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On the steady state solution of a Euler-Bernoulli beam under a moving load

This paper focuses on a steady state solution of a Euler-Bernoulli beam under a moving load, on a foundation composed of a continuous distribution of linear elastic springs associated in parallel with a continuous distribution of Coulomb frictional dampers. The motion of the beam is governed by a partial differential inclusion. Under appropriate regularity assumptions on the initial data, the problem possesses a weak solution which is obtained as the limit of a sequence of solutions of regularized problems.

Introduction

This paper aims to give a mathematical result on existence for beams laid on foundations subjected to moving loads. The behavior of beams plays a crucial role in high-speed railway track design. The railway companies wish to improve rolling speed of trains in order to meet higher solicitations of this mean of transport in the travelling and freights domains all around the world. The factors inducing the appearance of defects of railway track should be identified to preserve the track quality required by traffic safety and passenger comfort. A considerable engineering and mathematical literature is devoted to study the railway track oscillation amplitudes. These oscillations lead to some undesirable deformations and they increase maintenance costs required in order to return the railway track to its initial position. Some investigations focuses on the identification of a critical velocity of the load for which the oscillation amplitudes become large enough to cause non elastic displacement of the railway track (see [START_REF] Frỹba | Vibration of solids and structures under moving loads[END_REF]). The railway track efficiency depends on the limitation of these dynamic amplifications coming from the ability of the ballast to dissipate the energy transmitted by the passage of moving loads (see [START_REF] Kaynia | Ground vibration from high-speed trains: prediction and countermeasure[END_REF][START_REF] Madshus | High-speed railway lines on soft ground: dynamic behaviour at critical train speed[END_REF]). The ballast is widely used as a constituent of railway tracks having some mechanical properties like flexibility in construction and maintenance. This granular material achieves the transmission to the platform of static and dynamic efforts induced by the running of trains and it is is essentially composed by stones of different sizes and shapes interacting through surfaces and being in persistent frictional contact. On the one hand, some viscous foundation models are investigated in [START_REF] Dimitrovovà | Critical velocity of a uniformly moving load[END_REF][START_REF] Castro | Dynamics of beams on non-uniform nonlinear foundations subjected to moving loads[END_REF][START_REF] Castro | Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load[END_REF]. On the other hand, a foundation model with a non-smooth character nearer to the frictional dissipative character of the ballast was introduced in [START_REF] Toscano Correira | Finite element modeling of a rail resting on a Winkler-Coulomb foundation and subjected to a moving concentrated load[END_REF] and later on developed in [START_REF] Froio | Universal analytical solution of the steady-state response of an infinite beam on a Pasternak elastic foundation under moving load[END_REF][START_REF] Pinto Da Costa | Finite element steady state solution of a beam on a frictionally damped foundation under a moving load[END_REF]. More precisely, we consider in this work a Winkler-Coulomb foundation which consists to associate in parallel a linear elastic Winkler foundation with a reaction per unit length that, at each cross section of the beam satisfies Coulomb's friction law. The dissipation comes from an instantaneous reaction per unit length r(t, x) at cross section x and time instant t depending on the sign of the transverse velocity of that cross section, namely we have

r(t, x) ∈ -f sign ∂u ∂t (t, x) ,
where f and ∂u ∂t (t, x) are the maximum force per unit length supporting the system of frictional dissipators of the foundation and ∂u ∂t (t, x) and the transverse velocity of the cross section, respectively. The transverse velocity of the cross section satisfies

