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The height process of a continuous state branching

process with interaction

Zenghu Li1, Étienne Pardoux∗2, Anton Wakolbinger3

Abstract

For a generalized continuous state branching process with non-vanishing diffusion
part, finite expectation and a directed (“left-to-right”) interaction, we construct the
height process of its forest of genealogical trees. The connection between this height
process and the population size process is given by an extension of the second Ray–
Knight theorem. This paper generalizes earlier work of the two last authors which
was restricted to the case of continuous branching mechanisms. Our approach is
different from that of Berestycki et al. [3]. There the diffusion part of the population
process was allowed to vanish, but the class of interactions was more restricted.

Keywords Continuous state branching process, Population dynamics with interaction,
Genealogy, Height process of a random tree

AMS Subject Classification Primary 60J80; 60J25; 60H10; Secondary 92D25

1 Introduction

The most general continuous state branching processes (CSBP’s) are solutions of SDEs of
the form

Zx
t = x+ γ

∫ t

0

Zx
r dr +

√
2β

∫ t

0

∫ Zx
r

0

W (dr, du) +

∫ t

0

∫ Zx
r−

0

∫ 1

0

zM̃ (dr, du, dz)

+

∫ t

0

∫ Zx
r−

0

∫ ∞

1

zM(dr, du, dz), t ≥ 0,

(1.1)

where W (dr, du) is a space–time white noise, M(dr, du, dz) is a Poisson Random Mea-

sure (PRM) on (0,+∞)3 with intensity dr du π(dz) and M̃(dr, du, dz) = M(dr, du, dz) −
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dr du π(dz). The σ–finite measure π is assumed to be such that (z2 ∧ 1)π(dz) is a finite
measure on (0,∞).

We shall assume in this paper that

(1.2) β > 0,

∫ ∞

0

(z2 ∧ z)π(dz) <∞.

The assumption β > 0 will be essential to obtain a new representation of the height process
(of a genealogical forest) that underlies (1.1), see Proposition 3.13 below. This approach,
using tools from stochastic analysis, will be the basis for a representation of H also in the
case with interaction, see (1.6). The second condition in (1.2) allows us to replace the drift
coefficient γ by −α := γ −

∫∞

1
zπ(dz), and to write the last two integrals in equation (1.1)

as a single integral with respect to M̃ , namely

Zx
t = x− α

∫ t

0

Zx
r dr +

√
2β

∫ t

0

∫ Zx
r

0

W (dr, du)

+

∫ t

0

∫ Zx
r−

0

∫ ∞

0

zM̃ (dr, du, dz), t ≥ 0.

(1.3)

Moreover, we shall consider a generalized CSBP, where the linear drift −αz is replaced by
a nonlinear drift f(z), which in general destroys the branching property, making Zx and
Zx+y − Zx dependent. Specifically, we consider the collection of SDE’s, indexed by x ≥ 0,

Zx
t = x+

∫ t

0

f(Zx
r )dr +

√
2β

∫ t

0

∫ Zx
r

0

W (dr, du)

+

∫ t

0

∫ Zx
r−

0

∫ ∞

0

zM̃(dr, du, dz), t ≥ 0.

(1.4)

We assume

(1.5) f ∈ C1(R+), f(0) = 0, f ′(z) ≤ θ, for all z ∈ R,

for some θ ∈ R. The two assumptions (1.2) and (1.5) will be assumed to hold throughout
this paper, and will not be repeated in the statements.

It follows from Theorem 2.1 in Dawson and Li [5] that equation (1.4) has a unique strong

solution. The introduction of the term
∫ t

0

∫ Zx
r

0
W (dr, du) to replace the more traditional∫ t

0

√
Zx

r dBr is due to [5]. Its motivation is to have a unified noise driving the equation for
all initial conditions x. In the case of linear f this provides a coupling for the CSBP’s with
different initial conditions. We retain that same coupling here.

Our motivation for considering the SDE (1.4) is to model large populations with a
specific form of interaction. It is shown in Dramé and Pardoux [7] that an appropriately
renormalized sequence of branching processes with interaction converges to the solution of
(1.4).

In this paper we want to describe the height process (Hs) of a forest of genealogical
trees of the population whose total mass process (Zx

t ) satisfies (1.4). We will always write
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s for the “exploration time” and t for the “real time”, so that Hs can be thought as the real
time at which an individual lives that is explored at time s. The basic building block for
the construction of H is a spectrally positive Lévy process X (see subsection 3.1), which
due to the assumption β > 0 has a Brownian component. The equations for H and the
accompanying Lévy process X , then with a drift, are

βHs =

∫ s

0

f ′(LHr(r))dr +
√
2βBs +

∫ s

0

∫ ∞

0

zÑ(dr, dz)− inf
0≤r≤s

Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu −Xr

)+

N(dr, dz) , s ≥ 0 ,

(1.6)

where Lt(s) stands for the local time accumulated by the process H at level t up to time s,

Xs =

∫ s

0

f ′(LHr(r))dr +
√
2βBs +

∫ s

0

∫ ∞

0

zÑ(dr, dz), s ≥ 0 ,(1.7)

B is a standard Brownian motion, N is a Poisson random measure on (0,+∞)2 with mean
measure dr π(dz) and Ñ(dr, dz) = N(dr, dz) − drπ(dz). We shall see that in the case
f(x) = −αx, α ≥ 0, our formula for H is equivalent to the formulas which appear in
Duquesne and Le Gall [8]. In the general case, we solve the SDE for H with the help of
Girsanov’s theorem. This change of measure introduces the “local time drift” that appears
also in (1.7) for X .

We note that (1.4) and (1.6) go along with a natural linear (left-to-right) ordering of
the (continuum of) individuals that are alive at time t, and corresponds to the ordering of
the exploration time s. This results in an individual interaction which acts in a directed
way, and is compatible with the global feedback of the population size on the population
growth that is described by the function f . E.g., for f(z) = −z2, the population Z1 will
experience less downward drift than the population Z2 − Z1 ; this is the effect of the
directed “trees under attack” dynamics that was the starting point in Le et al. [9] and
Pardoux and Wakolbinger [12] and was related to (1.4) by the same authors in [13]. The
present work thus extends previous work in case of continuous CSBPs, which started with
the logistic interaction f(z) = az − bz2 in [9] and [12], and then described more general
interactions in Ba and Pardoux [1] and in Pardoux [11].

The connection between the height process (Hs) and the population with total mass
(Zx

t ) will be given by an extension of the second Ray–Knight theorem, Theorem 4.9 below,
which roughly speaking says that if Lt(s) denotes the local time accumulated at level t
by the process H up to time s, and if Sx = inf{s > 0, L0(s) > x}, then {Lt(Sx), t ≥ 0}
solves the SDE (1.4). In fact, since we do not know a priori whether or not the process
H returns to 0 often enough such that its local time at 0 accumulates mass x (or in other
words whether Zx hits zero in finite time), we will rather consider the process H with an
additional drift ga which modifies the dynamics of H above an arbitrary level a > 0, and
insures that the process H return to 0 after any time s > 0. The intuitive reason why this
works is that, due to the fact that X has independent increments, and the properties of the
Poisson random measure N , the pieces of trajectories of H which accumulate local time
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at levels below a interact with the past of H only through the drift, which is a function of
the local time accumulated at the current level, so in particular it does not depend upon
the behavior of H while it takes values in (a,+∞) hence it does not depend upon the
additional drift ga. As a result, for fixed a, we have the Ray–Knight interpretation only
on the time interval [0, a]. In order to make sure that Girsanov’s theorem is applicable,
we start out by replacing f by a function fb which coincides with f on the interval [0, b],
while fb and f

′
b are bounded and the latter is also uniformly continuous. The limit b→ ∞

leads to a family of probability measures P
a, a > 0, which admits two projective limits:

one of the laws of (H,X) under Pa which gives a unique weak solution of (1.6), (1.7), the
other one of the laws of {Lt

x(Sx), 0 ≤ t ≤ a, x > 0} under Pa, which gives the Ray-Knight
representation of (1.4).

Berestycki, Fittipaldi and Fontbona [3] establish an extended Ray–Knight theorem in
the same situation as ours, except that, while they do not restrict themselves to the case
β > 0, their assumptions (in their Theorem 1.2) on the nonlinear interaction f are more
restrictive than our hypothesis (1.5): they assume that f (with f(0) = 0) is differentiable
and concave and has a non-positive and locally Lipschitz derivative. Their equation (1.5)
is the analogue to our equation (1.4), with the interaction term working “from left to
right” like in our setting. Their approach to the underlying tree–picture is, however, quite
different from ours. While they translate the competition type interaction (this follows
from the non positive assumption for f ′) into a pruning procedure on the forest of trees
corresponding to the CSBP, we consider the process H as the solution of an SDE, with a
drift which is f ′ evaluated at the local time of H at time s and at the level Hs. This is an
extension of the SDE for H in the case without jumps, as it appears e.g. in [1]. The new
difficulty is that each jump of Zx creates a new sub–forest of trees which must be explored.
As a result, H is not a Markov process. It should remember at which level (i.e. time for
the process Zx) a forest of trees for a certain mass of population was created, and that
sub–forest should be completely explored, before the height process is allowed to go below
that level.

We shall need to consider local times of processes which are not necessarily continuous
semi–martingales. This will extend the following definition: If Y is a continuous semi–
martingale, we shall denote by La(s, Y ), or La(s) if there is no risk of ambiguity, the local
time accumulated by the process Y at level a up to time s, in the sense that it satisfies

(1.8) La(s, Y ) = lim
ε→0

1

ε

∫ s

0

1[a,a+ε](Yr)dr.

It then follows from the occupation times formula that for any Borel measurable
g : R → R+, ∫ s

0

g(Yr)dr =

∫ ∞

−∞

g(a)La
sda.

Our approach to the interactive case is built upon a fresh look at the height processes
H constructed by Duquesne and Le Gall [8], for general CSBP’s. We will give a new
representation of H which allows for an extension to the interactive case, including the
corresponding Ray-Knight representation of the solution Zx of (1.4).
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As a matter of fact, a large part of the present paper is concerned with the linear
(CSBP) case, i.e. the case where Zx solves (1.3). In this case, thanks to the assumption
β > 0, the height process obeys (see formula (1.4) in [8])

(1.9) βHs = |{Xs

r; 0 ≤ r ≤ s}|,

where X
s

r := infr≤u≤sXu and |A| denotes the Lebesgue measure of the set A. The first
step of our work will consist in reinterpreting that formula, in a form which will allow the
generalization to a nonlinear function f (i. e. to the case of interaction).

The paper is organized as follows. Section 2 is very short. It makes precise some
properties of the space–time random field {Zx

t , t ≥ 0, x ≥ 0}. Section 3 considers the
case without interaction. We first establish preliminary results that are necessary for
the definition of the non-Markovian term in our representation of the height process H ,
namely the non-compensated integral w.r.t. N which appears in equation (1.6). We
then study successively the cases π = 0 (no jumps), π finite, and finally the general case
where π satisfies (1.2), and establish the Ray–Knight theorem in a way which is tailored
for the subsequent extension to the interactive case. Section 4 considers the case with the
interaction f . We introduce the SDE forH which has a drift term that depends on the local
time accumulated at the current height. In order to prove the Ray-Knight representation
of the solution of (1.4) in terms of the local time of H , we again treat successively the
cases π = 0 (no jumps), π finite, and finally the general case where π satisfies (1.2).

2 The population sizes as a random field

The population size process {Zx
t , t, x ≥ 0} solving (1.4) is an R+–valued random field

indexed by t and x. For each fixed x > 0, {Zx
t , t ≥ 0} is a jump–diffusion Markov process.

The coupling for various values of x is specified by the two noises W and M̃ driving our
SDE, which are independent of the initial condition x. In the case of equation (1.3), for
any sequence 0 < x1 < x2 < · · · < xn, the increments Zx1, Zx2 − Zx1, . . . , Zxn − Zxn−1 are
mutually independent. In fact this is true both concerning the increments of the processes,
and the increments at some fixed value of t. This is the branching property. There is no
reason to believe that this independence (or equivalently, the so-called branching property)
still holds when f in (1.4) is non-linear. However, also in this case (Zx) turns out to be a
path-valued Markov process parametrized by x.

Proposition 2.1. Let {Zx
t , t, x ≥ 0} be the solution of the collection indexed by x of SDEs

(1.4). Then {Zx
t , t ≥ 0}x>0 is a D([0,+∞))–valued Markov process with parameter x.

