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Bulk topological states in a new collective dynamics model∗1

Pierre Degond† , Antoine Diez‡ , and Mingye Na‡2

3

Abstract. In this paper, we demonstrate the existence of topological states in a new collective dynamics model.4
This individual-based model (IBM) describes self-propelled rigid bodies moving with constant speed5
and adjusting their rigid-body attitude to that of their neighbors. In previous works, a macroscopic6
model has been derived from this IBM in a suitable scaling limit. In the present work, we exhibit7
explicit solutions of the macroscopic model characterized by a non-trivial topology. We show that8
these solutions are well approximated by the IBM during a certain time but then the IBM transitions9
towards topologically trivial states. Using a set of appropriately defined topological indicators, we10
reveal that the breakage of the non-trivial topology requires the system to go through a phase of11
maximal disorder. We also show that similar but topologically trivial initial conditions result in12
markedly different dynamics, suggesting that topology plays a key role in the dynamics of this13
system.14

Key words. individual-based model, macroscopic model, self-organization, topological phase transition, wind-15
ing number, order parameter16

AMS subject classifications. 22E70, 35Q70, 37B25, 60J76, 65C35, 70F1017

1. Introduction. Systems of particles (or agents) which exhibit self-organized collective18

behavior are ubiquitous in the living world at all scales, from bird flocks [71] to sperm [27]19

or bacterial colonies [29]. Examples are also found in social sciences [18, 39] or for inert20

matter [15]. In such systems, the agents interact locally with a limited number of neighbors21

through rather simple rules such as attraction, repulsion or alignment [3, 26, 52] without22

any leader or centralized control. When the number of agents becomes large, vast structures23

encompassing many agents appear, such as clusters [72, 87], traveling bands [23], vortices24

[24, 29], lanes [25], etc. As there is no direct or apparent relation between these structures25

and the nature of the agents interactions, such a phenomenon is named “emergence”. Its26

study has stimulated a vast literature (see e.g. [87] for a review).27

There are mainly two levels of description of particle systems: the most detailed one28

consists of individual based models (IBM) where the agents dynamics are described by coupled29

ordinary or stochastic differential equations. When the number of agents becomes large, a30

macroscopic description in terms of average quantities such as the agents mean density or31

velocity is preferred. The rigorous link between these two levels of description involves two32
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2 P. DEGOND, A. DIEZ AND M. NA

successive limits by which the number of agents is first sent to infinity (mean-field limit) and33

then, the system size relative to the typical interaction distance between the agents is also34

sent to infinity (hydrodynamic limit), see e.g. [21, 31]. In collective dynamics, particles are35

capable of self-propulsion by transforming an internal source of chemical energy into motion36

[87]. There are two main classes of IBM of self-propelled particles. The first class is based37

on the Cucker-Smale model [4, 28, 55, 56] where self-propulsion is treated as an external38

force. The second class is based on the Vicsek model [2, 19, 23, 29, 41, 45, 72, 86] where39

self-propulsion is modeled by imposing the norm of the particle velocity to be a constant. At40

the mean-field or hydrodynamic levels, the two frameworks give rise to corresponding models41

(see e.g. [1, 5] for Cucker-Smale type models and [10, 34, 41, 45, 78, 85] for Vicsek type42

models). The two categories are linked by an asymptotic limit [12, 13]. Of course, there are43

many variants of these models and we refer to [8, 9, 17, 20, 42, 46, 74] for a non-exhaustive44

set of examples.45

Recently, a series of studies has investigated the existence of topological states in collective46

dynamics. Topological states have appeared with the quantum Hall effect [67, 69, 75, 84] which47

relies on so-called conducting chiral edge states: when a sample of a 2-dimensional insulator is48

placed in a magnetic field, its bulk conductance is nil but a current can flow around its edges49

in only one direction (hence the ’chiral’ terminology). Then, materials that exhibit chiral edge50

states without a magnetic field have been discovered, the so-called “topological insulators”51

[58, 76, 79]. Chiral edge states are robust against perturbations because of their non trivial52

topology which can be characterized by a integer, the winding number. Any destruction of the53

chiral edge state would require a finite jump of this integer, which consumes a finite amount54

of energy. Hence lower energy perturbations will fail to destroy the chiral edge state. This55

property is of strategic interest for various applications such as quantum computers. Recently56

a series of works have explored the occurrence of topological states in collective dynamics (see57

e.g. [81, 82, 83]). They are based on numerical simulations of the Toner and Tu model [85],58

which is a continuum analog of the Vicsek model [86]. Investigating appropriate geometrical59

configurations (a sphere in [81], a network of rings in [82, 83]), they show that linearized60

perturbations of the stationary state (i.e. sound waves) generate chiral edge states which61

propagate uni-directionally, revealing an underpinning non-trivial topology. However, the62

question of whether this effect could be realized with a finite (even large) number of discrete63

particles and whether the topological states would survive the noise induced by this finite64

particle number long enough is not investigated.65

In this paper, we demonstrate the existence of non-trivial bulk topological states in a new66

collective dynamics model. Bulk states propagate in the whole domain, by opposition to edge67

states which are localized at the boundary. The collective dynamics model studied here has68

first been proposed in [35] and later analyzed and expanded in [32, 37, 38]. Referred to below69

as the “Body-Alignment Individual-Based Model” (BA-IBM or IBM for short), it describes70

self-propelled rigid bodies moving with constant speed and trying to adjust their rigid body71

attitude to that of their neighbors. In [37, 35] the BA-IBM was based on Stochastic Differ-72

ential Equations (SDE) and a macroscopic model named the “Self-Organized Hydrodynamics73

for Body-orientation (SOHB)” was derived. In [38, 32], SDE were replaced by Piecewise De-74

terministic Markov Processes (PDMP) in the IBM but the macroscopic model remained the75

SOHB model (with possibly different coefficients). In [32], a variant of the BA-IBM was shown76
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TOPOLOGICAL STATES IN COLLECTIVE DYNAMICS 3

to exhibit phase transitions which were rigorously studied. In the present work, we derive ex-77

plicit solutions of the SOHB model which exhibit striking non-trivial topologies revealed by78

non-zero winding numbers. We explore how these non-trivial topologies are maintained at the79

level of the IBM by solving the PDMP of [38]. In particular, we observe that, due to noise80

induced by the finite particle number, topological phase transitions from states with non-81

trivial topology to states with trivial one may occur and we study these phase transitions in82

detail. Using a set of appropriately defined topological indicators, we reveal that the breakage83

of the non-trivial topology requires the system to go through a phase of maximal disorder.84

We also show that similar but topologically trivial initial conditions result in markedly dif-85

ferent dynamics, suggesting that topology plays a key role in the dynamics of this system.86

We are led to question the possible existence of topological protection against perturbations87

as mentioned above for topological insulators. Compared to previous works on topological88

states in collective dynamics, we deal with bulk states instead of edge states and we explore89

them at the level of the IBM and not just at the continuum level, which is closer to realistic90

particle systems. The present work adds a new item to the list of collective dynamics models91

exhibiting topological states. The topological protection concept could bring new perspectives92

to poorly understood questions such as the robustness of morphogenesis or the emergence of93

symmetries in growing organisms.94

The present model belongs to the category of Vicsek-like models in the sense that it95

introduces a geometrical constraint within the degrees of freedom of the particles. In the96

Vicsek model, the particle velocities were constrained to belong to the unit sphere (after97

convenient normalization). In the present IBM, the particles carry an orthonormal frame,98

or equivalently, a rotation matrix, that describes their body attitude. Thus their degrees of99

freedom are constrained to belong to the manifold SO3(R) of 3× 3 rotation matrices. Fig. 1100

highlights the difference between the Vicsek and body orientation models. The left picture101

shows alignment of two agents in the Vicsek sense, while the right picture shows alignment in102

the body-alignment sense. We mention that models involving full body attitudes have already103

been considered in [20, 59, 60, 61] in the context of flocking, but the alignment rules were104

different and essentially based on a velocity orientation (and not full body attitude) alignment.105

not aligned aligned
Polar alignment Body−orientation

not aligned aligned

1

Figure 1: Vicsek model versus body-alignment model. Left: polar alignment of velocity
orientations (red vectors) of two agents. Right: alignment of body-orientations: in addition
to its velocity orientation (red), each agent has two other axes (green and blue), the three
vectors forming a direct orthogonal frame.
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4 P. DEGOND, A. DIEZ AND M. NA

We complete this introduction by a review of the mathematical literature on the Vicsek106

model and the BA-IBM. The mean-field limit of the IBM has been proven in [10] for the Vicsek107

model and in [43] for the body orientation model. Existence theory for the mean-field Vicsek108

model is available in [14, 48, 51] but the corresponding theory for the mean-field body orien-109

tation model is still open. The mean-field kinetic models exhibit phase transitions which have110

been studied in [33, 34, 49] and [32] for the Vicsek and body orientation models respectively.111

The numerical approximation of the mean-field kinetic model has been undertaken for the112

Vicsek model only in [50, 54]. The derivation of macroscopic equations from the mean-field113

Vicsek kinetic equations has first been formally achieved in [41] and later rigorously proved114

in [65]. Corresponding works for the body alignment model are only formal [35, 37, 38]. Ex-115

istence theory for the hydrodynamic models derived from the Vicsek model can be found in116

[40, 88] and numerical methods in [45, 50, 73]. Both questions are still open for the body117

orientation model.118

The organization of this paper is as follows. Section 2 is devoted to the exposition of the119

IBM and macroscopic models. Then explicit solutions of the macroscopic model are derived120

in Section 3 and are shown to exhibit non-trivial topology. They also serve as benchmarks to121

show that the macroscopic model is an accurate approximation of the IBM. But after a some122

time, the IBM departs from the special solutions of the macroscopic model and undergoes a123

topological phase transition. The study of these phase transitions require appropriate topo-124

logical indicators which are developed in Section 4. Then, the topological phase transitions125

are analyzed in Section 5. A discussion and some open questions raised by these observations126

can be found in Section 6. The supplementary material (SM) collects additional informa-127

tion: a list of supplementary videos (Section SM1), a summary of the quaternion framework128

(Section SM2), a description of the numerical methods (Section SM3), a summary of the129

derivation of the macroscopic models (Section SM4) and finally a derivation of the explicit130

solutions presented in Section 3 (Section SM6).131

2. Models.132

2.1. The Individual-Based body-alignment Model.133

2.1.1. Description of the model. In this section, we present the Individual-Based body-134

alignment Model (IBM). This model was first proposed in [38]. We consider N particles (or in-135

dividuals, or agents) indexed by k ∈ {1, . . . , N} whose spatial locations are denoted byXk(t) ∈136

R3 where t ∈ [0,∞) is the time. A direct orthonormal frame {Ωk(t),uk(t),vk(t)} is attached137

to each particle (i.e. Ωk, uk, vk ∈ S2, Ωk · uk = 0 and vk = Ωk × uk). Likewise, if (e1, e2, e3)138

is a fixed direct orthonormal reference frame, we define Ak(t) to be the unique element of the139

special orthonormal group SO3(R) which maps (e1, e2, e3) onto (Ωk(t),uk(t),vk(t)). We will140

choose (e1, e2, e3) once for all and write Ak(t) = [Ωk(t),uk(t),vk(t)]. This will be referred to141

as the local particle frame or as the particle’s body orientation. Ωk(t) is the self-propulsion142

direction: Particle k moves in straight line in the direction of Ωk with unchanged local frame143

Ak except at exponentially distributed times at which the local frame jumps and adjusts itself144

to the average neighbors’ local frame up to some noise. The motion of the particles is thus145

described by the functions [0,∞) ∋ t 7→ (Xk(t), Ak(t)) ∈ R3 × SO3(R) for k ∈ {1, . . . , N}.146

We first describe how the average neighbors’ local frame is defined. We introduce a fixed
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observation (or sensing) kernel K: R3 ∋ x 7→ K(x) ∈ [0,∞). We assume that K is a
radial function (i.e. there exists K̃: [0,∞) ∋ r 7→ K̃(r) ∈ [0,∞) such that K(x) = K̃(|x|),
where |x| is the euclidean norm of x). For a collection of N particles {(Xk, Ak)}k∈{1,...,N} ∈
(R3 × SO3(R))N , we define the local flux as the following 3× 3 matrix:

Jk =
1

N

N∑

j=1

K(Xk −Xj)Aj .

Typically, we can think of K(x) as the indicator function of the ball centered at zero with147

radius R. In this case, Jk is just the sum of the matrices Aj of all particles j located within148

a distance R to Particle k, divided by the total number of particles N . However, more149

sophisticated sensing functions can be used to account for the fact that e.g. distant particles150

will contribute to Jk less than neighboring particles. In general, Jk is not a rotation matrix.151

To recover a rotation matrix, we need to map Jk back onto the manifold SO3(R). To do so,152

the space M3(R) of 3× 3 matrices, is equipped with the inner product:153

(2.1) A ·B :=
1

2
Tr(ATB),154

where Tr denotes the trace operator and AT is the transpose of the matrix A. Now, we define155

the average neighbors’ local frame Ak of Particle k as follows:156

(2.2) Ak := argmaxA∈SO3(R)A · Jk.157

This expression stands for the element Ak ∈ SO3(R) that maximizes the function SO3(R) ∋158

A 7→ A · Jk ∈ R. The maximization procedure (2.2) has a unique solution as soon as Jk is not159

singular, i.e. det Jk ̸= 0 where det stands for the determinant. Since the singular matrices160

form a zero-measure set in M3(R) it is legitimate to assume that, except for a zero-measure161

set of initial data, this situation will not occur. Furthermore, when det Jk > 0, Ak is nothing162

but the unique rotation matrix involved in the polar decomposition of Jk.163

We let the particles evolve according to the following Piecewise Deterministic Markov164

Process (PDMP).165

• To each agent k ∈ {1, . . . , N} is attached an increasing sequence of random times166

(jump times) T 1
k , T

2
k , . . . such that the intervals between two successive times are in-167

dependent and follow an exponential law with constant parameter ν > 0 (Poisson168

process). At each jump time Tn
k , the function Xk is continuous and the function Ak169

has a discontinuity between its left and right states respectively denoted by Ak(T
n
k −0)170

and Ak(T
n
k + 0).171

• Between two jump times (Tn
k , T

n+1
k ), the evolution is deterministic: the orientation of172

Agent k does not change and it moves in straight line at speed c0 > 0 in the direction173

Ak(T
n
k + 0) e1, i.e. for all t ∈ [Tn

k , T
n+1
k ), we have174

(2.3) Xk(t) = Xk(T
n
k ) + c0 (t− Tn

k )Ak(t) e1, Ak(t) = Ak(T
n
k + 0).175
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6 P. DEGOND, A. DIEZ AND M. NA

• To compute Ak(T
n
k + 0) from Ak(T

n
k − 0), we compute the local flux defined at time176

Tn
k − 0 given by:177

(2.4) Jn−
k :=

1

N

N∑

j=1

K
(
Xk(T

n
k )−Xj(T

n
k )

)
Aj(T

n
k − 0),178

having in mind that Aj(T
n
k − 0) = Aj(T

n
k ) for j ̸= k. From Jn−

k , which we assume179

is a non-singular matrix, we compute An
k as the unique solution of the maximization180

problem (2.2) (with Jk replaced by Jn−
k ). Then, Ak(T

n
k +0) is drawn from a von Mises181

distribution:182

(2.5) Ak(T
n
k + 0) ∼MAn

k
.183

The von Mises distribution on SO3(R) with parameter A ∈ SO3(R) is defined to be184

the probability density function:185

(2.6) MA(A) :=
eκA·A∫

SO3(R) e
κA·A′dA′ ,186

where κ > 0 is a supposed given parameter named concentration parameter, or inverse187

of the noise intensity. The von Mises distribution, also known in the literature as the188

matrix Fisher distribution [66, 70], is an analog (in the case of SO3(R)) of the Gaussian189

distribution in a flat space. The new orientation of Agent k at time Tn can therefore190

be interpreted as a small random perturbation of the average local orientation given191

by An
k , where the perturbation size is measured by 1/

√
κ.192

In Formula (2.6) and in the remainder of this paper, the manifold SO3(R) is endowed with193

its unique normalized Haar measure defined for any test function φ by:194

(2.7)

∫

SO3(R)
φ(A) dA :=

2

π

∫ π

0

∫

S2
φ(A(θ,n)) sin2(θ/2) dθ dn,195

where dn is the uniform probability measure on the sphere S2. Here, a rotation matrix196

A ≡ A(θ,n) is parametrized by its rotation angle θ ∈ [0, π] and its axis n ∈ S2 through197

Rodrigues’ formula:198

(2.8) A(θ,n) := I3 + sin θ [n]× + (1− cos θ) [n]2× = exp(θ[n]×)199

with n = (n1, n2, n3)
T and I3 is the 3×3 identity matrix. For any vector w = (w1, w2, w3)

T ∈200

R, [w]× is the antisymmetric matrix of the linear map R3 ∋ u 7→ w×u (where × denotes the201

cross product) which has the following expression:202

(2.9) [w]× :=




0 −w3 w2

w3 0 −w1

−w2 w1 0


 .203

Additional details on the structure of SO3(R) can be found for instance in [64]. The IBM204

(2.3), (2.5) is schematically represented in Fig. 2.205
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An
k

region

time T n−1
k

time T n
k

Ak(T
n
k + 0)

Ak(T
n
k − 0)

Observation

time T n−2
k

1

Figure 2: Schematic representation of the PDMP described in the text: the motion of Par-
ticle k is represented in physical space as the black broken dotted line. The body frame Ak

is represented with Ωk in red, uk in green and vk in blue. Each angular point of the tra-
jectory corresponds to one of the jump times Tn

k . Between two jump times, the trajectory
is the straight line spanned by Ωk and the body frame stays constant. The jump dynamics
is depicted at time Tn

k . At this time, the observation region is colored in yellow and body
frames of the other particles present in this region are depicted in light blue. The averaged
body frame An

k is depicted with thick lightly colored arrows. The body frame before the jump
Ak(T

n
k − 0) is drawn in broken lines whereas that after the jump Ak(T

n
k +0) is drawn in plain

lines. Ak(T
n
k + 0) is close, but not equal to An

k because of the noise intensity proportional to
1/κ. For clarity, the frames involved in the description of the jump are magnified.