sign ∂u ∂t (t, x)    = ∂u ∂t (t,x) | ∂u ∂t (t,x)| if ∂u ∂t (t, x) = 0, ∈ [-1, 1] if ∂u ∂t (t, x) = 0.
The reaction force r is an algebraic inclusion reflecting the multi-valued character of Coulomb's friction law for vanishing velocity (see [START_REF] Glocker | Set-Values force laws[END_REF][START_REF] Studer | Numerics of unilateral contacts and friction[END_REF]). This reaction is quite different from the one provided by a continuous distribution of the linear viscous dampers, r(t, x) = c ∂u ∂t (t, x), where c denotes the viscous damping coefficient per unit length. The reaction force opposes the velocity in the both cases. However, the frictional reaction is independent of the magnitude of the velocity ∂u ∂t (t, x) = 0 and limited to the interval [-f, +f ] while the reaction is proportional to the local velocity itself for the viscous damping. We thus consider a horizontal infinite linear elastic Euler-Bernoulli beam having a cross sectional area A, a central moment of inertia I, a mass density and a Young's modulus E. The beam is connected to a fixed foundation bed by a system of linear elastic springs, with stiffness per unit length denoted by k, associated in parallel with a continuous distribution of viscous dampers, with damping coefficient c, and frictional dampers, with a maximum force per unit length f . A force F acts on the beam moving from left to right with a constant velocity v. Let u(t, x) be the transverse displacement of the beam at time t of the material point of space coordinate x. The mathematical problem is formulated as follows:

µ ∂ 2 u ∂t 2 (t, x) + EI ∂ 4 u ∂x 4 (t, x) + c ∂u ∂t (t, x) + ku(t, x) ∈ F(t, x) -f sign ∂u ∂t (t, x) , (1.1) 
with Cauchy initial data

u(0, •) = u 0 and ∂u ∂t (0, •) = v 0 , (1.2) 
where ∂(•) ∂t and ∂(•) ∂x denote the partial derivatives with respect to t and x, respectively, µ def = A is the mass of the beam per unit length of the beam. Let T > 0. Using the definition of the subdifferential sign ∂u ∂t (t, x) leads to the weak formulation associated to (1.1)-(1.2)

           Find u ∈ ∩ 2 r=1 C r ([0, T ]; H 4-2r (R)) such that for all w ∈ L 1 (R) ∩ L 2 (R) and almost every t ∈]0, T [, • R µ ∂ 2 u ∂t 2 + ku + c ∂u ∂t + EI ∂ 4 u ∂x 4 -F (t, x) w(x) - ∂u ∂t (t, x) dx + R f |w(x)| - ∂u ∂t (t, x) dx ≥ 0, • u(0, •) = u 0 , ∂u ∂t (0, •) = v 0 .
Note that the smoothness of u in this weak formulation has to be strengthened in order to justify the existence of the integrals, see Theorem 1.1. We assume that µ > 0, E > 0, I > 0, f > 0. From a mathematical point of view, there is no need to restrict to c ≥ 0 and k > 0, since only the highest order derivatives ∂ 2 u ∂t 2 and ∂ 4 u ∂x 4 are relevant for an existence result. Therefore, we assume in the first sections that c ∈ R and k ∈ R while, for numerical experiments, one would restrict to the natural range c ≥ 0, k > 0. Before proceeding with the proofs, observe that the problem 1.1-1.2 can formally be written as

U (t) ∈ AU (t) + F(t, U (t)), (1.3) 
with

A(u, v) def = v, - 1 µ (EIu 4 + cv + ku) , (1.4) 
and

F(t, u, v) def = 0, 1 µ (F(t) -f sign(v)) . (1.5) 
Relying on this formulation together with a suitable regularization of the sign function, we will obtain by means of the Hille-Yosida theorem an existence result for the weak formulation of the problem

Theorem 1.1. Let T > 0, µ > 0, E > 0, I > 0, f > 0 and let k, c be real numbers. Let also F ∈ C 1 ([0, T ], L 2 (R)), (u 0 , v 0 ) ∈ H 4 (R) × H 2 (R) be given. Then the weak problem associated to (1.1)-(1.
2) admits at least one solution u with the following regularity:

u ∈ ∩ 2 r=1 W r,∞ ([0, T ]; H 4-2r (R)) ∩ 0<ε≤2 C 1 ([0, T ]; H 2-ε loc (R)), ∂u ∂t ∈ L 1 (0, T, L 1 (R)) ∩ L 2 (0, T, L 2 (R)), ∂ 4 u ∂x 4 ∈ L ∞ ([0, T ], L ∞ (R)) + L 2 ([0, T ], L 2 (R)).
(1.6a)