Proof For x, y > 0, let V x,y
t := Zx+y

t −Zx
t . It is not hard to see that V x,y solves the SDE

V x,y
t =y+

∫ t

0

[f(Zx
r + V x,y

r )− f(Zx
r )]dr+

√
2β

∫ t

0

∫ V x,y
r

0

W (dr, Zx
r + du)

+

∫ t

0

∫ V x,y
r−

0

∫ ∞

0

zM̃ (dr, Zx
r + du, dz) ,

(2.1)
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where the pair of noises (W (dr, Zx
r + du), M̃(dr, Zx

r + du, dz)) is independent of {Zx′

, 0 <

x′ ≤ x} and has the same law as the pair (W, M̃). The independence property follows

from the fact that the restrictions of (W, M̃) to disjoint sets are independent. Since the
time dependent drift v 7→ f(Zx

r + v)− f(Zx
r ) is a function of Zx, and the noise terms are

functions of both the solution V x,y and noises which are independent of {Zx′

, 0 < x′ ≤ x},
we conclude that the condition law of V x,y given {Zx′

, 0 < x′ ≤ x} is a function of Zx.
The result follows. �

3 The case without interaction

Our starting point in this section will be the case f(x) = −αx, α ≥ 0 in (1.4), with a
CSBP Zx solving (1.3), and the corresponding Lévy process X . First we recall some basic
facts about the latter.

3.1 The Lévy process X

The branching mechanism of the CSBP Zx solving (1.3) is given as

(3.1) ψ(λ) = αλ+ βλ2 +

∫ ∞

0

(e−λz − 1 + λz)π(dz).

The Laplace transform of the associated Lévy process X is given as

(3.2) E (exp(−λXs)) = exp(sψ(λ)), s, λ ≥ 0,

with characteristic exponent ψ = ψα,β,π given by (3.1). Our assumptions on β and π have
been formulated in (1.2).

Let B be a standard Brownian motion, N be a Poisson random measure on (0,+∞)2

with mean measure ds π(dz), where π satisfies (1.2), and let Ñ denote the compensated
measure Ñ(dr, dz) = N(dr, dz)− drπ(dz). Then X has the representation

(3.3) Xs = −αs+
√

2βBs +

∫ s

0

∫ ∞

0

zÑ(dr, dz), s ≥ 0.

For part of our results, we will assume that X does not drift to +∞, which in the presence
of condition (1.2) is equivalent to

(3.4) − α = E(X1) ≤ 0.

We note that our standing assumption β > 0 implies that

(3.5)

∫ ∞

1

dλ

ψ(λ)
<∞.

Indeed, since e−λz − 1 + λz ≥ 0, we have ψα,β,π(λ) ≥ ψα,β,0(λ) = αλ+ βλ2.
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Property (3.5) implies continuity of the height process H even in the case β = 0, see
Duquesne and Le Gall [8], Theorem 1.4.3. In particular, for the case β > 0 considered in
the present work, the height process H , which is then given by (1.9), is continuous.

For the remainder of this section we assume that (3.4) holds, so that the Lévy process
X hits −x in finite time a.s., for any x > 0. We are now going to establish properties of X
which will be essential for our representation of the height process. In the next statement,
we shall write

∫ b

a
to mean

∫
(a,b]

, except when b = ∞, in which case
∫∞

a
=
∫
(a,∞)

.

Proposition 3.1. For any s > 0, 0 ≤ a < b ≤ ∞, we have

E

∫ s

0

∫ b

a

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz) = E

∫ s

0

dr

∫ b

a

(z + inf
0≤u≤r

Xu)
+π(dz).

Proof First step : π(0,∞) < ∞. In this case, we can write N =
∑∞

i=1 δ(Ri,Zi), where
0 < R1 < R2 < · · · are stopping times. Let Fs = σ{Xr, 0 ≤ r ≤ s}. Since Zi is
FRi

–measurable, we have

E

∫ s

0

∫ b

a

(z+ inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

=

∞∑

i=1

E

[
1{Ri≤s,a<Zi≤b}(Zi + inf

Ri≤u≤s
Xu −XRi

)+
]

=
∞∑

i=1

E

[
1{Ri≤s,a<Zi≤b}E

{
(Zi + inf

Ri≤u≤s
Xu −XRi

)+
∣∣∣FRi

}]

=

∞∑

i=1

E

[
1{Ri≤s,a<Zi≤b}E

{
(z + inf

Ri≤u≤s
Xu −XRi

)+
∣∣∣FRi

} ∣∣∣
z=Zi

]

=
∞∑

i=1

E

[
1{Ri≤s,a<Zi≤b}E

{
(z + inf

0≤u≤s−r
Xu)

+

} ∣∣∣
r=Ri,z=Zi

]

= E

∫ s

0

∫ b

a

E

[
(z + inf

0≤u≤s−r
Xu)

+

]
N(dr, dz)

=

∫ s

0

dr

∫ b

a

E

[
(z + inf

0≤u≤s−r
Xu)

+

]
π(dz)

=

∫ s

0

dr

∫ b

a

E

[
(z + inf

0≤u≤r
Xu)

+

]
π(dz),

where we have used the strong Markov property of Xs for the 4th equality.
Second step : the general case. This step is necessary only in the case a = 0, which
we now assume. It follows from the first step that for any k ≥ 1,

E

∫ s

0

∫ b

1/k

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz) = E

∫ s

0

dr

∫ b

1/k

(z + inf
0≤u≤r

Xu)
+π(dz).
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We can take the limit in that identity as k → ∞, thanks to the monotone convergence
theorem applied to the two expressions. �

Lemma 3.2. For any s, x > 0, we have, with c = (1− e−1)−1

P

(
− inf

0≤r≤s
Xr ≤ x

)
≤
(

c√
βs
x

)
∧ 1.

Proof Let

Tx = inf

{
s > 0, inf

0≤r≤s
Xr < −x

}
.

Translating Theorem VII.1 from Bertoin [4] written for spectrally negative Lévy processes
into a statement for spectrally positive Lévy processes, we deduce that {Tx, x ≥ 0} is a
subordinator with the Laplace transform

Ee−λTx = e−xΦ(λ),

where Φ = ψ−1 is the inverse of the Laplace exponent ψ.
Combining the Markov inequality applied to the increasing function y → 1 − e−y and

the inequality 1− e−y ≤ y, we get

P

(
− inf

0≤r≤s
Xr ≤ x

)
= P(Tx > s)

≤ (1− e−1)−1
E
(
1− e−Tx/s

)

= (1− e−1)−1
(
1− e−xΦ(1/s)

)

≤ (1− e−1)−1Φ(1/s)x.

As we have already noted, ψα,β,π(λ) ≥ ψα,β,0(λ) = αλ + βλ2 ≥ βλ2 since α ≥ 0 (see

our assumption (3.4)). Consequently Φ(u) ≤
√
u/β and Φ(1/s) ≤ (βs)−1/2. The result

follows. �

Proposition 3.3. For any s, z > 0, we have with the constant c from Lemma 3.2

E

[
(z + inf

0≤r≤s
Xr)

+

]
≤
(

c

2
√
βs
z2
)
∧ z.

Proof It is plain that

E

[
(z + inf

0≤r≤s
Xr)

+

]
=

∫ z

0

P

(
z + inf

0≤r≤s
Xr ≥ x

)
dx

=

∫ z

0

P

(
− inf

0≤r≤s
Xr ≤ z − x

)
dx

=

∫ z

0

P

(
− inf

0≤r≤s
Xr ≤ x

)
dx.

The result now follows from Lemma 3.2. �

Next we establish the
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Proposition 3.4. Under condition (3.4), for any s > 0 and 0 ≤ a < b ≤ ∞,

E

∫ s

0

dr

∫ b

a

(z + inf
0≤u≤r

Xu)
+π(dz) ≤ C(s)

∫ b

a

(z ∧ z2)π(dz),

with C(s) = (c
√
s/β) ∨ s and c = e/(e− 1).

Proof We deduce from Proposition 3.3 and Fubini’s Theorem that

E

∫ s

0

dr

∫ b

a

(z + inf
0≤u≤r

Xu)
+π(dz) ≤

∫ b

a

π(dz)

∫ s

0

(
c

2
√
βr
z2
)
∧ z dr,

from which the result follows. �

We now deduce readily from Propositions 3.1 and 3.4

Corollary 3.5. For any s > 0 and 0 ≤ a < b ≤ ∞ we have, with C(s) as in Proposition
3.4,

E

∫ s

0

∫ b

a

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz) ≤ C(s)

∫ b

a

(z ∧ z2)π(dz).

Remark 3.6. By Proposition 3.1 and 3.4, the process

s 7→ Us :=

∫ s

0

∫ ∞

0

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

is well defined. In particular, if π is a finite measure, the process U has only finitely many
jumps on each bounded interval, so it has a right–continuous modification. We shall from
now on only consider such a modification. In the general case (1.2), the existence of a
right–continuous modification will follow from the fact that X is right–continuous and H
is continuous, see Proposition 3.13.

Note however that, if the measure π obeys
∫ 1

0
z π(dz) = ∞, then the process U has

infinite variation. Indeed, the contribution of the total variation of U on the interval [r, s]
induced by a jump of size z of X at some time r′ ∈ (r, s) is bounded from below by z and
from above by 2z. Consequently the total variation TVU([r, s]) of U on the interval [r, s]
satisfies ∫ s

r

∫ ∞

0

zN(dr, dz) ≤ TVU([r, s]) ≤ 2

∫ s

r

∫ ∞

0

zN(dr, dz).

It follows from well–known properties of Poisson random measures that
∫ s

r

∫∞

0
zN(dr, dz) =

+∞ a.s., unless
∫∞

0
(z ∧ 1)π(dz) <∞.

3.2 The case π = 0

In this subsection we assume that the Lévy process X is continuous, i.e.

Xs = −αs+
√

2βBs, s ≥ 0.

9



Proposition 3.7. In the case π = 0, we have

Hs =
1

β

(
Xs − inf

0≤r≤s
Xr

)
, s ≥ 0.

Proof This result follows readily from (1.9), since r → X
s

r is continuous and increases
from inf0≤r≤sXr to Xs. �

In this case, H is a drifted Brownian motion reflected above 0, and thus a fortiori a
continuous semi-martingale. The next proposition states the second Ray–Knight theorem
for this particular case. Let us define Lt(s) = Lt(s,H) and

(3.6) Sx = inf{s > 0, L0(s,H) > x}.

Proposition 3.8. The process {Lt(Sx), t ≥ 0} is a CSBP with branching mechanism
ψα,β,0, starting from x at time t = 0.

Proof This is classical, see e.g. Revuz and Yor [16] Chapter XI §2, and Theorem 5.1 in
Ba, Pardoux, Sow [2] for an identification of the constants in our case. �

Remark 3.9. We note that the scaling of the local time of H is such that Lt(s,H) =
β
2
Lt(s,H), where Lt(s,H) is the semi–martingale local time as defined in Revuz and Yor

[16] (see Corollary VI.1.9, page 227). Then, from the Tanaka formula, see Theorem VI.1.2
page 222 in [16], and Proposition 3.7, we have

Hs =

∫ s

0

1Hr>0dHr +
1

β
L0(s,H)

=
1

β
Xs +

1

β
L0(s,H).

The second equality can be justified as follows. Proposition 3.7 tells that

β dHs = dXs + d(− inf
r≤s

Xr).

However it is plain that
1Hs>0 d(− inf

r≤s
Xr) = 0,

since infr≤sXr decreases only when Hs = 0. Consequently

β

∫ s

0

1Hr>0dHr =

∫ s

0

1Hr>0dXr = Xs,

since 1Hr>0 = 1 for Lebesgue-a.a. r and X is a drifted Brownian motion. We note in
particular that L0(s,H) = − inf0≤r≤sXr, which is Lévy’s correspondence between the local
time of a reflected BM at the origin and the current minimum of a BM.

10



3.3 The case of finite π

We now suppose that π is a finite measure. In that case, in view of condition (1.2), zπ(dz)
is also a finite measure, and if we let

α′ = α +

∫ ∞

0

zπ(dz),

we have that

(3.7) Xs =
√
2βBs + Ps − α′s,

where

(3.8) Ps =

∫ s

0

∫ ∞

0

zN(dr, dz), s ≥ 0,

is a compound Poisson process.
Recall the notation introduced in (1.9). We note that [0, s] ∋ r 7→ X

s

r is increasing.
Denote by ∆X

s

r its possible jump at time r. It follows readily from (1.9) that

(3.9) βHs = Xs −X
s

0 −
∑

0≤r≤s

∆X
s

r ,

which we rewrite as

(3.10) βHs = Xs − inf
0≤r≤s

Xr −
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
(Xu −Xr)

)+

N(dr, dz),

hereby using the equality

(3.11)

∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
(Xu −Xr)

)+

N(dr, dz) =
∑

0≤r≤s

∆X
s

r.

