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Abstract 

 

Urban traffic forecasting models generally follow either a Gaussian Mixture Model (GMM) or a 

Support Vector Classifier (SVC) to estimate the features of potential road accidents. Although SVC 

can provide good performances with less data than GMM, it incurs a higher computational cost. 

This paper proposes a novel framework that combines the descriptive strength of the Gaussian 

Mixture Model with the high-performance classification capabilities of the Support Vector 

Classifier. A new approach is presented that uses the mean vectors obtained from the GMM model 

as input to the SVC. Experimental results show that the approach compares very favorably with 

baseline statistical methods.  
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1. INTRODUCTION 

  

It is a regrettable fact that the number of road traffic accidents continues to rise, largely due 

to rapid urban growth and the ever-increasing density of vehicles in cities and surrounding areas. 

According to statistics from World Health Organization, each year approximately 1.25 million 

people lose their lives in road traffic accidents worldwide, which means that one person is killed  

every 25 seconds. The statistics predict that road accidents will grow by 65% and will become the 

fifth greatest cause of fatalities by 2030. However, with emerging sensor devices and the IoT, it has 

become feasible to configure future vehicles with safety sensors to prevent many of these accidents. 

 Therefore, recent research has been orchestrated to investigate the state-of the-art of vehicle 

safety analysis in Vehicular ad-hoc networks (VANETs) while including the issue of road accidents. 

It has become clear that certain driving safety [1] and road safety issues involve various dimensions 

and parameters. For example, in driving safety analysis, the style and behavior of drivers must be 

studied to investigate unorthodox driving style and neighboring conditions are sensed and analyzed 

in order to provide intelligent support for the drivers. However, the major constraints of such 

analyses are the absence of substantial data sets and a precise means of identifying the neighboring 

conditions without incorporating additional sensors. 

 Another aspect of road safety analysis involves the effect on road safety from external 

parameters, including the road surface, geometry, traffic flow, weather conditions and both drivers’ 

and pedestrians’ behavior. Despite considerable research efforts, it has not been possible to provide 

the most deterministic and computationally intelligent model [2] to predict the exact context of road 

accidents due to unbalanced data instances at various levels. Accident prediction is one of the most 

crucial aspects of road safety where precautionary measures are taken to avoid an accident before it 

occurs. 

 Therefore, it is important to investigate the accident-prone areas of cities and the effect of 

external factors in order to be able to forecast the safety level of roads with appropriate granularity. 

There are huge variations in road traffic accidents in terms of the extremity of the accident and the 

damage to people and their property, which is also referred to as accident severity [3]. It is 

necessary to investigate the relationship between traffic accident severity and related risk factors 

such as the traffic volume, the driver’s age, maximum possible speed, geometrical factors like the 

type of vehicle, distance from the nearest intersection, details of intersections etc. and 

environmental features such as weather conditions, lighting conditions, type of road, etc. Previous 

studies in this area are broadly classified into two categories: statistical modeling and machine 

learning modeling. 

Initially, accident severity analysis for traffic accident forecasting was primarily carried out 

using statistical techniques [49, 50, 51, 52, 53]. Statistical models are favored over machine 

learning models due to their solid theoretical base and strong mathematical formulation [47]. 

Gaussian Mixture Models (GMMs) are the most common, and they have been successfully used in 

a wide variety of fields, such as voice recognition systems, video image processing, and pattern 

classification. In studies related to traffic flow and accidents, GMMs have been repeatedly used to 

model raw time-to-collision (TTC) samples for traffic safety prediction [6, 7], severity detection of 

traffic accidents along with Hidden Markov models [10] and in traffic flow forecasting [11]. 

However, these models assume some inherent properties about the data patterns like the assumption 

of risk factors influencing accident severity linearly, which might not always be the case [46, 22] 

and hence they inevitably induce inaccurate results. 

 Machine learning models on the other hand [48], are highly adaptable with no or very few 

assumptions about the input features and offer higher flexibility to outliers, as well as inaccurate 

and missing data. Popular machine-learning models applied to traffic accident related studies 

include Decision Trees [34, 35], Support Vector Machines (SVMs) and Support Vector Classifiers 

(SVCs) [43, 44, 45], K-means clustering [41, 42], Artificial Neural Networks (ANNs) [36, 37, 38] 

etc. Of these models, Support Vector Machines have been increasingly used in traffic related studies 

to address traffic flow prediction [23, 24, 25, 26], crash frequency analysis [27, 28, 29, 30], and to 



analyze accident severity in a crash [44, 31, 32]. The major drawback of machine-learning models 

is their performance as a ’black-box’ which leads to unclear inference of the function that correlates 

the input variables with the target class [33]. 

 The purpose of this study is to combine the Gaussian Mixture Model from statistical 

modeling and the Support Vector Classifier from machine-learning modeling to overcome the 

disadvantages of one model by the advantages of the other and hence improve the overall accuracy. 

Favored by its innate discriminative power, even in the case of non-linearly separable classes using 

kernels, the SVM presents an attractive way of enhancing the baseline generative model (GMM) 

[9]. Hence the GMM serves as a parametric basis for the Support Vector Classifier. Since SVCs 

perform poorly on unbalanced data and cannot select relevant attributes with respect to the target 

variable, data pre-processing using re-sampling techniques and feature importance ranking methods 

are applied. 

 The rest of the paper is organized as follows: 

Section 2 introduces specific and recent related research on road safety prediction incorporating 

various levels of machine learning and intelligent algorithms. The third section gives a brief 

explanation about the dataset used. Section 4 contains a comprehensive description of the model 

construction mechanism along with model specifications, followed by the details of the various 

models used. Section 4.1.1 presents the data pre-processing and balancing techniques used in the 

proposed model. In Section 5, the results are given with a comparison with the baseline model and 

data analysis is performed to strengthen the claims of the paper. Finally, the last section concludes 

the paper with a brief summary of the research limitations and the overall research effort. 

 

2. Review of the literature 

 

 In this section we review road safety prediction methods that incorporate various levels of 

machine learning and intelligent algorithms. Then, we analyze the advantages and drawbacks of 

various methods, and formulate the missing value problem, which is a substantial challenge in this 

area of research. 

 For traffic flow forecasting, various machine learning methods have been employed. The 

most prominent among these are: Autoregressive Integrated Moving Average (ARIMA) which 

belongs to time series categories [65]; probabilistic graphical models, such as Bayesian Network 

[66], Markov Chains [67], and Markov Random Fields (MRFs) [70]; and nonparametric 

approaches, such as Artificial Neural Networks (ANNs) [67], Support Vector Regression (SVR) 

[69] , and Locally Weighted Learning (LWL) [70] . However, as seen in the literature, there are 

multiple reasons for fluctuation in the traffic flow. In addition to that, the patterns in the data are 

multimodal. These multimodal properties make it difficult to learn. Moreover, for these shallow 

network approaches to be able to model complex mapping, they require a high dimensional space. A 

high dimensional space request leads to the requirement of a huge amount of annotated data. 

