ∗ 𝑑𝑎 +
∑ 𝑦𝑘(𝑡)

𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗
𝑘=2

𝑁
 

 

Where da is a function of the distance from the central axis, K a parameter determining the response force and 
x(t0) the x coordinate at time t0. This rule leads to a Poisson effect, because an expansion of x coordinate has 
effect on the y coordinate. We can also force the follower’s movement to overcome the barycentre equilibrium 
position, leading the lattice to oscillate. Therefore the compute of new position for a particle set can be 



considered as a constrained geometrical problem leading to a transformation operator between the matrices 
representing the particles configuration, Ct,  for a discrete set of time steps t1, t2, ...tn..... 

In the algorithm, the neighbours can dynamically change at every time step. In this paper we choice to fix the 
neighbours of every particle at the initial time t0, and not to change them during time evolution of the 
configurations; this has the mean to consider a crystalline lattice and therefore to deal with solid phase 
materials. The concept of neighbours is Lagrangian, and neighbourhood is preserved during the time evolution 
of the system; the only exceptions arising with the fracture algorithm, not considered in this paper. Also the 
definition of neighbours is customizable by changing metric; for example we can consider points whose 
Euclidean distance (weighted or not is another possibility to take into account anisotropies) is less than a 
threshold, instead of the coordination number of the lattice.  

Starting from the leaders motion each time step the displacement propagates of one shell, determined by the 
neighbours up to involve all the particles.  

To avoid edge effects we build a frame surrounding the body by an external shell of point, so that any 
follower interacts with the same number of elements. The motion of the frame is simple: it only follows the 
motion of an assigned follower of its competence; in case the assigned followers are more (i.e. in a corner) then 
an average displacement, or a more generic complex rule (Choice 4), is considered. Surface effect when a 
continuum is described by a discrete model are treated in [44] 
The ghost points appear in case we want to describe fracture phenomena. To this aim we choose a threshold, df, 
(fracture distance Choice 5) to be overcome to declare fracture. If the distance between points is larger than this 
threshold they stop to influence each other so they are no longer taken into account in the calculation of the 
follower position. To preserve symmetry we introduce ghost points with the purpose of balancing the 
calculations of the point’s displacements, just to balance the equations. Typical position, where we put ghost 
points (Choice 6), is that is able to recover the original shape of the lattice. Anyway other choices lead to 
different results [5-7]. The process stops when all the elements of the system have moved, and then restarts at 
every following time step. Practically we have a transformation operator between matrices representing initial 
and final configuration of the lattice.  

Reassuming we choose a two dimensional body. Choose one of the Bravais lattice and discretize the body to 
obtain a discrete matrix to represent it. We now decide the constrain of the lattice and the interaction rules 
between the followers, in order to describe the correct behaviour of the constitutive equations of the materials. 
We build an adequate frame to avoid board effects. We decide the motions of some points, called leaders, for all 
the time windows we are investigating. So far we can calculate, for each time step, the new configuration of the 
lattice in three separate operations. When time increases from t0 to t1 the leaders change their position from 
initial configuration according to the prescribed equation. We build a new intermediate lattice where only the 
leaders have been moved. Now we take care that the followers are no longer in equilibrium position owing to 
the leaders displacement. Finally we take into account the rules governing the frame displacement. This is our 
new configuration at time t1.  
We are considering the possibility to discuss the proposed model in a fully variational setting, which is by no 
means trivial but would provide clear methodological advantages (see [45] for an introduction and [46-50] for 
illustrative cases concerning continua with non-classical properties); to start the topic, we like to introduce 
pseudoenergetic considerations. We introduce two formulations PE1 and PE2 for this concept. The first is the 
sum, extended to the neighbours, of squares of the differences between the distances of the point from its 
neighbours minus the distance in the initial configuration i.e. 
 

𝑃𝐸1(𝑡, 𝑗) = ∑ (𝑑𝑖𝑠(𝑡, 𝑘, 𝑗) − 𝑑𝑖𝑠(𝑡0𝑘, 𝑗))2

𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗

𝑘=1

 

 
Where dis(t,k,j) is the Euclidean distance between points k and j at time t. This is the formula for the point j at 

time t. The reason for this choice lies in the attempt to simulate potential energy of material point subject to 
Hook law.  
To compare time contiguous configuration Ct and Ct-1we define for each point j and each time t 
 
 

𝑃𝐸2(𝑡, 𝑗) = ||𝐶𝑡 − 𝐶𝑡−1|| 
 



Where || is the Norm of the vector defined by the point j at time t and t-1.  
It must be underlined that this artifice has no direct connection with the usual energy definition (this is the 
reason we use the term pseudoenergy) but could be useful to understand deformation. However in this paper 
we do not consider PE1 and PE2 function; investigation about them can be found in [6] and [7].  
 