As observed in Remark 3.6, the third term on the right-hand side of (3.10) has only finitely
many jumps on each bounded interval and its jumps compensate those of the process X .
This shows that H is continuous. The fact that the last term in (3.10) has bounded
variation shows that H is a semi–martingale. We have thus proved

Proposition 3.10. If the Lévy process X is given by (3.7) and (3.8) with π finite, then
the associated height process H is given by (3.10), and it is a continuous semi–martingale.

Recall that the second term on the right of (3.10) reflects the process above 0. We will
explain in words what the third term in (3.10) does. For that purpose, we need to define
for 0 ≤ r ≤ s

X̃r
s = Xs − inf

0≤r≤s
Xr −

∫ r

0

∫ ∞

0

(
z + inf

u≤v≤r
(Xv −Xu)

)+

N(du, dy),

11



which is the same as βHs, except that we have stopped the third term at time r. At each
jump time r of X , draw a piece of horizontal line which starts from (r, βHr), and extends
to r+ := inf{s > r, X̃r

s ≤ βHr}. Then pull down X̃r
r to X̃r

r−, and reflect the piece of

trajectory of {X̃r
u, r ≤ u ≤ r+} above the level of X̃r

r−, that is above the “horizontal stick”

which extends from (r, X̃r
r−) to (r+, X̃r

r+).
We are now going to give a new derivation of the Ray–Knight theorem in this case,

since our proof of the corresponding result in the case with interaction will be based upon
the same argument.

Let X be the Lévy process given by (3.2), started in 0 and stopped at the time Sx

when first hitting −x. Let the height process H of X be given by (1.9) (or equivalently by
(3.9)), and Lt(s) be the local time accumulated by H at height t between times 0 and s.

Proposition 3.11. The process {Lt(Sx), t ≥ 0} is a CSBP with branching mechanism
ψ := ψα,β,π, starting from x at time t = 0.

Proof Let us first recall how we can construct X and Sx iteratively from (pieces of)
drifted Brownian motions together with (atoms of) the Poisson process Π with intensity
ds π(dz). For y > 0 let By be a BM with drift α −

∫∞

0
zπ(dz) started in y and stopped

when first hitting 0; let us denote this hitting time by S(By).

The first step in the iteration isX(0) := −x+Bx. Let S
(0)
x be the time at which X(0) first

hits −x; note that S(0)
x = S(Bx). Consider a Poisson process Π0 on [0, S

(0)
x ]× (0,+∞) with

intensity ds π(dz). Denote the points of Π0 by (si, zi)1≤i≤J . If J = 0, the iteration stops
at step 0. Otherwise each atom (si, zi) gives rise to the injection of a path Bzi (defined
on an interval of length S(Bzi)) into X(0) as described below for Bzm . Each piece By that
is injected in the k-th iteration is defined on some interval I, and gives rise to a Poisson
process on I × R+, whose points in turn give rise to new injected pieces. This procedure
terminates after finitely many steps, ending in X .

Letm ∈ {1, . . . , J} be such thatH
(0)
sm = min{H(0)

si : 1 ≤ i ≤ J}. Given that S(Bzm) = s̃,
take a Poisson process Π̃1 with intensity measure ds π(dz) on [sm, sm + s̃] × R+. Then
transport Π0 into Π̃0 by keeping each point (si, zi) with si < sm as it is, and shifting each
point (si, zi) with si > sm into (si + s̃, zi). Put Π1 := Π̃0 + Π̃1, and keep iterating.

Let H(0) be the height process of X(0), given by (3.9) with X(0) instead of X . Inject
Bzm into X(0), by defining

X(1)
s =





X
(0)
s , for 0 ≤ s ≤ sm,

X
(0)
sm +Bzm

s−sm , for sm ≤ s ≤ sm + S(Bzm),

X
(0)
s−S(Bzm ) , for sm + S(Bzm) < s ≤ S

(0)
x + S(Bzm) =: S

(1)
x .

Let H(1) be the height process of X(1), given by (3.9) with X(1) instead of X . We note

that H
(1)
sm = H

(1)
sm+S(Bzm ) = H

(0)
sm , and that (with T1 := H

(0)
sm ) we have LT1(H(1), S

(1)
x ) =

LT1(H(0), S
(0)
x ) + zm.

A key observation is that the reflection of H below T1 equals the reflection of H(0)

below T1, and that Lt(H,Sx) = Lt(H(0), S
(0)
x ) for 0 ≤ t < T1, L

T1(H,Sx) = LT1(H(1), S
(1)
x ).

12



Consequently, on {t < T1} we have Lt(H,Sx) = Lt(H(0), S
(0)
x ). The height of the lowest

jump of the local time of H is T1, which is measurable with respect to (X(0),Π0). By the
classical Ray-Knight theorem (Proposition 3.8), Lt(H,Sx) follows before its first jump the
dynamics of a subcritical Feller branching diffusion. Moreover,

P(T1 > t|X(0)) = exp

(
−π(R+)

∫ S
(0)
x

0

1
{H

(0)
s ≤t}

ds

)

= exp

(
−π(R+)

∫ t

0

Lv(H(0), S(0)
x )dv

)
,

which shows that the first jump T1 of {Lt(Sx), t ≥ 0} comes at rate π(R+)L
t(Sx)dt, since∫ t

0
Lv(H(0), S

(0)
x )dv =

∫ t

0
Lv(H,Sx)dv when t < T1. Also, its size has distribution π/π(R+).

Thus, up to and including T1, {Lt(Sx), t ≥ 0} is a CSBP with branching mechanism ψ.

Proceeding in the same manner from T1 = H
(1)
sm upwards, we arrive at our assertion. �

3.4 The general case

3.4.1 The height process

We now consider the general case, that is π satisfies (1.2). Consequently, for any ε > 0,
π(ε,∞) <∞. We define πk(dz) = 1(εk,∞)(z)π(dz), where εk is a sequence of positive reals
which decreases to 0, and

ψk = ψα,β,πk
.

The corresponding Lévy process Xk admits the Lévy–Itô decomposition

Xk
s = −αs+

√
2βBs +

∫ s

0

∫ ∞

εk

zÑ (dr, dz)

= −(α +

∫ ∞

εk

zπ(dz))s +
√

2βBs +

∫ s

0

∫ ∞

εk

zN(dr, dz).

The last term in the right–hand side is a compound Poisson process. We have

Lemma 3.12. As k → ∞, Xk
s → Xs in L1(Ω), locally uniformly with respect to s.

Proof It is plain that

E

[
sup
0≤r≤s

|Xr −Xk
r |
]
≤
(
E

[
sup
0≤r≤s

∣∣∣∣
∫ r

0

∫ εk

0

zÑ(du, dz)

∣∣∣∣
2
])1/2

≤ 2

√
s

∫ εk

0

z2π(dz)

→ 0,

13



as k → ∞, where we have used Doob’s inequality. The result follows. �

Thanks to Proposition 3.10, the height process Hk associated to the Lévy process Xk

is given by

(3.12) βHk
s = Xk

s − inf
0≤r≤s

Xk
r −

∫ s

0

∫ ∞

εk

(z + inf
r≤u≤s

Xk
u −Xk

r )
+N(dr, dz).

Under our standing assumption (1.2) we have

Proposition 3.13. For any s ≥ 0, Hk
s → Hs in probability, where H is given by either of

the formulas (3.10), (3.9) or (1.9), and is continuous.

Proof Lemma 3.12 implies thatXk
s−inf0≤r≤sX

k
r → Xs−inf0≤r≤sXr in probability, locally

uniformly in s. We now consider the last term in (3.12) and prove pointwise convergence.
It follows from Corollary 3.5 with a = 0 and b = εk that

E

∫ s

0

∫ εk

0

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz) ≤ C(s)

∫ εk

0

(z ∧ z2)π(dz),

which clearly tends to 0, as k → ∞. From an adaptation of the argument of Proposition
3.1, we deduce that

E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu −Xr))
+ − (z + inf

r≤u≤s
(Xk

u −Xk
r ))

+

∣∣∣∣N(dr, dz)

= E

∫ s

0

dr

∫ ∞

εk

∣∣∣∣(z + inf
0≤u≤r

Xu)
+ − (z + inf

0≤u≤r
Xk

u)
+

∣∣∣∣π(dz)

≤ E

∫ s

0

dr

∫ ∞

εk

{(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+

∧
∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣

}
π(dz),

hence

E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu −Xr))
+ − (z + inf

r≤u≤s
(Xk

u −Xk
r ))

+

∣∣∣∣N(dr, dz)

≤
∫ s

0

dr

∫ ∞

εk

E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+
]

∧ E

∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣π(dz).

(3.13)

We deduce from Lemma 3.12 that

(3.14) E

∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣→ 0,
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as k → ∞. Arguing as in the proof of Proposition 3.3, we obtain

E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+
]

=

∫ z

0

P

(
−
[

inf
0≤u≤r

Xu ∨ inf
0≤u≤r

Xk
u

]
≤ x

)
dx

≤
∫ z

0

[
P

(
− inf

0≤u≤r
Xu ≤ x

)
+ P

(
− inf

0≤u≤r
Xk

u ≤ x

)]
dx

≤ c

[
Φ

(
1

r

)
+ Φk

(
1

r

)]
z2 ≤ c√

βs
z2.

It is plain that the left hand side in the previous chain of inequalities is dominated by z,
hence we have proved that

(3.15) E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+
]
≤
(

c√
βr
z2
)
∧ z.

The right–hand side of (3.15) is dr×π(dz) - integrable over [0, s]× (0,∞) for any s > 0. It
then follows from (3.14) and the dominated convergence theorem that the left–hand side of
(3.13) tends to 0 as k → ∞. We can now take the limit in (3.12), yielding the convergence.

It is clear that (3.11) still holds in the general situation, which re–establishes the for-
mulas (3.9) and (1.9). From (3.9) the continuity of H is essentially clear, as claimed in [8].
Let us give a quick explanation. The right continuity follows from the right continuity of
the three terms on the right of (3.9). The left continuity follows from that of the second
term, while the eventual jumps of the first and the third term compensate. �

Note that, under condition (3.5) which is weaker than β > 0, Duquesne and Le Gall
[8], Sec.1.4.3, prove that H is Hölder continuous. We shall not need that property.

We first prove

Lemma 3.14. For any s̄ > 0, there exists a random increasing function Ψ : [0, 1] 7→ R+

such that Ψ(h) ↓ 0 a.s. as h ↓ 0, and for any 0 ≤ s ≤ s̄, any 0 < h ≤ 1,

(Hk
s+h −Hk

s )− ≤ Ψ(h), ∀k ≥ 1.

Proof Since X is a Lévy process with only positive jumps, it is not hard to check by
contradiction that

ΦX(h) := sup
0≤r≤s̄,0≤s−r≤h

(Xs −Xr)−

is a.s. a continuous function of h on [0, 1] such that ΦX(0) = 0. Since Xk → X uniformly
in probability on [0, s̄], one obtains that ΦXk(h) → ΦX(h) in probability as k → ∞, for
any h > 0. Since each ΦXk is increasing and the limit is continuous, it follows from the
second Dini theorem, that the convergence in probability is uniform w.r.t. h ∈ [0, 1], see
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the statement 127 on page 81, and the proof on page 270 in Pólya and Szegö [14]. This
implies readily that

Ψ(h) := β−1

(
sup
k≥1

ΦXk(h) ∨ ΦX(h)

)
, h ≥ 0

is a.s. continuous in h, and Ψ(0) = 0.
Now, using (3.9) and abbreviating Y := Xk

β(Hk
s+h −Hk

s ) = Ys+h − Ys − Y
s+h

0 + Y
s

0 −
∑

0≤r≤s

(∆Y
s+h

r −∆Y
s

r)

−
∑

s<r≤s+h

∆Y
s+h

r

≥ Ys+h − Ys −
∑

s<r≤s+h

∆Y
s+h

r .