Therefore, in the high-dimensional space the overfitting problem becomes acute. In order to 

overcome this issue, we use a multilayer nonlinear structure since deep learning approaches have a 

strong ability to express multi-model patterns in data using a reduced number of dimensions. An 

ANN (Artificial Neural Network) [55] is a type of network in machine learning that has been 

widely used for road incident prediction in different environments (freeway, highway, urban  and 

non-urban roads, etc.) in order to minimize injury and loss of life on the roads. 

 An ANN aims to reproduce and simulate human behavior and cognitive functions. It uses a 

network of nodes, often called neurons, that contain configurable weights and these weights can be 

trained to produce a desired output [56]. Many kinds of pattern recognition problems can be solved 

by configuring the layers and the weights of the network. Today, machine-learning techniques have 

found different applications in a number of fields. These include road safety where they have been 

used for collision detection. As an illustration, in the study presented in [57] by Chang, an ANN is 

implemented to predict collisions on a National Freeway in Taiwan. Road features were used as 

input in their model and it is claimed that the model accepted those features and provided the 



number of collisions as output. However, the ANN model has many local minimums, which makes 

it difficult to find the global optimum solution. This highlights the fact that, even though ANN 

models are easy to understand, the solution covered by their weights space is non-convex. This is 

one of its drawbacks. Another shortcoming of an ANN is that it is supervised-based learning and 

therefore the model requires training data, which limits its applicability in real-world situations. In 

order to overcome these issues, back propagation (BP) such as Bayesian regularization has been 

proposed.  Although it has been found that Bayesian regularization has led to great improvements, it 

still requires training data, again making its applicability in the real world limited. 

 Bayesian Networks (BNs) have also become very popular in traffic prediction as they allow 

multiple inputs of data to be taken into account. It is known to have applications that can take many 

forms. It has been pointed out that the inputs of BNs sometimes show less relativity than is the case 

for neural networks [60][61]. This specific characteristic of BNs offers more possibilities for 

combining different prediction factors. 

 Research has revealed that, for traffic prediction, there is no single method that is the best 

for every situation. Thus, in traffic forecasting, researchers are constantly trying to combine 

different models. It has been observed that almost all the research undertaken in using hybrid 

models (HMs) for traffic prediction yield greater prediction accuracy than when a single model is 

used [62][63]. Jiaming Xie and Yi-King Choi conducted research on designing and implementing a 

hybrid model that can forecast the traffic flow in the city of Hong Kong by using historical and real-

time data. The question that arises here is how one can balance the importance of historical data and 

real data. This is because it obvious that the traffic situation changes over time and that continuous 

changes make the traffic status dynamic [64]. 

 As no single model can be suitable for prediction in all situations, the main objective of this 

research is to build a prediction model that combines two approaches (the Gaussian mixture model 

and support vector classifiers) in order to predict traffic accidents. The improvement in terms of 

accuracy is very notable compared to other models. 

 

 
Figure 1: Vehicular ad-hoc networks architecture and message broadcasting scenario 

 

2.1. Background of Vehicular Ad-hoc NETworks (VANETs) 

 

 The development of Intelligent Transportation Systems (ITSs) and other applications to 

improve driving comfort have been motivated by the continuing increase in road traffic accidents. 



In order to make these applications feasible, a communication network, the so-called vehicular ad-

hoc network (VANET) was developed. In such a network, vehicles are equipped with wireless 

devices that allow them to communicate. ITS services are provided to the end users by VANETs 

that transfer data and safety messages. By using wireless standards such as Dedicated Short-Range 

Communication (DSRC) and Wireless Access in Vehicular Environments (WAVE), VANETs can 

provide wireless communication between moving vehicles. Essentially, there are three units 

involved in vehicle communication: Application Units (AUs), On Board Units (OBUs) and 

Roadside Units (RSUs). By employing wireless standards like IEEE 802.11p [64], communication 

between OBUs and AUs with RSUs can be possible, as shown in Figure 1. 

  Application Units (AUs) - These are smart devices that provide safety applications. They 

use OBUs to communicate with RSUs. As chips are getting smaller and smaller, these units 

may be isolated or they may be integrated with OBUs as a single unit. The connection mode 

of AUs to the OBUs can be done through a wired or wireless connection. 

 

  On Board Units (OBUs) - These are generally installed onboard the vehicles, and their main 

task is to provide communication between other OBUs and RSUs. In terms of composition, 

they are made up of devices such as Resource Command Processors (RCP). These resources 

include a user interface and read/write memory. They also have a specialized interface to 

connect to other OBUs and a network device for short-range wireless communication based 

on IEEE 802.11p radio technology. In addition, these units are used for IP mobility 

management, congestion control, wireless data access, reliable message transfer, data 

security and geographical routing. 

 

  Roadside Units (RSUs) - These are considered to be fixed nodes that act as a router to 

provide services to the moving vehicles. RSUs are set up as rigid units at the side of the road 

in such a way as to maintain coverage and connectivity to all the vehicles. They are the  

source of radio wave propagation between RSUs and OBUs. The main function of RSUs is 

to increase the communication range of the Ad Hoc network. They do so by sharing 

information with OBUs and by sending the information to other RSUs. RSUs work as an 

information source and provide Internet connectivity to the OBUs. RSUs can be connected 

to the Internet via a gateway. 

VANETs provide the radio interface required by vehicles (wireless transceivers based on IEEE 

802.11p, which operate on the dedicated short-range communication (DSRC) band) to communicate 

with each other using vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) and offer a wide 

variety of applications for ITSs. 

 As the aim of this work is to derive analytics for the prediction of road accidents, it is 

important to include a data acquisition mechanism (see Figure 2) and inter-process communication 

between vehicles on the road. For a standard use case, we consider a segment of a densely 

populated city road where this type of acquisition model can be placed. To formulate such a model, 

the physical components of the VANETs can be one of the parameters. 

However, the inter-process communication protocol of 5G and beyond can establish a more reliable 

process exchange mechanism. 

 



Figure 2: Traffic-data- acquisition -using-different-detectors [72] 

 

In conventional usage, a Message Application Programming Interface (MAPI) is suitable for use 

cases to collect and to propagate the data for a particular segment of road. In this paper, certain 

realistic scenarios are considered to formulate the data acquisition and the message passing 

mechanism. 

Four layers are involved in the overall system flow for message passing and broadcasting: 

 Application layer (message wrapping mechanism) 

 Transport layer (with handshaking between the sender and the receiver) 

 Network layer (message distribution mechanism) 

 Physical layer (connection and devices) 

 

Thanks to these layers, the system can collect on-road data to pass them towards a nearest cloud 

center or adjacent vehicle, so that the neighboring vehicle can receive an alert containing several 

features. 

 

The format of the message is: 

1.  transaction ID, 

2. previous transactions ID, if any 

3. sender ID 

4. reputation ID (this number will present the reputation or likelihood of a given vehicle to 

have an accident) 

5. receiver ID 

6. message content (message text, location, direction of sender vehicle) 

7. message type (this information will deliver the warning or the prediction of the message 

after using a hybrid analytical algorithm such as intersection movement, tendency for 

forward collision, deviation from the lane, extreme conditions of the road surface and other 

relevant features). 