(1.6b) (1.6c)
A general abstract existence result, in the spirit of Hille-Yosida theorem, is first given in Section 2. In Section 3, we study the steady state solution of a Euler-Bernoulli beam under a moving load, on a foundation composed of a continuous distribution of linear elastic springs associated in parallel with an approximate/abstract distribution of Coulomb frictional dampers. This allows to use the general theorem obtained in Section 2. We also give some a priori estimates. Then, we apply those results to A and a sequence {F n } n∈N * approximating operator F (see Section 4). It provides a sequence of functions

{u n } n∈N * converging to some function u ∈ ∩ 2 r=1 W r,∞ ([0, T ]; H 4-2r (R)) ∩ 0<ε≤2 C 1 ([0, T ]; H 2-ε loc (R)
) in a weak sense. In the last part of Section 4, we strengthen those convergences by means of a simple, but crucial, argument relying on Fatou's lemma (Lemmas 4.2-iv and 4.3). As a by product, we get the dual properties (1.6b)-(1.6c). We finally prove that the function u satisfies the initial problem.

A preliminary existence result

Under suitable regularity assumptions, we give an existence and uniqueness result for the abstract problem (1.3) with a Cauchy initial data, and an equality in place of the inclusion. To this aim, it is convenient to denote by E a Banach space. Since the discontinuous function F in (1.5) cannot be easily handled within the natural functional frame of the Hille-Yosida theory, we first replace it by a general Lipschitz continuous function G : [0, T ] × E → E. This function G will be used later on as an approximation of F. Proposition 2.1. Let Λ be a strongly continuous semigroup defined on E. Let T > 0 and x ∈ E and assume that G : [0, T ] × E → E is Lipschitz continuous. The following problem has a unique solution:

   Find U ∈ C 0 ([0, T ]; E) such that for all t ∈ [0, T ], U (t) = Λ(t)x + t 0 Λ(t -s)G(s, U (s)) ds.
Proof. It is enough to show that the operator

Φ : C 0 ([0, T ]; E) → C 0 ([0, T ]; E) U → Φ(U ) with Φ(U ) = Λ(t)x + t 0 Λ(t -s)G(s, U (s)) ds is a contraction. For h ∈ R, define the norm • h on C 0 ([0, T ]; E) by U h def = sup 0≤t≤T (e -ht U (t) E ). Since Λ
is a strongly continuous semigroup, there exists M > 0 and ω > 0 such that, for any (u, v)

∈ C 0 ([0, T ]; E) 2 and any t ∈ [0, T ] Φ(U ) -Φ(V ) E ≤ M t 0 e ω(t-s) G(s, U (s)) -G(s, V (s)) E ds. (2.1)
Recall that G is Lipschitz continuous. Hence, (2.1) implies that

Φ(U ) -Φ(V ) h ≤ M sup 0≤t≤T t 0 e ω(t-s) e -h(t-s) e -hs U (s) -V (s) E ds ≤ M h -ω U -V h (1 -e (ω-h)t ). Choosing h = ω + 2M , we get Φ(U ) -Φ(V ) h ≤ 1 2 U -V h ,
which concludes the proof.

As a corollary, we get Corollary 2.2. Assume that E is reflexive. Let A : D(A) → E be the infinitesimal generator of a strong continuous semigroup. Let T > 0 and x ∈ D(A) be given. Assume that G : [0, T ] × E → E is a Lipschitz continuous function. Then the following problem admits exactly one solution

(P) Find U ∈ C 0 ([0, T ]; D(A)) ∩ C 1 ([0, T ]; E) such that for all t ∈ [0, T ], U (t) = AU (t) + G(t, U (t)) with U (0) = x.
Proof. Since E is reflexive, the Corollary follows from Propositions 2.1 and 4.3.9 and Lemma 4.1.1 of [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF]. Note that the statements given in [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF] hold true in the context of a function G independent of the time, but can readily be extended to a function G : [0, T ] × E → E.