Since Ys+h −
∑

s<r≤s+h∆Y
s+h

r ≥ infs≤r≤s+h Yr, we conclude that

β(Hk
s+h −Hk

s ) ≥ inf
s≤r≤s+h

Yr − Ys,

and consequently
(Hk

s+h −Hk
s )− ≤ Ψ(h),

which proves the result. �

We now deduce from the two previous statements

Corollary 3.15. Under the above assumptions, Hk
s → Hs in probability, locally uniformly

w.r.t. s.

Corollary 3.15 is an immediate consequence of Proposition 3.13, Lemma 3.14, the fol-
lowing extension of the second Dini theorem, and the equivalence of convergence in proba-
bility and the fact that from any subsequence, one can extract a further subsequence which
converges a.s..

Lemma 3.16. Consider a sequence {gk, k ≥ 1} of functions from R+ into R and T > 0,
which are such that for any 0 ≤ t ≤ T , gk(t) → g(t), where g : [0, T ] 7→ R is continuous,
and supk≥1(gk(t+h)−gk(t))− → 0, as h→ 0. Then gk(t) → g(t) uniformly w.r.t. t ∈ [0, T ].

Proof Let ε > 0 be arbitrary. Since t 7→ g(t) is uniformly continuous on the compact
interval [0, T ], there exists η > 0 small enough such that whenever s, t ∈ [0, T ], 0 < t <
s < t + η,

|g(s)− g(t)| ≤ ε

3
,(3.16)

gk(s)− gk(t) ≥ −ε
3

for all k ≥ 1,(3.17)
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where the second inequality follows from our assumption on the sequence gk.
We next choose an integer N > T/η and 0 = t0 < t1 < · · · < tN = T such that

tj+1 − tj < η, for all 0 ≤ j < N − 1. We now choose kε large enough such that, for any
k ≥ kε, 1 ≤ j ≤ N ,

(3.18) |gk(tj)− g(tj)| ≤
ε

3
.

Now for any t ∈ [0, T ] either t = tj for some 1 ≤ j ≤ N (and then (3.18) ensures that
|gk(t)− g(t)| < ε), or else there exists 0 ≤ j < N such that tj < t < tj+1. In that case we
obtain, using successively (3.17), (3.18) and (3.16), the two following inequalities:

(i) gk(t) ≤ gk(tj+1) +
ε

3

≤ g(tj+1) +
2ε

3
≤ g(t) + ε,

(ii) gk(t) ≥ gk(tj)−
ε

3

≥ g(tj)−
2ε

3
≥ g(t)− ε.

The result clearly follows from those inequalities and the fact that ε > 0 is abitrary. �

3.4.2 The local time of the height process

Let Lt(s) denote the local time accumulated by the process H , defined by (3.9) or (3.10),
at level t up to time s. The existence of Lt(s) was established already in Duquesne and Le
Gall [8]. We shall give an independent definition of Lt(s), via an Itô–Tanaka formula for
(H − t)+, and prove some regularity.

Proposition 3.17. We have

β(Hs − t)+=

∫ s

0

1Hr>tdXr−
∫ s

0

∫ ∞

0

1Hr>t(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)+Lt(s),

where Lt(s) is for any s > 0, t ≥ 0 the local time accumulated by H at level t up to time
s, in the sense that it satisfies the occupation times formula.

The formula in the Proposition can be rewritten as

(3.19) Lt(s) = β(Hs − t)+−
∫ s

0

1Hr>tdXr +

∫ s

0

∫ ∞

0

1Hr>t(z+ inf
r≤u≤s

Xu −Xr)
+N(dr, dz).

The proof of Proposition3.17 will be based on a limiting procedure along the sequence Xk

of Lévy processes associated to πk(dz) = 1z>εkπ(dz). This gives us a construction of the
local time that is different from the construction in Duquesne and Le Gall [8], but leads to
the same result, as a consequence of the occupation time formula.
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Note that the corresponding height process Hk is a continuous semi–martingale, whose
local time is well-defined using the classical theory, see e.g. Chapter VI in Revuz and Yor
[16]. We have the formula, analogous to (3.19)

Lt
k(s) = β(Hk

s − t)+ −
∫ s

0

1Hk
r>tdX

k
r

+

∫ s

0

∫ ∞

εk

1Hk
r >t(z + inf

r≤u≤s
Xk

u −Xk
r )

+N(dr, dz).
(3.20)

Note that the formula would be different if Lt
k(s) were the “semi–martingale local time”,

as defined in [16]. In that case there would be a factor β
2
in front of the local time. Indeed,

after the division of the whole formula by β, we should find a factor 1
2
in front of the local

time, see the second formula in Theorem VI.1.2 in [16].
Before proving the above Proposition, let us establish a technical Lemma.

Lemma 3.18. For any s > 0,

sup
t>0, k≥1

ELt
k(s) <∞.

Proof We need to show successively

sup
t>0, k≥1

E(Hk
s − t)+ <∞,

sup
t>0, k≥1

E

∣∣∣∣
∫ s

0

1Hk
r>tdX

k
r

∣∣∣∣ <∞,

sup
t>0, k≥1

E

∫ s

0

∫ ∞

εk

1Hk
r>t(z + inf

r≤u≤s
Xk

u −Xk
r )

+N(dr, dz) <∞.

The first estimate is an easy exercise which we leave to the reader. The third one follows
readily from

∫ s

0

∫ ∞

εk

1Hk
r>t(z + inf

r≤u≤s
Xk

u −Xk
r )

+N(dr, dz) ≤
∫ s

0

∫ ∞

εk

(z + inf
r≤u≤s

Xk
u −Xk

r )
+N(dr, dz)

and Proposition 3.4. It remains to consider

∫ s

0

1Hk
r >tdX

k
r = −α

∫ s

0

1Hk
r >tdr +

√
2β

∫ s

0

1Hk
r>tdBr +

∫ s

0

1Hk
r>t

∫ ∞

εk

zÑ (dr, dz).

The first term on the right is bounded in absolute value by |α|s. We estimate the second
term using Cauchy–Schwartz

E

∣∣∣∣
∫ s

0

1Hk
r>tdBr

∣∣∣∣ ≤
√
s.
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Finally

E

∣∣∣∣
∫ s

0

1Hk
r>t

∫ ∞

εk

zÑ(dr, dz)

∣∣∣∣

≤ E

∣∣∣∣
∫ s

0

1Hk
r>t

∫ 1

εk

zÑ(dr, dz)

∣∣∣∣+ E

∣∣∣∣
∫ s

0

1Hk
r>t

∫ ∞

1

zÑ(dr, dz)

∣∣∣∣

≤
√
s

∫ 1

0

z2π(dz) + 2s

∫ ∞

1

zπ(dz).

The result follows. �

We now turn to the
Proof of Proposition 3.17 We first consider the case

∫∞

0
zπ(dz) <∞ (which certainly

applies to π(dz) := πk(dz) = 1z>εkπ(dz)). Then Hs is a continuous semi–martingale, and
the formula of our Proposition follows from Itô–Tanaka’s formula (see e.g. the second
identity in Theorem VI.1.2 in [16]), but with a different constant in front of the local
time, due to our definition (1.8). It is then crucial to note that whenever we have a point
(r, z) of the Point Process N such that Hr ≤ t, then until the first time s for which
z + infr≤u≤sXu −Xr = 0, the process u 7→ infr≤v≤uXv decreases only when Hu = Hr ≤ t,
hence the term 1Hr>t factorizes in the last integral.

We now take the limit along a sequence Xk associated to πk, thus establishing the
Itô–Tanaka formula in the general case.

From the occupation time formula, for any g ∈ C([0,∞)) with compact support

∫ ∞

0

g(t)Lt
k(s)dt =

∫ s

0

g(Hk
r )dr.

Clearly
∫ s

0
g(Hk

r )dr →
∫ s

0
g(Hr)dr as k → ∞. Denote by Rt(s) (resp. Rt

k(s)) the right–
hand side of (3.19) (resp. of (3.20)). The Proposition will clearly follow from

sup
t>0

E
∣∣Rt(s)− Rt

k(s)
∣∣→ 0, as k → ∞.

In other words, all we have to show is that, as k → ∞,

sup
t>0

E
∣∣(Hs − t)+ − (Hk

s − t)+
∣∣→ 0,(3.21)

sup
t>0

E

∣∣∣∣
∫ s

0

1Hr>tdXr −
∫ s

0

1Hk
r>tdX

k
r

∣∣∣∣→ 0,(3.22)

sup
t>0

E

∣∣∣
∫ s

0

∫ ∞

0

1Hr>t(z+ inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

−
∫ s

0

∫ ∞

εk

1Hk
r>t(z+ inf

r≤u≤s
Xk

u −Xk
r )

+N(dr, dz)
∣∣∣→ 0.

(3.23)
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Since x → (x − t)+ is continuous, (3.21) follows from Corollary 3.15 and the uniform
integrability of the sequence Hk

s . We next establish (3.23). We argue similarly as in the
proof of Proposition 3.13.

E

∣∣∣∣∣

∫ s

0

∫ ∞

0

1Hr>t(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

−
∫ s

0

∫ ∞

εk

1Hk
r>t(z + inf

r≤u≤s
Xk

u −Xk
r )

+N(dr, dz)

∣∣∣∣∣

≤ E

∫ s

0

∫ εk

0

1Hr>t(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

+ E

∫ s

0

∫ ∞

εk

∣∣∣1Hr>t(z + inf
r≤u≤s

(Xu −Xr))
+

− 1Hk
r>t(z + inf

r≤u≤s
(Xk

u −Xk
r ))

+
∣∣∣N(dr, dz).

The first term on the right is bounded from above by the same term without the factor
1Hr>t, which tends to 0 as k → ∞ thanks to Corollary 3.5. We now estimate the second
term.

E

∫ s

0

∫ ∞

εk

∣∣∣∣1Hr>t(z + inf
r≤u≤s

(Xu −Xr))
+ − 1Hk

r>t(z + inf
r≤u≤s

(Xk
u −Xk

r ))
+

∣∣∣∣N(dr, dz)

≤ E

∫ s

0

∫ ∞

εk

∣∣1Hr>t − 1Hk
r>t

∣∣ (z + inf
r≤u≤s

(Xu −Xr))
+N(dr, dz)

+ E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu −Xr))
+ − (z + inf

r≤u≤s
(Xk

u −Xk
r ))

+

∣∣∣∣N(dr, dz)

The first term on the right hand side of the last inequality tends to zero by dominated
convergence, while the convergence to zero of the second term was proved in Proposition
3.13. In order to finally establish (3.22), we first note that

∫ s

0

1Hr>tdXr−
∫ s

0

1Hk
r>tdX

k
r =

∫ s

0

[
1Hr>t − 1Hk

r >t

]
dXr+

∫ s

0

1Hk
r>t

∫ εk

0

zÑ(ds, dz).

The sup in t of the expectation of the second term on the right tends to zero since

E

[(∫ s

0

1Hk
r>t

∫ εk

0

zÑ(ds, dz)

)2
]
≤ s

∫ εk

0

z2π(dz)

→ 0, as k → ∞.

Concerning the first term, all we need to do is to use the same decomposition and the same
kind of estimates as used in the proof of Lemma 3.18, combined with the following

(3.24) sup
t>0

E

∫ s

0

∣∣1Hr>t − 1Hk
r>t

∣∣ dr → 0, as k → ∞.
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In order to prove (3.24), we note that for any ε > 0,

E

∫ s

0

∣∣1Hr>t − 1Hk
r>t

∣∣ dr ≤
∫ s

0

P(|Hr −Hk
r | > ε)dr + E

∫ s

0

1{t−ε≤Hk
r≤t+ε}dr

=

∫ s

0

P(|Hr −Hk
r | > ε)dr + E

∫ t+ε

t−ε

Lu
k(s)du.

The first term on the right does not depend upon t and tends to 0 as k → ∞ as a
consequence of Corollary 3.5, while the second term is dominated by

2ε sup
t>0, k≥1

Lt
k(s).

Hence (3.24) follows from Lemma 3.18 and the fact that ε > 0 is arbitrary. The Proposition
is established. �

We have in fact proved

Corollary 3.19. For any t, s > 0, as k → ∞,

Lt
k(s) → Lt(s) in probabiity.

We next establish

Lemma 3.20. The local time Lt(s) is continuous in s, for all t ≥ 0.

Proof An argument very similar to that at the end of the proof of Proposition 3.13 yields
the continuity of the map s 7→ β(Hs− t)+−Lt(s), while the same Proposition implies that
s 7→ β(Hs − t)+ is continuous. The result follows. �

Before proving the next Proposition, we show a uniform Lp-bound for the (approximat-
ing) local time(s), up to the time of the first big jump of X . To prepare this, we first fix
k ≥ 1 and s > 0, and consider the process

At =

∫ s

0

∫ εk

0

1Hr≤tzÑ (dr, dz).