As well as all these message fields, each message will be followed by the action requested. For 

example, the action requested indicates the message from the sender vehicle to all receivers for a 

particular alert if the adjacent vehicle could change lane abruptly. Similarly, if a vehicle accelerates 

more than normal, despite the traffic congestion on the road, then there will be an alert message for 

other neighboring vehicles. 

All these features of message access and distribution can be implemented in a traffic 

environment simulator (SIMO) which can be deployed by another event-based simulator like 



OMNET++. However, since the objective of our work is to analyze the action requested by the 

given message distribution format, we did not use these kinds of simulation tools. 

 

2.2. Mathematical symbols at glance 

Symbols used in the Gaussian mixture model 

Symbols Semantics 

p(x/λ) Conditional probability of x given  

𝑁𝑖(𝑥) Gaussian probability density function 

𝑤𝑖 Mixing weights 

K Number of Gaussian components 

x Observed data 

𝜇𝑖 Mean vector of Gaussian components 

𝛴𝑖 Co-variance matrix of the Gaussian components 

λ Set of tuples of model parameters  𝑤𝑖, 𝜇𝑖, 𝛴𝑖 

M Number of training examples 

L(x/λ) Log likelihood 

 

Symbols used in the support vector classifier 

Symbols Semantics 

(𝑥𝑖 , 𝑦𝑖) Data examples 

f(x) Classification function 

𝑤 Normal direction cosines to the line 

‖𝑎‖ Vector norm 

𝜉𝑖 Slack variable 

C Penalty index for outliers 

𝛼𝑖 Linear combination weights  

K  Kernel  

⟨𝑥, 𝑦⟩ Inner product between x et y 

d Degree of polynomial kernel 

σ Variance in the RBF kernel 

 Table I.  Mathematical symbols 

 

3. Dataset description 

 

The dataset was obtained from data.govt.uk [18] which is a United Kingdom Government 

project providing open source data published by central government, local authorities and public 

bodies. The road traffic accident database for the year of 2017 was used in this research. These 

dataset files provide detailed road safety data about the environmental, physical, geometrical, 

geographical and personal information related to accidents as shown in Table II. The data points 

correspond only to those accidents where information was reported to the police or the authorities. 

The dataset was compiled from the information recorded in the STATS19 accident reporting form. 

The entire dataset is mainly composed of three main categories: accident, vehicle and casualty data. 

The accident variables have 31 features including the weather conditions, lighting, time, day of the 

week, number of vehicles involved, etc. The Vehicle-Driver database consists of 22 features such as 



the age of the vehicle, sex and age of the driver, etc. and the casualty dataset contains 15 feature 

variables such as the type of victim, sex of the casualty, age of the casualty, etc. 

 

 

Accident variables Vehicle and driver variables Casualty variables 

Index of the crash 

Police Force 

Accident Severity 

Vehicles involved 

number of victims involved 

Date 

Day of the Week 

Time 

Longitude 

Latitude 

District of Local Authority 

Local Highway Authority 

1st Road Class 

1st Road Number 

Kind of roadway 

maximum velocity possible 

Details of intersection 

Traffic control at intersection 

2nd Road Class 

2nd Road Number 

Pedestrian Crossing-Human Control 

Pedestrian Crossing-Physical Facilities 

Lighting 

Road conditions 

road surface conditions 

Special characteristics of accident 

location 

Carriageway Hazards 

Type of area 

Police attention 

 

 

 

 

Index of the crash 

Vehicle Id code 

Kind of vehicle 

Towing and Articulation 

Vehicle Maneuver 

Position of vehicle 

Location of intersection 

Skidding and Overturning 

Hit Object in Carriageway 

Vehicle Leaving Carriageway 

Hit Object off Carriageway 

1st Point of Impact 

Was Vehicle Left Hand Drive 

Journey Purpose of Driver 

Gender of the Driver 

Age of the Driver 

Age band of the Driver 

Motor power 

Vehicle fuel type 

Age of the vehicle 

Rider IMD Decile 

Rider Home Area Type 

 

 

 

 

 

 

 

Index of the crash 

Vehicle Id code 

Casualty Id code 

Type of victim 

Gender of victim 

Age of victim 

Age Band of victim 

Intensity of the fatality 

Position of the pedestrian 

Motion of the pedestrian 

Position of victim in car 

Position of victim in Bus or coach 

Type of fatality 

Casualty IMD Decile 

Location of victim’s home 

Table II. Dataset variables 

 

 

The output class or accident severity is divided into 3 categories, namely “no injury in the 

accident” encoded as 1, “non-incapacitating injury in the accident” encoded as 2 and” incapacitating 

injury in the accident” encoded as 3. The detailed encoding of every variable is listed in Table III. 

 

 

 

 

 
Variable name Variable categories Code Frequency Percentage Class 1 Class 2 Class 3 

Day of the week Sunday 
Monday 

Tuesday 

Wednesday 
Thursday 

Friday 

Saturday 

1 
2 

3 

4 
5 

6 

7 

21836 
24653 

25911 

25837 
27014 

29227 

24440 

12.20% 
13.77% 

14.48% 

14.44% 
15.09 % 

16.33% 

13.66% 

20.4% 
12.4% 

10.4% 

14.4% 
11.0 % 

13.1% 

18.2% 

11.4% 
14.1% 

14.7% 

14.5% 
15.4 % 

16.5% 

13.1% 

14.7% 
12.2% 

13.6% 

14.1% 
14.2% 

15.8% 

15.3% 

Kind of 

roadway 

Traffic circle 

Single direction traffic 

Divided highway 
Undivided highway 

Slip road 

Unknown 

1 

2 

3 
6 

7 

9 

10328 

2740 

33739 
128608 

1904 

1599 

5.77% 

1.53% 

18.85% 
71.88% 

1.06% 

0.89% 

1.05% 

0.68% 

22.9% 
74.8% 

0.37 % 

0.06% 

3.67% 

1.28% 

16.62% 
77.12% 

0.82% 

0.46% 

6.35% 

1.60% 

19.27% 
70.61% 

1.13% 

1.01% 



Single direction traffic/Slip road 

Erroneous data 

12 

-1 

0 

0 

0% 

0% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

0.00% 

Human 
pedestrian 

crossing 

None within 50 metres 
School crossing patrol 

By another official 

Erroneous data 

0 
1 

2 

-1 

175819 
497 

1013 

1589 

98.26% 
0.27% 

0.56% 

0.88% 

0.12% 
0.06% 

99.5% 

0.27% 

0.42% 
0.31% 

99.0% 

0.26% 

0.60% 
1.03% 

99.0% 

0.28% 

Details of 

intersection 

No intersection within 20m 

Traffic circle 

Mini-Traffic circle 
Staggered intersection 

Slip road 

Crossroads 
More than 4 arms (not Traffic circle) 