 

1. Results 

In this section we briefly resume only one result obtained by this tool in the preceding works [6], [7] where 
different strain of the leaders, with different choices, have been investigated. In these papers we also have 
described the behaviour of some more complex ASTM sample and the respect of Saint Venant principle; but now 
we want to focus our attention on other simple simulation to stress what we have to improve and what we need 
to understand better.  
So far consider a case of simple strain and release in tensile test of rectangular shape specimen. We are 
considering a square sample undergoing strain from one side (the other side is clamped) at constant velocity in 
x direction (speed 0.6 unit length/step time), with a square lattice 10x10 unit. At a certain time the pull is 
released and the leaders return to original configuration (this mean that leaders have changed category and 
now are followers) attracted by the other points. The simple rule, governing follower’s motion is that every 
point must be placed in the barycentre of its neighbours (Eq. 1); the neighbours are determined by the 
coordination number of the lattice; therefore the leader’s motion implies a displacement of the first layer that 
propagates in successive time steps to the other particles. This means the displacements, at each time step, 
involve a larger shell of points until to regards all the lattice points. In second gradient [6] we have considered 
also the neighbours of the first neighbours. In Figure 1 we can see the configuration of the lattice over different 
time together with the PE1 contour plot. Red points are the leaders; blue the followers and orange the frame. 
From the figure we can outline that the x displacement of the points seems do not depend on the y coordinate; 
however looking at the PE1 picture we can note a light convexity that does mean this is not true. 
 

 
Figure 1 Configuration of the lattice over different time (1,10, 20 and 401) and PE1 contour plot 
 
A deeper examination of the point’s displacements confirms as close to the frame the displacements, along x 
coordinate, are lower with respect to central points. This can be explained as an edge effect. In fact if we 
consider points on the same vertical lines those that are close to the frame follow the neighbours with a little 



delay owing to the different rule determining the displacement of the frame and of the followers. So they see a 
different situation with respect to, as an example, a central point. Moreover we can note as the maximum value 
of PE1 (red area) is not on the leader line but just one line on its left; this because, in this case, the leaders have 
in their neighbours, some points of the frame that always are close to them. We can avoid this convexity effect 
using a different frame or mirroring the followers to obtain an infinite sample. Finally it should be noted as at 
t=401 the lattice is not back completely to the reference configuration owing to asymptotic process of 
relaxation. 
Consider now a central point j=67 (sixth column, seventh row, points are numbered from left to right and from 
bottom to up) of the lattice. The value of the PE1 increases notably when points are pulled, after a delay owing 
to the propagation time as can be seen in Figure 2; it decrease when the leaders become followers subjected 
only to the rules leading to equilibrium barycentre position. If we change point the shape of the curve remains 
the same but can be less o more flared. In Figure 2 the evolution with time of the coordinates of central point 
j=67 is shown. Also in this picture we can recognize the coordinate x increases linearly (velocity is constant), 
after a delay, owing to the propagation time and later decrease to the original position. No oscillation can be 
observed with this kind of rule.  

   
Figure 2 PE1 of the central point’s j=67 versus time  Figure 3 X Evolution j=67 versus time 
 
A light modification can generate instabilities owing to the presence of oscillations; as example we can add to 
Eq.1 a feedback term proportional to the difference between actual and initial position to overshoot the old 
equilibrium position. The result is showed in Figure 2 Figure 2 and where we have considered a central point 
closer to the leaders to enhance the effect (j=115). Figure 2 is the same case as before while Figure 2 is the 
modified case. A damped oscillation can be seen on the tale of the plot, together with a shorter time to reach 
original position.  
 

   
Figure 4 X Evolution j=115 versus time  Figure 5 X Evolution j=115 versus time (modified rule 

with feedback) 
 
 

1. The plate 
In this section we want show some differences between the solution of a bending plate undergoing a shear load 
and what we have obtained by our tool. In the preceding papers we got some success but we need to go deeply 
to a better understanding so we are looking for some cases that do not fit on what we are expecting. We 
consider a bi-dimensional square plate (X and Y coordinate from 10 to 21) with materials parameters Y=1000 



and ν=0.33, where Y is the Young modulus, ν the Poisson coefficient; boundary load is on the right (Neumann 
condition) and no displacements on the left (Dirichelet conditions). 
The equations to be solved are: 
 