Let Gt denote the σ–algebra generated by the random variables

(3.25) Ig =

∫ s

0

∫ εk

0

g(r, z) zÑ(dr, dz),

where g is bounded and P ⊗ B+ measurable (P stands for the σ–algebra of predictable
subsets of Ω× R+) and satisfies {g(r, z) = 0} ⊃ {Hr > t}. We first establish

Lemma 3.21. The process {At : t ≥ 0} is a (Gt)–martingale.

Proof It suffices to verify that E[(At′ − At)Ig] = 0 for t < t′ and any g as above, where
Ig is defined by (3.25). This, however, is obvious. �

For K > 0, let τK be the time of the first jump of X of size greater than or equal to
K. We shall need the

21



Lemma 3.22. For any p ≥ 1, s > 0, K > 0, there exists a constant C which depends only
on those three parameters, such that

sup
t≥0

E[Lt(s ∧ τK)p] ≤ C,

sup
t≥0,k≥1

E[Lt
k(s ∧ τK)p] ≤ C.

Proof We shall prove the first inequality only. The second one is proved in exactly the
same way. Since Hs and L

t(s) are continuous in s, we can rewrite their expressions (3.10)
and (3.19) as

βHs = Xs− − inf
0≤r<s

Xr −
∫ s−

0

∫ ∞

0

(z + inf
r≤u<s

Xu −Xr)
+N(dz, dr),

Lt(s) = β(Hs − t)+−
∫ s−

0

1Hr>tdXr +

∫ s−

0

∫ ∞

0

1Hr>t(z+ inf
r≤u<s

Xu −Xr)
+N(dr, dz).

We first note that, since 1[0,K](z)(z
2 ∧ zp) is π–integrable for all p ≥ 1, one can easily show

that for all p ≥ 1, K > 0, s > 0, there exists a constant Cp,K,s such that

(3.26) E

(
sup

0≤r<s∧τK

|Xr|p
)

≤ Cp,K,s.

We now estimate the last term in the above right hand side. It is clear that (the second
inequality follows by combining βHs ≥ 0 with the above identity)

∫ s−

0

∫ ∞

0

1Hr>t(z+ inf
r≤u<s

Xu −Xr)
+N(dr, dz) ≤

∫ s−

0

∫ ∞

0

(z+ inf
r≤u<s

Xu −Xr)
+N(dr, dz)

≤ Xs− − inf
0≤r<s

Xr

≤ 2 sup
0≤r<s

|Xr|.

Next we observe that

β(Hs − t)+ ≤ βHs ≤ Xs− − inf
0≤r<s

Xr

≤ 2 sup
0≤r<s

|Xr|.

From the last two inequalities,

β(Hs∧τK − t)+ +

∫ (s∧τK)−

0

∫ ∞

0

1Hr>t(z+ inf
r≤u<s

Xu −Xr)
+N(dr, dz)

≤ 4 sup
0≤r<s∧τK

|Xr|.
(3.27)
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We now consider the second term

−
∫ s−

0

1Hr>tdXr = −
√

2β

∫ s

0

1Hr>tdBr −
∫ s−

0

∫ ∞

0

1Hr>tzÑ(dr, dz).

The p–th absolute moment of the first term on the right is easy to estimate, since by the
Burkholder–Davis–Gundy inequality,

(3.28) E

(∣∣∣∣
∫ s

0

1Hr>tdBr

∣∣∣∣
p)

≤ Cps
p/2.

We finally estimate the p–th absolute moment of the last term. Let Ys =∫ s

0

∫∞

0
1Hr>tzÑ(dr, dz). We first note that

(3.29) |Y(s∧τK)−| ≤ sup
r≤s

∣∣∣∣
∫ r

0

∫ K

0

1Hu>tzÑ (du, dz)

∣∣∣∣ .

Newt we use the Burkholder–Davis–Gundy inequality for possibly discontinuous martin-
gales, see e.g. Theorem IV.48 in Protter [15], which yields

E

(
sup
r≤s

∣∣∣∣
∫ r

0

∫ K

0

1Hu>tzÑ (du, dz)

∣∣∣∣
p)

≤ cpE

[(∫ s

0

∫ K

0

z2N(du, dz)

)p/2
]
.(3.30)

The result follows from a combination of (3.26), (3.27), (3.28), (3.29), (3.30) and the fact
that if N is a Poisson random measure with mean measure ν and f ∈ L1(ν)∩L∞(ν), then
all moment of N(f) are finite. The last statement can be deduced from the fact that the
k–th cumulant of N(f) is given as κk(N(f)) =

∫
fkdν, which is easy to verify for any step

function f .
Just as the reflection ofH above zero leads to L0(s) > L0−(s) = 0, the process t→ Lt(s)

is discontinuous, due to the fact that the jumps of X create accumulations of local time of
H at certain level. The points of discontinuity of t→ Lt(s) are of course at most countable.
They can be described as follows : Let

Ns := {0 ≤ r ≤ s; N({r} × R+) > 0}

be the projection onto the s-axis of the support of the Poisson random measure N . The
set Ns is at most countable, and {Hr, r ∈ Ns} is the set of the points of discontinuity of
the mapping t→ Lt(s).

Proposition 3.23. The local time Lt(s) has a version which is a.s. continuous in s and
cadlag in t.

Proof

The continuity in s has been established in Lemma 3.20. Considering now the regularity
in t, we note that the first term in the right of (3.19) is clearly continuous in t. Concerning
the second term, we have for any p > 2 and t < t′ from the Burkholder–Davis–Gundy
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inequality, with the stopping times introduced just before Lemma 3.22, exploiting Jensen’s
inequality for the last inequality,

E

(
sup

0≤r≤s∧τK

∣∣∣∣
∫ r

0

(1Hr>t − 1Hr>t′)dBr

∣∣∣∣
2p
)

≤ 4E

{∣∣∣∣
∫ s∧τK

0

1t<Hr≤t′dr

∣∣∣∣
p}

= 4(t′ − t)pE

{(∫ t′

t

Lu(s ∧ τK)
du

t′ − t

)p}

≤ 4(t′ − t)p−1
E

∫ t′

t

(Lu(s ∧ τK))pdu.

This combined with Kolmogorov’s lemma implies that the mapping t →
∫ s

0
1Hr>tdBr has

a version which is continuous in the two variables t and s.
Concerning the two last terms, if we replace the integrals over (0, s]×(0,∞) by integrals

over (0, s]× (εk,∞), then the sum of those two terms is càdlàg, the evolution between the
jumps being absolutely continuous in the first term and decreasing in the second one. It
remains to show that the supremum over t of

−
∫ s

0

∫ εk

0

1Hr>tzÑ(dr, dz) +

∫ s

0

∫ εk

0

1Hr>t(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

tends to 0 as k → ∞. Concerning the second term, this follows from the fact that

sup
t

∫ s

0

∫ εk

0

1Hr>t(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz)

≤
∫ s

0

∫ εk

0

(z + inf
r≤u≤s

Xu −Xr)
+N(dr, dz),

and the right hand side converges to 0 in probability as k → ∞.
Finally the uniform convergence of the first term follows from Lemma 3.21 and Doob’s

maximal inequality. �

3.4.3 The Ray–Knight theorem

We can now establish the Ray–Knight Theorem.

Theorem 3.24. Under the assumption (3.4) the stopping time Sx defined in (3.6) is finite
a.s. and the process {Lt(Sx), t ≥ 0} is a CSBP with branching mechanism ψ.

Proof Let Sk
x := inf{s > 0, L0

k(s) > x}. Proposition 3.11 shows that {Lt
k(S

k
x), t ≥ 0} is

a CSBP with branching mechanism ψk (here again Lk denotes the local time of Hk). It is

24



plain that for any g ∈ Cb(R+;R+) with compact support, we have both

∫ ∞

0

g(t)Lt
k(S

k
x)dt =

∫ Sk
x

0

g(Hk
s )ds, and

∫ ∞

0

g(t)Lt(Sx)dt =

∫ Sx

0

g(Hs)ds.

Provided we show that Sk
x → Sx, which will be done in the next Lemma, it follows from

Corollary 3.15 that the right–hand side of the first identity converges in probability to the
right–hand side of the second identity in probability, as k → ∞. Consequently for any
T > 0,

L·
k(Sx) → L·(Sx)

in L2(0, T ) weakly, in probability, as k → ∞.
On the other hand, from Proposition 3.11, {Lt

k(S
k
x), t ≥ 0} is a CSBP with branching

mechanism ψk. Let nowW be a space–time white noise, andM a Poisson random measure
with mean ds×du×π(dz), while M̃ will denote the compensated measure M(ds, du, dz)−
ds du π(dz). It is clear that if {Zk,x

t , t ≥ 0} denotes the unique strong solution of the
Dawson–Li type SDE (see [5])

Zk,x
t = x+ α

∫ t

0

Zk,x
s ds+

√
2β

∫ t

0

∫ Zk,x
s

0

W (ds, du)

+

∫ t

0

∫ Zk,x
s−

0

∫ ∞

εk

zM̃ (ds, du, dz),

then for each k ≥ 1, {Lt
k(S

k
x), t ≥ 0, x > 0} and {Zk,x

t , t ≥ 0, x > 0} have the same law.
On the other hand, it is not hard to show that Zk,x

t → Zx
t in probability, locally uniformly

in t, where Zx
t is the unique solution of the SDE

Zx
t = x+ α

∫ t

0

Zx
s ds+

√
2β

∫ t

0

∫ Zx
s

0

W (ds, du)

+

∫ t

0

∫ Zx
s−

0

∫ ∞

0

zM̃ (ds, du, dz).

(3.31)

The result follows from a combination of the above arguments. �

It remains to show that Sk
x → Sx.

Lemma 3.25. For any x > 0, as k → ∞,

Sk
x → Sx in probability.

Proof From the definition of Sx := inf{s > 0, L0(s,H) > x}, for any ε > 0, L0(Sx+ ε) >
x. Hence lim supk→∞ Sk

x ≤ Sx. However, L0(s,H) = − inf0≤r≤sXr. By Theorem VII.1 of
Bertoin [4], the process x 7→ Sx is a subordinator. Consequently, by Proposition I.7 of [4],
a.s. Sx = Sx− = inf{s > 0, L0(s,H) ≥ x}. So for any ε > 0, L0(Sx − ε,H) < x, and a.s.
lim infk→∞ Sk

x ≥ Sx. �
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4 The case with interaction

For the rest of the paper we consider, instead of (1.3), the collection of SDE’s (1.4). In
other words, the linear drift term −αZx

t dt in (1.3) is replaced by the non-linear drift term
f(Zx

t )dt, with f satisfying (1.5).
Connecting to the results of the previous section, we consider a process X defined by

(3.3) with α = 0, i.e.

(4.1) Xs =
√

2βBs +

∫ s

0

∫ ∞

0

zÑ(dr, dz), s ≥ 0,

where again Ñ denotes the compensated measure Ñ(dr, dz) = N(dr, dz)− dr π(dz).
Our final aim in this paper is to obtain a Ray–Knight representation for the solution

Z of (1.4) in terms of an appropriate height process. For this, our strategy will be to
introduce, via Girsanov’s theorem, the appropriate drift into the equation (3.10) for the
height process H . This change of measure will introduce the same drift into the process
X , and should lead to the SDE’s (1.6) and (1.7) for the pair (X,H).

However, condition (1.5) guarantees only local boundedness of f ′. Thus, in order to
make sure that Girsanov’s theorem is applicable, we use a localization procedure and
associate to each b ∈ (0,∞) a function

fb ∈ C1
b (R+), f

′
b is uniformly continuous on R+,

and fb(z) = f(z), 0 ≤ z ≤ b .
(4.2)

We also assume that f ′
b(z) ≤ θ, for all z > 0, b > 0.

Even with this localization, the process H (which then solves (1.6) with fb instead of
f) might tend to infinity before its local time at t = 0 has achieved the value Sx, x > 0.
Then there would be no way to make sense of the process Lt(Sx). One way to circumvent
this difficulty would be to define H reflected below an arbitrary level a as in [6] and [11],
and identifying the law of L·(Sx) as that of Z

x, killed at time t = a. However, there would
be difficulties with the definition of the thus reflected SDE for H , due to the jump terms.
Therefore, we will use an additional localization by adding a drift which acts only while
H takes values above a > 0, and has the effect of forcing H to hit 0 after any time s0 > 0,
i.e. inf{s > s0, Hs = 0} <∞ a.s.. Our choice for this will be

ga(h) = −(h− a)+.