The case of the beam operator

We now apply the previous result to a more specific case, namely to the case of the beam operator A in equation (1.1). Since we will use in the next section an approximation on the sign function, we are less definite for G and only write G(t, u, v) = (0, α(t) + β(v)), see equation 3.2 below.

Let

E def = H 2 (R) × L 2 (R)
, endowed with the inner product

(u 1 , v 1 ), (u 2 , v 2 ) E def = R u 1 u 2 + EI µ u 1 "u 2 " (x) dx + R v 1 v 2 (x) dx.
From now on, notation A denotes the beam operator A : D(A) ⊂ E → E defined by

A(u, v) def = v, - 1 µ EIu (4) + cv + ku , (3.1) 
with

D(A) = H 4 (R) × H 2 (R). Let α ∈ C 1 ([0, T ], L 2 (R)
) and let β : R → R be a bounded, Lipschitz continuous function with β(0) = 0. Define

G : C 0 ([0, T ]; H 2 (R) × L 2 (R)) → C 0 ([0, T ]; H 2 (R) × L 2 (R)) by G(t, u, v) def = (0, α(t) + β(v)). (3.2) 
Due to our assumptions on α and β, the function G is Lipschitz continuous on [0, T ] × E (T > 0). In order to apply Corollary 2.2 to problem (P) with A and G given by (3.1) and (3.2), respectively, we prove the following result. Theorem 3.1. With the above notations, for λ > 0 large enough, we have

(A -λId) is dissipative, Im(A -λId) = E, (3.3a) (3.3b)
where Id and Im(A -λId) denote the identity of D(A)and the image of (A -λId), respectively.

Proof. Assume that (u, v) ∈ D(A) 2 . Then we have

(A -λId)(u, v), (u, v) E = -λ R (u 2 + EI µ (u") 2 + v 2 )(x) dx + R uv + EI µ u"v" (x) dx + R - 1 µ EIu (4) + cv + ku (x)v(x) dx, which leads to (A -λId)(u, v), (u, v) E = -λ R (u 2 + EI µ (u") 2 + v 2 )(x) dx + R uv + EI µ u"v" (x) dx - R EI µ u"v"(x) dx - c µ R v 2 (x) dx - k µ R uv(x) dx ≤ -λ R (u 2 + EI µ (u") 2 + v 2 )(x) dx + 1 - k µ R (u 2 + v 2 )(x) dx + c µ R v 2 (x) dx ≤ 0 for λ > 1 -k µ + c µ . Hence (3.3a
) is proved. We establish now that (3.3b) holds true. Let (g 1 , g 2 ) ∈ H 2 (R) × L 2 (R). We have to solve the following problem

λu -v = g 1 , λv + 1 µ (EIu (4) + cv + ku) = g 2 .
(3.4)

It implies that EI µ u (4) + k µ + λ λ + c µ u = g 2 + λ + c µ g 1 . (3.5) 
Let λ > 0 be large enough such that

γ def = k µ +λ λ+ c µ > 0 and set G def = g 2 + λ+ c µ g 1 ∈ L 2 (R).
According to the previous notations, identity (3.5) becomes

EI µ u (4) + γu = G. (3.6) 
We denote by ζ the dual variable to x. The Fourier transform of v(x) is denoted by v(ζ), where the convention for the Fourier transform is given by:

v(ζ) def = R e -iζx v(x) dx.
Then it comes that (3.6) admits a solution u ∈ H 4 (R) given in Fourier variable by

u(ζ) = µ G(ζ) EIζ 4 + µγ . Since v = λu -g 1 , we have v ∈ H 2 (R). Hence (3.3b) is proved.
We thus obtain the well posedness of (P) and, under suitable assumptions on β, β-independent estimates on the solution U . This will be useful in section 4, when regularizing the function β: Theorem 3.2. Let T > 0. Let A and G be given by (3.1) and (3.2) respectively, with α ∈ C 1 ([0, T ], L 2 (R)) and β : R → R a bounded, Lipschitz continuous function such that β(0) = 0. Assume that U 0 ∈ D(A).

