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Abstract. The 1-2-3 Conjecture states that every connected graph dif-
ferent from K2 admits a proper 3-labelling, i.e., can have its edges la-
belled with 1, 2, 3 so that no two adjacent vertices are incident to the
same sum of labels. In connection with recent optimisation variants of
this conjecture, we study the role of label 3 in proper 3-labellings of
graphs. Previous studies suggest that, in general, it should always be
possible to produce proper 3-labellings assigning label 3 to a only few
edges. We prove that, for every p ≥ 0, there are various graphs needing
exactly p 3’s in their proper 3-labellings. Actually, deciding whether a
given graph can be labelled with p 3’s is NP-complete for every p ≥ 0. We
also focus on particular classes of 3-chromatic graphs (cacti, triangle-free
planar graphs, etc.), for which we prove there is no p ≥ 1 such that they
all admit proper 3-labellings assigning label 3 to at most p edges. In such
cases, we give lower and upper bounds on the number of needed 3’s.

Keywords: Proper labellings · 3-chromatic graphs · 1-2-3 Conjecture.

1 Introduction

This work is mainly motivated by the so-called 1-2-3 Conjecture, which can be
defined through the following terminology and notation. Let G be a graph and
consider a k-labelling ` : E(G)→ {1, . . . , k}, i.e., an assignment of labels 1, . . . , k
to the edges of G. To every vertex v ∈ V (G), we associate, as its colour c`(v), the
sum of labels assigned by ` to its incident edges. That is, c`(v) =

∑
u∈N(v) `(vu).

We say that ` is proper if we have c`(u) 6= c`(v) for every uv ∈ E(G), that is, if
no two adjacent vertices of G get incident to the same sum of labels by `.

The complete graph on two vertices, K2, is the only connected graph admit-
ting no proper labellings. Thus, when studying the 1-2-3 Conjecture, we focus on
nice graphs, which are those graphs with no connected component isomorphic to
K2, i.e., admitting proper labellings. If a graph G is nice, then we can investigate
the smallest k ≥ 1 such that proper k-labellings of G exist. This parameter is
denoted by χΣ(G). A natural question to ask, is whether this parameter χΣ(G)
can be large for a given graph G. This question is precisely at the heart of the
1-2-3 Conjecture [11], which states that if G is a nice graph, then χΣ(G) ≤ 3.
? This work was supported by the ANR project DISTANCIA (ANR-14-CE25-0006).
For a full version of the paper go to: https://hal.archives-ouvertes.fr/hal-02975031.
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To date, most of the progress towards the 1-2-3 Conjecture can be found
in [13]. Let us highlight that the conjecture was verified mainly for 3-colourable
graphs [11] and complete graphs [4]. Regarding the tightness of the conjecture,
it was proved that deciding if a given graph G verifies χΣ(G) ≤ 2 (denoted as
the 2-Labelling problem) is NP-complete in general [8], and remains so even
in the case of cubic graphs [6]. Hence, there is no nice characterisation of graphs
admitting proper 2-labellings (or, the other way round, of graphs needing 3’s in
their proper 3-labellings), unless P=NP. Lastly, to date, the best result towards
the 1-2-3 Conjecture, from [10], is that χΣ(G) ≤ 5 holds for every nice graph G.

This work takes place in a recent line of research studying optimisation prob-
lems related to the 1-2-3 Conjecture which arise when considering proper la-
bellings fulfilling additional constraints. In a way, one of the main sources of
motivation here is further understanding the very mechanisms that lie behind
proper labellings. In particular, towards better comprehending the connection
between proper labellings and proper vertex-colourings, the authors of [1,3] stud-
ied proper labellings ` for which the resulting vertex-colouring c` is required to
be close to an optimal proper vertex-colouring (i.e., with the number of distinct
resulting vertex colours being close to the chromatic number). Due to one of the
core motivations behind the 1-2-3 Conjecture, the authors of [2] also investigated
proper labellings minimising the sum of labels assigned to the edges.

Each of these previous studies led to presumptions of independent interest. In
particular, it is believed in [3], that every nice graph G admits a proper labelling
where the maximum vertex colour is at most 2∆(G) (recall that ∆(G) and δ(G)
are used to denote the maximum and the minimum, resp., degree of any vertex
of G), while, from [2], it is believed that every G should admit a proper labelling
where the sum of assigned labels is at most 2|E(G)|. One of the main reasons
why these presumptions are supposed to hold is that, in general, it seems that
nice graphs admit 2-labellings that are almost proper, in the sense that they need
only a few 3’s to design proper 3-labellings. This belief on the number of 3’s is
long-standing, as, in a way, it lies behind the 1-2 Conjecture of Przybyło and
Woźniak [12], which states that we should be able to build a proper 2-labelling
of every graph if we can also locally alter each vertex colour a bit.