After taking the limit b → ∞ we will identify the law of {Lt(Sx), 0 ≤ t ≤ a} with that of
{Zx

t , 0 ≤ t ≤ a}, but will loose the interpretation of Lt(Sx) for t > a.

4.1 The case π = 0

This case is treated in Pardoux [11]. The equation (1.6) for the height process H reads

(4.3) xβHs =

∫ s

0

f ′
(
LHr(r)

)
dr +

√
2βBs − inf

0≤r≤s
Xr.
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It is shown in Proposition 16 of [11] that in this case the process {Zx
t , t ≥ 0} goes extinct

a.s. in finite time for all x > 0 iff

(4.4)

∫ ∞

1

exp

(
− 1

β

∫ u

1

f(r)

r
dr

)
du = ∞,

and in this case Corollary 7 of [11] shows that {Lt
Sx
, t ≥ 0} solves the SDE (1.4), of course

with M̃ ≡ 0. If the condition (4.4) is not satisfied, Zx
t need not go extinct, and in that case

the process Hs may tend to infinity as s→ ∞, so that we may have L0(∞) < x. However
one can still obtain an extension of the second Ray–Knight theorem, by reflecting H below
an arbitrary level, as in Delmas [6], see Theorem 14 in [11]. The equation (4.3) has a unique
weak solution: for each x > 0, existence up to time Sx follows from Girsanov’s theorem,
see the explanation on p. 95-97 together with Corollary 8 in [11]. Since Girsanov’s theorem
can be applied also in the reverse direction, this implies weak uniqueness up to time Sx;
see also [12] Sec. 4.1 for that argument in the case of affine linear f ′.

4.2 The case of finite π

In this subsection, we assume that π((0,+∞)) < ∞. We now use Girsanov’s theorem in
order to describe the corresponding height process. Under the reference measure P, let
H denote the solution of (3.10). For any a, b > 0, let Y a,b denote the following Girsanov
Radon–Nikodym derivative

Y a,b
s = exp

(
1√
2β

∫ s∧Sx

0

[f ′
b(L

Hr(r)) + ga(Hr)]dBr −
1

4β

∫ s∧Sx

0

[f ′
b(L

Hr(r)) + ga(Hr)]
2dr

)
,

and define

(4.5) Ba,b
s = Bs −

1√
2β

∫ s

0

[f ′
b(L

Hr(r)) + ga(Hr)]dr, s ≥ 0.

This is a Brownian motion up to time Sx under the unique probability measure Pa,b which
is such that, with Fs = σ{Hr, 0 ≤ r ≤ s},

(4.6)
dPa,b

dP

∣∣∣
Fs

= Y a,b
s , s > 0.

Since f ′
b and ga are bounded, this follows readily from Proposition 35 in [11]. It is easy to

verify that the law of the random measure N(dr, dz) is the same under Pa,b and under P.
Indeed, one way to check that under Pa,b, N is a Poisson random measure on (0,+∞)2 with
mean the Lebesgue measure is to check that for any ϕ ∈ C((0,+∞)2;R+) with compact
support,

(4.7) E
a,b exp[N(−ϕ)] = exp{

∫ ∞

0

∫ ∞

0

[e−ϕ(s,z) − 1]dsdz},
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where we have used the notation

N(ψ) =

∫

(0,∞)2
ψ(r, z)N(dr, dz) .

To verify (4.7), note first that it follows from Itô’s formula that for any s > 0, if ϕs(r, z) :=
ϕ(r, z)1[0,s](r),

exp[N(−ϕs)] = 1 +

∫ s

0

exp[N(−ϕr−)]

∫ ∞

0

(
e−ϕ(r,z) − 1

)
Ñ(dr, dz)

+

∫ s

0

exp[N(−ϕr)]

∫ ∞

0

(
e−ϕ(r,z) − 1

)
dzdr .

We now observe that the above integral with respect to Ñ is a martingale under Pa,b, which
follows, see e.g. Theorem III.36 in Protter [15], from the fact that both it is a martingale
under P, and its quadratic covariation with the Radon-Nikodym derivative (4.6) vanishes,
i.e.

〈Y a,b
· ,

∫ ·

0

exp[N(−ϕr−)]

∫ ∞

0

(
e−ϕ(r,z) − 1

)
Ñ(dr, dz)〉 ≡ 0.

This readily implies that

E
a,b exp[N(−ϕs)] = 1 +

∫ s

0

E
a,b exp[N(−ϕr)]

∫ ∞

0

(
e−ϕ(r,z) − 1

)
dzdr,

from which (4.7) follows by explicit integration of a linear ODE, choosing s large enough
so that supp(ϕ) ⊂ [0, s]× (0,+∞).

It follows from (4.1) and (4.5) that

Xs =

∫ s

0

[f ′
b(L

Hr(r)) + ga(Hr)]dr +Xa,b
s , s ≥ 0.

where

Xa,b
s =

√
2βBa,b

s +

∫ s

0

∫ ∞

0

zÑ (dr, dz).

Consequently (3.10) can be written as
(4.8)

βHs =

∫ s

0

[f ′
b(L

Hr(r))+ga(Hr)]dr+X
a,b
s − inf

0≤r≤s
Xr−

∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu −Xr

)+

N(dr, dz).

Weak existence of a solution to (4.8) follows from the above explicit construction. Weak
uniqueness follows from the fact that

dP

dPa,b

∣∣∣
Fs

= (Y a,b
s )−1.

We denote again by Lt(s) the local time accumulated by the process H at level t up to
time s, and Sx = inf{s > 0; L0(s) > x}.

We have
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Lemma 4.1. For any a, b > 0 we have P
a,b(Sx <∞) = 1.

Proof We observe that

f ′
b(L

Hr(r)) + ga(Hr) ≤ θ − (Hr − a)+.

Consequently, whenever Hr > θ + a + 1, the drift in the equation for H is bounded from
above by −1. This is enough to conclude that under Pa,b, the process H returns to 0 after
arbitrarily large times, hence accumulates arbitrary quantities of local time at level 0. �

We can rewrite (4.8) as

βHs =

∫ s

0

[
f ′
b(L

Hr(r)) + ga(Hr)− γ
]
dr +

√
2βBa,b

s − inf
0≤r≤s

Xr

+

∫ s

0

∫ ∞

0

(
z −

[
z + inf

r≤u≤s
Xu −Xr

]+)
N(dr, dz),

(4.9)

where γ =
∫
(0,+∞)

z π(dz).

Proposition 4.2. Assume that the measure π is finite, and fix a, b > 0. Under P
a,b,

the process {Lt(Sx), 0 ≤ t ≤ a, x > 0} is, on the time interval [0, a], a solution of the
collection indexed by x > 0 of SDEs

Zx,b
t = x+

∫ t

0

fb(Z
x,b
r )dr +

√
2β

∫ t

0

∫ Zx,b
r

0

W (dr, du)

+

∫ t

0

∫ Zx,b
r−

0

∫ ∞

0

zM̃ (dr, du, dz), t ≥ 0.

(4.10)

Proof Step 1. Equation for Lt(Sx) Here x > 0 is fixed. We first note that HSx
= 0

implies that
∑

0≤r≤Sx
∆X

Sx

r = 0. Moreover XSx
= −x. Consequently formula (3.19) at

s = Sx reads

Lt(Sx) = −
∫ Sx

0

1Hr>tdXr

= x+

∫ Sx

0

1Hr≤tdXr .

Note that

Xs = Bs +

∫ s

0

∫ ∞

0

zÑ(dr, dz)

=

∫ s

0

[f ′
b(L

Hr(r) + ga(Hr)]dr +Ba,b
s +

∫ s

0

∫ ∞

0

zÑ(dr, dz), hence for t ≤ a

Lt(Sx) = x+

∫ Sx

0

1Hr≤tf
′
b(L

Hr(r))dr +

∫ Sx

0

1Hr≤tdB
a,b
r +

∫ Sx

0

1Hr≤t

∫ ∞

0

zÑ(dr, dz) ,
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where we have exploited the fact that for t ≤ a, 1Hr≤tga(Hr) ≡ 0. We will now rewrite
each of the three integrals of the last right hand side. For the first one, we use, similar to
an argument on page 728 of [12], the generalized occupation times formula from Exercise
1.15 in Chapter VI of [16], and obtain

∫ Sx

0

1Hr≤tf
′
b(L

Hr(r))dr =

∫ t

0

∫ Sx

0

f ′
b(L

u(r))dLu
rdu

=

∫ t

0

fb(L
u(Sx))du .

We next consider the process

Ut :=

∫ Sx

0

1Hr≤t dB
a,b
r , t ≥ 0.

For t ≥ 0, let HB
t denote the sigma–algebra generated by the random variables of the form

Yg =

∫ Sx

0

g(r)dBa,b
r ,

where g is progressively measurable and satisfies {g(r) = 0} ⊃ {Hr > t}. It is easily seen
that U = (Ut)t≥0 is an HB–martingale for the filtration HB = (HB

t )t≥0. We now show that
it is a continuous martingale. Indeed, for any K > 0, let again τK denote the time of the
first jumps of X is size greater than K. On the event Ωx,K = {Sx ≤ τK}, for any t > 0,

Ut =

∫ Sx∧τK

0

1Hr≤tdB
a,b
s .

Therefore, for t′ > t > 0, p > 2,

E [|Ut′ − Ut|p; Ωx,K ] = E

[∣∣∣∣
∫ Sx∧τK

0

1t<Hr≤t′dB
a,b
r

∣∣∣∣
p]

= E

[∣∣∣∣
∫ Sx∧τK

0

1t<Hr≤t′dr

∣∣∣∣
p/2
]

= E



∣∣∣∣∣

∫ t′

t

Lu(Sx ∧ τK)du
∣∣∣∣∣

p/2



≤ sup
u>0

E

(
|Lu(Sx ∧ τK)|p/2

)
× |t′ − t|p/2.

The a.s. continuity of U follows from this computation, Lemma 3.22, Kolmogorov’s Lemma,
and the fact that P (∪K≥1Ωx,K) = 1.

We next note that

〈U〉t =
∫ t

0

Lu(Sx)du , t ≥ 0.
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Indeed, by Itô’s formula,

U2
t −

∫ t

0

Lu(Sx)du = 2

∫ Sx

0

1Hr≤t

∫ r

0

1Hs≤tdB
a,b
s dBa,b

r , t ≥ 0,

is a HB–martingale.
It is now clear that there exists a space–time white noise W (dr, du) such that

Ut =

∫ t

0

∫ Lr(Sx)

0

W (dr, du), t ≥ 0.

Here the choice of representing the above martingale as a stochastic integral with respect
to a space time white noise, rather than with respect to a Brownian motion, is motivated
by Step 2 of the proof below.

We finally consider the process

∫ Sx

0

1Hr≤t

∫ ∞

0

zÑ(dr, dz) = Vt − γ

∫ t

0

Lu(Sx)du, t ≥ 0,

where

γ =

∫ ∞

0

zπ(dz), and Vt :=

∫ Sx

0

1Hr≤t

∫ ∞

0

zN(dr, dz) ,

so that we have obtained

(4.11) Lt(Sx) = x+

∫ t

0

[fb(L
r(Sx))− γLr(Sx)]dr +

∫ t

0

∫ Lr(Sx)

0

W (dr, du) + Vt .

We now want to rewrite the process Vt in a different way. For that sake, we use again the
construction introduced in Proposition 3.11.

We start with X(0), H(0), L(0), S
(0)
x defined as follows.

X(0)
s =

∫ s

0

[f ′
b(L

H
(0)
r

(0) (r))− γ]dr +
√

2βBa,b
s ,

βH(0)
s =

∫ s

0

[f ′
b(L

H
(0)
r

(0) (r))− γ]dr +
√

2βBa,b
s − inf

0≤r≤s
X(0)

r ,

Lt
(0)(s) is the local time accumulated by H(0) at level t up to time s ,

S(0) = inf{s > 0, L0
(0)(s) > x} .