Then the problem (P) admits exactly one solution U = (u, v). Moreover, assuming that ∀y ∈ R : yβ(y) ≤ 0 and β (y) ≤ 0.

(3.7)

then there exists C T > 0, independent of β, such that

sup t∈[0,T ] U (t) E + R |β(v)v| dx ≤ C T U 0 E + α C 0 ([0,T ],L 2 (R)) , sup t∈[0,T ] dU dt (t) E ≤ C T U 0 D(A) + α C 1 ([0,T ],L 2 (R)) . (3.8a) (3.8b)
Proof. The existence and uniqueness results follow from Corollary 2.2 and the Hille-Yosida theorem, the verification is let to the reader. We begin by proving (3.8a). To this aim, we assume that λ 0 > 0 is large enough. According to the notation A λ 0 def = A -λ 0 Id, we get ∀z ∈ D(A) : A λ 0 z, z E ≤ 0.

Writing U λ 0 (t) def = e -λ 0 t U (t), equations (P) provide

1 2 d dt U λ 0 2 E ≤ A λ 0 U λ 0 , U λ 0 E (t) + e -2λ 0 t R (α + β(v))v(t, x) dx.
Since vβ(v) ≤ 0, there exists C T > 0 independent of β such that

1 2 d dt U λ 0 2 E + e -2λ 0 t R |β(v)v| dx ≤ C T ( α 2 L 2 (R) (t) + U λ 0 2 E ). (3.9)
Now, (3.8a) follows from (3.9) and Grönwall's lemma.

In order to prove (3.8b), we recall that U ∈ C 0 ([0, T ]; D(A)) ∩ C 1 ([0, T ]; E). Hence, for t > 0 and h ∈ R such that t ∈ [0, T ] and (t + h) ∈ [0, T ], since β is non increasing and A -λ 0 Id is dissipative, we have

1 h 2 dU dt (t + h) - dU dt (t), U (t + h) -U (t) E = 1 h 2 A(U (t + h) -U (t)), U (t + h) -U (t) E + 1 h 2 (β(v(t + h)) -β(v(t)), v(t + h) -v(t)) L 2 (R) + 1 h 2 (α(t + h) -α(t), v(t + h) -v(t)) L 2 (R) ≤ (λ 0 + 1) U (t + h) -U (t) h 2 E + α(t + h) -α(t) h 2 L 2 (R)
.

Integrating on [0, t] we get

t 0 1 h 2 dU dt (s + h) - dU dt (s), U (s + h) -U (s) E ds ≤ C t 0 U (s + h) -U (s) h 2 E ds + t 0 α(s + h) -α(s) h 2 L 2 (R)
ds.

(3.10)

By U ∈ C 1 ([0, T ]; E) and a density argument, we have 

t 0 1 h 2 dU dt (s + h) - dU dt (s), U (s + h) -U (s) E ds = 1 2 
U (s + h) -U (s) h 2 E - 1 2 
U (h) -U (0) h 2 E . ( 3 
U (t + h) -U (t) h 2 E ≤ U (h) -U (0) h 2 E + C t 0 U (s + h) -U (s) h 2 E ds + t 0 α(s + h) -α(s) h 2 L 2 (R)
ds.

Letting h tends to 0, we find dU (t) dt

2 E ≤ dU dt (0) 2 E + C t 0 dU dt (s) 2 E ds + t 0 α (s) 2 L 2 (R) ds.
Observe that U ∈ C 1 ([0, T ]; E), then according to (P), we get dU dt (0) = AU (0) + G(0, U (0)).

Since G(0, 0) = α(0) and G is Lipschitz continuous on [0, T ] × E, we may infer that dU dt (0)

E ≤ C( U 0 D(A) + α(0) L 2 (R) ).
Then it follows that dU dt (t)

E ≤ C( U 0 D(A) + α C 1 ([0,T ],L 2 (R)) ) + C t 0 dU dt (s) E ds
and the Grönwall's lemma leads to (3.8b).