2.1.2. Numerical simulations of the IBM. Unless otherwise specified, throughout this206

paper, a square box of side length L with periodic boundary conditions is used. As sensing207

kernel K, we use the indicator function of the ball centered at 0 and of radius R. Thus, an208

agent interacts with all its neighbors at a distance less than R (radius of interaction). Table 1209

summarizes the model parameters.210

For the numerical simulations presented in this paper, we have used the convenient frame-211

work offered by quaternions. Indeed, there is a group isomorphism between SO3(R) and212

H/{±1} where H is the group of unit quaternions. We can express the IBM (2.3), (2.5)213

using this representation (see [38] and Section SM2). Roughly speaking, body-alignment as214

described here is equivalent to nematic alignment of the corresponding quaternions (nematic215
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8 P. DEGOND, A. DIEZ AND M. NA

Parameter Symbol

Number of particles N

Computational box side length L

Interaction radius R

Particle speed c0
Concentration parameter κ

Alignment frequency ν

Table 1: Parameters of the IBM (2.3), (2.5).

alignment of a unit quaternions q to the mean direction Q is unchanged if q is replaced by216

−q, as opposed to polar alignment where the result depends on the sign of q). This is because217

a given rotation can be represented by two opposite quaternions and thus, the outcome of218

the alignment process should not depend of the choice of this representative. The numerical219

algorithm is described in Section SM3. Additionally, the quaternion framework also suggests220

to use order parameters derived from nematic alignment dynamics (such as in liquid crystal221

polymers). We shall use this analogy to define appropriate order parameters in Section 4.1.222

All the simulations were written in Python using the SiSyPHE library [44] specifically223

developed for the simulation of large-scale mean-field particle systems by the second author.224

The implementation is based on the PyTorch [77] library and more specifically on the GPU225

routines introduced by the KeOps [22] library. The computational details as well as the226

source code are freely available on the documentation website https://sisyphe.readthedocs.227

io/. The outcomes of the simulations were analyzed and plotted using the NumPy [57] and228

Matplotlib [63] libraries. The 3D particle plots were produced using VPython [80]. All the229

particle simulations have been run on a GPU cluster at Imperial College London using an230

Nvidia GTX 2080 Ti GPU chip.231

A typical outcome of the IBM is shown in Figure 3 (see also Section SM1, Video 1) for232

a moderate number of particles (N = 3000). Throughout this paper, in the plots, we will233

represent each agent graphically by an elongated tetrahedron pointing in the direction of234

motion. The three large faces around the height will be painted in blue, green and magenta235

and the base will be in gold, as described in Fig. 3a. We notice that, starting from a uniformly236

random initial state (Fig. 3b), the system self-organizes in small clusters (Fig. 3c) and finally237

reaches a flocking equilibrium where all the agents have roughly the same body-orientation238

(Fig. 3d). We will see below that flocking is not necessarily the ultimate fate of the system,239

because it may be trapped in a so-called topologically protected state. To better understand240

these aspects, we first need to develop the continuum (or macroscopic) description of the241

system. This is done in the next section.242

2.1.3. Relation with other collective dynamics models. We finally make a comparison243

with previous models. First, there is a version of the IBM where particles follow a stochastic244

differential equation (SDE) instead of a jump process [35, 37]. Both the current and previous245

models have the same hydrodynamic model as macroscopic limit (see forthcoming section).246

There are two reasons for us to prefer the jump process. First, its simulation is slightly easier247
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Ake1

Ake1

1

(a) Graphical representa-
tion of particles

(b) Time=0 (c) Time=4 (d) Time=40

Figure 3: (a) Graphical representation of particles and their body orientations as elongated
tetrahedra pointing towards the self-propulsion direction with blue, magenta and green large
faces and gold bases. (b,c,d) Snapshots of a typical output of the simulation at three different
times (b) Time=0, (c) Time=4 and (d) Time=40. Parameters: N = 3000, L = 1, R = 0.075,
κ = 20, ν = 5, c0 = 0.2. see also Section SM1, Video 1.

and second, the coefficients of the macroscopic model are explicit, which is not so in the SDE248

case where they require the resolution of an auxiliary elliptic problem [35, 37].249

Beyond the present body-orientation model, numerous models of self-propelled particles250

have been proposed in the literature (see the review [87]). The most closely related one is251

the celebrated Vicsek model [86]. There are several versions of this model: time-discrete252

ones [23, 86], time-continuous ones relying on an SDE description of the particle trajectories253

[41] and time-continuous ones using a jump process instead [45]. The latter version is the254

most closely related to the present work. In [45], the difference is that particles carry a255

single direction vector Ωk instead of a whole body frame. This vector gives the direction of256

self-propulsion. The particles follow a similar PDMP, namely257

• The random jump times are defined in the same way: they follow an exponential law258

with constant parameter ν > 0. At jump times, the position is continuous and the259

direction vector Ωk is discontinuous with left and right states respectively denoted by260

Ωk(T
n
k − 0) and Ωk(T

n
k + 0).261

• Between two jump times Tn
k , T

n+1
k , the direction vector Ωk does not change and the262

particle moves in straight line at speed c0 > 0 in the direction given by Ωk(T
n
k + 0).263

• To pass from Ωk(T
n
k − 0) to Ωk(T

n
k + 0), we compute the local flux given by Jn−

k =264
1
N

∑N
j=1K

(
Xk(T

n
k ) − Xj(T

n
k )

)
Ωj(T

n
k − 0) ∈ R3 and, assuming that it is non-zero,265

the mean direction Ω̄n
k = Jn−

k /|Jn−
k | ∈ S2 at time Tn

k − 0. Then, Ωk(T
n
k + 0) is266

drawn from a von Mises distribution on S2: Ωk(T
n
k + 0) ∼ M̃Ω̄n

k
, with M̃Ω̄(Ω) =267

eκ(Ω̄·Ω)/
∫
S2 e

κ(Ω̄·Ω) dΩ, for Ω and Ω̄ in S2.268

So, the current model is an elaboration of [45] replacing self-propulsion directions by whole269

body frames and polar alignment of unit vectors (as expressed by the von Mises distribution270

on the sphere) by alignment of rotations matrices. Outcomes of numerical simulations of the271
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Vicsek model do not show striking differences whether one uses any of the above mentioned272

versions (time-discrete, time-continuous with SDE or time-continuous with jump process).273

Results given in [23, 86] for the time-discrete version display the emergence of a global align-274

ment together with the formation of clusters when the noise intensity 1/κ is not too big. The275

outcome strongly resembles what is shown in Fig. 3 for the body-orientation model, but for276

the depiction of the body orientation itself which is not provided by the Vicsek model. So,277

it is legitimate to wonder whether the inclusion of the full body orientation instead of the278

mere self-propulsion direction makes any change in the dynamics of the particle positions and279

direction vectors. In particular, do the particle positions and directions follow the same dy-280

namics in the Vicsek and body orientation model? We will see below that this is not the case281

and that in certain circumstances, striking differences between the two models are obtained.282

To show this, the use of the macroscopic limit of the IBM, as developed in the forthcoming283

section, will be of crucial importance.284

2.2. The macroscopic body-alignment model.285

2.2.1. Description of the model. As soon as N is not very small, the IBM (2.3), (2.5)286

involves a large number of unknowns which makes its mathematical analysis virtually impos-287

sible. A reduced description, more amenable to mathematical analysis, is obtained through288

the macroscopic limit of the IBM, and consists of a system of partial differential equations.289

This reduced description gives a valid approximation of the IBM in an appropriate range of290

parameters, namely291

(2.10) N ≫ 1,
R

L
∼ c0
ν L

≪ 1.292

Throughout the remainder of this paper, we will focus on this regime. The macroscopic293

limit of the IBM (2.3), (2.5) has first been proposed in [38] and leads to a model called “Self-294

Organized Hydrodynamics for Body orientation (SOHB)”. The derivation relies on earlier work295

[35, 37]. This derivation is “formally rigorous” in the sense that, if appropriate smoothness296

assumptions are made on the involved mathematical objects, the limit model can be identified297

rigorously as being the SOHB. For the reader’s convenience, we summarize the main steps of298

this mathematical result in Section SM4.299

The unknowns in the SOHB are the particle density ρ(t,x) and mean body-orientation300

A(t,x) ∈ SO3(R) at time t and position x = (x, y, z) ∈ R3. They satisfy the following set of301

equations:302

∂tρ+ c1∇x · (ρAe1) = 0,(2.11a)303 (
∂t + c2(Ae1) · ∇x

)
A+

[
(Ae1)× (c3∇x log ρ+ c4 r) + c4 δAe1

]
×A = 0.(2.11b)304

305

The quantities r and δ have intrinsic expressions in terms of A [35]. However, it is more
convenient to write the rotation field A in terms of the basis vectors

Ω = Ae1, u = Ae2, v = Ae3.

With these notations, the vector r(t,x) ∈ R3 and scalar δ(t,x) ∈ R fields are defined by306

r := (∇x · Ω)Ω + (∇x · u)u+ (∇x · v)v,(2.12)307

δ := [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω+ [(v · ∇x)Ω] · u.(2.13)308
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Here, for a vector field B(x) ∈ R3 and a scalar field λ(x) ∈ R we denote by ∇x · B, and309

∇x × B the divergence and curl of B respectively, by ∇xλ, the gradient of λ and we set310

(B ·∇x)λ = B ·∇xλ with · the inner product of vectors in R3. We remind that × denotes the311

cross product and we refer to formula (2.9) for the definition of [w]× when w is a vector in312

R3. Alternate expressions of δ can be found in Section SM5 of the Supplementary Material.313

The quantities c1, c2, c3, c4 are functions of κ and c0 given as follows:314

c1
c0

=
2

3

〈1
2
+ cos θ

〉
exp(κ( 1

2
+cos θ)) sin2( θ

2)
,(2.14)315

c2
c0

=
1

5
⟨2 + 3 cos θ⟩exp(κ( 1

2
+cos θ)) sin4( θ

2) cos2( θ
2)
,(2.15)316

c3
c0

=
1

κ
,(2.16)317

c4
c0

=
1

5
⟨1− cos θ⟩exp(κ( 1

2
+cos θ)) sin4( θ

2) cos2( θ
2)
,(2.17)318

319

where, for two functions f and g: [0, π] → R, we write

⟨f⟩g =

∫ π
0 f(θ) g(θ) dθ∫ π

0 g(θ) dθ
.

Fig. 4 provides a graphical representation of these functions.320

Figure 4: Dimensionless coefficients ci/c0 as functions of the inverse of concentration param-
eter 1/κ. Blue curve c1/c0, orange curve c2/c0, green curve c3/2c0 and red curve c4/c0. At
the crossover value κ∗ ≃ 2.58, the sign of c2 − c1 changes (see Section 3.2).

2.2.2. Interpretation of the model. To better understand what the SOHB system (2.11)321

does, we re-write it as follows:322

∂tρ+ c1∇x · (ρΩ) = 0,(2.18a)323

DtA+ [w]×A = 0,(2.18b)324325

where the convective derivative Dt and the vector w are given by:326

Dt = ∂t + c2Ω · ∇x,(2.19)327

w = −Ω× F+ c4 δΩ, with F = −c3∇x log ρ− c4 r,(2.20)328329
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Eq. (2.18a) is the mass conservation equation of the fluid. The vector Ω gives the direction330

of the fluid motion. The fluid velocity deduced from (2.18a) is c1Ω. Since c1/c0 ∈ [0, 1] as can331

be seen from Fig. 4 (see also [35] for a rigorous proof), the fluid motion is oriented positively332

along Ω and its magnitude is smaller than the particles self-propulsion velocity c0. This is333

because the average of vectors of identical norms has smaller norm. The quantity c1/c0 can334

be seen as an order parameter [32] but we will not dwell on this issue here.335

Eq. (2.18b) provides the rate of change of A with time along the integral curves of the336

vector field c2Ω as expressed by the convective derivative Dt. Note that this vector field is337

not the fluid velocity c1Ω since c2 ̸= c1. It can be interpreted as the propagation velocity of A338

when w is zero. Since DtA is the derivative of an element of SO3(R), it must lie in the tangent339

space to SO3(R) at A which consists of all matrices of the form WA with W antisymmetric.340

This structure is indeed satisfied by Eq. (2.18b) since, from the definition (2.9), the matrix341

[w]× is antisymmetric. It can be shown that the SOHB system is hyperbolic [36].342

In fact, Eq. (2.18b) shows that the vector w is the instantaneous rotation vector of the343

frame A(t,X(t)), where t 7→ X(t) is any solution of dX
dt = c2Ω(t,X(t)). Indeed, Eq. (2.18b)344

can be equivalently written as a system of equations for (Ω,u,v) of the form DtZ = w × Z,345

with Z = Ω, u, v. This describes a rigid body rotation of the frame {Ω,u,v} with angular346

velocity w. The rotation vector w has two components. The first one is Ω× F and tends to347

relax Ω towards F. Due to its expression (2.20), the force F includes two contributions: that348

of the pressure gradient −c3∇x log ρ and that of gradients of the body orientation through349

the vector −c4 r. The second component of the rotation vector is −c4δΩ and corresponds to350

a rotation of the body frame about the self propulsion direction Ω driven by gradients of the351

body orientation through the scalar −c4 δ. The contributions of gradients of body orientation352

in the two components of the rotation vector are under the control of the single coefficient c4.353

Fig. 5 gives a graphical representation of the actions of these two infinitesimal rotations.354

2.2.3. Relation with other models. To better understand how the SOHB model (2.11)355

relates to other models, we re-write the equation for Ω as follows:356

(2.21) DtΩ = PΩ⊥F,357

where PΩ⊥ is the 3 × 3 projection matrix on the orthogonal plane to the vector Ω and is358

written PΩ⊥ = I3−Ω⊗Ω with ⊗ standing for the tensor (or outer) product. Eq. (2.21) bears359

similarities and differences with the momentum equation of isothermal compressible fluids.360

The latter is exactly recovered if the following three modifications are made:361

1. the projection matrix PΩ⊥ is removed from (2.21) (i.e. it is replaced by I3);362

2. c2 = c1 in the convective derivative Dt (see (2.19));363

3. c4 = 0 in the expression of F (see (2.20)).364

Indeed, under these three modifications, we get the following system for (ρ,U) where U = c1Ω365

is the fluid velocity:366

∂tρ+∇x · (ρU) = 0, (∂t +U · ∇x)U = −Θ∇x log ρ.367

This is the isothermal compressible Euler equations with the fluid temperature Θ = c1 c3.368

We now investigate what consequences follow from undoing the above three modifications,369

one by one.370
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F

u

Ω

v′
v

Ω× F

u′

Ω′

1

(a) Action of Ω× F

u′

−c4δΩ

Ω

v′

Ω′

u
v

1

(b) Action of −c4δΩ

Figure 5: Graphical representations of the two components of the infinitesimal rotation.
(Ω,u,v) denotes the position of the frame at time t while (Ω′,u′,v′) is its position at time
t+ dt with dt≪ 1. The frame at time t is denoted in plain colors (red for Ω, green for u and
blue for v) while that at time t+ dt is in light colors. The motion of the vectors is indicated
by a segment of circle in black color. (a) Action of Ω × F: the vectors F and Ω × F are in
plain and light black respectively. The vector F is shown with unit norm for the ease of the
representation but could be of any norm in reality. The passage from (Ω,u,v) to (Ω′,u′,v′)
is via an infinitesimal rotation of axis Ω × F. (b) Action of δ: the vector −c4δΩ is shown in
black. The vectors Ω and Ω′ are identical and collinear to −c4δΩ. The passage from (Ω,u,v)
to (Ω′,u′,v′) is via an infinitesimal rotation of axis Ω.