Our goal in this work is to study and formally establish the intuition that, in
general, graphs should admit proper 3-labellings assigning only a few 3’s. First,
we study whether, given a (possibly infinite) class F of graphs, the members of
F admit proper 3-labellings assigning only a constant number of 3’s. Note that
this holds, for instance, for all nice trees since they admit proper 2-labellings [4].
In case F admits no such constant cF , i.e., the number of 3’s the members of
F need in their proper 3-labellings is a function of their number of edges, the
second question we consider is whether the number of 3’s needed can be “large”
for a given member of F , with respect to the number of its edges.

In this work, we investigate these two questions in general and for restricted
classes of graphs. We begin in Section 2 by formally introducing the terminology
that we employ throughout this work. In Section 3, we introduce proof techniques
for establishing lower and upper bounds on the number of 3’s needed in proper
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3-labellings for some graph classes. In Section 4, we use these tools to establish
that, for several classes of graphs, the number of required 3’s in their proper
3-labellings is not bounded by an absolute constant. In such cases, we exhibit
bounds (functions depending on the size of said graphs) on this number.

2 Terminology and a conjecture

For any notation on graph theory not defined in the paper, we refer the reader
to [7]. Let G be a (nice) graph, and ` be a k-labelling of G. For any i ∈ {1, . . . , k},
we denote by nb`(i) the number of edges assigned label i by `. Focusing now
on proper 3-labellings, we denote by mT(G) the minimum number of edges
assigned label 3 by a proper 3-labelling of G. That is, mT(G) = min{nb`(3) :
` is a proper 3-labelling of G}. We extend this parameter mT to classes F of
graphs by defining mT(F) as the maximum value of mT(G) over the members
G of F . Clearly, mT(F) = 0 for every class F of graphs admitting proper
2-labellings (i.e., χΣ(G) ≤ 2 for every G ∈ F). Given a graph class F , we
are interested in determining whether mT(F) ≤ p for some p ≥ 0. From that
perspective, for every p ≥ 0, we denote by Gp the class of graphsG withmT(G) =
p. For convenience, we also define G≤p := G0 ∪ · · · ∪ Gp.

Since nice trees admit proper 2-labellings [4], if T is the class of all nice
trees, then the notation above allows us to state that T ⊂ G0. More generally
speaking, bipartite graphs form perhaps the most investigated class of graphs in
the context of the 1-2-3 Conjecture. A notable result, due to Thomassen, Wu,
and Zhan [14], is that bipartite graphs verify the 1-2-3 Conjecture. These graphs
were further studied in several works, such as [2], in which it was proved that:

Theorem 1 ([2]). If G is a nice bipartite graph, then G ∈ G≤2.

Theorem 1 is worrisome since, even without additional constraints, we do not
know much about how proper 3-labellings behave beyond the scope of bipartite
graphs. Our take in this work is to focus on the next natural case to consider,
that of 3-chromatic graphs, which fulfil the 1-2-3 Conjecture [11]. Unfortunately,
as will be seen later on, a result equivalent to Theorem 1 for 3-chromatic graphs
does not exist, even for very restricted classes of 3-chromatic graphs.

As mentioned earlier, we will see throughout this work that, for several graph
classes F , there is no p ≥ 0 such that F ⊂ G≤p. For such a class, we want to know
whether the proper 3-labellings of their members require assigning label 3 many
times, with respect to their number of edges. We study this aspect through the
following terminology. For a nice graph G, we define ρ3(G) := mT(G)/|E(G)|.
We extend this ratio to a class F by setting ρ3(F) = max{ρ3(G) : G ∈ F}.

In this work, we are interested in determining bounds on ρ3(F) for graph
classes F of 3-chromatic graphs, and, generally speaking, in how large this ratio
can be. Among the sample of small connected graphs (e.g., of order at most 6),
the maximum ratio ρ3 is exactly 1/3, and is attained by C3 and C6. These are
the worst graphs we know of, which leads us to raising the following conjecture.

Conjecture 1. If G is a nice connected graph, then ρ3(G) ≤ 1
3 .
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(a) G (b) X (c) H

Fig. 1: A graph G containing a graph H as a weakly induced subgraph X. In G,
the white vertices can have arbitrarily many neighbours in the red part, while
the full neighbourhood of the black vertices is as displayed. In H, the white
vertices are the border vertices, while the black vertices are the core vertices.