Private road 

Other intersections 
Erroneous data 

0 

1 

2 
3 

5 

6 
7 

8 

9 
-1 

78468 

13524 

1770 
50618 

3502 

18403 
1663 

5102 

5567 
301 

43.85% 

7.55% 

0.98% 
28.29% 

1.95% 

10.28% 
0.92% 

2.85% 

3.11% 
0.16 % 

72.01% 

1.33% 

0.12% 
15.54% 

2.32 % 

5.05% 
0.34% 

1.73% 

1.52% 
?% 

49.80% 

4.79% 

0.68% 
27.82% 

1.52% 

8.67% 
0.60% 

3.28% 

2.73% 
0.04% 

41.86% 

8.32% 

1.07% 
28.67% 

2.04% 

10.77% 
1.01% 

2.77% 

3.23% 
0.20% 

Lighting Daylight 

Dark with lights 

Dark with dimmed lights 

No illumination at all 
Unknown illumination 

Erroneous data 

1 

4 

5 

6 
7 

-1 

126049 

36489 

1123 

10314 
4941 

2 

70.45% 

20.39% 

0.62% 

5.76% 
2.76% 

0.001 % 

60.28% 

17.18% 

0.86% 

20.81% 
0.83 % 

?% 

67.95% 

20.02% 

0.59% 

8.94% 
2.48 % 

?% 

71.24% 

20.55% 

0.63% 

4.70% 
2.86 % 

0.001% 

Weather 
conditions 

Breeze 
Rain with breeze 

Snow with breeze 

Fine with gale 
Rain with gale 

Snow with gale 

Fog or mist 
Others 

Unknown 

Erroneous data 

1 
2 

3 

4 
5 

6 

7 
8 

9 

-1 

144368 
20948 

915 

2032 
1705 

163 

940 
3410 

4435 

2 

80.68% 
11.70% 

0.51% 

1.13% 
0.95% 

0.09% 

0.52% 
1.90% 

2.47% 

0.001 % 

84.02% 
8.99% 

0.49% 

1.55% 
1.27 % 

?% 

0.77% 
1.42% 

1.45% 

?% 

81.45% 
11.93% 

0.29% 

1.31% 
1.16% 

0.04% 

0.64% 
1.55% 

1.59% 

?% 

80.44% 
11.71% 

0.56% 

1.08% 
0.89% 

0.10% 

0.49% 
1.99% 

2.70% 

0.001% 

Road surface Dry 

Wet 

Snow 
Icy or snow 

Flood over 3cm. deep 

Oily 
Silt or mud 

Erroneous data 

1 

2 

3 
4 

5 

6 
7 

-1 

124151 

49632 

707 
3172 

172 

0 
0 

1084 

69.39%% 

27.74% 

0.39% 
1.77% 

0.09% 

0% 
0% 

0.60% 

68.38% 

28.88% 

0.31% 
2.23% 

0.18 % 

0.00 % 
0.00% 

?% 

69.25% 

28.55% 

0.23% 
1.61% 

0.17% 

0.00 % 
0.00% 

0.16% 

69.44% 

27.52% 

0.43% 
1.79% 

0.07% 

0.00 % 
0.00% 

0.72% 

Sex of the driver Male 

Female 

Not known 
Erroneous data 

1 

2 

3 
-1 

114282 

51848 

12784 
4 

63.87% 

28.97% 

7.14% 
0.002 % 

79.42% 

18.33% 

2.23% 
?% 

69.89% 

24.15% 

5.95% 
0.003% 

62.15% 

30.31% 

7.52% 
0.002% 

Type of victim Driver 

Passenger 
Pedestrian 

1 

2 
3 

121870 

43204 
13844 

68.11 % 

24.14% 
7.73% 

63.382% 

25.00% 
11.60% 

66.20% 

22.74% 
11.05% 

68.65% 

24.441% 
6.89% 

Police officer 

attend? 

Yes 

No 

No - accident was reported using a self 

completion form 

1 

2 

3 

143847 

35055 

16 

80.39 % 

19.59 % 

0.009 % 

95.90% 

4.09% 

?% 

89.27% 

10.71% 

0.006% 

78.02% 

21.96% 

0.10% 

Age band 0-5 

6 - 10 

11 - 15 
16 - 20 

21 - 25 

26 - 35 
36 - 45 

46 - 55 

56 - 65 
66 - 75 

Over 75 

Erroneous data 

1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

11 

-1 

35 

270 

1234 
12705 

19365 

38417 
29715 

28832 

17102 
8770 

5406 

17067 

0.02% 

0.15% 

0.69% 
7.10% 

10.82% 

21.47% 
16.6% 

16.11% 

9.55% 
4.90% 

3.02% 

9.53% 

?% 

?% 

0.31% 
6.48% 

9.96 % 

19.85% 
16.47% 

16.81% 

12.90% 
7.41% 

6.05% 

3.73% 

0.03% 

0.14% 

0.71% 
7.72% 

11.36% 

19.77% 
15.76% 

16.83% 

10.70% 
5.95% 

4.10% 

6.89% 

0.01% 

0.15% 

0.69% 
6.97% 

10.71% 

21.89% 
16.80% 

15.93% 

9.22% 
4.60% 

2.70% 

10.27% 

Skidding or 

overturning 

None 

Skidding 

Skidding and overturning 
Jackknifing 

Jackknifing and overturning 

Overturning 
Erroneous data 

0 

1 

2 
3 

4 

5 
-1 

156030 

13824 

3345 
52 

56 

3566 
2045 

87.20 % 

7.72% 

1.87% 
0.02% 

0.03% 

1.99% 
1.14 % 

76.54% 

14.17% 

4.46% 
0.12% 

0.21 % 

4.46% 
?% 

83.00% 

10.73% 

2.86% 
0.05% 

0.02% 

2.98% 
0.32% 

88.40% 

6.89% 

1.58% 
0.02% 

0.03% 

1.71% 
1.35% 

Table III. Variable description 



 

4. Research Methodology 

 

4.1. Algorithm description 

 

This section presents the models used in this study for traffic accident forecasting. As 

mentioned above, the accident data including vehicle, casualty and drivers’ features are collected 

from data.govt.uk. These higher dimensional features are then preprocessed to remove any kind of 

erroneous entries and balance the dataset. Moreover, if the dataset has a highly unequal distribution 

of the number of data points corresponding to each class, the SVC model tends to predict every data 

sample as the majority class. In order to achieve an unbiased performance, it is necessary to balance 

the dataset with respect to the output class. 

 Since the dataset is high dimensional, dimensionality reduction techniques must also be 

used. Furthermore, like Bayesian network (BN) models [4], SVMs lack the ability to automatically 

select the relevant features. Feature or attribute selection helps to target both above-mentioned 

disadvantages. Variable importance ranking methods are deployed and the data are further cleaned. 

This processed dataset is then used as input to the Gaussian Mixture Model [19], [20] and [21] 

which estimates the parameters of the various Gaussians mixture using expectation maximization. 

Out of all the parameters i.e. the mean, variance and the mixing probability, the vector of means is 

adapted and used as input to the SVC model [8]. The SVC treats the accident severity modeling as a 

classification problem i.e. the accident data is classified into various categories based on the 

severity classes. This trained hybrid model is then evaluated with respect to the performance 

metrics and sensitivity analysis is performed. The model is also compared to the baseline GMM 

model and the results are reported. A brief description of the hybrid algorithm is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Algorithm description 

 

 

 

4.1.1. Data pre-processing 

 

A considerable amount of missing and erroneous data were recorded and hence data pre-

processing was performed prior to the application of the hybrid model. One can either remove the 

examples with erroneous data or remove the attributes with corrupted data. For the former, data 

processing was carried out using the Filter Examples operator of the RapidMiner Studio [5] 

software.1 

                                                 
1 The data were obtained from data.govt.uk [18]. The variable names have been changed, keeping the semantics same 

as before. 