Y

2(1 + ν)
∇2𝐮 +

Y

2(1 − ν)
(

𝜕

𝜕𝑥
𝐮 +

𝜕

𝜕𝑦
𝐯) = 0 

 
Y

2(1 + ν)
∇2𝐯 +

Y

2(1 − ν)
(

𝜕

𝜕𝑥
𝐮 +

𝜕

𝜕𝑦
𝐯) = 0 

 
u(x,y) and v(x,y) are the displacements function. We pose as boundary conditions 50 Pascal as shear stress on 
the plate (Neumann condition for x=21) and u(10,y)= v(10,y)=0 as Dirichelet condition. Note that we are using 
Bernoulli equation while Timoshenko model should be more appropriated. Anyway this is just a first attempt so 
we reserve the right to use it in a next paper. These equations can be solved numerically; if we discretize our 
plate by a 10 x 10 square lattice; the solution is shown in Figure 6 and the Von Mises plot in Figure 7; deformed 
mesh are plotted in red colour.  
 

      
Figure 6 FEM solutions of bidimensional square  Figure 7 Von Mises plot of FEM solutions 
plate under shear stress  
 

Our intention is to compare the strain of the plate, obtained by FEM solutions, with that we can compute by our 
tool. Therefore we have to assign the displacements of some points, the leaders, make some choice about the 
algorithm (Lattice, interaction rules between the followers etc..) and compute the strain when the followers 
readjust themselves, after a while. As leaders we choose the right and left side of the plate, so we impose the 
displacements of these points as computed from the FEM equations. We have no criteria about the choice of 
what lattice, interaction law between followers etc... So as first attempt we use a square lattice and no weight in 
the computational of the followers coordinate In Figure 8 the obtained configuration, together with the FEM 
solution (red points) are shown; in  Figure 9 the corresponding Von Mises plot. The points on the left and 
on the right of the plate are overlapped because are the leaders and we have imposed their displacement as the 
original plate deformation. It can be outlined as external configuration of the plate is quite the same but the 
internal displacement of the points, i.e. the strain, is different; this can be highlighted if we plot the Von Mises 
stress. Change in tool’s parameters lead to different configuration, corresponding to different strain of the plate, 
as shown in the following pictures. So in Figure 8 and Figure 8 we show the case of square lattice, first gradient 
and no weight (Eq. 1) 

 
 



   
 

Figure 8 Plate deformation     Figure 9 Corresponding Von Mises Plot 
 
In Figure 10 and Figure 11 the same case but with second gradient model; no differences can be appreciated but 
a quantitative measure of the discrepancies with the FEM solutions (See Table 1, later where we have quantified 
the differences) show a light worsening, visible in Von Mises Plot.  
 
 

   
Figure 10 Plate deformation     Figure 11 Corresponding Von Mises Plot 
 
In Figure 12 and 13 have used geometric mean in Eq.1. Some differences in the deformed mesh can be 
appreciated 
 
 

   
Figure 12 Plate deformation     Figure 13 Corresponding Von Mises Plot 
 
The same case, with geometric mean but second gradient is shown in Figure 14 and 15. Also in this case no large 
differences can be outlined with respect to the first gradient case.  
 
 



   
Figure 14 Plate deformation     Figure 15 Corresponding Von Mises Plot 
 
 
In Figure 16 and Figure 17 we are considering the case with square lattice, first gradient and we used power 
mean in Eq.1 with power factor -1 (harmonic mean). Here a strong difference with the FEM solution (red 
points) can be noted but similar to the Timoshenko Beam deformation shape where the cross sections, 
perpendicular to the neutral axis before deformation, stay plane after deformation but are not necessarily 
perpendicular to the neutral axis after deformation.. This was expected because the -1 power parameter 
changes deeply the Eq.1 into the following equation: 

𝑥𝑗(𝑡) = (
∑ (𝑤(𝑘)𝑥𝑘(𝑡))𝑝𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗

𝑘=1

∑ 𝑤(𝑘)𝑝𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝑗
𝑘=1

)1/𝑝                                                    

(3) 
Where w(k) is the weight, in this case 1, of the k-element and p the mean parameter, -1.  

 

   
Figure 16 Plate deformation     Figure 17 Corresponding Von Mises Plot 
 
 
Also in Figure 18 and 19 there is a strong difference with the FEM solution. In this case we have used Eq.2 but 
the weight is the inverse of the distance between the points.  
 

   



Figure 18 Plate deformation     Figure 19 Corresponding Von Mises Plot 
Fewer differences can be seen in Figure 20 and 21 where the distances between the points are used as weight in 
the mean compute of Eq.2.  
 