3 Tools for establishing bounds on mT and ρ3

3.1 Weakly induced subgraphs – A tool for lower bounds

Our lower bounds on mT and ρ3 exhibited in Section 4 are through a graph
construction requiring the following terminology. For two graphs G and H, we
say that G contains H as a weakly induced subgraph X (see Figure 1) if there
exists an induced subgraph X of G such that H is a spanning subgraph of X,
and, for every vertex v ∈ V (H), either dH(v) = 1 or dH(v) = dG(v) (note that
dG(v) = |{v ∈ V (G) : uv ∈ E(G)}| denotes the degree of v in a (sub)graph
G). In other words, if we add to H the edges of G that connect the vertices
of degree 1 in H, we get X. That is, for every edge uv ∈ E(G), if u ∈ V (X)
and v ∈ V (G) \ V (X), then dH(u) = 1; we call these the border vertices of H.
Also, we call the other vertices of H (those that are not border vertices) its core
vertices. By the definitions, if G contains H as a weakly induced subgraph and
δ(H) ≥ 2, then G is isomorphic to H, and thus, this notion makes more sense
when δ(H) = 1.

Two weakly induced subgraphs of a graph G, X1 and X2, are disjoint (in
G) if they share no core vertices. It follows from the definition that, for every
v ∈ V (G), if v ∈ V (X1) ∩ V (X2), then v is a border vertex of both X1 and X2.

Let ` be a labelling of G. For a subgraph H of G, we denote by `|H the
restriction of ` to the edges of H, i.e., we have `|H(e) = `(e) for every edge
e ∈ E(H). Assume now that G contains H as a weakly induced subgraph X.
Abusing the notations, we will sometimes write `|H , which refers to the labelling
of H inferred from `|X , i.e., where `|H(e) = `|X(e) for every e ∈ E(H).

The key result is that, if a graph G contains other graphs H1, . . . ,Hn as
pairwise disjoint weakly induced subgraphs, then mT(G) ≥

∑n
i=1 mT(Hi).

Lemma 1. Let G be a graph containing nice graphs H1, . . . ,Hn as pairwise
disjoint weakly induced subgraphs X1, . . . , Xn. If ` is a proper 3-labelling of G,
then `|Hi

is a proper 3-labelling of Hi for every i ∈ {1, . . . , n}. Consequently,
mT(G) ≥

∑n
i=1 mT(Hi).
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Proof. Consider Hj for some 1 ≤ j ≤ n. Since, by any labelling of a nice graph,
a vertex of degree 1 cannot get the same colour as its unique neighbour, then it
cannot be involved in a conflict. This implies that `|Hj is proper if and only if any
two adjacent core vertices of Hj get distinct colours by `|Hj . By the definition
of a weakly induced subgraph, recall that we have dHj

(v) = dXj
(v) = dG(v) for

every core vertex v of Hj , which implies that c`|Hj
(v) = c`|Xj

(v) = c`(v). Thus,
for every edge uv ∈ E(Hj) joining core vertices, we have c`(u) = c`|Hj

(u) =

c`|Xj
(u) 6= c`|Xj

(v) = c`|Hj
(v) = c`(v) since ` is proper, meaning that `|Hj

is
also proper. Now, since G contains nice graphs H1, . . . ,Hn as pairwise disjoint
weakly induced subgraphs X1, . . . , Xn, then mT(G) ≥

∑n
i=1 mT(Hi).

The next lemma points out that, in some contexts, we can add some structure
to a given graph without altering its value of mT. This will be useful for applying
inductive arguments or simplifying the structure of a considered graph later on.

Lemma 2. Let G be a nice graph with minimum degree 1 and v ∈ V (G) be such
that d(v) = 1. If G′ is the graph obtained from G by adding x > 0 vertices of
degree 1 adjacent to v, then mT(G′) = mT(G).

Next, we prove each graph class Gp (p ≥ 1) contains infinitely many graphs.

Theorem 2. Given a graph G and any (fixed) integer p > 1, deciding if G ∈ G≤p
is NP-complete.