1. Introducing the projection PΩ⊥ in (2.21) guarantees that the constraint |Ω| = 1 is371

preserved in the course of time, if it is satisfied at time 0. Indeed, dotting Eq. (2.21)372

with Ω (and assuming that all functions are smooth) leads to Dt|Ω|2 = 0, which373

guarantees that |Ω| is constant along the integral curves of the vector field c2Ω. Thus,374

if |Ω| = 1 at time t = 0, it will stay so at any time.375

2. Having c2 ̸= c1 is a signature of a loss of Galilean invariance. This is consistent with376

the fact that the microscopic system is not Galilean invariant as well, Indeed, there is377

a distinguished reference frame where the particle speed is c0. Of course, this speed378

does not remain equal to c0 in frames that translate at constant speed with respect to379

this frame.380

So far, with the introduction of PΩ⊥ and different constants c2 ̸= c1 but still with381

c4 = 0, the system for (ρ,Ω) is decoupled from the equations for u and v and is382

written (see Eqs. (2.18a), (2.21) with F given by (2.20) in which c4 = 0):383

∂tρ+ c1∇x · (ρΩ) = 0,(2.22a)384

DtΩ = −c3 PΩ⊥∇x log ρ.(2.22b)385386

This is nothing but the hydrodynamic limit of the Vicsek particle model (known as387

“Self-Organized Hydrodynamics (SOH)”) as established in [41, 45]. This system has388
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been shown to be hyperbolic [41] and to have local-in-time smooth solutions [40].389

3. When c4 ̸= 0, in addition to the pressure gradient, a second component of the force F390

appears. This component depends on the full rotation matrix A through Ω, u, v and391

their gradients (see Eq. 2.12). It is thus truly specific of the body orientation model.392

We are now going to compare the IBM and the SOHB models on a set of explicit stationary393

solutions of the SOHB model described in the next section.394

3. Special solutions of the macroscopic model.395

3.1. Three classes of explicit solutions. In this section, we exhibit three different classes396

of global-in-time solutions of the SOHB model (2.18). They are special classes of a larger397

family of solutions which will also be introduced. All these solutions are characterized by398

uniform (i.e. independent of the spatial coordinate) fields ρ, r and δ. From now on we fix a399

wave-number (inverse of the length) ξ ∈ R \ {0} and define400

(3.1) ω = ξ c4, λ = c2 + c4.401

We denote by x = (x, y, z)T the coordinates of x in the basis (e1, e2, e3).402

3.1.1. Flocking state. The flocking state (FS) is a trivial but important special solu-
tion of the SOHB model (2.18) where both the density and rotation fields are constant (i.e.
independent of time) and uniform:

ρ(t,x) ≡ ρ0 = constant, A(t,x) ≡ A0 = constant, ∀(t,x) ∈ [0,∞)× R3.

3.1.2. Milling orbits. We have the following403

Lemma 3.1. The pair (ρ,A) consisting of a constant and uniform density ρ(t,x) = ρ0 =404

constant and the following rotation field:405

A(t,x) = Ãmill(t, z)406

=




cos(ωt) sin(ωt) cos(ξz) − sin(ωt) sin(ξz)
− sin(ωt) cos(ωt) cos(ξz) − cos(ωt) sin(ξz)
0 sin(ξz) cos(ξz)


(3.2)407

= A(−ωt, e3)A(ξz, e1),(3.3)408

is a solution of the SOHB system (2.18), where ω and ξ are given by (3.1). We recall that409

A(θ,n) is the rotation of axis n ∈ S2 and angle θ ∈ R defined by (2.8). This solution will be410

referred to as a milling orbit (MO).411

The proof of this lemma is deferred to Section SM6. The MO is independent of x and y.412

Its initial condition is413

(3.4) Amill(0, z) = A(ξz, e1) =




1 0 0
0 cos(ξz) − sin(ξz)
0 sin(ξz) cos(ξz)


 .414

The initial direction of motion (the first column of Amill(0, z)) is independent of z and aligned
along the x-direction, i.e. Ω(0, z) ≡ e1. As z varies, the body-orientation rotates uniformly
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about the x-direction with spatial angular frequency ξ. As the rotation vector is perpendicular
to the direction of variation, (3.4) is called a “perpendicular twist”. As time evolves, the
rotation field is obtained by multiplying on the left the initial perpendicular twist by the
rotation A(−ωt, e3). This means that the whole body frame undergoes a uniform rotation
about the z-axis with angular velocity −ω. As a consequence, the direction of motion is again
independent of z. It belongs to the plane orthogonal to z and undergoes a uniform rotation
about the z-axis. Consequently, the fluid streamlines, which are the integral curves of c1Ω,
are circles contained in planes orthogonal to z of radius c1

ω = c1
c4

1
ξ traversed in the negative

direction if ξ > 0. These closed circular streamlines motivate the “milling” terminology. It
can be checked that the MO satisfies:

r = ξ (sin(ωt), cos(ωt), 0)T, δ = 0.

As announced, r and δ are uniform but r depends on time. Actually, Ω × r = ξe3 is inde-415

pendent of time. The MO is depicted in Fig. 6 and its dynamics is visualized in Video 2 (see416

Section SM1).417

1

(a) t = 0

1

(b) t > 0

Figure 6: Graphical representation of the milling orbit (MO) at (a): initial time, and (b):
time t > 0. The frame vectors Ω, u and v are represented at a certain number of points of
the (O, x, y) and (O, y, z) planes. In (b), the rotation motion of the frame vectors is depicted
by dotted circles of the color of the corresponding frame vector. The red dotted circle can be
seen as a depiction of the fluid streamlines. See also Section SM1, Video 2.

Many examples of milling (also known as vortex) solutions have been observed in the418

collective dynamics literature as well as in biological systems [16, 25, 87]. On the modelling419

side, milling states have not been observed so far in alignment models without the inclusion of420

an additional process such as an attraction-repulsion force between the agents [17], a bounded421

cone of vision [24] or an anticipation mechanism [53]. The body-orientation framework is,422

to the best of our knowledge, a new situation in which milling can be observed just with423
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alignment assumptions. Milling states can also be found in physical systems. A typical and424

important example is the motion of a charged particle in a uniform magnetic field, resulting in425

the formation of so-called cyclotron orbits. Once again, in the body-orientation framework, an426

external field is not needed and self-induced cyclotron orbits emerge only from the variations427

of the internal body-orientation. Here, the analog of the magnetic field would be Ω × r and428

the cyclotron frequency would be ω. Note that ω is under the control of coefficient c4 which429

depends on the noise intensity 1/κ.430

3.1.3. Helical traveling wave. We have the following431

Lemma 3.2. The pair (ρ,A) consisting of a constant and uniform density ρ(t,x) = ρ0 =432

constant and the following rotation field:433

A(t,x) = Ãhtw(t, x)434

=




1 0 0
0 cos (ξ(x− λt)) − sin (ξ(x− λt))
0 sin (ξ(x− λt)) cos (ξ(x− λt))


(3.5)435

= A(ξ(x− λt), e1),(3.6)436

is a solution of the SOHB system (2.18) where ξ and λ are defined by (3.1). This solution437

will be referred to as a helical traveling wave (HW).438

The proof of this lemma is given in Section SM6.2. The HW is independent of y and z.439

Its initial condition is440

(3.7) Ahtw(0, x) = A(ξx, e1) =




1 0 0
0 cos(ξx) − sin(ξx)
0 sin(ξx) cos(ξx)


 .441

Here the self-propulsion direction is still independent of x and equal to e1. Also, the body
orientation still rotates uniformly about e1 with spatial angular frequency ξ but when x is
varied instead of z. This means that the body orientation is now twisted when varied along
the propagation direction. So, this initial condition is called a “parallel twist”. In the HW,
the self propulsion direction Ω remains constant in time and uniform in space. The initial
twist is propagated in time in this direction at speed λ and gives rise to a traveling wave

Ãhtw(t, x) = Ãhtw(0, x− λt).

Note that the traveling wave speed λ depends on the noise intensity 1/κ and is different from
the fluid speed c1. So, the frame carried by a given fluid element followed in its motion is
not fixed but rotates in time. Since Ω does not change, the fluid streamlines are now straight
lines parallel to e1. So, as a fluid element moves, the ends of the frame vectors u and v follow
a helical trajectory with axis e1, hence the terminology “helical traveling waves” for these
solutions. It can be checked that

r = 0, δ = ξ,

and again, r and δ are spatially uniform as announced. The HW is depicted graphically in442

Fig. 7. Its dynamics is visualized in Video 3 (see Section SM1). The HW belongs to a larger443

class of solutions described in Section SM6.2.444
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1

(a) t = 0

1

(b) t > 0

Figure 7: Graphical representation of the helical traveling wave (HW) at (a): initial time, and
(b): time t > 0. See Fig. 6 for captions. See also Section SM1, Video 3.

3.1.4. Generalized topological solutions. The three above described classes of solutions445

can be encompassed by a single family of generalized solutions as stated in the following446

lemma.447

Lemma 3.3 (Generalized solutions). Let ξ ∈ R and θ ∈ [0, π] be two parameters. Let ω ∈ R448

and λ̃ ∈ R be defined by449

ω = c4ξ, λ̃ = c2 cos θ.450

The pair (ρ,A) consisting of a constant and uniform density ρ(t,x) = ρ0 = constant and the451

following rotation field:452

(3.8) A(t,x) = Aξ,θ(t, z) := A(−ωt, e3)A
(
θ − π

2
, e2

)
A(ξ(z − λ̃t), e1),453

is a solution of the SOHB system (2.18). We recall that A(θ,n) is the rotation of axis n ∈ S2454

and angle θ ∈ R. This solution will be referred to as a Generalized topological Solution (GS).455

The proof of this lemma is deferred to the Supplementary Material SM6.3. Each of the456

three previous classes of solutions can be obtained for specific values of the parameters ξ and θ.457

• When ξ = 0, the solution A0,θ is constant for any θ, which corresponds to a FS.458

• When θ = π
2 and ξ ∈ R, then λ̃ = 0 and the rotation with respect to the y-axis is459

equal to the identity: the solution Aξ,π/2 is therefore equal to the MO (3.3).460

• When θ = 0 and ξ ∈ R then λ̃ = c2 and the solution Aξ,0 is equal to461

Aξ,0 =




0 − sin(ξ(z − λt)) − cos(ξ(z − λt))
0 cos(ξ(z − λt)) − sin(ξ(z − λt))
1 0 0


 , λ = c2 + c4,462

which is an HW along the z-axis. The situation is analogous when θ = π.463
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All these solutions have a non-zero gradient in the body-orientation variable which is al-464

ways along the z-axis. This gradient is controlled by the parameter ξ. However, in the GS,465

the direction of motion Ω (or fluid velocity) is not necessarily parallel nor perpendicular to466

this gradient. Specifically, Ω has a constant polar angle equal to the parameter θ. The be-467

havior of the solution is then a combination of the two previously introduced phenomena:468

milling around the z-axis and a travelling wave of the body-orientation variable along the469

same axis. The applet accessible at https://www.glowscript.org/#/user/AntoineDiez/folder/470

MyPrograms/program/BOfield provides a graphical representation of the GS for arbitrary471

polar angles using VPython [80] and with the same conventions as in Fig. 6.472

In the following, we will focus on each of these two elementary behaviors, i.e. the standard473

milling and helical travelling wave solutions, and in particular on their topological properties.474

The study of the full continuum of generalized solutions is left for future work. However, we475

will encounter GS obtained from a perturbed milling solution in Section 5.4.476

3.2. Some properties of these special solutions. Clearly, in the definitions of the MO477

and HW, the choice of reference frame is unimportant. So, in the whole space R3, such478

solutions exist in association with any reference frame. In a square domain of side-length L479

with periodic boundary conditions, periodicity imposes some constraints on the direction of480

the reference frame. For simplicity, we will only consider the case where the reference frame481

has parallel axes to the sides of the square and ξ is linked to L by an integrality condition482

Lξ = 2π n, with n ∈ Z \ {0}.483

The study of the stability of the MO and the HW is left for future work. By contrast, the484

FS is linearly stable as the SOHB system is hyperbolic [36]. However, there is no guarantee485

that the FS at the level of the IBM is stable. Indeed, there are strong indications that the FS486

is not stable for the Vicsek model [23] for some parameter ranges and a similar trend is likely487

to occur here.488

We can now answer the question posed at the end of Section 2.1.3 namely whether the489

inclusion of the full body orientation makes any change in the dynamics of the particle positions490

and directions compared to the Vicsek model. To this end, we consider the corresponding491

macroscopic models, i.e. the SOH model (2.22) for the Vicsek model and the SOHB model492

(2.11) for the body-orientation dynamics. If we initialize the SOH model with uniform initial493

density ρ and mean direction Ω, inspection of (2.22) shows that the solution remains constant494

in time and thus corresponds to a flocking state of the Vicsek model. In the SOHB model,495

the three classes of solutions described in the previous sections (the FS, MO and HW) also496

have uniform initial density ρ and mean direction Ω. If the dynamics of the particle positions497

and directions in the body orientation model was the same as in the Vicsek model, these498

three classes of solutions should have a constant mean direction Ω. However, it is not the499

case for the MO, where Ω changes with time and is subject to a planar rotation. This means500

that gradients of body attitude do have a non-trivial influence on the direction of motion of501

the particles and that the body orientation model does not reduce to a Vicsek model for the502

particle positions and directions.503

There is another, more subtle, difference between the two models concerning the dynamics504

of Ω. It does not concern the MO and HW but we discuss it here in relation with the previous505

paragraph. Indeed, Fig. 4 reveals that the velocities c1 and c2 for the SOHB model crossover506
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at a certain value κ∗ of the concentration parameter. The coefficients c1 and c2 for the507

SOH model can be found in [45], Fig. A1(b) and appear to satisfy c1 > c2 for the whole508

range of values of κ, i.e. do not exhibit any crossover. In particular, at large noise, the509

propagation velocity c2 of Ω in the SOHB model is larger than the mass transport velocity c1.510

This means that information (which triggers adjustments in Ω) propagates downstream the511

fluid by contrast to the Vicsek case where it propagates upstream. While the reason for this512

difference is unclear at this stage, we expect that it may induce large qualitative differences513

in the behavior of the system in some cases. This point will be investigated in future work.514