 1 Rapidminer is an open source statistical and data mining tool. 



This operator filters out the data entries according to the conditions specified by the user. Removing 

the attributes with corrupted data is achieved with the help of the Select Attributes operator in 

RapidMiner. The Filter Examples operator reduces the number of data entries in a dataset, but it has 

no effect on the number of attributes. On the other hand, the Select Attributes operator chooses the 

attributes with no missing or corrupted values and has no effect on the number of examples in the 

example set. 

 

4.1.2. Data Re-sampling 

 

The dataset used consists of 2044 data points for Class 1 accidents, 21098 data points for 

Class 2, and 93321 data points for Class 3, as shown in the form of a distribution curve in Figure 4. 

This accounts for the severe imbalance in the data, causing the prediction results to be skewed 

significantly in favor of the majority class. This causes poor classification rates on minor classes 

and extreme biasing towards the majority class. In addition, it is also possible that the classifier 

predicts everything as a major class and ignores the minor class. To tackle this issue, one must use 

re-sampling techniques to balance the data. We used the Synthetic Minority Oversampling 

(SMOTE) [9] up-sampling technique, which works by creating synthetic observations based upon 

the existing minority observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure.  Accident severity class distribution 

 

4.1.3. Feature/Attribute selection 

 

In machine learning and statistics, feature selection or attribute selection is the process of 

selecting a subset of features that are used to build the model. It is performed to get rid of any 

unnecessary, irrelevant, or redundant features from the dataset, consequently resulting in improving 

the accuracy of the model. This also leads to better interpretability of the underlying relationship 

between input variables and the target class. 

In this study, feature relevance analysis was carried out using the RapidMiner studio. The Weight by 

Tree Importance operator was used to find the relevant features. The weights of the attributes are 

calculated by analyzing the split points of a Random Forest model. Each node of each tree is 

visited, and the benefit created by the respective split is retrieved, which is further summed per 

attribute. The importance ranking is done by calculating the mean benefit over all the trees. This 

approach was implemented following the idea from the seminal work by Menze et al (2009) [12]. 

The higher the weight of the attributes is, the greater is their relevance. The Information Gain 

method was used to find the weights by the tree importance operator. Information Gain (IG) 

measures how much information a feature gives us about the class which is the entropy of the 



distribution before the split minus the entropy of the distribution after it. Mathematically, the 

information gain is given by the equation below: 

IG = E(p) − w ∗  E(c)                       (1) 

where IG is information gain, E is entropy, p is parent node, c stands for children and w corresponds 

to the average of the weights. 

 

4.1.4. Gaussian Mixture Model 

 

Accident severity data can be formulated as a weighted sum of K-component Gaussian 

distributions: 

                                       𝑝(𝑥 𝜆⁄ ) = ∑ 𝑤𝑖
𝑘
𝑖=1 𝑁𝑖(𝑥)                               (2) 

 

where x is a d-dimensional vector, 𝑁𝑖(𝑥) are the component multivariate Gaussian densities and wi 

is the mixing proportion or the mixture weights with ∑ 𝑤𝑖
𝑘
𝑖=1 = 1 

Each component multivariate Gaussian density function is given by 

 

                                      𝑁𝑖(𝑥) =
1

((2𝛱)
𝑑
2|𝛴𝑖|−1 2⁄ )

𝑒
1

2
(𝑥−𝜇𝑖)𝑡𝛴𝑖

−1(𝑥−𝜇𝑖)
       (3) 

 

with 𝜇𝑖 , 𝛴𝑖 as the mean vector and the Co-variance matrix respectively. The above-mentioned 

parameters, namely 𝑤𝑖 , 𝜇𝑖 and 𝛴𝑖 , are represented by 

 

                                            𝜆 = (𝑤𝑖, 𝜇𝑖 , 𝛴𝑖) ∀𝑖 = 1,2,3, . . . , 𝐾         (4) 

Figure 5: Gaussian mixture model with K=3 

 

Given the M training vectors 𝑥 = (𝑥1,𝑥2,𝑥3,..., 𝑥𝑀), the GMMs are trained with parameter evaluation 

using Maximum Likelihood (ML) estimation. Assuming all the training vectors are independent, the 

likelihood function and the log likelihood function turn out to be 

 

                                                           𝑝(𝑥 𝜆⁄ ) = ∏ 𝑝𝑀
𝑗=1 (𝑥𝑗 𝜆⁄ )               (5) 

with the log likelihood using Equation 2 as 

 

                                                          𝐿(𝑥 𝜆⁄ ) = ∑ 𝑙𝑜𝑔𝑀
𝑗=1 (∑ 𝑤𝑖𝑁𝑖(𝑥)𝐾

𝑖=1 )      (6) 



 

The maximization of the likelihood function in Equation 5 is achieved by using the Expectation-

Maximization (EM) algorithm. In the expectation (E) step, a function for the expectation of the log-

likelihood is constructed while in the maximization (M) step, model parameters like the mean, 

variance and the mixing probability are estimated by the maximizing function found in the E step. 

After simplification, the formulas obtained performed at each E-M step are: 

 

E step: Posterior probability estimation 

 

                                                   𝑝(𝑖 𝑥𝑖⁄ , 𝜆) =
𝑤𝑖𝑁𝑖(𝑥𝑗)

∑ 𝑤𝑙𝑁𝑙(𝑥𝑗)𝐾
𝑙=1

                      (6) 

 

M Step: Updating the parameters 

 

                                                    𝑤𝑖 =
1

𝑀
∑ 𝑝𝑀

𝑗=1 (𝑖 𝑥𝑗⁄ , 𝜆)                          (8) 

                                                   𝜇𝑖 =
∑ 𝑝𝑀

𝑗=1 (𝑖 𝑥𝑗,𝜆⁄ )𝑥𝑗

∑ 𝑝𝑀
𝑗=1 (𝑖 𝑥𝑗⁄ ,𝜆)

                                   (9) 

 

                                                   𝛴𝑖 =
∑ 𝑝𝑀

𝑗=1 (𝑖 𝑥𝑗,𝜆⁄ )𝑥𝑗
2

∑ 𝑝𝑀
𝑗=1 (𝑖 𝑥𝑗⁄ ,𝜆)

− 𝜇𝑖
2                       (10) 

 

4.1.5. GMM and Traffic prediction 

 

The observations (x) including features like weather conditions, lighting conditions, age of the 

driver, distance from junction etc., are assumed to be a mixture of three Gaussians (λ) which 

correspond to the three accident classes. Hence, our objective is to find a model that maximizes the 

posterior probability: 

 

 

                                                                      𝑚𝑎𝑥1≤𝑘≤𝐾   𝑝(𝜆𝑘 𝑥⁄ ),                        (11) 

which by Bayes’s rule is:  

                                                                   𝑚𝑎𝑥1≤𝑘≤𝐾  
𝑝(𝜆𝑘 𝑥⁄ )𝑝(𝜆𝑘)

𝑝(𝑥)
 .                   (12) 

Assuming all the Gaussians to be equally likely and taking the log, we have our likelihood function 

as: 

                                                               𝑚𝑎𝑥1≤𝑘≤𝐾  ∑ 𝑙𝑜𝑔𝑝𝑀
𝑗=1 (𝑥𝑗 𝜆𝑘⁄ )             (13) 

 

which is further reduced to (6) and solved using expectation maximization. 