Sketch of proof. We do a reduction from the 2-Labelling problem, which is NP-
hard even when the graph has minimum degree 1 [8]. Given an instance H of
2-Labelling such that δ(H) = 1, we construct a graph G such that mT(G) = p
if and only if H admits a proper 2-labelling. The graph G is constructed by
identifying (all to one vertex w) a vertex of degree 1 from each of p copies of a
nice graph H ′ and a vertex of degree 1 of H, where δ(H ′) = 1 and mT(H ′) = 1
(H ′ exists, see Section 4), and adding many leaves adjacent to w. The result
follows from Lemma 1 since G contains p copies of H ′ and one copy of H as
pairwise disjoint weakly induced subgraphs (and since it is easy to deduce a
proper 3-labelling of G using p+mT (H) 3’s). �

3.2 Switching closed walks – A tool for upper bounds

Due to Theorem 1, investigating the parameters mT and ρ3 only makes sense
for graphs with chromatic number at least 3, i.e., that are not bipartite.

Theorem 3. If G is a connected 3-chromatic graph, then mT(G) ≤ |V (G)|, and
thus ρ3(G) ≤ |V (G)|

|E(G)| .

Proof. Since G is not bipartite, there exists an odd-length cycle C in G. Let
H be a subgraph of G constructed as follows. Start from C = H. Then, until
V (H) = V (G), repeatedly choose a vertex v ∈ V (G) \ V (H) such that there
exists a vertex u ∈ V (H) with uv ∈ E(G), and add the edge uv to H. In the
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end, H is a connected spanning subgraph of G containing only one cycle, C,
which is of odd length. Then, we have |E(H)| = |V (G)|.

Let φ : V (G)→ {0, 1, 2} be a proper 3-vertex-colouring of G. In what follows,
we construct a 3-labelling ` of G such that c`(v) ≡ φ(v) mod 3 for every vertex
v ∈ V (G), thus making ` proper. To prove the full statement, we also want `
to satisfy nb`(3) ≤ |V (G)|/|E(G)|. Aiming at vertex colours modulo 3, we can
instead assume that ` assigns labels 0, 1, 2, and require nb`(0) ≤ |V (G)|/|E(G)|.
To obtain such a labelling, we start from ` assigning label 2 to all edges of G.
We then modify ` iteratively until all vertex colours are as desired modulo 3.

As long as G has a vertex v with c`(v) 6≡ φ(v) mod 3, we apply the following
procedure. ChooseW = (v, v1, . . . , vn, v), a closed walk3 of odd length in G start-
ing and ending at v, and going through edges of H only. This walk exists. Indeed,
consider, in H, a (possibly empty) path P from v to the closest vertex u of C
(if v lies on C, then note that u = v and P has no edge). Then, the closed walk
vPuCuPv is a possible W . We then follow the consecutive edges of W , start-
ing from v and ending at v, and, going along, we apply +2,−2,+2,−2, . . . ,+2
(modulo 3) to the labels assigned by ` to the traversed edges. As a result, c`(x)
is not altered modulo 3 for every vertex x 6= v, while c`(v) is incremented by 1
modulo 3. If c`(v) ≡ φ(v) mod 3, then we are done with v. Otherwise, we repeat
this switching procedure once again, so that v fulfils that property.

Eventually, c`(v) ≡ φ(v) mod 3 for every v ∈ V (G), meaning that ` is proper.
Recall that we have `(e) = 2 for every e ∈ E(G) \E(H). Thus, only the edges of
H can be assigned label 0 by `. Since there are exactly |V (G)| such edges, and
we can replace all assigned 0’s with 3’s without breaking the modulo 3 property,
we have mT(G) ≤ |V (G)|, which implies that ρ3(G) ≤ |V (G)|/|E(G)|.

In the next lemma, we show a way to play with φ in order to reduce the
number of 3’s assigned by ` to certain sets of edges.

Lemma 3. Let G be a graph and ` be a proper {0, 1, 2}-labelling of G such
that c`(u) 6≡ c`(v) mod 3 for every edge uv ∈ E(G). If H is a (not necessarily
connected) spanning d-regular subgraph of G for some d ≥ 1, then there exists
a proper {0, 1, 2}-labelling `′ of G such that c`′(u) 6≡ c`′(v) mod 3 for every edge
uv ∈ E(G) and that assigns label 0 to at most a third of the edges of E(H).
Moreover, for every edge e ∈ E(G) \ E(H), `′(e) = `(e).