Numerical simulation of the SOHB will be subject to future work. Here, we will restrict515

ourselves to the MO and HW for which we have analytical formulas. In the next section,516

using these two special solutions, we verify that the SOHB model and the IBM are close in517

an appropriate parameter range.518

3.3. Agreement between the models. In this section we use the MO and HW to demon-519

strate the quantitative agreement between the SOHB model (2.11) and the IBM (2.3), (2.5)520

in the scaling (2.10). In the simulations below, we consider a periodic cube of side-length L521

and choose522

(3.9) R = 0.025, ν = 40, c0 = 1, L = 1, ξ = 2π,523

so that R
L = c0

ν L = 0.025 ≪ 1, ensuring that the scaling (2.10) is satisfied. Furthermore, we524

see that the choice of ξ is such that the twists in the MO or HW have exactly one period over525

the domain size.526

3.3.1. The IBM converges to the macroscopic model as N → ∞. In this section, we527

numerically demonstrate that the solutions of the IBM converge to those of the macroscopic528

model in the limit N → ∞ and investigate the behavior of the IBM at moderately high values529

of N .530

We sample N particles according to the initial condition (3.4) of the MO and simulate
the IBM (2.3), (2.5). We recall that the average direction Ω(t) of the exact MO (3.2) is
spatially uniform at any time and undergoes a uniform rotation motion about the z-axis. So,
we will compare Ω(t) with the average direction Ω(t) of all the particles of the IBM, where

Ω(t) = (Ω
1
,Ω

2
,Ω

3
)T is defined by:

Ω =

∑N
k=1Ωk(t)

|∑N
k=1Ωk(t)|

,

(provided the denominator is not zero, and where we recall that Ωk(t) = Ak(t) e1). To ease531

the comparison, we compute the azimuthal and polar angles of Ω respectively defined by:532

(3.10) φ̄ := arg(Ω
1
+ iΩ

2
) ∈ [0, 2π), θ̄ = arccos(Ω

3
) ∈ [0, π],533

where arg(x + iy) stands for the argument of the complex number x + iy. We note that the534

corresponding angles φ and θ of Ω(t) are given by535

(3.11) φ(t) = −ω t = −2π c4(κ) t, θ = π/2,536
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where we have used (3.1) and (3.9) to compute the value of ω.537

Fig. 8a shows the azimuthal angle φ̄ as a function of time over 5 units of time, for increasing538

particle numbers: N = 5104 (green curve), N = 1.5 105 (orange curve) and N = 1.5 106 (blue539

curve). Note that for very small values of N , the macroscopic model loses its relevance:540

below a few thousand particles we only observe a noisy behavior, not shown in the figure.541

For the considered range of particle numbers, we notice that the angle φ̄ decreases linearly542

with time, which shows that the behavior of the IBM is consistent with the exact solution543

(3.11). However, quantitatively, we see that |dφ̄/dt| depends on the particle number and544

decreases with increasing particle number. We investigate this behavior in more detail in545

Fig. 8b where the difference between the measured angular velocity |dφ̄/dt| and the theoretical546

prediction 2πc4(κ) is plotted as a function of N . Each data point (blue dot) is an average547

of 10 independent simulations. This figure confirms that, as N increases, |dφ̄/dt| decreases548

and converges towards 2πc4(κ). The inset in Fig. 8b shows the same data points in a log-549

log-scale with the associated regression line (orange solid line). We observe that the error550

between the measured and theoretical angular velocities behaves like N−α with a measured551

exponent α ≃ 1.01 which is close to the theoretical value α = 1 derived in Section SM7 of the552

Supplementary Material.553

(a) (b)

Figure 8: (a) Time evolution of the angle φ̄ for three values of N : N = 0.05 106 (green
curve), N = 0.15 106 (orange curve) and N = 1.5 106 (blue curve). (b) Difference between the
measured angular velocity |dφ̄/dt| and the theoretical value 2πc4(κ). Each data point (blue
dot) is an average of 10 independent simulations with the error bar showing one standard
deviation. Solid black horizontal line at 0 for convenience. Inset: same data in log-log scale
and regression line (solid orange line). Parameters: L = 1, ξ = 2π, R = 0.025, ν = 40, c0 = 1,
κ = 10.

3.3.2. Quantitative comparison between the models. In order to quantitatively confirm554

the agreement between the IBM and the macroscopic model, we fix a large numberN = 1.5 106555

of particles and we run the IBM for different values of the concentration parameter κ and for556
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the two classes of special solutions, the MO and the HW. To compare the models, we compute557

the following macroscopic quantities:558

• For the MO: starting from a sampling of the initial condition (3.4), we measure the559

angular velocity |dφ̄/dt| in a similar way as in the previous section. Given the param-560

eter choice (3.9), the theoretical value of |dφ/dt| predicted by (3.2) is |ω| = 2πc4(κ)561

where the function c4 is given by (2.17).562

• For the HW, starting from a sampling of the initial condition (3.7), we measure the563

wave speed. To this aim, using (2.2), we compute the mean body-orientation A of564

the agents in a slice of size 10−3 along the x-axis (which is the global direction of565

motion) as a function of time. As predicted by (3.5) the coefficient A22 of the mean566

orientation is a periodic signal. The inverse of the period of this signal (obtained567

through a discrete Fourier transform) gives the traveling wave speed of the HW. The568

theoretical value predicted by (3.5) is given by λ = c2(κ) + c4(κ) where the function569

c2 is given by (2.15).570

The output of these simulations is shown in Figs. 9a for the MO and 9b for the HW.571

They respectively display the angular velocity and traveling wave speed obtained by running572

the IBM for a discrete set of values of κ (big blue dots). By comparison, the black dotted573

curves show the theoretical values as functions of κ. For the parameters of Fig. 9, the order574

of magnitude of the standard deviation of 10 independent simulations is 10−3. The relative575

error between the average measured value and its theoretical prediction varies between 2%576

and 5% on the whole range of concentration parameters considered.577

These figures show an excellent agreement between the prediction of the macroscopic578

SOHB model and the results obtained by running the IBM when the number of particles is579

large. This confirms that the SOHB model provides an excellent approximation of the IBM,580

at least during a certain period of time which is a function of the particle number. We will see581

below that fluctuations induced by the finite number of particles may eventually destabilize582

the MO and lead to a HW or a FS. As these solutions are associated with different topological583

structure, these transitions will be analyzed as topological phase transitions in the forthcoming584

sections.585

3.4. Topology. Both the MO and HW have non-trivial topology: inspecting the perpen-586

dicular twist (3.4) (see also Fig. 6a), we observe that the two-dimensional curve generated by587

the end of the vector u in the (y, z)-plane as one moves along the z-axis is a closed circle. A588

similar observation can be made on the parallel twist (3.7) (see Fig. 7a) as one moves along589

the x-axis. Both curves have therefore non-zero winding numbers about the origin. When590

the domain is R3, these winding numbers are ±∞ (where the sign corresponds to that of ξ)591

as these curves make an infinite number of turns. If the domain has finite extension L along592

the z-axis (in the MO case) or the x-axis (in the HW case) and, due to the periodic boundary593

conditions, L is related to ξ by L = n 2π/ξ with n ∈ Z \ {0}, then the winding numbers594

are equal to n. As observed on Formulas (3.2) and (3.5) (or on Figs 6b and 7b), this initial595

non-trivial topological structure is propagated in time.596

When we initialize particles by sampling the initial conditions (3.4) or (3.7), we expect that597

the solution of the IBM remains an approximation of the MO (3.2) or HW (3.5) respectively598

as evidenced in Section 3.3.2. However, noise induced by both the inherent stochasticity of the599
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(a) (b)

Figure 9: (a) MO: angular velocity |dφ/dt| as a function of 1/κ. (b) HW: traveling wave
speed λ as a function of 1/κ. Measured values from the IBM at discrete values of κ (big blue
dots) and theoretical prediction from the SOHB model (dotted black curve). Parameters:
N = 1.5 106, L = 1, ξ = 2π, R = 0.025, ν = 40, c0 = 1.

IBM and finite particle number effects as explained in Section 3.3.1 may eventually destabilize600

the IBM. Then, in most cases, its solution is seen to transition towards an approximation of601

the FS after some time. This transition implies a change of the topology of the solution which,602

from initially non-trivial, becomes trivial, since the winding number of the FS is zero. One may603

wonder whether the evolution towards a FS is slower if the initial state has non-trivial topology604

and exhibits some kind of “topological protection” against noise-induced perturbations. To605

test this hypothesis quantitatively, we first need to develop appropriate indicators. This is606

done in the next section.607

4. Order parameters and topological indicators. We will use two types of indicators.608

The first one is the global order parameter which will discriminate between the various types609

of organization of the system (disorder, MO or HW and FS). The second type of indicators610

are based on analyzing the roll angle. They will enable a finer characterization of topological611

phase transitions.612

4.1. Global order parameter. We first introduce the following scalar binary order param-613

eter which measures the degree of alignment between two agents with body-orientations A,614

Ã ∈ SO3(R) :615

(4.1) ψ(A, Ã) :=
1

2
A · Ã+

1

4
.616

In the quaternion framework (see Section 2.1.2 and SM2 for details), we have617

(4.2) ψ(A, Ã) = (q · q̃)2,618

where q and q̃ are two unit quaternions respectively associated to A and Ã, and q · q̃ indicates619

the inner product of two quaternions. This expression makes it clear that ψ(A, Ã) ∈ [0, 1]. The620
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square exponent in (4.2) indicates that ψ(A, Ã) measures the nematic alignment of the two621

associated unit quaternions, as it should because two opposite quaternions represent the same622

rotation. We note that ψ(A, Ã) = 1 if and only if Ã = A. On the other hand, ψ(A, Ã) = 0 if623

and only if A · Ã = −1/2, which corresponds to the two rotation axes being orthogonal and624

one rotation being an inversion about its axis.625

The Global Order Parameter (GOP) of a system of N agents at time t > 0 is the average626

of all binary order parameters over all pairs of particles:627

(4.3) GOPN (t) =
1

N(N − 1)

∑

k ̸=ℓ

ψ
(
Ak(t), Aℓ(t)

)
.628

From (4.3) we have GOPN (t) ∈ [0, 1]. A small GOPN indicates large disorder and a large629

one, strong alignment. This is a global measure of alignment, by contrast to a local one where630

ψ would be averaged over its neighbors only (and the result, averaged over all the particles).631

This global measure of alignment allows us to separate the MO and HW from the FS as shown632

below, which would not be possible with a local one.633

The GOP (4.3) can also be defined at the continuum level. As shown in Section SM4,
in the macroscopic limit, the particles become independent and identically distributed over
R3×SO3(R), with common distribution ρMA where (ρ,A) satisfies the SOHB system (2.11)
and MA is the von Mises distribution (2.6). Therefore, the GOP of a solution of the SOHB
system (ρ,A) is obtained as (4.3) where the sum is replaced by an integral, Ak(t) is replaced
by A distributed according to the measure (ρMA)(t,x, A) dxdA and Aℓ(t) is replaced by Ã
distributed according to the same measure, but independently to A. Therefore,

GOP(ρ,A) :=
∫∫

(R3×SO3(R))2
ψ(A, Ã) ρ(x) ρ(x̃)MA(x)(A)MA(x̃)(Ã) dx dx̃ dAdÃ.

Using (2.7) and (2.8) one can prove that for any A ∈SO3(R), we have634

(4.4)

∫

SO3(R)
AMA(A) dA =

c1(κ)

c0
A,635

with c1(κ) defined by (2.14) and c0 being the particle speed. Using (4.1), we obtain:636

(4.5) GOP(ρ,A) =
1

2

(
c1(κ)

c0

)2 ∫

R3×R3

A(x) · A(x̃) ρ(x) ρ(x̃) dxdx̃+
1

4
.637

From now on, we let ρ be the uniform distribution on a square box of side-length L. We638

can compute the GOP corresponding to each of the three solutions defined in Section 3.1.639

For the MO (3.2), HW (3.5) and GS (3.8), for all time t > 0, in all cases, the GOP remains640

equal to:641

(4.6) GOP1 =
1

4

(
c1(κ)

c0

)2

+
1

4
.642

For the FS, A(x) ≡ A = constant and the GOP is equal to643

(4.7) GOP2 =
3

4

(
c1(κ)

c0

)2

+
1

4
.644
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Note that the GOP:645

GOP0 =
1

4
,646

corresponds to a disordered state of the IBM where the body-orientations of the particles are647

chosen independently and randomly uniformly (or equivalently to the SOHB case κ → 0 in648

(4.6) and (4.7)). For the typical value κ = 10 used in our simulations, one can compute that:649

(4.8) GOP1 ≃ 0.45, GOP2 ≃ 0.85.650

The GOP values between GOP1 and GOP2 can be reached by generalized HW as shown in651

Section SM6.4.652

4.2. Roll angle.653

4.2.1. Definition. Let A = [Ω,u,v] ∈ SO3(R) be a body-orientation. Let θ ∈ [0, π],
φ ∈ [0, 2π) be the spherical coordinates of Ω defined by (3.10) (omitting the bars). We let
{Ω, eθ, eφ} be the local orthonormal frame associated with the spherical coordinates (θ, φ)
and we define p(Ω) = eφ and q(Ω) = −eθ. Then we define the rotation matrix

R(Ω) := [Ω,p(Ω),q(Ω)] =




sin θ cosφ − sinφ − cos θ cosφ
sin θ sinφ cosφ − cos θ sinφ

cos θ 0 sin θ


 .

Since u and v belong to the plane spanned by p(Ω) and q(Ω), we let ζ ∈ [0, 2π) be the654

angle between p(Ω) and u. Then, it is an easy matter to show that A = R(Ω)A(ζ, e1). In655

aircraft navigation, θ, φ and ζ are respectively called the pitch, yaw and roll angles: the656

pitch and yaw control the aircraft direction with respect to the vertical and in the horizontal657

plane respectively, while the roll controls the plane attitude (see Fig. 10a). These angles are658

related to the Euler angles. The construction of the roll angle ζ is summarized in Figure 10b.659

Pursuing the analogy with aircraft navigation, we see from Fig. 5 that F controls variations660

of pitch and yaw while δ controls variations of roll.661

As an example, we examine the pitch, yaw and roll of the three solutions of the SOHB662

model (2.11) described in Section 3.1.663

1. FS: A is constant and uniform. Then, the pitch, yaw and roll are also constant and664

uniform.665

2. MO: A is given by (3.2) (see Figs. 6). Using Eq. (3.3), we have R(Ω) = A(−ω t, e3)666

and the roll is given by ζ = ξz. The pitch and yaw are constant and uniform. The667

roll is constant in time and is also uniform on planes of constant z. The non-trivial668

topology of the MO results from the roll making a complete turn when z increases by669

the quantity 2π/ξ.670

3. HW: A is given by (3.5) (see Fig. 7). Then, we have R(Ω) = I3 and ζ = ξ (x − λ t).671

The pitch and yaw are constant and uniform while the roll is uniform on planes of672

constant x. It depends on x and time through the traveling phase x − λ t. Here, the673

non-trivial topology results from the roll making a complete turn when x increases by674

the quantity 2π/ξ.675

The goal of the next section is to see how we can recover the roll field from the simulation of676

a large particle system.677
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(a) (b)

Figure 10: (a) Pitch, yaw and roll angles of an aircraft with body orientation [Ω,u,v] (original
picture released under the Creative Commons CC0 license by https://pixabay.com). (b) Con-
struction of the roll angle of A = [Ω,u,v], where the vectors Ω, u and v are respectively in
red, green and blue. The local frame is (Ω,p(Ω),q(Ω)) where p(Ω) and q(Ω)) and the plane
generated by them are in purple. u and v belong to this plane. ζ is the angle between p(Ω)
and u.

4.2.2. Roll polarization. As shown in the last section, the roll of the MO is uniform678

on planes of constant z. When simulating the MO by the IBM, we will use this property to679

compute an average roll on planes of constant z. To cope with the discreteness of the particles,680

we will rather consider slices comprised between two planes of constant z. If the distance ∆z681

between the planes is chosen appropriately, we can access to both the average and the variance682

of the roll. They will be collected into one single vector, the Roll Polarization in planes of683

constant z or RPZ. A similar quantity characterizes the HW, the Roll Polarization in planes684

of constant x or RPX. Below, we detail the construction of the RPZ. Obviously the procedure685

is the same (changing z into x) for the RPX.686

We assume that the domain is a rectangular box of the form D := [0, Lx]× [0, Ly]× [0, Lz],
and Lz = n (2π/ξ) with n ∈ Z \ {0}. The domain D is partitioned into M slices of fixed size
across z, where M is a fixed integer. For m ∈ {1, . . . ,M}, the slice Sm is defined by:

Sm := [0, Lx]× [0, Ly]×
[
m− 1

M
Lz,

m

M
Lz

]
.