 

4.1.6. Support vector classification 

 

A support vector classifier or SVC is a discriminative model that makes decisions by constructing 

an optimal 

hyperplane or a 

line among linearly or 

non- linearly separable 

classes [14]. 

 

 

 

 

 



 

 

 

 

 

 

 
 

 

 

 

Figure 6: Concept of optimal hyper-plane 

 

 

For linear support vector classifiers on the data (𝑥𝑖 , 𝑦𝑖) with i=1,2...n, the classification function is 

represented as: 

  

                                                         𝑓(𝑥) = 𝑤𝑇(𝑥) + 𝑏             (14) 

 

The margin according to Figure 6 is given by 

 

                                   
|𝑤𝑇(𝑥)+𝑏|

‖𝑤‖
|

𝑤𝑇(𝑥)+𝑏=1
+

|𝑤𝑇(𝑥)+𝑏|

‖𝑤‖
|

𝑤𝑇(𝑥)+𝑏=−1
=

2

𝑤
   (15) 

 

Since 𝑤𝑇(𝑥) + 𝑏 = ±1 for the support vectors. 

 

Maximizing the margin (the minimum distance of the hyperplane from these points), the problem 

can be formulated as follows: 

                                                  𝑚𝑖𝑛
1

2
‖w‖2  𝑠. 𝑡.   𝑦𝑖(𝑥𝑖𝑤 + 𝑏) ⩾ 1                  (16) 

 

The solution for the optimal w turns out to be a linear combination of support vectors i.e. which 

satisfy 𝑦𝑖(𝑥𝑖𝑤 + 𝑏) = 1.  

 

In the case of a non-linearly separable dataset, no hyperplane exists that satisfies the above-

mentioned constraints. In that case, a new model is introduced [13] : 

                                                             𝑚𝑖𝑛
1

2
‖w‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1  

 

                                                          𝑠. 𝑡.     𝑦𝑖(𝑥𝑖𝑤 + 𝑏) ⩾ 1 − 𝜉𝑖         𝑖 = 1,2, . . . , 𝑛       (17) 

 

                                                                 𝜉𝑖 ⩾ 0, 𝑖 = 1,2, . . . , 𝑛 
 

where ξi is a non-negative factor called the slack variable responsible for allowing the functional 

value of certain samples to be negative. The factor ’C’ is used to penalize the outliers and expresses 

the degree to which they are not acceptable. 

 The solution for the optimal w is a linear combination of all points (∑ 𝛼𝑖𝑖=1 𝑦𝑖𝑥𝑖) 

in the feature space that have ξi > 0 and lie on the margin (𝛼𝑖 ≠ 0) and hence the classification 

function becomes: 

                                                                     𝑓(𝑥) = 𝑠𝑖𝑔𝑛[(∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖𝑥𝑖)

𝑇𝑥 + 𝑏]                  (18) 

 

                                                                          =  𝑠𝑖𝑔𝑛[∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖⟨𝑥𝑖 , 𝑥⟩ + 𝑏] 

The non-linear classifier can be extended using the kernel function (K) satisfying Mercer’s 

condition to map the input features to a higher dimensional space where it is linearly separable [15], 



as represented in Figure 7. Then all the inner products are replaced with the kernel function and 

hence the classification function becomes, 

 

                                                        𝑓(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏]           (19) 

The most commonly used kernel functions are: 

1. Polynomial kernel of degree d 

                                                                  𝐾(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩ + 1)𝑑                 (20) 

2. Radial basis function (RBF) 

                                                                      𝐾(𝑥, 𝑦) = 𝑒
(

−‖𝑥−𝑦‖2

2𝜎2 )
                   (21) 

  

3. Hyperbolic tangent (Sigmoid) kernel 

                                                                        𝐾(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝛼. ⟨𝑥, 𝑦⟩ + 𝑐)  (22) 

 

                                                                     

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Kernel trick 

 

4.1.7. Multiclass SVC 

 

1. One-against-all method: 

This method [16] considers N classifiers where N is the number of classes and trains the ith 

classifier with all other examples considering the instances of the ith class as positive and all other 

instances as negative labels. 

2. One-against-one method: 

This method [17] constructs N (N − 1)/2 classifiers and trains the ith classifier with every jth 

classifier considering the instances of the ith classifier as positive and those of the jth classifier as 

negative. 

 

4.2. The Need for a Hybrid Model 

 

Since research has shown that no single method is best for every situation in traffic 

prediction, building hybrid models (HMs) is an approach that combines different methods that 

could produce better results than any of those methods applied individually.  

 

 In this paper, the need for HMs is justified using a statistical modeling method i.e., a 

Gaussian Mixture Model (GMM) and a machine learning modeling scheme i.e., the Support Vector 

Classifier (SVC). As the baseline generative model (GMM) could only classify with maximum 

likelihood, the SVM presents an attractive way of enhancing it. This is because of the SVM’s innate 

discriminative power, even in the case of non-linearly separable classes using kernels. However, 

SVCs also perform poorly on unbalanced data. Hence the GMM serves as a parametric basis for the 

support vector classifier. Therefore, in this work, the use of a hybrid model (HM) was needed in 



order to overcome the disadvantages of one model by the advantages of the other and hence to 

improve the accuracy. 
 

5. DISCUSSION OF RESULTS 

 

5.1. Data pre-processing results 

 

Erroneous and missing data entries were removed using the RapidMiner Studio. The data 

was reduced from 178918 examples and 69 attributes to 116463 examples and 69 attributes, 

removing all the missing values. By removing the attributes with missing values, the number of 

features was reduced from 69 to 62. The variables and the number of missing values are listed in 

Table IV below. 

 

Variable name Number of missing values 

Index of the crash 53701 

LSOA of crash location 17736 

Longitude 59 

Latitude 59 

Location Easting OSGR 35 

Location Northing OSGR 35 

Time 3 

Table IV: Attributes with missing and erroneous values 

 

 

5.2. Data Re-sampling results 

 

The imbalanced dataset is balanced using SMOTE from the ’imblearn’ module of python. 

This is an upsampling technique which balances the data by increasing the number of data points 

for the minority class. After applying SMOTE on our dataset, we received a total of 279,963 

samples with 93,170 samples from Class 1, 93,756 samples from Class 2 and 93,037 from Class 3, 

as listed 

in Table V. 