Proof. We construct the following labelling: starting from `, add 1 (modulo 3)
to all the labels assigned by ` to the edges of H. The resulting labelling `1 is
a proper {0, 1, 2}-labelling of G such that c`1(u) 6≡ c`1(v) mod 3 for every edge
uv ∈ E(G). Indeed, for every v ∈ V (G), we have c`1(v) ≡ c`(v)+d mod 3. Thus,
if there exist two vertices u, v ∈ V (G) such that c`1(u) ≡ c`1(v) mod 3, then
c`(u) ≡ c`(v) mod 3, a contradiction. We define `2 in a similar way, by adding
1 (modulo 3) to all the labels assigned by `1 to the edges of H. Similarly, `2 is
proper. Since, for every edge e ∈ E(H), we have {`(e), `1(e), `2(e)} = {0, 1, 2},
then at least one of `, `1, `2 assigns label 0 to at most a third of the edges of
3 Recall that a walk in a graph is a path in which vertices and edges can be repeated.
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Fig. 2: Proper 3-labellings ` of A1 and A2 with nb`(3) = 1. The colours by c` are
indicated by integers within the vertices.

E(H). Since none of the labels of the edges of E(G) \ E(H) were changed to
obtain `1 from ` and to get `2 from `1, the last statement of the lemma holds.

In Lemma 3, if d = 2, then H forms a cycle cover of G. Thus, when H is
also a unicyclic spanning connected subgraph of G, an application of Lemma 3
in conjunction with the proof of Theorem 3 gives the following:

Corollary 1. If G is Hamiltonian, of odd order, and χ(G) = 3, then ρ3(G) ≤ 1
3 .

4 Results for mT and ρ3 for some graph classes

We now use the tools from Section 3 to exhibit results on the parameters mT
and ρ3 for some classes of 3-chromatic graphs. In particular, we prove that, for
many classes F of 3-chromatic graphs, there is no p ≥ 1 such that F ⊂ G≤p. In
most cases, we provide upper bounds for ρ3(F).

4.1 Connected graphs needing lots of 3’s

As mentioned before, we are aware of only two connected graphs for which ρ3 is
exactly 1/3, and these are C3 and C6

4. One question to ask, is if the bound in
Conjecture 1 is accurate in general, i.e., whether it can be attained by arbitrarily
large graphs. In light of these thoughts, our goal in this section is to provide a
class of arbitrarily large connected graphs achieving the largest possible ratio ρ3.

We ran computer programs to find graphsH with δ(H) = 1,mT(H) ≥ 1, and
with the fewest edges possible. It turns out that the smallest such graphs have
10 edges. Two such graphs, which we call A1 and A2, are depicted in Figure 2.
The following observation, proven by simple case analysis, allows us to use these
two graphs to build arbitrarily large connected graphs with large ρ3.

Observation 4. mT(A1) = mT(A2) = 1.

Theorem 5. There are arbitrarily large connected graphs G with ρ3(G) ≥ 1
10 .

4 Conjecture 1 focuses on connected graphs since any disjoint union of C3’s and C6’s
reaches that value.
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u0,1

v0
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(b) Sg

Fig. 3: The planar graphs S3 (left) and Sg (right) of girths 3 and g, respectively.

Proof. Let p ≥ 1 be fixed. We construct a connected graph G with 10p edges,
such that nb`(3) ≥ p for any proper 3-labelling ` of G, which implies that
ρ3(G) ≥ 1/10. Start, as G, with p disjoint copies of A1 (or A2), and identify a
vertex of degree 1 from each of these p copies to a single vertex. The labelling
property follows from Lemma 1 and Observation 4, since G contains p copies of
A1 or A2 as pairwise disjoint weakly induced subgraphs.

4.2 Bounds for connected planar graphs with large girth

The girth g(G) of a graph G is the length of its shortest cycle. For any g ≥ 3,
we denote by Pg the class of planar graphs with girth at least g. Note that P3 is
the class of all planar graphs, and that P4 is the class of all triangle-free planar
graphs. Recall that the girth of a tree is set to ∞, since it has no cycle.

To date, it is still unknown whether planar graphs verify the 1-2-3 Conjecture,
which makes the study of the parameters mT and ρ3 adventurous for this class
of graphs. However, there is no p ≥ 1 such that planar graphs lie in G≤p by the
construction in the proof of Theorem 5, since the graphs A1 and A2 are planar.
Thus, there exist arbitrarily large connected planar graphs G with ρ3(G) ≥ 1/10.

To go further, we consider planar graphs with large girth. By Grötzsch’s
Theorem [9], triangle-free planar graphs are 3-colourable, which means they
verify the 1-2-3 Conjecture (see [11]). In what follows, first, we prove that, for
every g ≥ 3, there is no p ≥ 1 such that Pg ⊂ G≤p. Second, we prove that, as the
girth g(G) of a planar graph G grows, the ratio ρ3(G) decreases. As a side result,
we prove Conjecture 1 for planar graphs with girth at least 36. To prove the first
result above, we cannot use the graphs A1 and A2 introduced previously, as they
contain triangles. Instead, we use the graph Sg illustrated in Figure 3.