The existence result for the beam equation

We now use the previous results with suitable functions α and β. The function α is simply defined as We denote now by U n def = (u n , v n ) the solution considered in the Theorem 3.2 with α = F/µ, β = β n = -f ϕ n /µ and U 0 ∈ D(A) given. The family {U n } n∈N * is bounded in C 1 ([0, T ]; E). More precisely, there exists a constant C T > 0, independent of β n (hence of n ∈ N * ), such that

α def = F/µ, with F ∈ C 1 ([0, T ], L 2 (R
U n C 0 ([0,T ];E) + dU n dt C 0 ([0,T ];E) + [0,T ]×R |v n (x)ϕ n (v n (x))| dx dt ≤ C T . (4.1) 
It follows immediately that Lemma 4.1. There exists a constant C T > 0, independent of n ∈ N * , such that

u n C 1 (0,T ;H 2 (R)) + ∂ 2 u n ∂t 2 C 0 (0,T ;L 2 (R)) ≤ C T . (4.2) 
Moreover, we have

[0,T ]×R ∂u n ∂t ϕ n ∂u n ∂t (t, x) dx dt ≤ C T .
Proof. This follows from (4.1) with v n = ∂un ∂t (see equation (P)) Lemma 4.1 contains all the estimates that we need. Nevertheless, an additional argument, relying essentially on Fatou's lemma, is required to recover an inequality in the weak formulation of the problem (n → +∞). This argument is given in the proof of inequality (iv) below. Lemma 4.2. Let U 0 ∈ D(A). Extracting if necessary subsequences, there exists u ∈ ∩ 2 r=1 W r,∞ ([0, T ]; H 4-2r (R)) such that, for any > 0 and any compact K ⊂ R, we have Finally, taking A = R, θ(t) = 1, we get ∂u ∂t ∈ L 1 ([0, T ] × R), which proves (iv).

(i) u n -→ n→∞ u in C 1 ([0, T ]; H 2-ε (K)), (ii) u n n→∞ u and ∂u n ∂t n→∞ ∂u ∂t weakly-* in any L p ([0, T ]; H 2 (R)), p = 2 or p = ∞, (iii) ∂ 2 u n ∂t 2 n→∞ ∂ 2 u ∂t 2 weakly-* in any L p ([0, T ]; L 2 (R)), p = 2 or p = ∞. (iv) ∂u ∂t ∈ L 1 ([0, T ] × R) ∩ L ∞ ([0, T ], L 2 (R)
Some additional smoothness on u is given in (i) of the following lemma. Notice that property (iii) of (4.3) is (better than) the dual property of (iv) in (4.2). Lemma 4.3. With the notations of Lemma 4.2, by extracting if necessary subsequences, we have

(i) ∂ 4 u n ∂x 4 n→∞ ∂ 4 u ∂x 4 weakly in L 2 ([0, T ] × K) for any compact K ⊂ R, (ii) For any compact K in R, [0,T ]×K ∂ 4 u n ∂x 4 ∂u n ∂t dx dt -→ n→∞ [0,T ]×K ∂ 4 u ∂x 4 ∂u ∂t dx dt, (iii) ∂ 4 u ∂x 4 ∈ L ∞ ([0, T ], L ∞ (R)) + L 2 ([0, T ], L 2 (R)).
Proof. By using Lemma 4.2, (i), we have

∂u n ∂t -→ n→∞ ∂u ∂t strongly in L 2 ([0, T ] × K). (4.5) 
Hence, property (ii) follows from (4.5) and (i). We now prove (i) and (iii). We write equation (P) as