Accident severity class Training samples before SMOTE Training samples after SMOTE 

Class 1 2,044 93,170 

Class 2 21,098 93,756 

Class 3 93,321 93,037 

Table V: Data re-sampling results 

 

5.3. Feature selection results 

 

The variable importance ranking based on the three accident severity levels was conducted 

using the RapidMiner Studio. Weight by the tree importance ranking operator was used after 

applying the Random forest model on the processed data. In addition to this, the information gain 

method was used to find weights using tree importance. In this, the variable with the largest score is 

normalized to 1 and the scores of all the others are calculated with respect to the best performing 

variable. 

  

The results obtained are shown below in Table VI and Figure 8. It can be seen that among all 

the variables, Intensity of the fatality is the most related to accident severity with a score of 1. The 

location attributes like Location Northing OSGR, Latitude, Location Easting OSGR, Longitude 



follow in the list. The Pedestrian Road Maintenance Worker variable was of the least importance 

with a score of 0.0. Surprisingly, weather conditions had a relevance of 4.2%, which is quite 

insignificant. Factors like maximum velocity possible, day of the week, vehicles involved in the 

accident, date, etc. contributed significantly with a score above 20%. Features like details of 

intersection, location of intersection, kind of road, lighting conditions, age of the casualty, etc., also 

turn out to be quite important to the hybrid model. All features varying from environmental, 

physical, geometrical, geographical and historical were included in the top features ranked using 

this technique. The results obtained are in accordance with one’s personal experience and 

knowledge about the risk factors related to accidents. 

 
Variable Score Variable Score Variable Score 

Intensity of the 

fatality 

1 Age of victim 0.092 Did a Police Officer attend scene 

of accident? 

0.042 

Location northing 

OSGR latitude 

0.699 Lighting  0.091 Type of area 0.036 

Latitude 0.693 Location of intersection 0.086 Hit object off carriage way 0.029 

Longitude 0.661 Location of victim’s house 0.078 Type of fatality 0.027 

Location easting 

OSGR 

0.654 Kind of road 0.075 Vehicle Id code x 0.023 

Date  0.439 Age band of victim 0.073 Gender of the driver 0.021 

1st Road Number 0.385 Kind of road 0.069 Rider home area type 0.018 

District of local 

authority 

0.317 Skidding and overturning 0.067 Vehicle Id code y 0.018 

Vehicles involved 0.288 Carriageway hazards 0.067 Casualty Id code 0.017 

Day of week  0.262 Road surface conditions 0.063 Special characteristics of accident 

location 

0.016 

Area of police 

responsible 

0.222 2nd road class 0.063 Gender of victim 0.014 

Maximum velocity 

possible 

0.21 Vehicle IMD Decile 0.062 Position of the pedestrian 0.012 

Number of victims 

involved 

0.21 1st point of impact 0.06 Hit object in Carriageway 0.011 

Details of 

intersection 

0.175 Causalty IMD Decile  0.055 Propulsion code 0.011 

1st Road Class 0.129 Age band of the driver 0.052 Towing and articulation 0.01 

Age of the 

vehicle? 

0.12 Journey purpose of driver 0.052 Position of victim in Bus/Coach 0.01  

Age of the driver 0.117 Type of victim 0.051 Position of vehicle 0.01 

Traffic control at 

intersection 

0.113 Pedestrian crossing-

physical facilities 

0.05 Motion of the pedestrian 0.009 

Rider IMD Decile 0.11 Vehicle Manoeuvre 0.049 Was vehicle left hand drive? 0.005 

Vehicle leaving 

carriageway 

0.109 Pedestrian crossing-human 

control 

0.046 Pedestrian road maintenance 

worker 

0 

2nd Road Number 0.108 Position of victim in car 0.045   

Motor power (CC) 0.106 Weather conditions 0.042   

Table VI. Variable relevance scores 

 



Figure 8: Variable importance score distribution 

 
Accident 

class 

Mean matrix 

Class 1 [2.5, 162471.58, 51.35, -0.53, 502646.61, 381.98, 460.20, 3.60, 4.03, 44.59, 48.21, 3.11, 1.10, 3.13, 5.64, 

1.32, 0.42, 4.34, 0.60, 305.99, 1708.36, 40.26, 2.19, 1.15, 0.62]  

Class 2 [2.43, 119903.62, 50.98, -1.17, 458311.88, 400.35, 497.09, 3.12, 44.00, 55.88, 3.40, 0.99, 2.06, 7.31, 

1.36, 0.22, 5.66, 0.48, 0.00, 1733.54, 43.35, 3.42, 1.53, 1.19] 

Class 3 [2.59, 159126.65, 51.30, 0.74, 591387.43, 234.60, 537.71, 2.85, 7.29, 46.00, 90.77, 2.94, 1.17, 3.98, 

7.41, 1.29, 0.34, 4.70, 0.48, 8.20, 1643.93, 35.72, 2.79, 0.88, 1.13] 

Table VII. Mean vectors using Gaussian mixture model 

 

5.4. Hybrid Gaussian mixture model and support vector classifier results 

 

After data pre-processing and re-sampling, 120,00data samples with 39.996 samples from 

Class 1, 39,998 samples from Class 2, and 40,006 samples from Class 3 were used as input to the 

Gaussian mixture model. The top 25 features according to the variable importance ranking results 

were chosen as features of the input data entries. The data were fitted with a mixture of three 

Gaussians which correspond to the three accident severity classes. Moreover, principal component 

analysis (PCA) was applied to visualize the results in 2 dimensions. 

The results with clustering based on the predictions by the Gaussian mixture model are shown in 

Figure 9. The mean matrices obtained for all three classes are also listed in Table VII. 



 

 

Figure 9. Gaussian mixture modelling results 

 

These results suggest that for a particular class of accident severity, the mean vector is the 

average value of the observed features. To interpret these results, let us consider an example: if a 

person is driving at a longitude of -0.527 and has a speed of nearly 48.2 km/hr., then he/she is very 

likely to have an accident of Class 1 severity, i.e. a no-injury accident. On the other hand, a person 

traveling at a longitude of 0.743 with a speed of 90.7 km/hr. has very high chance of having an 

accident of Class 3 severity, i.e. an incapacitating injury. Similarly, with respect to the day of the 

week, the mean value observed rounded to the nearest integer for Classes 1, 2 and 3 are 4, 3 and 7 

respectively. This implies that accidents of the highest severity or fatal accidents are likely to occur  

on Saturdays. One possible reason for this could be that on Saturdays, there are more cars and more 

drivers are impaired by alcohol due to weekend celebrations and parties than on any other day. 

These results are fairly consistent with one’s personal experience and logical reasoning. 

  

It is also observed that some values in the mean vectors of Classes 2 and 3 are very close to 

each other. The reason for this is the uneven distribution of the values inside every feature. For 

example, the feature, ’Lighting’ has 126,049 datat points corresponding to daylight while only 

1,123 and 10,314 for darkness light unlit and darkness -no lighting respectively. Thus, daylight 

itself accounts for 70.45% of the example set, which is a very high number. This sub-skewing of 

data leads to biasing in favor of the majority class. 

  

The overall accuracy of the Gaussian Mixture Model was 64.68%. These 3 mean vectors 

were used as input to the support vector classifier. For such a large dataset with 120,000 examples, 

3 data points for training would be insufficient and would lead to overfitting. As a result, we used 

some extra data points alongside the mean vectors for the purpose of training the support vector 

classifier and further decreasing the testing data. Had there been more classes of accident severity in 

the dataset, one could have directly used the mean vectors as input for the SVC and hence improve 

the model performance, like the technique applied in text-independent speaker identification using 

both SVM and GMM. [8]. 