Lemma 4. For every g ≥ 3 with g ≡ 3 mod 4, we have mT(Sg) = 1.

Sketch of proof. Let ` be a proper 2-labelling of Sg. Due to the length of each
outer cycle, it follows that c`(ui,1) = `(ui,1vi) + 3. Moreover, due to Cg being of
odd length, we can deduce that there must exist a vertex vx ∈ V (Cg) such that
vx 6= v0 and c`(vx) = `(vxux,1) + 3 = c`(ux,1), a contradiction. The rest of the
result follows from identifying a proper 3-labelling `′ of Sg with nb`′(3) = 1. �
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By taking arbitrarily many copies of the Sg graph and identifying their re-
spective roots (the vertex u0,1 in Figure 3), we can prove that:

Theorem 6. For every g′ ≥ 3, there exist arbitrarily large connected planar
graphs G with g(G) ≥ g′ and ρ3(G) ≥ 1

g2+g , where g is the smallest natural
number such that g ≥ g′ and g ≡ 3 mod 4.

We now proceed to prove that ρ3(G) ≤ 2
k−1 for any planar graph G of girth

g ≥ 5k + 1, when k ≥ 7. The next theorem from [5] is one of the tools we use
to prove this result. Note that, for any k ≥ 1, a k-thread in a graph G is a path
(u1, . . . , uk+2), where the k inner vertices u2, . . . , uk+1 all have degree 2 in G.

Theorem 7 ([5]). For any integer k ≥ 1, every planar graph with minimum
degree at least 2 and girth at least 5k + 1 contains a k-thread.

We can now proceed with the main theorem.

Theorem 8. Let k ≥ 7. If G is a nice planar graph with g(G) ≥ 5k + 1, then
ρ3(G) ≤ 2

k−1 .

Proof. Throughout this proof, we set g = g(G). The proof is by induction on
the order of G. The base case is when |V (G)| = 3. In that case, G must be a
path of length 2 (due to the girth assumption), and the claim is clearly true. So
let us focus on proving the general case.

If G is a tree, then χΣ(G) ≤ 2 and we have ρ3(G) = 0. So, from now on, we
may assume that G is not a tree. We first deal with the case of planar graphs G of
girth g ≥ 5k+1 for which there exists at least one cut vertex v ∈ V (G) (meaning
that G−{v} has more connected components than G) such that G−{v} contains
a connected component T ′ that is a tree such that |E(T ′)| ≥ 1 and the induced
subgraph of G formed by the vertices of T ′ and v is also a tree. Let u ∈ V (T ′)
be the neighbour of v. By the inductive hypothesis, ρ3(G− V (T ′)) ≤ 2

k−1 since
removing a pendant tree from G can neither decrease its girth nor result in a
tree, and thus, by recursively applying Lemma 2, there is a proper 3-labelling
of G such that ρ3(G) ≤ 2

k−1 . The same arguments can be applied for all such
connected components of G−{v}. Hence, we can assume that G does not contain
any such cut vertex v. Another way to state this, is that if G contains a vertex
v to which a pending tree T ′ is attached, then T ′ is a star with center v.

Let G− be the graph obtained from G by removing all vertices of degree 1.
Note that removing vertices of degree 1 from G can neither decrease its girth
nor result in a tree. Since G has girth g ≥ 5k + 1 and does not contain any
cut vertex v ∈ V (G) as described above, the graph G− has minimum degree
2. By Theorem 7, G− contains a k-thread P . Let u1, . . . , uk+2 be the vertices
of P , where dH(ui) = 2 for all 2 ≤ i ≤ k + 1. Thus, the vertices of P exist
in G except that each of the vertices ui (for 2 ≤ i ≤ k + 1) may be adjacent
to some vertices of degree 1 in addition to their adjacencies in G−. Let G′ be
the graph obtained from G by removing the vertices u3, . . . , uk and all of their
neighbours that have degree 1 in G. Note that G′ might contain up to two
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connected components. In case G′ has exactly two connected components, then,
due to a previous assumption, none of these can be a tree, which implies that
G′ is nice. If G′ is connected, then, because it has at least two edges (u1u2 and
uk+1uk+2), it must be nice. Furthermore, in both cases, the girth of G′ is at least
that of G. Then, by combining the inductive hypothesis and the fact that every
nice tree T verifies ρ3(T ) = 0, we deduce that ρ3(G

′) ≤ 2
k−1 .