EI ∂ 4 u n ∂x 4 = -µ ∂ 2 u n ∂t 2 -c ∂u n ∂t -ku n + F -f ϕ n ∂u n ∂t , which we abridge in EI ∂ 4 u n ∂x 4 = A n -f ϕ n ∂u n ∂t . Since f ϕ n ∂un ∂t ≤ f , extracting if necessary a subsequence, we find that f ϕ n ∂un ∂t n∈N * converge weakly-* in L ∞ ([0, T ] × R). Next, since {u n } n∈N * is bounded in ∩ 2 r=1 W r,∞ ([0, T ]; H 4-2r (R)) (see Lemma 4.1) and F ∈ L 2 ([0, T ] × R), we get that {A n } n∈N * converges weakly in L 2 ([0, T ] × R). Property (i) and (iii) follow.
We finally prove the existence of a weak solution for the initial problem. In order to pass to the limit p → +∞ in Performing an integration by part, we find that u satifies the weak formulation of the problem for any test function w ∈ C 2 c (R). Using Theorems 4.2 (ii), (iii), (iv), 4.3 (iii), and a density argument, this also holds true for any w ∈ L 1 (R) ∩ L 2 (R).

Proof of Theorem

1.1. Let w ∈ C 2 c (R), θ ∈ L ∞ ([0, T ]) such that θ ≥ 0,

. 11 )

 11 Using (3.10) and(3.11), we obtain

  )) a fixed function (see formula (1.5)). Next, we approximate the function ϕ def = sign in (1.1) by the function ϕ n : R → R with ϕ n (z) def = z/ z 2 + 1 n (n ∈ N * ) and set β n def = -f ϕ n /µ. This means that we replace the rigid response (1.1) by a very stiff response. Notice that lim n→∞ (zϕ n ) = | • | pointwise on R and uniformely on any R\[-ε, ε] (ε > 0).

It belongs to L 1 (

 1 [0, T ] × R), due to Lemmas 4.2 and 4.3. Taking K def = K p def = [-p, p] with p ∈ N, we obtain by using the dominated convergence theorem that [0,T ]×Kp (t, x) dx dt -→ p→∞ [0,T ]×R (t, x) dx dt (4.8)

∂x 4

 4 (t, x)w(x)θ(t) dx dt, we write, for p ∈ N large enough such that supp(w) ⊂ K p [0,T ]×Kp ∂ 4 u ∂x 4 (t, x)w(x)θ(t) dx dt = [0,T ]×Kp ∂ 2 u ∂x 2 (t, x)w (x)θ(t) dx dt -→ p→∞ [0,T ]×R ∂ 2 u ∂x 2 (t, x)w (x)θ(t) dx dt.

(4. 9 )

 9 since by Lemma 4.2 (ii), ∂ 2 u ∂x 2 ∈ L 2 ([0, T ] × R), and by assumptions w ∈ C 0 c (R) and θ ∈ L ∞ ([0, T ]). Thus according to (4.7)-(4.9), we obtain [0,T ]×R

  ). Moreover, for any measurable subset A ⊂ R and any θ ∈Proof. Note that (i) follows from the fact that {u n } n∈N * is bounded in ∩ 2 r=1 C r ([0, T ]; H 4-2r (R)) (cf. Lemma 4.1), the compact embedding H 2 (K) → → H 2-ε (K),Aubin-Lions lemma and the diagonal argument. Properties (ii) and (iii) come from Lemma 4.1. We now prove property (iv). Notice that ∂u ∂t ∈ L ∞ ([0, T ], L 2 (R)) is already known, see (ii). Next, according to (i), we may deduce that