Let N (0) denote an independent copy of the Poisson random measure N , and
{(si, zi), 1 ≤ i ≤ J} be the set of points of N (0) on [0, S

(0)
x ] × (0,+∞). If J = 0, then

(X,H,L, Sx) ≡ (X(0), H(0), L(0), S
(0)
x ), and we are done. Otherwise, we select the a.s. unique

index m ∈ {1, . . . , J} such that H
(0)
sm = min1≤i≤J H

(0)
si , and we define X(1), H(1), L(1), S

(1)
x
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as follows. We consider an independent copy Ba,1 of Ba, and define

X(1)
s =





X
(0)
s , for s ≤ sm,

X
(0)
sm + zm +

∫ s

sm
[f ′

b(L
H

(1)
r

(1) (r))− γ]dr +
√
2βBa,1

s−sm, for sm < s ≤ sm + s̃1,

X
(0)
sm +

∫ s

sm+s̃1
[f ′

b(L
H

(1)
r

(1) (r))− γ]dr +
√
2βBa,b

s−s̃1
, for s ≥ sm + s̃1

βH(1)
s =

∫ s

0

[f ′
b(L

H
(1)
r

(1) (r))− γ]dr +
√
2βBa,b

s − inf
0≤r≤s

X(1)
r ,

Lt
(1)(s) is the local time accumulated by H(1) at level t up to time s ,

S(1)
x = inf{s > 0, L0

(1)(s) > x} ,
where

s̃1 = inf
{
s > 0, X

(1)
sm+s < X(0)

sm

}
.

Note that S
(1)
x = S

(0)
0 + s̃1, since it is true under the reference probability P (see the same

construction in Proposition 3.11). We next define as follows the Poisson random measure

N (1) on [0, S
(0)
x ] × (0,+∞). Given Ñ (1) an independent copy of N , which we restrict to

[0, s̃1] × (0,+∞), the points of N (1) are those of N (0) on [0, sm] × (0,+∞), those of Ñ (1)

whose first coordinate has been shifted by +sm on [sm, sm+ s̃1]×(0,+∞), and finally those

of the restriction of N to [sm, S
(0)
x ]× (0,+∞) shifted by +s̃1 on [sm + s̃1, S

(1)
x ]× (0,+∞).

We are now ready to iterate our procedure, and construct the elements indexed by 2.
The iteration terminates a.s. at rank K ≥ J which is such that N (K) has no point. The
law of K is that of the number of points of our original Poisson random measure N on
[0, Sx] × (0,+∞). Note that starting from X,H,L, Sx, we could construct a copy of the
above sequence in reverse order by deleting one by one the jumps of X on [0, Sx], starting
from the one corresponding to the largest value of H .

Coming back to the above sequence, the jumps of {Vt, t > 0} are described by that
sequence in the order in which they appear as t increases. It follows from our construction
that the process V can be written as

Vt =

∫ t

0

∫ Lr−(Sx)

0

∫ ∞

0

zM(dr, du, dz), t ≥ 0,

where M is a Poisson random measure on (0,+∞)3 with mean measure dr du µ(dz) as in
Proposition 3.11.

Inserting this formula for V in (4.11), we have proved that for fixed x > 0, the process
{Lt(Sx), 0 ≤ t ≤ a} satisfies equation (1.4).
Step 2 Identification of the law of {Lt(Sx), 0 ≤ t ≤ a, x > 0} If we define
H̃x

s = HSx+s and X̃
x
s = XSx+s + x, we have X̃x

0 = 0 and under P

H̃x
s = X̃x

s − inf
0≤r≤s

X̃x
r +

∫ s

0

∫ ∞

0

(z + inf
r≤u≤s

X̃x
u − X̃x

r )
+N(dr, dz) .

Denote again Fs = σ{Xr, 0 ≤ r ≤ s}. It is not hard to see that under Pa,b {Lt(Sx + s)−
Lt(Sx), s ≥ 0, 0 ≤ t ≤ a} is a function of both {Lt′(Sx), 0 ≤ t′ ≤ a} (through the nonlinear
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coefficient f ′
b), and noises which are independent of FSx

. Now we fix both x and y > 0,
and note that

Lt(Sx+y)− Lt(Sx) = y +

∫ Sx+y−Sx

0

1H̃x
r ≤tf

′
b(L

H̃x
r (Sx + r))dr

+

∫ Sx+y−Sx

0

1H̃x
r ≤tdB

a,b
Sx+r +

∫ Sx+y−Sx

0

1H̃x
r ≤t

∫ ∞

0

zÑ(Sx + dr, dz) .

Applying the same extended occupation times formula as above, we deduce that
∫ Sx+y−Sx

0

1H̃x
r ≤tf

′
b(L

H̃x
r (Sx + r))dr =

∫ t

0

[fb(L
u(Sx+y))− fb(L

u(Sx)))] du .

From the same arguments of the previous steps, we see that Zx,y,b
t := Lt(Sx+y) − Lt(Sx)

satisfies for 0 ≤ t ≤ a

Zx,y,b
t = y +

∫ t

0

[
fb(Lr(Sx) + Zx,y,b

r )− fb(Lr(Sx))
]
dr +

√
2β

∫ t

0

∫ Zx,y,b
r

0

W x(dr, du)

+

∫ t

0

∫ Zx,y,b
r−

0

∫ ∞

0

zM̃x(dr, du, dz),

where W x and W (resp. Mx, M) are i.i.d. The independence follows by noting that the
cross quadratic variation is zero. It follows from the independence property of the white
noise and the Poisson randommeasure on disjoint subsets that the pair {(Lt(Sx), L

t(Sx+y)−
Lt(Sx)), 0 ≤ t ≤ a} has the same law as {(Zx,b

t , Zx+y,b
t − Zx,b

t ), 0 ≤ t ≤ a}, hence also the
two pairs {(Lt(Sx), L

t(Sx+y)), 0 ≤ t ≤ a} and {(Zx,b
t , Zx+y,b

t ), 0 ≤ t ≤ a} have the same
law.

A similar argument shows that for any n ≥ 2 and x1 < x2 < · · · < xn,
the two n–dimensional processes {(Lt(Sx1), L

t(Sx2), . . . , L
t(Sxn

)), 0 ≤ t ≤ a} and
{(Zx1,b

t , Zx2,b
t , . . . , Zxn,b

t ), 0 ≤ t ≤ a} have the same law. This proves the result. �

4.3 The general case

With εk and πk as in Section 3.4.1, we are now going to take the limit as k → ∞ in the set-
ting of the previous subsection. To this end, we first fix a, b > 0. Since the drift f ′

b(L
Hr(r))

is not Lipschitz in H with respect to any of the standard metrics on the continuous paths,
it seems that the only practical route to access H and its local time, and to establish our
final result Theorem 4.9, is to rely on the convergence result of Section 3.4, and Girsanov’s
theorem. We recall that |f ′

b| and ga are bounded.
Consider the sequence Hk, k ≥ 1, of Section 3.4, let Lk denote the local time of Hk

an define Sk
x = inf{s > 0; L0

k(s) > x}. We need to take the limit in the sequence of
Radon–Nikodym derivatives

Y a,b,k
s = exp

(
1√
2β

∫ s∧Sk
x

0

[f ′
b(L

Hk
r

k (r)) + ga(H
k
r )]dBr −

1

4β

∫ s∧Sk
x

0

|f ′
b(L

Hk
r

k (r)) + ga(H
k
r )|2dr

)
.
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The reference probability P governs the case fb ≡ 0 and ga ≡ 0. Hence under P,

(4.12) βHk
s = Xk

s − inf
0≤r≤s

Xk
r −

∫ s

0

∫ ∞

εk

(
z + inf

r≤u≤s
Xk

u −Xk
r

)+

N(dz, dr).

The quantities introduced in the previous subsection need now to be indexed by k ≥ 1.
That is we consider the probability measure P

a,b,k such that for all s > 0, with Fk
s =

σ{Hk
r , 0 ≤ r ≤ s},

dPa,b,k

dP

∣∣∣
Fk

s

= Y a,b,k
s , s > 0.

Under Pa,b,k, the process Hk solves the SDE (see (4.8))

βHk
s =

∫ s

0

[
f ′
b(L

Hk
r (r)) + ga(H

k
r )
]
dr +Xa,b,k

s − inf
0≤r≤s

Xk
r

−
∫ s

0

∫ ∞

εk

(
z + inf

r≤u≤s
Xk

u −Xk
r

)+

N(dr, dz),

(4.13)

where

Xa,b,k
s =

√
2βBa,b

s +

∫ s

0

∫ ∞

εk

zÑ (dr, dz),

and

Ba,b
s = Bs −

1√
2β

∫ s

0

[f ′
b(L

Hk
r (r)) + ga(H

k
r )]dr

is a Brownian motion under Pa,b,k, up to time Sk
x .

Under the reference probability P, H is defined by (3.10), that is

(4.14) βHs = Xs − inf
0≤r≤s

Xr −
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu −Xr

)+

N(dz, dr).

The definition of the pair (Y a,b,Pa,b), which was given at the beginning of the previous
subsection for the case of a finite π, remains the same also for a general π satisfying (1.2).
Under Pa,b, H solves the SDE

βHs =

∫ s

0

[
f ′
b

(
LHr(r)

)
+ ga(Hr)

]
dr +Xa,b

s − inf
0≤r≤s

Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu −Xr

)+

N(dr, dz).

(4.15)

Again by the argument developed in the previous subsection, (4.15) has a unique weak
solution. The main argument in this subsection is

Proposition 4.3. Let a, b > 0 and s > 0 be fixed. Then, under the reference probability
measure P, Y a,b,k

s → Y a,b
s as k → ∞, in probability and also in Lp for any p ≥ 1.
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Proof Since |f ′
b| and ga are bounded, for any p ≥ 1, {(Y a,b,k

s )p}k≥1 is uniformly integrable,
hence it suffices to establish the convergence in probability. For that purpose, we need to
show that ∫ s

0

∣∣∣1r≤Sx
f ′
b(L

Hr(r))− 1r≤Sk
x
f ′
b(L

Hk
r

k (r))
∣∣∣
2

dr → 0

and

∫ s

0

∣∣1r≤Sx
ga(Hr)− 1r≤Sk

x
ga(H

k
r )
∣∣2 dr → 0,

as k → ∞ in P-probability.
The second convergence follows readily from Lemma 3.25, Corollary 3.15, the Lipschitz

continuity of ga and the dominated convergence theorem. The rest of this proof will be
devoted to establishing the first convergence.

For this purpose we consider
∣∣∣1r≤Sx

f ′
b

(
LHr(r)

)
− 1r≤Sk

x
f ′
b

(
L
Hk

r

k (r)
)∣∣∣ ≤

∣∣∣f ′
b

(
LHr(r)

)
− f ′

b

(
LHk

r (r)
)∣∣∣

+
∣∣∣1r≤Sx

f ′
b

(
LHk

r (r)
)
− 1r≤Sk

x
f ′
b

(
L
Hk

r

k (r)
)∣∣∣ .

The Proposition will be proved if we show that the above right–hand side tends to zero
in dP × dr-measure, as k → ∞. Consider the first term on the right. By Corollary 3.15,
Hk

r → Hr in probability, locally uniformly in r, as k → ∞. Moreover, t → Lt(r) is
continuous for t outside an at most countable set, and H spends zero time in that at most
countable set. Hence we have that LHk

r (r) → LHr(r) in probability, dr a.e. Since f ′
b is

continuous, the first term converges.
The second term on the r.h.s. of the previous inequality is bounded from above by

∣∣1r≤Sx
− 1r≤Sk

x

∣∣ f ′
b

(
LHk

r (r)
)
+
∣∣∣f ′

b

(
LHk

r (r)
)
− f ′

b

(
L
Hk

r

k (r)
)∣∣∣ .

The first term in this expression converges to 0 in dP×dr-measure thanks to Lemma 3.25.
Concerning the second term, since f ′

b is uniformly continuous, it suffices to show that

LHk
r (r)− L

Hk
r

k (r) → 0 in probability.

Due to (3.19) and (3.20) for the local times of H and Hk, this expression takes the form

LHk
r (r)− L

Hk
r

k (r) = β(Hr −Hk
r )

+ −
√

2β

∫ r

0

(1Hv>t − 1Hk
v>t)dBv

∣∣∣
t=Hk

r

−
∫ r

0

∫ ∞

εk

(1Hv>Hk
r
− 1Hk

v>Hk
r
)zÑ(dv, dz)

+

∫ r

0

∫ ∞

εk

(1Hv>Hk
r
− 1Hk

v>Hk
r
)(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz)

−
∫ r

0

∫ εk

0

1Hv>tzÑ (dv, dz)
∣∣∣
t=Hk

r

+

∫ r

0

∫ εk

0

1Hv>Hk
r
(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz).