To obtain a proper 3-labelling ` of G such that ρ3(G) ≤ 2
k−1 , we extend a

proper 3-labelling `′ of G′ corresponding to ρ3(G
′) ≤ 2

k−1 , as follows. First, label
all of the edges incident to the vertices of degree 1 and the vertices u3, . . . , uk
with 1’s. Note that none of these vertices of degree 1 can, later on, be in conflict
with their neighbour since they have degree 1. Now, for each 2 ≤ j ≤ k − 2, in
increasing order of j, label the edge ujuj+1 with 1 or 2, so that the resulting
colour of uj does not conflict with the colour of uj−1. Finally, label the edges
uk−1uk and ukuk+1 with 1, 2 or 3, so that the resulting colour of uk−1 does not
conflict with that of uk−2, the resulting colour of uk does not conflict with that
of uk−1 nor with that of uk+1, and the resulting colour of uk+1 does not conflict
with that of uk+2. Indeed, this is possible since there exist at least two distinct
labels {α, β} ({α′, β′}, respectively) in {1, 2, 3} for uk−1uk (ukuk+1, respectively)
such that the colour of uk−1 (uk+1, respectively) is not in conflict with that of
uk−2 (uk+2, respectively). Thus, w.l.o.g., choose α and α′ for the labels of uk−1uk
and ukuk+1, respectively. If the colour of uk does not conflict with that of uk−1

nor with that of uk+1, then we are done. If the colour of uk conflicts with both
that of uk−1 and that of uk+1, then it suffices to change both the labels of uk−1uk
and ukuk+1 to β and β′, respectively. Lastly, w.l.o.g., if the colour of uk only
conflicts with that of uk−1, then it suffices to change the label of ukuk+1 to β′.
The resulting labelling ` of G is thus proper. Moreover, |E(G) \ E(G′)| ≥ k − 1
and ` uses label 3 at most twice more than `′, and so, the result follows.

4.3 Bounds for connected cacti

A cactus is a graph in which any two cycles have at most one vertex in common.
The graphs Sg introduced in Section 4.2, and those constructed in order to prove
Theorem 6, are all cacti. Since the smallest graph Sg is S3, which has 12 edges,
that theorem directly implies that there exist arbitrarily large connected cacti
G with ρ3(G) ≥ 1/12. We now prove Conjecture 1 for cacti.

Theorem 9. If G is a nice cactus, then ρ3(G) ≤ 1
3 .

Sketch of proof. The proof is by induction on |V (G)|. The general case is proven
by focusing on end-cycles C1, . . . , Cq, to which pending trees might be attached,
and sharing a root vertex r that separates these cycles from the rest of the
graph. By analysing the Ci’s, it can be proved that the induction hypothesis can
be invoked to get a desired labelling of G, as soon as one of their inner vertices
has a pending tree attached, or the pending tree attached to r is not a star
with center r. So the Ci’s can be assumed to be mostly cycles, in which case we
can remove their inner vertices, invoke the induction hypothesis, and extend a
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labelling of the remaining graph to a desired one of G, by labelling the edges of
the Ci’s so that only a few 3’s are assigned. �

4.4 An upper bound for Halin graphs

A Halin graph is a planar graph with minimum degree 3 obtained as follows.
Start from a tree T with no vertex of degree 2, and consider a planar embedding
of T . Then, add edges to form a cycle going through all the leaves of T in the
clockwise ordering in this embedding. A Halin graph is called a wheel if it is
constructed from a tree T with diameter at most 2. Halin graphs have triangles
and Hamiltonian cycles going through any given edge [15]. Also, Halin graphs
are 3-degenerate, so, due to the presence of triangles, each of them has chromatic
number 3 or 4. The dichotomy is well understood, as a Halin graph has chromatic
number 4 if and only if it is a wheel of even order [16]. It is easy to see that these
wheels admit proper 2-labellings, and so, we focus on 3-chromatic Halin graphs
in the proof of the next theorem. In particular, we use our tools from Section 3
to establish an upper bound on ρ3 for the 3-chromatic Halin graphs.

Theorem 10. If G is a Halin graph, then ρ3(G) ≤ 1
3 .

Proof. As said above, we can assume that G is not a wheel of even order. Then
χ(G) = 3. If |V (G)| is odd, then the result follows from Corollary 1. Thus, we
can assume that |V (G)| is even.