Let us consider a system of N agents with positions and body-orientations (Xk, Ak), indexed687

by k ∈ {1, . . . , N}. Each body orientation Ak has roll ζk ∈ [0, 2π). We define the discrete688
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RPZ for Slice m, ūm, by689

(4.9) ūm :=
1

Nm

∑

k∈Im
(cos ζk, sin ζk)

T ∈ R2,690

where Im = {k ∈ {1, . . . , N}, Xk ∈ Sm} and Nm is the cardinal of Im. Note that the RPZ ūm691

has norm smaller than one. The unit vector ūm/|ūm| or equivalently, its angle with the vector692

(1, 0)T gives the average roll in Sm. The euclidean norm |ūm| is a measure of the variance of693

the set of roll angles {ζk}k∈Im . If this variance is small, then |ūm| ∼ 1, while if the variance is694

large, |ūm| ≪ 1. When plotted in the plane R2, the set of RPZ {ūm}m=1,...,M forms a discrete695

curve referred to as the RPZ-curve. It will be used to characterize the topological state of the696

particle system. A summary of this procedure is shown in Figure 11.697

Figure 11: Construction of the RPZ and graphical representation. The spatial domain D is
partitioned into M slices represented in different colors (top left). In each slice Sm, we have
Im particles with roll ζk each of them plotted in the particle’s local plane spanned by p(Ωk),
q(Ωk) (top right: we plot 3 particles in the slice S1). Note that the local planes of different
particles of the same slice may not coincide when imbedded in R3. For this given slice, the
RPZ ūm is computed and plotted in R2 (bottom right). The RPZ has norm smaller than 1
and belongs to the unit disk, whose boundary, the unit circle, is plotted for clarity. The RPZ
of each slice is then plotted on a single figure in the same color as the slice it corresponds to
(bottom left). This collection of points forms a discrete curve (here a fragment of a circle):
the RPZ-curve.

4.2.3. Indicators of RPZ-curve morphology. The RPZ-curve is shown in Figure 12 (a)698

to (c), in the three following cases.699
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1. Disordered state: the particles are drawn independently uniformly randomly in the700

product space D× SO3(R). For each m, the RPZ (4.9) is an average of uniformly701

distributed vectors on the circle and its norm is therefore close to 0. The RPZ-curve702

is thus reduced to the origin, as shown in Figure 12a;703

2. FS: the positions of the particles are drawn independently uniformly in D and their704

body-orientations independently according to a von Mises distribution MA0 with a705

fixed mean body orientation A0 ∈ SO3(R). In this case, for all slices, the corre-706

sponding RPZ (4.9) is an average of identically distributed vectors on the circle whose707

distribution is peaked around the same point of the unit circle, and the peak is nar-708

rower as κ is larger. Therefore, the RPZ vectors (4.9) concentrate on a point near the709

unit circle (Figure 12b). The RPZ-curve reduces to a single point different from the710

origin;711

3. MO: the positions of the particles are drawn independently uniformly in D. Then for712

a particle at position x, its body-orientation is drawn independently according to a von713

Mises distribution MAmill(0,z)
with Amill(0, z) defined by (3.4) (with ξ = 2π/Lz). This714

time, the von Mises distribution is peaked around a point which depends on z. For715

each slice, the position of the RPZ (4.9) depends on m. Since Amill(0, z) is Lz-periodic,716

the RPZ-curve is a discrete closed circle (Figure 12c). Note that the RPX-curve of a717

HW is similar.718

From Figure 12, we realize that three quantities of interest can be extracted from the719

RPZ-curve:720

1. the distance of its center of mass to the origin dz:721

(4.10) dz =
∣∣∣ 1
M

M∑

m=1

ūm

∣∣∣,722

2. its mean distance to the origin r̄z:723

(4.11) r̄z =
1

M

M∑

m=1

|ūm|,724

3. its winding number about the origin wz: for m ∈ {1, . . . ,M}, let βm = arg
(
(ūm)1 +

i(ūm)2
)
∈ [0, 2π) (with ūm = ((ūm)1, (ūm)2)T) and δβm+1/2 ∈ [−π, π) be such that

δβm+1/2 ≡ βm+1 − βm modulo 2π, where we let βM+1 = β1. Then:

wz =
1

2π

M∑

m=1

δβm+1/2,

(see e.g. [62, p. 176]).725

The subscript z indicates that the slicing has been made across z. Similar quantities with an726

index ’x’ will correspond to the slicing made across x. Fig. 12d provides a graphical illustration727

of the triple (dz, r̄z, wz). For the examples given above, this triple has the following values:728

Disordered state: (dz, r̄z, wz) = (0, 0,ND), where ND stands for “undefined”,(4.12)729

FS: (dz, r̄z, wz) ≈ (1, 1, 0),(4.13)730

MO: (dz, r̄z, wz) ≈ (0, 1, w), with w ̸= 0.(4.14)731
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(a) (b)

(c) (d)

Figure 12: Examples of RPZ-curves: in each figure, the roll Polarization RPZ vectors corre-
sponding to M = 1000 slices are plotted. The color bar to the right of each figure assigns
a unique color to each slice. The same color is used to plot the corresponding RPZ. In each
figure the unit circle and its center are represented in blue. (a) Disordered state: all RPZ
concentrate near the origin. (b) FS: all RPZ concentrate on a point close to the unit circle.
(c) MO (3.4): the RPZ-curve is a discrete circle centered at the origin and of radius close to
unity. The total number of particles is N = 1.5 · 106. Note that in Figs. (a) and (b), all
RPZ are superimposed and only the last one (in magenta color) is visible. (d) Quantifiers of
RPZ curve morphology: point G (in red) is the center-of-mass of the RPZ curve and dz is its
distance to the origin O (shown in blue). The mean radius r̄z of the RPZ curve is illustrated
by the circle in black broken line which has same radius. The winding number, which is the
number of turns one makes following the spectrum of colors in the same order as in the color
bar from bottom to top (the green arrow indicates the direction of progression along the RPZ
curve) is wz = −1 in this example.

We have a similar conclusion with (dx, r̄x, wx) for a disordered state or an FS. For an HW, we732

have (dx, r̄x, wx) ≈ (0, 1, w) with w ̸= 0. Thus, monitoring either or both triples (according733

to the situation) will give us an indication of the state of the system in the course of time.734

In particular, non-trivial topological states are associated with non-zero winding numbers wx735

or wz. In practice, we will use the nonzero-rule algorithm to compute the winding numbers736
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numerically [62, p. 176].737

5. Topological phase transitions: are the MO and HW topologically protected?. As738

pointed out in Section 3.4, for the IBM, the MO and HW are only metastable: they typically739

persist for a finite time before degenerating into a FS. This is in stark contrast with the740

macroscopic model for which they persist for ever. The transition of a MO or HW to a FS741

implies a topological change. To analyze whether the MO or HW are more robust due to742

their non-trivial topological structure (i.e. are topologically protected), we will compare them743

with similar but topologically trivial initial conditions (Sections 5.1, 5.2 and 5.3). We also744

test their robustness against perturbed initial conditions and show that, in this case, MO745

may transition to GS (Section 5.4). In the Supplementary Material SM8, we investigate rarer746

events, where an MO does not transition directly to an FS but through a HW.747

5.1. Initial conditions. In Section 5.2, we will compare the solutions of the IBM with748

different initial conditions using the perpendicular or parallel twists as building blocks. Some749

will have a non-trivial topology and the others, a trivial one. Specifically we define the750

following initial conditions.751

5.1.1. Milling orbit. Let D = [0, L]×[0, L]×[0, 2L] be a rectangular domain with periodic752

boundary conditions and let ξ = 2π/L. We consider the following two initial conditions:753

• Double mill initial condition MO1:754

(5.1) Am,1(0, z) = A(ξ z, e1), z ∈ [0, 2L],755

where we recall again that A(θ,n) is the rotation of axis n ∈ S2 and angle θ ∈ R756

defined by (2.8). This initial condition has non-trivial topology: the curve generated757

by the end of the vector u in the (y, z)-plane as z ranges in [0, 2L] makes two complete758

turns around the origin in the same direction. Thus, this initial condition has winding759

number equal to 2.760

• Opposite mills initial condition MO2:761

(5.2) Am,2(0, z) =

{
A(ξ z, e1), z ∈ [0, L],
A(−ξ z, e1), z ∈ [L, 2L].

762

This initial condition has trivial topology: starting from z = 0, the curve generated763

by the end of the vector u makes one complete turn around the origin in the coun-764

terclockwise direction until it reaches z = L but then reverses its direction and makes765

a complete turn in the clockwise direction until it reaches z = 2L. Thus, this initial766

condition has winding number equal to 0 and has trivial topology.767

• Perturbed double mill initial condition MO3:768

(5.3) Am,3(0, z) = A(ξ z +
√
σBz, e1), z ∈ [0, 2L],769

where (Bz)z is a given one-dimensional standard Brownian motion in the z variable770

and σ > 0 is a variance parameter which sets the size of the perturbation. The771

Brownian motion is subject to B0 = B2L = 0 (i.e. it is a Brownian bridge). Similarly772

to the initial condition MO1 (5.1), this initial condition has a nontrivial topology, in773

this case a winding number equal to 2.774
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5.1.2. Helical traveling wave. Let now D = [0, 2L] × [0, L] × [0, L]. Compared to the775

previous case, the domain has size 2L in the x-direction instead of the z-direction. Let again776

ξ = 2π/L. We consider now the following two initial conditions:777

• Double helix initial condition HW1:778

(5.4) Ah,1(0, x) = A(ξ x, e1), x ∈ [0, 2L],779

This initial condition has non-trivial topology and has winding number equal to 2 by780

the same consideration as for initial condition MO1.781

• Opposite helices initial condition HW2:782

(5.5) Ah,2(0, x) =

{
A(ξ x, e1), x ∈ [0, L],
A(−ξ x, e1), x ∈ [L, 2L].

783

Again, by the same considerations as for MO2, this initial condition has trivial topol-784

ogy, i.e. winding number equal to 0.785

5.2. Observation of topological phase transitions. We initialize the IBM by drawing N786

positions independently uniformly randomly in the spatial domain and N body-orientations787

independently from the von Mises distribution MA(0,x) where A(0,x) is one of the initial788

conditions MO1 or MO2. Then, we run the IBM and record the various indicators introduced789

in Section 4 as functions of time. The results are plotted in Fig. 13, as plain blue lines for790

the solution issued from MO1 (the topologically non-trivial initial condition), and as broken791

orange lines for that issued from MO2 (the topologically trivial one). We proceed similarly for792

the two initial conditions HW1 and HW2 and display the results in Fig. 14. See also Videos 4793

to 7 in Section SM1 supplementing Fig. 13 and Videos 8 to 11 supplementing Fig. 14.794

Figs. 13a and 14a display the GOP. We observe that, for all initial conditions, the GOP795

has initial value GOP1, which is consistent with the fact that the initial conditions are either796

MO or HW. Then, again, for all initial conditions, at large times, the GOP has final value797

GOP2 which indicates that the final state is a FS. This is confirmed by the inspection of the798

second line of figures in Figs. 13 and 14 which provide the triplet of topological indicators799

(dz, r̄z, wz) for MO solutions and (dx, r̄x, wx) for HW solutions. Specifically, dz and dx are given800

in Figs. 13d and 14d respectively, r̄z and r̄x in Figs. 13e and 14e, and wz and wx in Figs. 13f801

and 14f. Initially both triplets corresponding to MO1 or HW1 solutions have value (0, 1, 2) as802

they should (see (4.14)). Their final value is (1, 1, 0) which indicates a FS (see (4.13)). The fact803

that the final state is a FS implies, for MO1 and HW1, first that the IBM has departed from the804

MO and HW exact solutions of the macroscopic model described in Sections 3.1.2 and 3.1.3,805

and second, that a topological phase transition has taken place, bringing the topologically806

non-trivial MO1 and HW1 to a topologically trivial FS. For the topologically trivial MO2807

and HW2 initial conditions, no topological phase transition is needed to reach the FS. The808

differences in the initial topology of the solutions induce strong differences in the trajectories809

followed by the system.810

For the topologically non-trivial initial conditions MO1 or HW1, the system remains in811

the MO or HW state for some time; hence it follows the macroscopic solution during this812

phase. Indeed, the GOP displays an initial plateau at the value GOP1, while the triplet of813

topological indicators stays at the value (0, 1, 2), which characterize the MO or HW state. For814
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MO1, this is also confirmed by the yaw φ̄ (Fig. 13c, blue curve), which varies linearly in time815

and by the pitch θ̄ (Fig. 13b blue curve) which is constant in time, consistently with the MO816

solution of the macroscopic model (Section 3.1.2) (see also Fig. 8a for the linear variation817

of the yaw). The duration of this initial phase, also referred to as the persistence time, is818

significantly longer for HW1 than for MO1. In our experiments, the former can reach several819

hundred units of time and sometimes be infinite (up to our computational capacity). By820

contrast, the latter is random and of the order of ten units of time. After this initial plateau,821

the GOP decreases until it reaches a minimum at a time highlighted in Figs. 13, 14 and822

subsequent figures by a gray shaded zone, showing that the system passes through a state of823

maximal disorder. Around that time, r̄ has a sharp drop which is another confirmation of an824

increased disorder. The topological transition precisely occurs at this time with a transition of825

the winding number from 2 to 0 through a short sequence of oscillations. However, r̄ has not826

reached 0 and d has already started to increase, which suggests that disorder is not complete.827

At this time also, the linear variation of φ̄ suddenly stops and φ̄ remains constant afterward,828

while θ̄ shows a small oscillation and jump. For HW1, θ̄ and φ̄ are initially plateauing with829

small oscillations. At the time when the system leaves the HW state (around t ≃ 178), we830

observe a sudden drop of φ̄ from 2π to π which indicates that the system suddenly reverses831

its average direction of motion. The GOP starts to decrease significantly before this time832

so we can infer that during the time period between t ≃ 125 and t ≃ 178, even though the833

mean direction of motion Ω̄ remains constant, groups of particles of almost similar proportions834

are moving in opposite directions, which preserves the average direction of motion (and may835

explain the oscillations during the initial persistence phase). This is confirmed by Video 8836

(see description in Section SM1). Then, once this minimum is reached, the GOP increases837

quickly to finally reach the value GOP2 of the FS. Likewise, r̄ and d quickly reach the value 1838

while the winding number stays at the value 0.839

By contrast to the previous case, the system immediately leaves the topologically trivial840

initial conditions MO2 or HW2 as shown by the GOP immediately leaving the value GOP1.841

For HW2 the GOP increases right after initialization and smoothly reaches the value GOP2,842

at a much earlier time than HW1. The trend is different for MO2. In this case, the GOP first843

decreases. Then, after a minimum value, it increases again and smoothly reaches the value844

GOP2 at a time similar to MO1. The initial decay of the GOP for the MO2 solution can be845

explained by the fact that the macroscopic direction Ω turns in opposite directions for the two846

opposite mills, thus decreasing the global order. For HW2, the macroscopic direction stays847

constant and uniform. So, it is the same for the two opposite helices, giving rise to a larger848

GOP. The mean radii r̄z and r̄x stay constant it time, showing that the evolutions of MO2849

and HW2 do not involve phases of larger disorder. The quantity dx increases monotonically850

towards the value 1 while dz is subject to some oscillations close to convergence. This is due851

to the fact that the RPZ or RPX curves stay arcs of circles with decreasing arc length for852

the RPX and with some arc length oscillations for the RPZ as displayed in Videos 7 and 11.853

Of course, the winding number stays constant equal to 0 as it should for topologically trivial854

solutions. In both the MO2 and HW2 cases, θ̄ and φ̄ remain constant throughout the entire855

simulation. In the MO2 case, this is the consequence of the two counter-rotating mills which856

preserve the direction of motion on average. In the HW2 case, this is due to the fact that there857

is no variation of the direction of motion for HW solutions in general (see also Video 6 and858
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Video 10). Again, we observe that the convergence towards the FS takes more time for HW2859

than for MO2. This points towards a greater stability of the HW-type solutions compared to860

the MO ones.861

(a) (b) (c)

(d) (e) (f)

Figure 13: Examples of solutions of the IBM for initial conditions sampled from the double mill
MO1 (plain blue curves) and the opposite mills MO2 (boken orange curves). The following
indicators are plotted as functions of time: (a) Global Order Parameter (GOP) (see Eq. (4.3)).
Horizontal lines at GOP values 0.25, 0.45 and 0.85 materialize the special values GOP0, GOP1

and GOP2 respectively corresponding to totally disordered states, MO or HW, and FS (see
Eqs. (4.6)-(4.8)). (b) Pitch angle θ̄ of the global particle average direction Ω̄ (see (3.10)).
(c) Yaw φ̄ of Ω̄. (d) Distance of center of mass of RPZ curve to the origin dz (see (4.10)).
(e) Mean distance of RPZ curve to the origin r̄z (see (4.11)). (f) Winding number of RPZ
curve wz (see (4.10)). Gray shaded zones highlight a small region around the time of minimal
GOP for the MO1 solution. Parameters: N = 3106, R = 0.025, κ = 10, ν = 40, c0 = 1,
L = 1, ξ = 2π. See also Videos 4 to 7 in Section SM1.