   
Figure 20 Plate deformation     Figure 21 Corresponding Von Mises Plot 
 

A good agreement with FEM solution can be obtained using geometric mean and a rectangular lattice as in 

Figure 22 and 23. 

 

   
Figure 22 Plate deformation     Figure 23 Corresponding Von Mises Plot 
 

In Figure 24 and 25 the case with geometrical mean and hexagonal lattice is shown.  

 

   
Figure 24 Plate deformation     Figure 25 Corresponding Von Mises Plot 
 

In Figure 26 and 27 we are considering honey comb lattice 



 

   
Figure 26 Plate deformation     Figure 27 Corresponding Von Mises Plot 
 
 

While in Figure 28 and 29 the results obtained using oblique lattice is shown.  

 

   
Figure 28 Plate deformation     Figure 29 Corresponding Von Mises Plot 
 
In the last pictures, Figure 30 and 31 the rectangular centred lattice case is shown.  
 

 

   
Figure 30 Plate deformation     Figure 31 Corresponding Von Mises Plot 
 
To give a quantitative measure of the differences between the strains computed by our algorithm with the FEM 
solution consider the Table 1 where the average value of the sum of the differences between coordinates, 
together with standard deviation, is shown.  



Although the external shape of the plate can be sometimes acceptable we can note as internal particle 
displacement is quite different form that we find solving FEM equation; it is clear as differences are sometime 
remarkable. This can be highlighted if we plot the Von Mises stress.  
The most similar plot is obtained for the case 1, but also case 10 sounds good. Anyway nobody emerges as the 
best match. By these results we can conclude as the plate deformation can be sometimes very similar to the FEM 
solution but the Von Mises stress plot is quite always unsatisfactory. Little differences in strain reflect in the Von 
Mises plot that sounds not realistic. Better results are obtained using the simple rule where the position is 
determined by the barycentre of its neighbours, like in Figure 8 and 9. We have also imposed more restrictive 
boundary condition on the whole border point obtaining better results (see Figure 31 and 32). In these pictures 
the deformation is imposed on the four sides instead of the right and left side. However we do not continue on 
this hypothesis because we would like operate in similar condition of the FEM solution; also if we are imposing 
a strain and not a stress. So far we have to think about the needs to a better understanding of the physic behind 
the tool and what should be drive our choices in the tool to describe material continuum. We have to remember 
that the materials parameters Y and ν does not appear explicitly in our algorithm but they are hidden into the 
interaction relationship between the followers, the neighbours and the choice of the lattice. So far we have no 
idea on how to select our choices to match the problems. This will be the object of the next paper. 
 

    
Figure 32 Plate deformation (Boundary condition on 4 sides) Figure 332 Von Mises Plot 
 
 

Lattice Gradient Weight XG Av. Value St. Dev. Figure. 
Square 1 No Mean 0.413 0.08 8 and 9 
Square 2 No Mean 0.42 0.08 10 and 11 
Square 1 No Geometric 

mean 
0.79 0.35 12 and 13 

Square 2 No Geometric 
mean 

0.94 0.42 14 and 15 

Square 1 No Power 
mean (-1) 

2.39 2.22 16 and 17 

Square 1 Inverse 
distance 

Mean 1.62 1.12 18 and 19 

Square  1 distance Mean 0.80 0.24 20 and 21 
Rectangular 1 No Geometric 

mean 
1.88 1.26 22 and 23 

Hexagonal 1 No Geometric 
mean 

1.07 0.44 24 and 25 

Honey comb 1 No Mean 0.30 0.06 26 and 27 
Oblique 1 No Mean 0.50 0.09 29 and 29 
Rectangular 
centred 

1 No Mean 1.015 3.454 30 and 31 

Square BC on 4 
side 

1 No Mean 0.14 0.01 31 and 32 

Table 1 Quantities measurement of the differences of displacements between the FEM solution and our tools. 
 