	and by using Fatou's lemma, we find			
	[0,T ]×A	∂u ∂t	(t, x) |θ(t)| dx dt ≤ lim inf n→∞	[0,T ]×A	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) |θ(t)| dx dt.
	According to Lemma 4.1, we have				
					[0,T ]×R	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) |θ(t)| dx dt ≤ C T .
	L ∞ ([0, T ]), we have					
	[0,T ]×A		∂u ∂t	(t, x) |θ(t)| dx dt ≤ lim inf n→∞	[0,T ]×A	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) |θ(t)| dx dt.
	∂u n ∂t	(t, x) -→ n→∞	∂u ∂t	(t, x) in L 1 ([0, T ] × K) for any compact K ⊂ R.
	Then, extracting if necessary subsequences, and by using a diagonal argument, we get
					∂u n ∂t	(t, x) -→ n→∞	∂u ∂t	(t, x) almost everywhere.
	Assume that (t, x) ∈ [0, T ] × R is such that ∂u ∂t (t, x) = 0 and let a < ∂u ∂t (t, x) < b and ab > 0. Since zϕ n
	converges to | • | uniformly on [a, b], we obtain
						∂u n ∂t	ϕ n		∂u n ∂t	(t, x) -→ n→∞	∂u ∂t	(t, x) .	(4.3)
	for almost every (t, x) ∈ [0, T ]×R such that ∂u ∂t (t, x) = 0. Next, under the assumption that (t, x) ∈ [0, T ]×R satisfies ∂u ∂t (t, x) = 0, we obtain
						∂u ∂t	(t, x) ≤	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) .	(4.4)
	We may deduce from (4.3) and (4.4) that, for any measurable subset A ⊂ R
	[0,T ]×A	∂u ∂t	(t, x) |θ(t)| dx dt ≤	[0,T ]×A	lim inf n→∞	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) |θ(t)| dx dt,

  and let K ⊂ R be a compact set.By using Lemmas 4.2 and 4.3, we easily get that the left hand side of (4.6) tends to the same quantity with u in place of u n as n tends to ∞. Concerning the right hand side of (4.6), we may notice that |ϕ n | ≤ 1. Hence, we find

	Then equation (P) provides			
	[0,T ]×K = -[0,T ]×K µ ∂ 2 u n ∂t 2 + EI f ϕ n ∂u n ∂ 4 u n ∂x 4 + c ∂t (t, x) w(x) -∂u n ∂t + ku n -F (t, x) w(x) -∂t θ(t) dx dt. ∂u n	∂u n ∂t	(t, x) θ(t) dx dt	(4.6)
		[0,T ]×K	ϕ n	∂u n ∂t	w(x)θ(t) dx dt ≤	[0,T ]×K	|w(x)|θ(t) dx dt.
	Notice that Lemma 4.2 leads to		
	[0,T ]×K	∂u ∂t	(t, x) θ(t) dx dt ≤ lim inf n→∞	[0,T ]×K	∂u n ∂t	ϕ n	∂u n ∂t	(t, x) θ(t) dx dt.
	[0,T ]×K ≥ [0,T ]×K µ	∂ 2 u ∂t 2 + EI f ∂t (t, x) -|w(x)| θ(t) dx dt. ∂ 4 u ∂x 4 + c ∂u ∂t + ku -F (t, x) w(x) -∂u	∂u ∂t	(t, x) θ(t) dx dt	(4.7)
	Define the function by						
	(t, x)	def = µ	∂ 2 u ∂t 2 + c	∂u ∂t	+ ku -F (t, x) w(x) -	∂u ∂t	(t, x) θ(t)
					-f	∂u ∂t	(t, x) -|w(x)| θ(t) -EI	∂ 4 u ∂x 4	∂u ∂t	(t, x)θ(t).

Finally, letting n tends to ∞ in (4.6), we obtain

  -|w(x)| θ(t) dx dt ≥ 0 for any w ∈ C 2 c (R) and θ ∈ L ∞ ([0, T ]) such that θ ≥ 0. Hence for almost every t ∈ [0, T ], we have

				µ	∂ 2 u ∂t 2 + c	∂u ∂t	+ ku -F (t, x) w(x) -	∂u ∂t	(t, x) θ(t) dx dt
	+	[0,T ]×R	EI	∂ 2 u ∂x 2 (t, x)w (x)θ(t) dx dt -	[0,T ]×R	EI	∂ 4 u ∂x 4	∂u ∂t	(t, x)θ(t) dx dt
	-(t, x) R [0,T ]×R f ∂u ∂t µ ∂ 2 u ∂t 2 + c ∂u ∂t + ku -F (t, x) w(x) -	∂u ∂t	(t, x) dx +	R	EI	∂ 2 u ∂x 2 w (x) dx
	-	R	EI	∂ 4 u ∂x 4	∂u ∂t	(t, x) dx -

R f ∂u ∂x (t, x) -|w(x)| dx ≥ 0.
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