5.3. Reproducibility. Since the IBM is a stochastic model, one may wonder whether862

Figs. 13 and 14 are representative of a typical solution. In Fig. 15, the GOP is plotted863

as a function of time for 20 independent simulations with MO1 initial conditions and the864

same parameters as in Fig. 13 (blue curves). The same features as in Fig. 13 are observed,865

namely: (i) an initial stable milling phase which lasts about 10 units of time; (ii) a decrease866

of the GOP between approximately 10 to 15 units of time; (iii) a subsequent increase of the867
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(a) (b) (c)

(d) (e) (f)

Figure 14: Examples of solutions of the IBM for initial conditions sampled from the double
helix HW1 (plain blue curves) and the opposite helices HW2 (broken orange curves). The
following indicators are plotted as functions of time: (a) Global Order Parameter (GOP).
(b) Pitch angle θ̄ of Ω̄. (c) Yaw φ̄ of Ω̄. (d) Distance of center of mass of RPX curve to the
origin dx. (e) Mean distance of RPX curve to the origin r̄x. (f) Winding number of RPX
curve wx. Gray shaded zones highlight a small region around the time of minimal GOP for the
HW1 solution. The HW2 and HW1 solutions are computed during 200 and 250 units of time
respectively. The two simulations have reached equilibrium by their final time. Parameters:
N = 3106, R = 0.025, κ = 10, ν = 40, c0 = 1, L = 1, ξ = 2π. See caption of Fig. 13 for
further indications. See also Videos 8 to 11 in Section SM1.

GOP which reaches the value GOP2 of the FS. A similar reproducibility of the results has868

been observed for the other initial conditions (MO2, HW1, HW2) (not shown).869

5.4. Robustness against perturbations of the initial conditions. In this section, we study870

the robustness of the MO when the initial condition is randomly perturbed as described by871

the initial condition MO3 (5.3). Three typical outcomes for three different values of the872

perturbation size σ are shown in Fig. 16. For each value of σ, the temporal evolution of873

the four main indicators are shown: the GOP (Figs. 16a, 16e, 16i), the mean polar angle874

or pitch (Figs. 16b, 16f, 16j), the mean azimuthal angle or yaw (Figs. 16c, 16g, 16k) and875

the winding number along the z-axis (Figs. 16d, 16h, 16l). For small to moderate values876

(approximately σ < 100), the outcomes of the simulation are the same as in Fig. 13 and are877
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Figure 15: GOP as a function of time for 20 independent simulations of the transition from a
MO to a FS starting from MO1. The parameters are the same as the ones on Figure 13.

not shown. However, they demonstrates the robustness of the topological solutions. When σ878

increases and crosses this threshold, the behavior becomes different. Around this threshold (for879

σ = 134), in Fig. 16a, we observe that the GOP does not remain initially constant (contrary880

to the un-perturbed case shown in Fig. 13a) but immediately decreases, then increases and881

oscillates around the value GOP1 before transitioning towards the value GOP2 corresponding882

to a FS. In Figs. 16c and 16d, we observe that the MO is preserved during a comparable,883

slightly longer, time than in Figs. 13c and 13f (around 20 units of time) before degenerating884

into a FS.885

Passed this threshold, when σ increases again and up to another threshold value around886

σ ≃ 1000, a new topological phase transition is observed from a MO with winding number 2 to887

a GS (3.8) with winding number 1. For σ = 753, the GOP shown in Fig. 16e initially strongly888

oscillates around the value GOP1 before stabilizing, still around this value, which is in stark889

contrast with the previous experiments. The winding number shown in Fig. 16h reveals that890

this final steady behavior is linked to a winding number equal to 1 after a transition around891

t ≃ 12. Consequently, a milling behavior is observed in Fig. 16g for the mean azimuthal892

angle. This angle evolves linearly but with a slower speed, approximately divided by 2, after893

the transition, as expected since the winding number has dropped from 2 to 1. However, the894

final mean polar angle θ̄ shown in Fig. 16f is not equal to π/2. Since the gradient in body-895

orientation is along the z-axis, this indicates that the final state corresponds to a GS rather896

than a standard MO. This demonstrates that the family of generalized topological solutions897

enjoys some greater stability. The transition between MO and GS has not been observed898

when starting from a non-perturbed initial state. However, starting with perturbed initial899

conditions, the MO and GS with winding number 1 seem stable during several tens of units900

of time.901

The transition between MO and GS with different winding numbers happens when the902

perturbation size is large enough and seems to be the typical behavior: out of 6 independent903

simulations for values of σ evenly spread between 258 and 876, 5 simulations led to a MO904

or a GS with winding number 1 stable during more than 50 units of time. The other one905
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led to a FS. We can think that the perturbation brings the system to a state closer to the906

MO with winding number 1, in particular due to the stochastic spatial inhomogeneities of907

the perturbation. On the particle simulations, we observe that the density of agents does not908

remain uniform, which creates different milling zones with possibly different milling speeds909

depending on the local gradient of body-orientations. The denser region then seems to attract910

the other particles before expanding into the full domain. The global direction of motion is911

not necessarily preserved during this process. In comparison, starting from an unperturbed912

MO with winding number 2, the density remains uniform and the system is globally subject to913

numerical errors which homogeneously degrade the topology up to the point that the system914

becomes closer to a FS. The situation is analogous when the size of the perturbation is too915

large as shown in Figs. 16i, 16k, 16l for σ = 1000 : the MO is preserved during less than 5916

units of time and after an immediate drop of the GOP, the system quickly reaches a FS.917

5.5. Critique. The existence of a persistence time for the MO1 and HW1 solutions sug-918

gests that they enjoy some kind of topological protection against the noisy perturbations919

induced by the IBM and that MO2 and HW2 do not have such protection. However, since ex-920

plicit solutions of the SOHB model for the initial conditions MO2 and HW2 are not available,921

it is not possible to assess the role of noise in the observed evolutions of the MO2 and HW2922

solutions. So, further investigations are needed to confirm that non-trivial topology actually923

provides increased robustness against perturbations. Moreover, the MO1 is robust against924

perturbed initial conditions. The MO and GS with winding number 1 seem to be much more925

more stable than with winding number 2.926

6. Discussion and conclusion. An Individual Based Model describing the alignment of927

body-orientations in 3D and its macroscopic limit have been presented. The model involves928

new kinds of internal degrees of freedom involving geometrical constraints, here due to the929

manifold structure of SO3(R), leading to new types of self-organized phenomena. In particular,930

the macroscopic model has been shown to host special solutions with non-trivial topological931

structures. Corresponding solutions of the Individual Based Model have been computed and932

their non-trivial topological structure, shown to persist for a certain time before being de-933

stroyed by noise-induced fluctuations. Quantitative estimates of the agreement between the934

Individual Based Model and the Macroscopic model have been given. This study provides935

one more evidence of the role of geometry and topology in the emergence of self-organized936

behavior in active particle systems. The model presented in this article opens many new937

research directions. Some of them are listed below.938

1. The stability of the MO (3.2), HW (3.5) and GS (3.8) solutions as well as those of939

the generalized HW solutions described in Section SM6 is an open problem. It would940

enable us to investigate the potential link between topological structure and stability.941

2. Numerical simulations have been carried out in a periodic setting. Real systems though942

are confined by solid walls. To model the influence of confinement, it is necessary to943

explore wider classes of boundary conditions.944

3. Most topological states in physical systems consist of linear perturbations of bulk945

states that propagate on the edges of the system (edge states). It would be interesting946

to determine whether linear perturbations of the MO or HW solutions could host such947

edge states.948
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 16: Different outcomes of the simulation of the IBM starting from perturbed initial
MO. Only the four main indicators are shown: from left to right, the GOP, the mean polar
angle (or pitch) θ̄, the mean azimuthal angle (or yaw) φ̄ and the winding number wz. (a)-(d)
For σ = 134, the system stays a MO for a long time (t ≃ 20) but eventually converges to a FS;
(e)-(h) for σ = 753, the system converges towards a generalized solution with a polar angle not
equal to π/2 and a winding number equal to 1 along the z-axis; (i)-(l) for σ = 1000, the MO
is quickly disrupted (at t ≃ 5) and converges almost immediately towards a FS. Parameters:
N = 3106, R = 0.025, κ = 10, ν = 40, c0 = 1, L = 1, ξ = 2π.

4. Beyond the mean-field limitN → ∞, it would be interesting to quantify the fluctuation949

about the mean-field, for instance through a large deviation approach (see e.g. [6, 7,950

11, 30, 47, 68]).951

5. Direct numerical simulations of the macroscopic model need to be developed to answer952

some of the questions raised by the study of topological protection (see Section 5).953
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6. It is desirable to develop more sophisticated topological indicators to gain better insight954

into the topological structure of the solutions.955

7. The multiscale approach developed here could be extended to other geometrically956

structured systems involving e.g. a wider class of manifolds which would enlarge the957

applicability of the models.958
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[29] A. Czirók, E. Ben-Jacob, I. Cohen, and T. Vicsek, Formation of complex bacterial colonies via1024
self-generated vortices, Phys. Rev. E, 54 (1996), p. 1791.1025
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[47] B. Fernandez and S. Méléard, A Hilbertian approach for fluctuations on the McKean-Vlasov model,1065

Stochastic Process. Appl., 71 (1997), pp. 33–53.1066
[48] A. Figalli, M.-J. Kang, and J. Morales, Global well-posedness of the spatially homogeneous1067

Kolmogorov–Vicsek model as a gradient flow, Arch. Ration. Mech. Anal., 227 (2018), pp. 869–896.1068
[49] A. Frouvelle and J.-G. Liu, Dynamics in a kinetic model of oriented particles with phase transition,1069

SIAM J. Math. Anal., 44 (2012), pp. 791–826.1070
[50] I. M. Gamba, J. R. Haack, and S. Motsch, Spectral method for a kinetic swarming model, J. Comput.1071

Phys., 297 (2015), pp. 32–46.1072
[51] I. M. Gamba and M.-J. Kang, Global weak solutions for Kolmogorov–Vicsek type equations with orien-1073

tational interactions, Arch. Ration. Mech. Anal., 222 (2016), pp. 317–342.1074
[52] J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté, and G. Theraulaz,1075
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dynamics model∗2
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4

SM1. List of supplementary videos. This article is supplemented by several videos which5

can be accessed by following this link: https://figshare.com/projects/Bulk topological states6

in a new collective dynamics model/96491. They are listed and described below.7

Video 1. It supplements Fig. 3 of Section 2.1.2 and provides a visualization of the time8

evolution of the system considered in this figure.9

Video 2. It supplements Fig. 6 of Section 3.1.2: it provides a visualization of the time10

evolution of a MO. Several frames A = (Ω,u,v) ∈ SO3(R) are placed at various locations11

of space and evolve according to (3.2) (with arbitrary chosen parameters). The vectors Ω, u12

and v are displayed respectively in red, green and blue.13

Video 3. It supplements Fig. 7 of Section 3.1.3: it provides a visualization of the time14

evolution of a HW. See caption of Video 2 for details on the graphical representation.15

Video 4. It supplements Fig. 13 in Section 5.2. It shows the time-evolution of the particles16

for the initial condition MO1 (5.1). For clarity, only a sample of 5000 particles are shown.17

We refer to Fig. 3a for details on the representation of the body orientation using four-colored18

tetrahedra. We notice the ensemble rotation of the particle directions about the z axis until19

an instability disrupts the body orientation twist along the z axis (around time t ≈ 13) and20

eventually drives the system to a FS.21

Video 5. It supplements Fig. 13 in Section 5.2. It provides the time-evolution of the RPZ22

curve for the initial condition MO1 (5.1). The RPZ curve remains a circle until time t ≈ 823

where its radius shrinks down. Then, the RPZ-curve shows a fairly chaotic dynamics during24

which the topology is lost. This happens around time t ≈ 13 which is the first time when the25

RPZ-curve passes through the origin; at this time, the winding number is not defined. Then,26

the RPZ-curve slowly migrates towards the unit circle while shrinking to a single point which27

signals a FS. From time t ≈ 15 on, it remains a single immobile point.28

Video 6. It supplements Fig. 13 in Section 5.2. It shows the time-evolution of the particles29

for the initial condition MO2 (5.2). For clarity, only a sample of 5000 particles are shown30
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(see Fig. 3a for details on the representation of the body orientation). We notice the counter-31

rotation of the particle directions about the z axis in the bottom and top halves of the domain,32

corresponding to the opposite mills. These two counter-rotations gradually dissolve while the33

solution approaches the FS.34

Video 7. It supplements Fig. 13 in Section 5.2. It provides the time-evolution of the35

RPZ curve for the initial condition MO2 (5.2). The circle formed by the initial RPZ curve36

immediately opens. The opening width constantly increases, until the arc is reduced to a single37

point opposite to the opening point at time t ≈ 10. Then there is a bounce and the arc forms38

again and increases in size until it reaches a maximum and decreases again. Several bounces39

are observed with decreasing amplitudes. These bounces result in the non-monotonous behavior40

of the quantity dz displayed on Fig. 13d.41

Video 8. It supplements Fig. 14 in Section 5.2. It shows the time-evolution of the particles42

for the initial condition HW1 (5.4) (see Fig. 3a for details on the representation of the body43

orientation). For clarity, only a sample of 5000 particles are shown. Before time t ≃ 125,44

we observe a steady HW state. Then, after time t ≈ 125, the particles show an undulating45

wave-like behavior, with slowly increasing frequency and amplitude, which causes the decrease46

of the GOP. Around time t ≈ 178, the particles are divided into two groups with pitch angles47

θ ≃ 0 and θ ≃ π, which suddenly reverses the global direction of motion. After time t ≈ 178,48

the particles quickly adopt the same body-orientation. Shortly after time t = 178, the particles49

still have an undulating behavior but it quickly fades away until a FS is reached.50

Video 9. It supplements Fig. 14 in Section 5.2. It shows the time-evolution of the RPX-51

curve for the initial condition HW1. Unlike in the MO case, the RPX curve does not shrinks52

to the center of the circle before migrating to its limiting point. In this case, the limiting point53

near the unit circle towards which the RPX curve is converging attracts the RPX. During this54

transition, the circular shape of the RPX curve is preserved until it becomes a point.55

Video 10. It supplements Fig. 14 in Section 5.2. It shows the time-evolution of the parti-56

cles for the initial condition HW2 (5.5). For clarity, only a sample of 5000 particles are shown57

(see Fig. 3a for details on the representation of the body orientation). At the beginning, we see58

two opposite alternations of the three side colors of the tetrahedra (green-blue-magenta followed59

by green-magenta-blue), which signals a double parallel twist. Then, gradually, the green color60

is eaten up by the blue and magenta ones and only one alternation of the blue and magenta61

colors remains. Then the color alternation shades away and gives room to a homogeneous62

color showing that the body orientations have stopped rolling and a FS is attained.63