By considering any non-leaf vertex r of T in G, and defining a usual root-to-
leaf (virtual) orientation, since no vertex has degree 2 in T , then G has a triangle
(u, v, w, u), where v, w are leaves in T with parent u. Furthermore, dG(v) =
dG(w) = 3, while dG(u) ≥ 3. Due to these degree properties, if we consider C
a Hamiltonian cycle traversing uv, then C must also include either wu or vw.
Precisely, if we orient the edges of C, resulting in a spanning oriented cycle ~C,
then, at some point, ~C enters (u, v, w, u) through one of its vertices, goes through
another vertex of the triangle and then through the third of its vertices, before
leaving the triangle. In other words, C traverses all vertices of (u, v, w, u) at once.

Up to relabelling the vertices of (u, v, w, u), we can assume that ~C enters the
triangle through u, then goes to v, before going to w and leaving the triangle.
Let us consider H, the subgraph of G containing the three edges of (u, v, w, u),
and all successive edges traversed by C after leaving the triangle except for the
edge going back to u. Note that H is a unicyclic spanning connected subgraph
of G, in which the only cycle is the triangle (u, v, w, u) to which is attached
a hanging path (w, x1, . . . , xn−3) containing all other vertices of G (i.e., n =
|V (G)|). Furthermore, in E(G) \ E(H), if we set x = xn−3, then the edge xu
exists. Since H is spanning, connected, and unicyclic, |E(H)| = |V (G)|, which
is at most 2|E(G)|/3, since δ(G) ≥ 3.

All conditions are now met to invoke the arguments in the proof of Theo-
rem 3, from which we can deduce a proper {0, 1, 2}-labelling of G where adjacent
vertices get distinct colours modulo 3 and in which only the edges of the chosenH
are possibly assigned label 0. Let us consider the subgraphH ′ of G obtained from
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H by adding the edge xu, which is present in G. Recall that `(xu) = 2 by default.
Note that H ′ contains at least two disjoint perfect matchings M1,M2. Indeed,
since |V (G)| is even, then, in H, the hanging path attached at w has odd length.
A first perfect matching M1 of H ′ contains xn−3xn−4, xn−5xn−6, . . . , wx1 and
uv. A second perfect matchingM2 ofH ′ contains xn−4xn−5, xn−6xn−7, . . . , x2x1,
and wv and xu. By Lemma 3, we can assume that at most a third of the edges in
M1∪M2 are assigned label 0 by `. Since |M1|+|M2| = |E(H ′)|−1 = |E(H)|, this
gives nb`(0) ≤ E(H)

3 + 1, which is less than |E(G)|/3 since |E(G)| ≥ 3|V (G)|/2.
By turning 0’s by ` into 3’s, we get a proper 3-labelling of G with the same upper
bound on the number of assigned 3’s.

4.5 Bounds for outerplanar graphs

First off, we note that the construction described in the proof of Theorem 5, when
performed with copies of A1 only, provides graphs that are outerplanar5, since
A1 is itself outerplanar. Recall as well that outerplanar graphs form a subclass of
series-parallel graphs. Thus, there exist arbitrarily large connected outerplanar
(series-parallel, resp.) graphs G (H, resp.) with ρ3(G) ≥ 1/10 (ρ3(H) ≥ 1/10,
resp.). Note however that the outerplanar graphs constructed above have cut
vertices. So the question remains, whether or not this lower bound still holds
when considering 2-connected outerplanar graphs (recall that outerplanar graphs
are 2-degenerate, and thus, each of them is 3-chromatic and either separable or
2-connected). As for an upper bound, we can provide the following:

Theorem 11. If G is a 2-connected outerplanar graph such that |E(G)| ≥
|V (G)|+ 3, then ρ3(G) ≤ 1

3 .

Sketch of proof. If |V (G)| is odd, the result follows from Corollary 1. If |V (G)| is
even, then there is an odd-length cycle ofG that consists of consecutive vertices of
the outer face ofG, and thus, sinceG is Hamiltonian, there is a unicyclic spanning
connected subgraph H containing an odd cycle. Theorem 3 can be applied using
this H, and Lemma 3 can be applied to two disjoint perfect matchings containing
all the edges of H but one, as in the proof of Theorem 10. �

Theorem 11 covers all 2-connected outerplanar graphs with at least three
chords but it can also be shown to hold when there are at most two chords.

5 Further Work

A first direction for further research is to prove Conjecture 1 for more classes of
graphs such as for other classes of 3-chromatic graphs like separable outerplanar
graphs and, more generally, series-parallel graphs. Another one is to investigate
whether the bound of 1/3 in that conjecture is close to being tight or not, in
particular for large graphs. Also, we were not able to come up with examples of
arbitrarily large Halin graphs needing many 3’s in their proper 3-labellings.
5 An outerplanar graph admits a planar embedding with all vertices on the outer face.
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