 

1.Future work 
 
The most important topic is to investigate how to relate materials parameters with the choices we are doing in 
our tool, to gain a connection with the usual methods of Continuum Mechanic. Actually we have not criteria 
about how direct our tool’s choices to describe a material continuum. We should introduce the equivalent of 
materials parameters in our choices.  
Generalization in 3D of the tool is quite easy but still needs some optimization in the code to keep the 
computation time in the order of seconds, by using a normal PC Desktop. Moreover we are relaxing the 
hypothesis that the neighbours always are the same to describe liquid and gas; this needs a calculation step 
more because you have to compute the neighbours, defined in this case as the particles inside a specified 
volume, at each time step. Another interesting feature we are introducing is constrained on the particle’s motion 
to describe structured object like pantograph [51-58]. Further developments are concerning different fracture 
mechanism, different frame to avoid edge effects, other interactions rules.  
Cellular automata seems to be a good candidate to enhance our work; A cellular automata is a simple 
computational mechanism that, for example, changes the colour of each cell on a lattice based on the colour of 
neighbours cells according to a transformation rule. Some attempts to use them in Mechanics have been done 
[59-60]. Principal limit of Cellular automata is regarding as do not evolve sufficiently, so they quickly reach a 
limited asymptote in their order of complexity. Sometimes, like in biology, an evolutionary process involving 
conflict and competition is needed. Moreover there is no way to predict the outcome of a cellular process 
without actually running the process. So even though our decisions are determined, there is no way to 
predetermine what these decisions will be. But the system has succeeded, especially in fluid dynamics to 
describe complex behaviour. The question about that patterns of information, rather than matter and energy, 
represent the more fundamental building blocks of reality is still open and we would like to make a connection 
with our tool.  
 

 

5. Conclusions  

 
In this work we have discussed about a tool, presented in previous works, able to describe strain deformation of 
a continuum medium, taking in account complex physical effects, in a plausible way. The tool is based on 
Position Based Dynamic. The proposed algorithm is derived from flocking rules, governing the configuration of 
an underwater robot swarm; we have found they can profitably used to this purpose. The strain is imposed on 
some particles (leaders) whose motion is assigned and the other particles (followers) move according to some 
rules governing particle position. The motion of the followers is determined, like in a bird swarm, by the 
position of their neighbours. The rules are that we used to control robot swarm configuration. So far the 
deformed configuration is calculated not by Newton law but only by the relative positions between the particles 
of the system, the characteristics of the lattice and by rules describing how a particle would like to place with 
respect to its neighbours. Edge effects are take in account by a frame and fracture mechanism is described by a 
simple threshold effect. We have showed as changing some parameters like, lattice, interaction rules, fracture 
distance, numbers of neighbours much different behaviour can be described. Working with a transformation 
operator between matrices the job can be parallelized between the GPU cores of the powerful video card, saving 
computational cost usually associated with FEMs. Moreover the algorithm is modular, easily expandable to 
insert new material properties also dynamically, during deformation.  

In previous works we showed as results of this tool has good similarity with the predictions of standard FEM 
simulations, also in fracture case and plastic deformation.  

In this paper we have put our attention on what still need to be investigated. In particular we have chosen to 
underline some discrepancies with respect to FEM solution working on a plate under shear stress. So far the 
results are interesting but still are at a preliminary stage. 



To this aim we chose to describe a plate deformation under shear stress. In this case the leaders are the points 
on the left and right of the plate and the imposed displacements is that obtained by the solutions of the 
differential equations. Note that we suddenly move into one step the leaders in their final position and, 
successively, we wait an enough number of steps to allow the followers to readjust into the lattice, according to 
the position based rules. Unfortunately comparison with the resulting strain, obtained by classical solution, is 
not satisfactory. Especially the distribution of internal deformations is quite far with respect the expected one. 
Changing the parameters of our tool we obtain different results nobody of them perfectly coincident with FEM 
solution. Reasons of this can be more than one.  

As first the used equation is not the more appropriate for a short beam: Timoshenko should be used and it will 
be in the next paper.  

Second reason is the fact that, up to now, we do not start from the constitutive equations of the materials 
leading to the rules governing point’s displacement. So far we have to work on how to connect the rules of our 
model with classical physical proprieties of the material. As example we use Young modulus to get FEM solution 
but the chosen modulus has no connection with the parameters of our tool. So we proceed by trial and error. 
This is one on the most important topic to be studied in the next work.  

Pseudo energetic considerations have been introduced to describe different deformation regimes, such as 
elastic and plastic and to achieve a better understanding of the process. This is preliminary to introducing 
potential descriptive interactions depending on the relative distance between the particles, which are able to 
reproduce some well known physical behaviour. However they are not deeply used in this paper, like in the 
previous, because in this job we want underline what does not work, like the plate.  
The tool we proposed could be considered as just a graphic representation of a plausible behaviour because, 
actually, we imitate a known behaviour adjusting the algorithm parameters. Anyway the results are interesting; 
we are working in trying to connect the rules of our model with physical proprieties of the material in order to 
meet the richness of behaviour of different materials, including potentially complex biological tissues.  
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