Video 11. It supplements Fig. 14 in Section 5.2. It provides the time-evolution of the64

RPX curve for the initial condition HW2 (5.5). The circle formed by the initial RPX curve65

immediately opens. The opening width constantly increases, although at a slower pace than66

for MO2 (see Video 7). Here, also contrasting with the MO2 case, the monotonous opening67

of the arc results in a monotonously increasing quantity dx as shown in Fig. 14d.68

Video 12. It supplements Fig. SM2 in Section SM8.1. It shows the time-evolution of the69

particles for a MO initial condition (5.1) in a rare case where it evolves into a HW. For clarity,70

only a sample of 5000 particles are shown (see Fig. 3a for details on the representation of the71

body orientation). It starts like Video 4 with the ensemble rotation of the particle directions72
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about the z axis until an instability initiated at time t ≈ 10 gradually disrupts this organization.73

However, the disruption does not drive the system to an FS, but rather to a HW as shown by74

the alternations of blue, green and magenta colors propagating along the particle orientations.75

Video 13. It supplements Fig. SM2 in Section SM8.1. It provides the time-evolution of76

the RPZ curve for a MO initial condition (5.1) in a rare case where it evolves into a HW. The77

behavior is essentially the same as in Video 5 except that the RPZ-curve shrinks to a single78

point far away from the unit circle. This shows that the end state of the RPZ-curve is closer to79

disorder than for a milling to flocking transition. Before that, the non-trivial topology across z80

is lost following a similar scenario as for the milling-to-flocking transition.81

Video 14. It supplements Fig. SM2 in Section SM8.1. It provides the time-evolution of82

the RPX curve for a MO initial condition (5.1) in a rare case where it evolves into a HW.83

Initially, the RPX-curve is reduced to the origin, showing total disorder across the x direction.84

Then, after some chaotic transient, a closed curve enclosing the origin is formed. This curve85

initially stays close to the origin, still showing strong disorder. But gradually, the radius of86

the curve increases and approaches the unit circle. Thus, across x, the topology is initially87

undefined, but when it builds up, it shows its non-trivial character, the emerging RPX-curve88

having non-zero winding number about the origin.89

Video 15. It supplements Fig. SM3 in Section SM8.2. It shows the time-evolution of the90

particles for a MO initial condition (5.1) in a rare case where it evolves into a FS through91

a transient HW. For clarity, only a sample of 5000 particles are shown (see Fig. 3a for92

details on the representation of the body orientation). The point of view is changed from93

Video 12 to better visualize the transient HW moving along the diagonal, appearing around94

time t ≈ 16. At the beginning we witness the ensemble rotation of the particles and its95

disruption by an instability. After some chaotic behavior, the transient HW establishes as96

shown by the alternations of blue, green and magenta colors propagating along the diagonal.97

But after some time, the HW structure is disrupted again and the system eventually establishes98

a FS.99

Video 16. It supplements Fig. SM3 in Section SM8.2. It provides the time-evolution of the100

RPZ curve for a MO initial condition (5.1) in a rare case where it evolves into a FS through101

a transient HW. The behavior is essentially the same as in Video 5 except that the RPZ-curve102

undergoes a longer-lasting chaotic dynamics before shrinking to a point which migrates towards103

the unit circle.104

SM2. Quaternion framework. Despite its formal simplicity, the SO3(R)-framework used
in the definition of the Individual Based Model is not well suited to numerical simulations due
to the high computational cost required to store and manipulate rotation matrices. A more
efficient representation of rotations in R3 is the quaternion representation based on the group
isomorphism

Φ : H/± 1 −→ SO3(R)
q 7−→ Φ(q) : w ∈ R3 7→ {q[w]q∗} ∈ R3,

where the 3-dimensional vector w = (w1, w2, w3)
T ∈ R3 is identified with the pure imaginary105

quaternion denoted by [w] = iw1 + jw2 + kw3 and q∗ denotes the conjugate quaternion106

This manuscript is for review purposes only.



SM4 P. DEGOND, A. DIEZ AND M. NA

to q. Conversely, the pure imaginary quaternion q = iq1 + jq2 + kq3 is identified with the107

3-dimensional vector denoted by {q} := (q1, q2, q3)
T. Note that for any quaternion q and any108

vector w ∈ R3, the quaternion q[w]q∗ is a pure imaginary quaternion. The group of unit109

quaternions is denoted by H and is homeomorphic to the sphere S3 ⊂ R4.110

We refer the reader to [SM5, Section 2] and [SM4, Appendix A] where details about the111

equivalence between the two representations can be found. Note that [SM4] studies a model112

in a full quaternion framework. Table SM1 below summarizes how the different objects can113

be computed in either of the two representations.114

Matrix Quaternion

Orientation A ∈ SO3(R) q ∈ H/± 1 such that Φ(q) = A

Flux Jk =
∑

j K(Xk −Xj)Aj Qk =
∑

j K(Xk −Xj) (qj ⊗ qj − 1/4I4)

Mean orientation A = argmax{A 7→ A · J} q̄ ∈ H eigenvector associated to the largest
eigenvalue of Q

Von Mises distribu-
tion

MA(A) =
exp(κA ·A)

Z Mq(q) =
exp(2κ(q · q)2)

Z

Table SM1: Matrix vs quaternion formulation

SM3. Numerical methods. The IBM (2.3), (2.5) has been discretized within the quater-115

nion framework using the time-discrete algorithm described in Table SM2 below. This table116

shows one iteration of the algorithm during which the positions Xn
k ∈ R3 and orientations117

qnk ∈ H for k ∈ {1, . . . , N} are updated into Xn+1
k and qn+1

k respectively.118

Algorithm: Iteration n→ n+ 1 of the time-discrete algorithm

1. Update the positions: for k ∈ {1 . . . , N}, set Xn+1
k = Xn

k + c0 {qnk [e1](qnk )∗}∆t

2. Draw a subset I ⊂ {1, . . . , N} of jumping agents: for each agent k ∈ {1 . . . , N}, draw
a random number rk uniformly in [0, 1]. If rk > exp(−ν∆t), then k ∈ I.

3. Compute the local flux: for k ∈ I, compute

Q
n

k = 1
N

∑N
j=1K(Xn

k −Xn
j ) (q

n
j ⊗ qnj − 1

4 I4).

4. Update the orientations: for k ∈ I compute one unit eigenvector qnk of Qn
k of maximal

eigenvalue and draw qn+1
k ∼Mqnk

.

Table SM2: One iteration of the time-discrete algorithm
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At step 2, the Poisson process is discretized with a time step ∆t during which the indices119

of the jumping agents are recorded. In the simulations ∆t has to be chosen small enough so120

that the event that an agent jumps twice or more during a time interval of size ∆t is negligible.121

In all the simulations, we take ∆t such that ν∆t = 10−2.122

At step 3, a random quaternion q sampled from a von Mises distribution with prescribed123

mean orientation q̄ can be obtained as q = q̄r where r ∈ H is sampled from a von Mises dis-124

tribution with mean orientation 1 (see [SM5, Proposition 9]). An efficient rejection algorithm125

to sample von Mises distributions can be found in [SM9].126

All the simulations in this paper take place in a periodic box of size L = (Lx, Ly, Lz). The127

observation kernel K is the indicator of the ball centered at 0 and of radius R > 0. The six128

parameters of the simulations are summarized in Table 1.129

Finally, we would like to stress that the quaternion formulation is not only a convenient130

numerical trick. The equivalence it provides between body-orientation models and models of131

nematic alignment of polymers in dimension four has been exploited in [SM2] to study phase132

transitions in the body alignment model.133

SM4. Derivation of the macroscopic model. The derivation of the continuum theory134

presented in Section 2.2 has been achieved in [SM5] (see also [SM2]) following earlier works135

[SM3, SM4]. It consists of two steps. The first step is the derivation of a mean-field kinetic136

model in the limitN → ∞ showing that the system satisfies the propagation of chaos property:137

the agents, seen as random variables in R3× SO3(R) become independent and identically dis-138

tributed. Their law is given by the kinetic particle distribution f which satisfies the following139

PDE:140

∂tf + c0Ae1 · ∇xf = ν (ρf MAK∗f − f),141

where ρf ≡ ρf (t,x) is the local spatial density:

ρf (t,x) =

∫

SO3(R)
f(t,x, A) dA,

and AK∗f ≡ AK∗f (t,x) is the local average body-attitude defined by

AK∗f (t,x) := argmaxA∈SO3(R)A · JK∗f (t,x),

computed from the local flux:

JK∗f ≡ JK∗f (t,x) :=
∫∫

R3×SO3(R)
K(x− y)Af(t,y, A) dy dA.

From a mathematical point of view, the probability distribution f ≡ f(t,x, A) is obtained as142

the limit in law of the empirical measure of the N -particle system. We refer to [SM7] where a143

rigorous proof of this result is presented for a similar model, and to [SM1] for a related work144

on the Vicsek model.145

In the macroscopic regime the agent interactions become strong, which is expressed by146

the following hydrodynamic scaling:147

ε ∼ c0
ν L

∼ R

L
≪ 1,148
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where L is a typical macroscopic length-scale of the system (such as the typical size of the149

flock). We define c̃0 = ενL = O(1) and c′0 = c0/c̃0. Then, defining dimensionless time and150

space variables t′ and x′ such that x = Lx′ and t = (L/c̃0)t
′, we obtain (dropping the primes151

for simplicity):152

(SM4.1) ∂tf
ε + c0Ae1 · ∇xf

ε =
1

ε
(ρfε MAfε

− f ε) +O(ε),153

where
Afε ≡ Afε(t,x) := argmaxA∈SO3(R)A · Jfε(t,x),

and

Jfε ≡ Jfε(t,x) :=

∫

SO3(R)
Afε(t,x, A) dA.

This last expression is obtained by Taylor expanding JK∗fε = Jfε + O(ε2) and means that154

the interactions between the agents become spatially localized in the macroscopic regime.155

The macroscopic model is obtained by formally taking the limit ε→ 0 in (SM4.1). If such156

a limit exists, it is necessarily of the form157

(SM4.2) f ε −→
ε→0

ρMA158

where ρ ≡ ρ(t,x) and A ≡ A(t,x) depend on t and x. Thus, the limiting distribution is fully
described by the spatial density of agents and their average orientation. To obtain a system
of equations for (ρ,A), we first use the local conservation of mass: integrating (SM4.1) over
SO3(R) and noting the right-hand side vanishes, it holds that,

∂t

∫

SO3(R)
f ε dA+ c0

∫

SO3(R)
A e1 · ∇xf

ε dA = O(ε).

When ε→ 0, assuming (SM4.2) and using (4.4), we obtain (2.11a).159

To obtain an equation for A, it could be tempting to pursue this approach and multiply
(SM4.1) by A before integrating it over SO3(R). However, the term resulting from the right-
hand side of (SM4.1) does not vanish but equals (using (4.4) again):

1

ε

∫

SO3(R)
A (ρfε MAfε

− f ε) dA =
1

ε

(c1
c0
ρfε Afε − Jfε

)
̸= 0.

Due to the factor ε−1, its limit as ε → 0 is unknown. An easy fix can be found if, instead
of multiplying Eq. (SM4.1) by A before integrating it over SO3(R), we multiply it by the
quantity ψAfε

(A) := AT
fεA− ATAfε . The rationale for using this quantity is because we aim

to find an equation for the time-derivative of A. Such a derivative must lie in the tangent
space to SO3(R) at A, denoted by TA. This suggests to multiply (SM4.1) by an element of
TA. Given an arbitrary matrix A, a natural way to obtain an element of TA is to take its
orthogonal projection on TA, which is given by 1

2(A − AATA). We could therefore choose to
multiply (SM4.1) by this quantity. But a further simplification is possible by noting that this
quantity is equal to 1

2AψA(A) and that 1
2A does not depend on A and so can be factored
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out of the integral with respect to A. These considerations naturally lead to the choice of
the antisymmetric matrix ψAfε

(A) as a multiplier. Because Afε is obtained as the polar
decomposition of Jfε , there exists a symmetric matrix S such that Jfε = AfεS. Using this
remark and (4.4), we easily find that

1

ε

∫

SO3(R)
ψAfε

(A) (ρfε MAfε
− f ε) dA = 0.

Then, multiplying (SM4.1) by ψfε , taking the limit ε→ 0 and assuming (SM4.2) leads to:

∫

SO3(R)
(∂t(ρMA) + c0Ae1 · ∇x(ρMA))ψA(A) dA = 0.

Eq. (2.11b) of the SOHB model follows from this equation through tedious but straightforward160

computations detailed in [SM3, SM4].161

Note that the simple form of the multiplier ψAf
is due to a particular simple expression162

of the collision operator. In more general cases, the obtention of the multiplier (referred to163

as the generalized collision invariant in [SM6]) is more involved (see e.g. [SM3, SM4, SM5]).164

A rigorous convergence result for the limit ε → 0 is not available to date. In the case of the165

Vicsek model, such a rigorous result has been proved in [SM8].166

SM5. Alternate expressions of δ. The following lemma provides alternate expressions167

for δ:168

Lemma SM5.1. We have169

δ = −
{
[(u · ∇x) Ω] · v + [(v · ∇x)u] · Ω+ [(Ω · ∇x)v] · u

}
(SM5.1)170

= −1

2

{
(∇x × Ω) · Ω+ (∇x × u) · u+ (∇x × v) · v}.(SM5.2)171

172

Proof. Eq. (SM5.1) follows from inserting the formula

0 = ∇x(Ω · u) = (Ω · ∇x)u+ (u · ∇x)Ω + Ω× (∇x × u) + u× (∇x × Ω),

and similar formulas after circular permutation of {Ω,u,v}into (2.13). Eq. (SM5.2) follows
from taking the half sum of (2.13) and (SM5.1) and applying the formula

∇x × v = ∇x × (Ω× u) = (∇x · u) Ω− (∇x · Ω)u+ (u · ∇x)Ω− (Ω · ∇x)u,

and similar formulas after circular permutation of {Ω,u,v}.173

SM6. MO, HW, GS and generalized HW solutions. In this section, we provide proofs174

of Lemmas 3.1, 3.2 and 3.3. The prototypical helical traveling wave (HW) presented in175

Lemma 3.2 belongs to a more general class of solutions called generalized HW solutions de-176

scribed in Section SM6.2 below.177
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SM6.1. Proof of Lemma 3.1. Starting from the initial condition (3.4), we are looking
for solutions of (2.11b) of the form

A(t,x) =




cos(ωt) u1(t, z) v1(t, z)
− sin(ωt) u2(t, z) v2(t, z)

0 u3(t, z) v3(t, z)


 ,

where ω ∈ R is an angular velocity which will be related to the parameters of the problem178

later and where the basis vectors u = (u1, u2, u3)
T and v = (v1, v2, v3)

T depend only on the179

z variable and time. In this situation, Equation (2.11a) is trivially satisfied which means180

that the system stays homogeneous in space. Solutions of this form have to satisfy three181

geometrical constraints which ensure that A ∈ SO3(R). The first two ones are Ω×u = v and182

v × Ω = u, which lead to183

(SM6.1) A(t,x) =




cos(ωt) sin(ωt)v3(t, z) − sin(ωt)u3(t, z)
− sin(ωt) cos(ωt)v3(t, z) − cos(ωt)u3(t, z)

0 u3(t, z) v3(t, z)


 .184

The third one is a normalization constraint:185

(SM6.2) ∀t > 0, ∀z ∈ R, u3(t, z)
2 + v3(t, z)

2 = 1.186

Using (SM6.2), we define a function α ≡ α(t, z) such that

u3(t, z) = sin(α(t, z)), v3(t, z) = cos(α(t, z)).

A direct computation shows that for A of the form (SM6.1), we have

r = (∂zu3)u+ (∂zv3)v, δ = 0.