 The SVC with radial basis function produced a total accuracy of 84.35%. Precision recall 

and the F1-score were calculated to quantify the performance of our classifier. In order to compute 

these parameters, 4 performance metrics given below are evaluated from the confusion metric: 

 

 True Positives (TP) - These are the examples with ’yes’ as their actual class as well as the 

class predicted by the model. 

 True Negatives (TN) - These are the examples with ’no’ as their actual class as well as the 

class predicted by the model. 

 False Positives (FP) - These are the examples with ’no’ as their actual class but are predicted 

as ’yes’ by the model. 

 False Negatives (FN) - These are the examples with ’yes’ as their actual class but are 

predicted as ’no’ by the model. 

 
 Predicted Negative Predicted Positive 

Actual Negative TN FP 

Actual Positive FN TP 
Table VIII. Confusion metric 

 

Subsequently, the performance estimation parameters are defined as 

 Accuracy (A): This is defined as the ratio of the number of correctly predicted examples 

over the total number of examples. Hence, we have : 

                      
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

 

 Precision (P): This is defined as the ratio of correctly predicted positive observations to the 

total predicted positive observations. We then have: 

                          
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

 – Macro precision: Precision found by calculating metrics for each label, and then finding 

their un-weighted mean. 

 – Micro precision: Precision found by calculating metrics globally by counting the total 

number of true positives, false negatives and false positives. 

 

 Recall (Sensitivity) (R): Recall is the ratio of correctly predicted positive observations to the 

all positive observations in actual class, which means: 

                                 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 – Macro Recall: Recall found by calculating metrics for each label, and then finding their 

un-weighted mean. 

 – Micro Recall: Recall found by calculating metrics globally by counting the total number of 

true positives, false negatives and false positives. 

 F1 score: F1 Score is the weighted average of Precision and Recall and is used to combine 

precision and recall in a single metric as in the following: 2 ∗  
𝑃∗𝑅

𝑃+𝑅
 

The performance scores including precision, recall and f1-score are listed below in Table IX. The 

radial basis function or the RBF achieved an accuracy of 88.52%, outperforming the linear kernel, 

which was 59.89% accurate. 

 

 

Class Precision Recall f1-score 

Class 1 1.00 0.9342 0.9659 

Class 2 1.00 0.7214 0.8381 

Class 3 0.7437 1.00 0.8530 

Macro average 91.4595% 88.5220% 88.5748% 



Micro average 88.5166% 88.5166% 87.2895% 

Weighted 

average 

91.4588% 88.5166% 88.5711% 

AUC 0.99 0.97 0.97 

Accuracy 88.5167% 
Table IX. RBF kernel performance metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Confusion matrix for accident dataset 

 

Figure 10 shows the confusion matrix obtained with the hybrid model. As can be observed, there is 

a clear separation between accidents without any injury (Class 1) and accidents with injury (Classes 

2 and 3). Most of the confusion occurs between non-incapacitating injury accident and 

incapacitating injury accidents. Furthermore, the ROC (Receiver Operating Characteristics) curve 

and AUC/AUROC (Area Under the Receiver Operating Characteristics) were determined using the 

above parameters. ROC is a probability curve with TPR (y) plotted against the FPR (x) which is 

FP/TN+FP. The area under the ROC curve quantifies the model’s ability to identify the classes 

correctly and distinguish between them [9]. The AUC-ROC curve for this model is shown in Figure 

11. The AUC values for Classes 1, 2 and 3 are 0.99, 0.97 and 0.97 respectively. These values are 

very close to 1 and reflect the good discriminative power of the classifier. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 11. ROC curve for the accident dataset 

 

Similarly to AUC-ROC, an area under precision/recall curve (AUC-PR) can also be calculated to 

show the tradeoff between precision and recall as a function of varying a decision threshold. The 

higher the area under the curve is, the higher are the values of precision and recall, where high 

precision relates to a low false positive rate, and high recall relates to a low false negative rate [54]. 

For the hybrid model, the AUC-PR curve micro averaged over all classes is 

shown in Figure 12. The AUC-PR curves for each class represented over the iso-F1 curves are 

plotted in Figure 13 where an iso-F1 curve is a curve containing all the points in the precision-recall 

space whose F1 scores are the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. AUC-PR curve micro averaged over all classes for the accident dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 13. AUC-PR curves for each class on various ISO-F1 curves for the accident dataset 

 

 

6. CONCLUSIONS 

Road traffic accidents have become a major cause of injury and death. With increasing urbanization 

and growing populations, the volume of vehicles has increased exponentially. As a result, traffic 

accident forecasting, and the identification of accident-prone areas can help reduce the risks of 

traffic accidents and improve overall life expectancy. 

 The data about the circumstances of personal injury in road accidents, the types of vehicles 

involved, and the consequential casualties were obtained from data.govt.uk [18]. The output or the 

accident severity class was divided into three major categories namely: no injury in the accident, a 

non-incapacitating injury in the accident and an incapacitating injury in the accident. In this paper, a 

hybrid classifier was proposed which combines the descriptive strength of the baseline Gaussian 

Mixture Model (GMM) with the high-performance classification capabilities of the Support Vector 

Classifier (SVC). A new approach was introduced using the mean vectors obtained from the GMM 

model as input to the SVC. The model was supported with data pre-processing and re-sampling to 

convert the data points into suitable form and avoid any kind of biasing in the results. Feature 

importance ranking was also performed to choose relevant attributes with respect to accident 

severity. This hybrid model successfully took advantage of both models and obtained a better 

accuracy than the baseline GMM model. The radial basis kernel outperformed the linear kernel by 

achieving an accuracy of 85.53%. Data analytics performed including the area under the receiver 

operating characteristics curve (AUC-ROC) and the area under the precision/recall curve (AUC-

PR) indicates the successful application of this model in traffic accident forecasting. 

 Although a significant improvement in accuracy has been observed, this study has several 

limitations. The first concerns the dataset used. This research is based on a road traffic accident 

dataset from the year 2017 which contains very few data samples for the no injury and non-

incapacitating injury types of accident. The data was unbalanced not just with respect to the output 

class but also with respect to the sub features of various attributes. Moreover, aggregating the 

accident severity into just three categories limits the scope of the study and the results obtained. The 

greater the number of severity classes, the less is the amount of extra training data required to feed 

into the SVC to avoid overfitting. Thus, datasets with enough records corresponding to each class 

are desirable and should be used for in further studies. 

The second limitation concerns the dependence of the SVC model on parameters and attribute 

selection. In this study, the performance of SVC relies heavily on the feature selection results and 

the mean vectors obtained from the GMM. In order to improve the accuracy of the support vector 

classifier, other approaches like particle swarm optimization (PSO), ant colony optimization, 

genetic algorithms, etc. could be used for effective parameter selection. In addition to this, more 

kernels like the polynomial kernel and the sigmoid kernel could be tested in order to improve future 

model performances. 
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