35



Note that we can insert the anticipative Hk
r in the last four integrals since three of them

are Stieltjes integrals, and the third is an integral with respect to a compensated Poisson
point process which is independent of Hk

r .
It is plain that

0 ≤
∫ r

0

∫ εk

0

1Hv>Hk
r
(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz)

≤
∫ r

0

∫ εk

0

(z + inf
v≤u≤r

Xu −Xv)
+N(dv, dz).

Consequently from Corollary 3.5

E

∫ r

0

∫ εk

0

1Hv>Hk
r
(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz) ≤ C(r)

∫ εk

0

z2π(dz)

→ 0, as k → ∞.

In order to estimate the next to last term, we note that from Lemma 3.21, for any given
T > 0,

E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0

1Hv>tzÑ (dv, dz)

∣∣∣∣
2
)

≤ 2E

(∣∣∣∣
∫ r

0

∫ εk

0

zÑ (dv, dz)

∣∣∣∣
2
)

+ 2E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0

1Hv≤tzÑ(dv, dz)

∣∣∣∣
2
)

≤ 2r

∫ εk

0

z2π(dz) + 8E

(∣∣∣∣
∫ r

0

∫ εk

0

1Hv≤T zÑ(dv, dz)

∣∣∣∣
2
)

≤ 10r

∫ εk

0

z2π(dz) .

Consequently

E

(
sup
t≥0

∣∣∣∣
∫ r

0

∫ εk

0

1Hv>tzÑ(dv, dz)

∣∣∣∣
2
)

= lim
T→+∞

E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0

1Hv>tzÑ(dv, dz)

∣∣∣∣
2
)

≤ 10r

∫ εk

0

z2π(dz) → 0, as k → ∞ .

We split the two previous terms into two, choosing an arbitrary δ > 0, which w.l.o.g. we
can assume to satisfy δ > εk. By the same arguments as above,

E

∣∣∣∣
∫ r

0

∫ δ

εk

(1Hv>Hk
r
− 1Hk

v>Hk
r
)(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz)

∣∣∣∣

≤ C(r)

∫ δ

0

z2π(dz)
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and

E

(
sup
t≥0

∣∣∣∣
∫ r

0

∫ δ

εk

(1Hv>t − 1Hk
v>t)zÑ(dv, dz)

∣∣∣∣
2
)

≤ 10r

∫ δ

0

z2π(dz).

Those can be made arbitrarily small by choosing δ > 0 small enough.
Denoting by Ns,δ the number of points of N in [0, s]× (δ,∞), we have that

∣∣∣∣
∫ r

0

∫ ∞

δ

(1Hv>Hk
r
− 1Hk

v>Hk
r
)(z + inf

v≤u≤r
Xu −Xv)

+N(dv, dz)

∣∣∣∣

≤
Ns,δ∑

i=1

|1HTi
>Hk

r
− 1Hk

Ti
>Hk

r
|Zi

and
∫ r

0

∫ ∞

δ

(1Hv>Hk
r
− 1Hk

v>Hk
r
)zÑ(dv, dz)

=

Ns,δ∑

i=1

(1HTi
>Hk

r
− 1Hk

Ti
>Hk

r
)Zi −

∫ ∞

δ

zπ(dz)

∫ r

0

(1Hv>Hk
r
− 1Hk

v>Hk
r
)dv.

The fact that the finite sum converges to 0 as k → ∞ follows from the fact that Hk
Ti
→ HTi

,
while Hk

r −Hk
Ti
→ Hr −HTi

6= 0 a.s., and moreover

∣∣∣1HTi
>Hk

r
− 1Hk

Ti
>Hk

r

∣∣∣ ≤ 1|HTi
−Hk

Ti
|>|Hk

r−Hk
Ti
|,

which tends to 0 from the above claims. Moreover, by the occupation times formula,

∫ r

0

(1Hv>Hk
r
− 1Hk

v>Hk
r
)dv =

∫ ∞

Hk
r

(Lt(r)− Lt
k(r))dt.

Let us use again the stopping times τK , defined just before Lemma 3.22. Since P(τK ≤ r)
→ 0 as K → ∞, it suffices to consider

E

(∣∣∣∣
∫ ∞

Hk
r

(Lt(r)− Lt
k(r))dt

∣∣∣∣ ; r < τK

)
≤
∫ M

0

E
(∣∣Lt(r)− Lt

k(r)
∣∣ ; r < τK

)
dt

+

∫ ∞

M

E
(∣∣Lt(r)− Lt

k(r)
∣∣ ; r < τK

)
dt .

Since the integrand on the right converges to 0 in probability for any t, the conver-
gence to 0 of the first integral on the right follows from uniform integrability provided by
Lemma 3.22, for anyM > 0. Concerning the last term, using the inequality |Lt(r)− Lt

k(r)|
≤ Lt(r) + Lt

k(r), we have two integrals to estimate. We estimate the first one, the estimate
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of the second being very similar.

E

∫ ∞

M

Lt(r)1r<τKdt =
∞∑

k=0

E

∫ M+k+1

M+k

Lt(r)1r<τKdt

≤
∞∑

k=0

P

(
sup

0≤u≤r∧τK

Hu > M + k

)

≤
∞∑

k=0

P

(
sup

0≤u≤r∧τK

|Xu| >
β

2
M

)

≤ C2,K,r(2/β)
2

∞∑

k=0

(M + k)−2,

where we have used (3.26) and Chebychev’s inequality for the last line. Clearly the last
right–hand side tends to 0 as M → ∞.

Finally we consider the Brownian integral. Let us define

Φ(t, r) =

∫ r∧τK

0

1Hv>tdBv, Φk(t, r) =

∫ r∧τK

0

1Hk
v>tdBv.

We need to show that Φ(Hk
r , r) − Φk(H

k
r , r) → 0, which will follow from a variant of the

last argument which we have used and the fact that for any M > 0,

(4.16) sup
0≤t≤M

|Φ(t, r)− Φk(t, r)| → 0

in probability, as k → ∞. It is plain that for fixed t, Φk(t, r) → Φ(t, r) in probability. So
(4.16) will follow if we show that for any fixed r, the sequence of processes {Φk(·, r)}k≥1 is
tight in C([0,M ]). It follows from the computation done in the proof of Proposition 3.23
and from Theorem I.2.1 in [16] that with any p > 2, ρ < 1

2
− 1

p
,

ξk,ρ := sup
0≤t6=t′≤M

|Φk(t, r)− Φk(t
′, r)|

|t′ − t|ρ

satisfies

E[ξ2pk,ρ] ≤ CpE

∫ M

0

(Lu
k(r ∧ τK))pdu,

which thanks to Lemma 3.22 yields the desired tightness. The result follows, since
P(τK < r) → 0 as K → ∞, for any r > 0. �

Let us repeat here Lemma 24 from [11].

Lemma 4.4. Let (ξk, ηk), (ξ, η) be random pairs defined on a probability space (Ω,F ,P)
with ηk, η being non–negative random variables satisfying E[ηk] = E[η] = 1. Let ξ̃k stand
for the r.v. ξk defined on (Ω,F , P̃k) with dP̃k/dP = ηk, ξ̃ for the r.v. ξ defined on (Ω,F , P̃)
with dP̃/dP = η. If (ξk, ηk) converges in law towards (ξ, η) as k → ∞, then ξ̃k converges
in law towards ξ̃, as k → ∞.
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Now a combination of Corollary 3.15, Proposition 4.3 and Lemma 4.4 yields

Proposition 4.5. As k → ∞, the solution Hk
s , s ≥ 0 of equation (4.13) converges in

probability, locally uniformly in s, to the solution Hs, s ≥ 0, of equation (4.15).

Imitating the proof of Theorem 3.24, we now deduce from Proposition 4.2 the following

Theorem 4.6. For any a, b > 0, under the probability measure P
a,b, the process

{Lt(Sx), 0 ≤ t ≤ a, x > 0} is a solution of the collection indexed by x of SDEs (4.10) on
the time interval [0, a].

It remains to let first b→ ∞, then a→ ∞.
First of all, let us fix x > 0. We would like to replace fb and f

′
b by f and f ′. Since f ′

is not bounded from below, it is not clear that we can apply Girsanov’s theorem, i.e. it is
not clear that we have E(Y a

s ) = 1 if we define

Y a
s = exp

(
1√
2β

∫ s∧Sx

0

[f ′(LHr(r)) + ga(Hr)]dBr −
1

4β

∫ s∧Sx

0

[f ′(LHr(r)) + ga(Hr)]
2dr

)
.

We shall argue as in section 7.2.2 of [11]. Let

Sn := inf{s > 0, LHs(s) > n} .

Since f ′(LHs(s)) is bounded on [0, Sn], we can define the probability measure Pa on
∨

n FSn,
which is such that for any n ∈ N

dPa

dP

∣∣∣
FSn

= Y a
Sn .

Under Pa, H solves the SDE

βHs =

∫ s

0

[f ′(LHr(r)) + ga(Hr)]dr +Xa
s − inf

0≤r≤s
Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu −Xr

)+

N(dr, dz) ,

(4.17)

with
Xa

s =
√
2βBa

s +

∫ s

0

∫ ∞

0

zÑ(dr, dz),

where
Ba

s = Bs −
1√
2β

∫ s

0

[f ′(LHr(r)) + ga(Hr)]dr

is a Brownian motion under Pa. It remains to verify that for each s > 0, E(Y a
s ) = 1, and

dPa

dP

∣∣∣
Fs

= Y a
s . From Proposition 28 in [11], this will be the case, provided

Lemma 4.7. As n→ ∞, P(Sn < Sx) → 0 and P
a(Sn < Sx) → 0.
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Proof Let us establish the first statement. We choose an arbitrary ε > 0 and observe
that for any A > 0

P

(
sup

0≤s≤Sx

LHs(s) > n

)
≤ P

(
sup

0≤s≤Sx

LHs(Sx) > n

)

≤ P

(
sup

0≤s≤Sx

Hs > A

)
+ P

(
sup

0≤t≤A
Lt(Sx) > n

)

Since under P, Sx <∞ a.s. and H is continuous, the random variable sup0≤s≤Sx
Hs is a.s.

finite, and we can choose A large enough, such that P
(
sup0≤s≤Sx

Hs > A
)
≤ ε/2. Next,

under P, the second Ray–Knight theorem holds true, so that

P

(
sup

0≤t≤A
Lt(Sx) > n

)
= P

(
sup

0≤t≤A
Zx

t > n

)
≤ ε/2,

provided n is choosen large enough.
For the proof of the second statement, we start the argument in exactly the same way.

Again, thanks to the drift ga, the random variable sup0≤s≤Sx
Hs is a.s. finite under Pa. In

order to estimate the second term, we cannot use the identification with the solution of
(1.4) for t > a. However, if we go back to the proof of Proposition 4.2, we note that for
t > a which had been excluded in that proof, we have

Lt(Sx) ≤ x+

∫ Sx

0

1Hr≤tf
′
b(L

Hr(r))dr +

∫ Sx

0

1Hr≤tdB
a
r +

∫ Sx

0

1Hr≤t

∫ ∞

0

zÑ (dr, dz),

although the equality does not hold. Going through the first step of the proof of Proposi-
tion 4.2, we deduce that Lt(Sx) is a subsolution of equation (1.4), thus by the comparison
theorem for that SDE (see [5]), Lt(Sx) ≤ Zx

t , which finishes the proof. �

It is now easy to deduce from Theorem 4.6

Theorem 4.8. For any a > 0, under the probability measure P
a, the process

{Lt(Sx), 0 ≤ t ≤ a, x > 0} is a solution of the collection indexed by x of SDEs (1.4) on
the time interval [0, a].

It now remains to let a → ∞. First of all let us observe that the projective limit of
the laws of (H,X) under P

a as a → ∞ renders a (unique) weak solution of (1.6), (1.7).
For that H there is, however, no guarantee that Sx < ∞. On the other hand, the law of
{Lt(Sx), 0 < t ≤ t′} depends only upon the pieces of trajectories of H below t′, and it
does not depend upon a, provided a > t′. Therefore there exists a projective limit of those
laws as well, and we have our final theorem.

Theorem 4.9. There exists a random field {Lt
x, x > 0, t ≥ 0} defined on a probability

space (Ω′,F ′,P′) such that for any a > 0, the law of {Lt
x, x > 0, 0 ≤ t ≤ a} is the same as

the law of {Lt(Sx), x > 0, 0 < t ≤ a} under P
a. Consequently, {Lt

x, x > 0, t ≥ 0} solves
the collection indexed by x > 0 of SDEs (1.4).
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