Therefore, Eq. (2.11b) can be rewritten more concisely into:187

(SM6.3) ∂tA+ c4 [Ω× r]×A = 0,188

where we recall Eq. (2.9) for the definition of [ ]×. A direct computation shows that189

(SM6.4) Ω× r = (v3 ∂zu3 − u3 ∂zv3) e3 = (∂zα) e3.190

Inserting this in (SM6.3) implies that u3(t, z) ≡ u3(z) and v3(t, z) ≡ v3(z) are independent of191

time. We then observe that:192

(SM6.5) A(t,x) = A(−ωt, e3)A(α(z), e1),193

where we recall Eq. (2.8) for the meaning of A. Therefore, using (SM6.3) and (SM6.4), we
obtain:

−ω [e3]×A+ c4 (∂zα) [e3]×A = 0,

from which we deduce that A satisfies (2.11b) if and only if α and ω satisfy:

c4 ∂zα = ω,

which implies194

(SM6.6) α(z) =
ω

c4
z + ᾱ,195

where ᾱ is a constant, which can be interpreted as the phase at the origin z = 0. To recover196

Eq. (3.2), we just need to take ᾱ = 0 and define ξ = ω/c4. Eq. (3.3) follows from (SM6.5).197
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SM6.2. Generalized HW and proof of Lemma 3.2. Starting from the initial condi-
tion (3.7), we are looking for solutions of (2.11b) of the form

A(t,x) =




1 0 0
0 cos(α(t, x)) − sin(α(t, x))
0 sin(α(t, x)) cos(α(t, x))


 ,

for a real-valued function α of the t and x variables only. In this case, Ω is a constant vector
and Equation (2.18a) is trivially satisfied. Moreover a direct computation shows that:

r = 0, δ = (∂xα)(t, x).

As a consequence, Eq. (2.21) is trivially satisfied and straightforward computations show that
Eq. (2.11b) reduces to

∂tα+ (c2 + c4) ∂xα = 0.

This last equation is a linear transport equation with velocity c2 + c4, the solutions of which198

are given by199

(SM6.7) α(t, x) = α0(x− (c2 + c4)t)200

for any initial condition α0 ∈ L1
loc(R). In the case of (3.7), α0(x) = ξ x. However, we see that201

there are as many different solutions as functions in L1
loc(R). Such general solutions are called202

“generalized HW”.203

SM6.3. Proof of Lemma 3.3. The three rotation matrices are given by204

A(−ωt, e3) =




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1


 ,205

206

A(θ − π/2, e2) =




sin θ 0 − cos θ
0 1 0

cos θ 0 sin θ


 ,207

208

A(ξ(z − λ̃t), e1) =




1 0 0

0 cos(ξ(z − λ̃t)) − sin(ξ(z − λ̃t))

0 sin(ξ(z − λ̃t)) cos(ξ(z − λ̃t))


 ,209

and a direct computation shows that the three column vectors Ω, u and v of the matrix Aξ,θ210

are given by211

Ω =




sin θ cos(ωt)
− sin θ sin(ωt)

cos θ


 ,212

213

u =




− cos θ sin(ξ(z − λ̃t)) cos(ωt) + cos(ξ(z − λ̃t)) sin(ωt)

cos θ sin(ξ(z − λ̃t)) sin(ωt) + cos(ξ(z − λ̃t)) cos(ωt)

sin θ sin(ξ(z − λ̃t))


 ,214
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215

v =




− cos θ cos(ξ(z − λ̃t)) cos(ωt)− sin(ξ(z − λ̃t)) sin(ωt)

cos θ cos(ξ(z − λ̃t)) sin(ωt)− sin(ξ(z − λ̃t)) cos(ωt)

sin θ cos(ξ(z − λ̃t))


 .216

Then we compute217

r = ξ sin θ cos(ξ(z − λ̃t))u− ξ sin θ sin(ξ(z − λ̃t))u = ξ sin θ(sin(ωt), cos(ωt), 0)T,218

δ = cos θ∂zu · v + u3δzv · Ω = ξ cos θ,219220

where we have used that ∂zu = ξv and ∂zv = −ξu. It remains to check that Eq. (2.11b)221

holds true. We split this equation into three equations, one for each vector Ω, u and v. The222

first equation on Ω reads223

(∂t + c2(Ω · ∇x))Ω + c4PΩ⊥r = 0.224

This equation holds true because225

∂tΩ = −ω




sin θ sin(ωt)
sin θ cos(ωt)

0


 , (Ω · ∇x)Ω = 0, PΩ⊥r = r− (r · Ω)Ω = ξ sin θ




sin(ωt)
cos(ωt)

0


 ,226

and ω = c4ξ. The second equation on u reads227

(∂t + c2(Ω · ∇x))u− c4(u · r)Ω + c4δv = 0.228

Because λ̃ = c2 cos θ, we have

∂t + c2Ω · ∇x = ∂t + c2 cos θ∂z = ∂t + λ̃∂z and ∂t + λ̃∂z(z − λ̃t) = 0.

Thus

(∂t + c2(Ω · ∇x))u = ω




cos θ sin(ξ(z − λ̃t)) sin(ωt) + cos(ξ(z − λ̃t)) cos(ωt)

cos θ sin(ξ(z − λ̃t)) cos(ωt)− cos(ξ(z − λ̃t)) sin(ωt)
0


 ,

and using ω = c4ξ, it can be checked that229

(∂t + c2(Ω · ∇x))u− c4(u · r)Ω = −c4ξ cos θv = −c4δv,230

which yields the result. The equation on v is analogous.231

SM6.4. GOP of the MO and generalized HW. The GOP (given by Eq. (4.5)) of the
MO and HW do not depend on time and only depend on the function α defined respectively
by (SM6.6) and (SM6.7). Using Eq. (4.5), we can compute that the GOP is equal to:

GOP =
1

2

(
c1(κ)

c0

)2 (
1 + 2 |⟨u⟩|2

)
+

1

4
,
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where ⟨u⟩ denotes the spatial average of the vector u with respect to ρ (here the with respect
to the uniform measure on the domain since ρ is constant and uniform). With the previous
notations, we obtain

|⟨u⟩|2 = ⟨cosα⟩2 + ⟨sinα⟩2,
For the generalized HW, depending on the choice of α, the GOP can take any value between232

GOP1 and GOP2, these two extreme values being attained respectively when |⟨u⟩| = 0 and233

|⟨u⟩| = 1.234

SM7. Convergence rate of |dφ̄/dt| as N → ∞. The fact that the convergence rate of235

|dφ̄/dt| is close to N−1 agrees with previously documented observations in spherical statistics.236

Indeed, it has been shown in [SM11, Theorem 3(e)] that the estimation of the concentration237

parameter of a (spherical) von Mises distribution obtained from a crude averaging procedure238

from N independent samples produces a biased estimator with a (nonnegative) bias of order239

N−1 (see also [SM10, Section 10.3]). In the present case, a similar reasoning can be applied,240

which we now briefly develop. The key observation is that all the measured quantities are241

functions of empirical averages of the form (2.4). Under the chaos assumption (see Section242

SM4), whenN is large, the body-orientations of the particles behave asN independent samples243

with common law MA, where A solves the SOHB model (2.11) and MA is defined by (2.6). In244

[SM3, Theorem 4.1], it has been shown that c4(κ) can actually be expressed as a function of245

a certain number p of averaged quantities246

c4(κ) = F (⟨g1⟩MA , . . . , ⟨gp⟩MA),247

where gi : SO3(R) → M3(R) and F : M3(R)p → R are smooth functions. The IBM simulation248

thus defines an estimator κ̂ of the concentration parameter such that249

c4(κ̂) = F (ĝ1, . . . , ĝp),250

where ĝi is the average of gi obtained by replacing MA by the empirical measure of the N251

body-orientations of the particles. We can then measure the bias by taking the expectation252

of the Taylor expansion of the previous expression around the point (⟨g1⟩MA , . . . , ⟨gp⟩MA) :253

c4(κ̂) = c4(κ) + δĝ · ∇F + (δĝ)T(HessF )δĝ +R,254

where δĝ = (ĝ1, . . . , ĝp)
T − (⟨g1⟩MA , . . . , ⟨gp⟩MA)

T and R is a remainder. The gradient ∇255

and Hessian Hess are defined within the Euclidean framework given by (2.1). By the chaos256

hypothesis E[δĝ] = 0 and by the central limit theorem, the term of order two behaves as257

N−1. Since SO3(R) is compact, higher order moments of δĝ can be controlled by a classical258

argument based on Hoeffding’s inequality [SM12, Lemma 5.5 and Theorem 5.29]. This ensures259

that E[R] is O(N−2). We therefore obtain a biased estimator:260

E[c4(κ̂)] = c4(κ) +
a

N
+O(N−2),261

where a ∈ R depends on the derivatives of the considered functions and on the variance of262

the estimator (2.4) where the particles are replaced by independent identically distributed263
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samples with law MA. The fact that a > 0 can be empirically verified on Fig. 8b but has264

not been proved yet. For each N , the fluctuations around the average (biased) value can be265

monitored by computing the standard deviation of the 10 independent simulations. Fig. SM1266

shows this standard deviation as a function of N in a log-log-scale (blue dots). Although267

fluctuations remain significant with only 10 simulations per data point, by a standard linear268

regression (solid orange line) we obtain that the size of the standard deviation behaves as269

N−β with β ≃ 0.54. which is close to the value β = 1/2 which we expect from an application270

of the central limit theorem.271

Figure SM1: Standard deviation of the 10 independent simulations as a function of N (blue
dots) and regression line (solid orange line) in log-log scale. Parameters: L = 1, ξ = 2π,
R = 0.025, ν = 40, c0 = 1, κ = 10.

SM8. Rare events. Although the scenario described in Section 5 of the main text is272

the most common one, the IBM sometimes leads to different, slightly more complex scenarios273

which are described in the present section. Now, the IBM is initialized by drawing N positions274

independently uniformly in the cubic domain D = [0, L]×[0, L]×[0, L] with periodic boundary275

conditions and N body-orientations independently from the von Mises distribution MA(0,x)276

where A(0,x) is given by (3.4) with ξ = 2π/L (winding number equal to 1).277

SM8.1. From milling orbit to helical wave. Here, we report on the occurrence of transi-278

tions from a MO to a HW. Among twenty independent simulations, this transition occurred279

only once (the other cases being a transition from a MO to a FS). We run the IBM and280

record the time-evolution of a set of indicators as shown in Fig. SM2 (see also supplementing281

videos 12 to 14 in Section SM1).282

As shown in Fig. SM2a, the GOP does not converge towards GOP2 characterizing the283

FS, but towards an intermediate value between GOP1 (which characterizes MO or HW) and284

GOP2. As explained in Section SM6.4, such values of the GOP can be attained by a generalized285

helical wave solution (as can be observed in Video 12). The pitch θ̄ (Fig. SM2b) and yaw φ̄286

(Fig. SM2c) behave like in the milling-to-flocking transition (see Figs. 13b and 13c) except for287

small-amplitude, slow-frequency oscillations appearing after the topological transition time.288

This may be due to some competition between two attractors, the FS and the HW, which being289
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alternately stronger and weaker, generate this oscillatory behavior. Note that a transition to a290

HW cannot occur when the global direction of motion at the transition time is not one of the291

principal axes of the square domain since a HW along another direction is not compatible with292

the periodic boundary conditions (see Section SM8.2). This is confirmed by the final values of293

φ̄ and θ̄ (both equal to π/2) which correspond to a global direction of motion oriented along294

the y-axis (in what follows, in reference to (5.4) and to avoid confusion, we will still call that295

direction, the x direction).296

The second and third lines of figures in Fig. SM2 show the triplets of topological indicators297

(dz, r̄z, wz) and (dx, r̄x, wx) which materialize the MO and HW structures respectively. The298

mean distance of the RPZ-curve to the origin r̄z (Figs. SM2e) decreases, revealing an increase299

of the disorder. Simultaneously, the distance of its center of mass to the origin dz increases300

(Figs. SM2d) showing a transition trend to a FS. The winding number wz (Fig. SM2f)301

jumps from 1 to 0 at the time of maximal disorder. However, dz and r̄z do not reach zero,302

showing that complete disorder across z is not reached. Since the final state of the system303

is a generalized helical wave state (see Section SM6.4), we do not necessarily expect that304

complete disorder will be reached along the z-direction. In the mean time, r̄x starts from 0305

(complete disorder) and increases up to a value close to unity, showing the build-up of a HW.306

The quantity dx increases during some time but eventually decreases to 0 (not shown in the307

figure) as it should for a HW. Finally, the winding number wx is undefined in the initial stage,308

as it should for complete disorder, but builds up to 1 at the time where the winding number309

wz drops to 0. There is a transfer of non-trivial topology from an MO structure to a HW310

structure.311

SM8.2. From milling to flocking via a helical wave state. In some rare cases an inter-312

mediate unstable HW can be observed. Note that due to the periodic setting, an HW cannot313

be stable for most of the the global directions of motion. Although stable or unstable HW314

typically appear in one over twenty of our simulations, it should be kept in mind that the315

occurrence frequency also depends on the geometry of the domain and that this phenomena316

may be more frequent for other simulation settings. The procedure is the same as in the317

previous section. Fig. SM3 shows the results (see also supplementing videos 15 and 16 in318

Section SM1).319

The transition stage between the MO and FS is significantly longer than in the previous320

situations. During that phase, the GOP (Fig. SM3a) oscillates between the value Ψ1 charac-321

terizing the MO and lower values, i.e. lower order. Likewise, there are significant variations322

of the pitch θ̄ (Fig. SM3b) and yaw φ̄ (Fig. SM3c). As in the previous section, this could be323

explained by antagonist effects of different attractors (the MO and HW) and subsequent os-324

cillations of the system between them. Video 15 reveals large scale band structures similar to325

a HW except that the global direction of motion is not one of the principal axes of the square326

domain. As, in most cases, this cannot be compatible with the periodic boundary conditions,327

such state cannot persist in time. The relatively long-time persistence of this stage could be328

explained in the present case by the fact that the global direction of motion seems to oscillate329

around the direction given by e1 + e2 (i.e. φ = π/4 and θ = π/2) which is theoretically com-330

patible with the periodic boundary conditions, provided the wave length ξ is changed from331

2π/L to
√
2π/L. This state does not seem to be stable as shown by the large oscillations of φ̄332
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and θ̄. The topological indicators (dz, r̄z, wz) shown in the second line of figures of Fig. SM3333

also display large oscillations. The quantity r̄z drops, and at the same time, dz remains small,334

while the winding number wz has strong oscillations, indicating a state of large disorder across335

z, which is consistent with the fact that the temporary HW order is organized in a different336

direction. However, we see that wz has a calmer period between two series of oscillations.337

This calmer period corresponds to the interval of time during which the temporary HW order338

prevails. Eventually the triplet converges to the value (1, 1, 0) characterizing the FS.339
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Figure SM2: Transition from a MO to a HW: example of a solution of the IBM for an initial
condition sampled from (5.1) in the rare case where it leads to a HW. The following indicators
are plotted as functions of time: (a) GOP (b) Pitch θ̄ of Ω̄. (c) Yaw φ̄ of Ω̄. (d) Distance
of center of mass of RPZ curve to the origin dz. (e) Mean distance of RPZ curve to the
origin r̄z. (f) Winding number of RPZ curve wz. (g) Distance of center of mass of RPX curve
to the origin dx. (h) Mean distance of RPX curve to the origin r̄x. (i) Winding number of
RPX curve wx. Gray shaded zones highlight a small region around the time of minimal GOP.
Parameters: N = 1.5 · 106, R = 0.025, L = 1, D = 0.1, ν = 40, c0 = 1. See caption of Fig. 13
for further indications. See also Videos 12 to 14 in Section SM1.
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Figure SM3: Transition from a MO to a FS via an unstable HW: example of a solution of
the IBM for an initial condition sampled from (5.1) in the rare case where it leads to a FS
through a transient HW. The following indicators are plotted as functions of time: (a) GOP
(b) Pitch θ̄ of Ω̄. (c) Yaw φ̄ of Ω̄. (d) Distance of center of mass of RPZ curve to the origin
dz. (e) Mean distance of RPZ curve to the origin r̄z. (f) Winding number of RPZ curve wz.
Gray shaded zones highlight a small region around the time of minimal GOP. Parameters:
N = 1.5 · 106, R = 0.025, L = 1, D = 0.1, ν = 40, c0 = 1. See caption of Fig. 13 for further
indications. See also Videos 15 and 16 in Section SM1.
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