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Abstract. We consider phaseless inverse scattering for the multidimensional Schr�odinger
equation with unknown potential v using the method of known background scatterers. In partic-
ular, in dimension d ≥ 2, we show that |f1|2 at high energies uniquely determines v via explicit
formulas, where f1 is the scattering amplitude for v + w1, w1 is an a priori known nonzero back-
ground scatterer, under the condition that supp v and suppw1 are su�ciently disjoint. If this
condition is relaxed, then we give similar formulas for �nding v from |f |2, |f1|2, where f is the
scattering amplitude for v. In particular, we continue studies of [Novikov, J. Geom. Anal. 26(1),
346�359, 2016], [Leshem et al, Nature Communications 7(1), 1�6, 2016].

Keywords: Schr�odinger equation, Helmholtz equation, phaseless inverse scattering, phase
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1 Introduction

We consider the scattering problem for the stationary Schr�odinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ Rd, d ≥ 1, E > 0, (1)

where ∆ is the standard Laplacian in x,

v ∈ L∞(Rd), v is complex�valued, supp v ⊂ D,

D is an open bounded domain in Rd.
(2)

The Schr�odinger equation (1), under assumptions (2), describes a non-relativistic quantum
mechanical particle at �xed energy E interacting with a macroscopic object contained in D,
where v is the potential of this interaction (and we assume that ~2

2m
= 1).

Equation (1) at �xed E can be also considered as the Helmholtz equation of electrodynamics
or acoustics at �xed frequency ω. In this context v and E are interpreted as follows:

v(x) = (1− n2(x))E, E =

(
ω

c0

)2

, (3)

where n(x) is a scalar index of refraction, n(x) ≡ 1 on Rd \D, c0 is a reference speed of wave
propagation; and in the simplest case n(x) = c0/c(x), where c(x) is a speed of wave propagation.

For equation (1) we consider the classical scattering solutions ψ+ = ψ+(x, k), x ∈ Rd, k ∈
Rd, k2 = E, speci�ed by the following asymptotics as |x| → ∞:

ψ+(x, k) = eikx +
ei|k||x|

|x|(d−1)/2
A(k, |k| x

|x|
) +O

(
1

|x|(d+1)/2

)
, (4)

for some a priori unknown A. The function ψ+ = ψ+(x, k) describes scattering of the incident
plane waves described by eikx on the scatterer described by v. The second term on the right�hand
side of (4) describes the leading scattered spherical waves. The function A arising with this term
is the scattering amplitude for equation (1) for �xed E. This function is de�ned on

ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√
E
× Sd−1√

E
. (5)
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It is convenient to present A as follows:

A(k, l) = c(d, |k|)f(k, l), (k, l) ∈ME, (6)

c(d, |k|) = −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4;

see formulas (9), (13), (16). We also use the terminology "scattering amplitude" for f arising
in (4), (6).

In order to study ψ+ and f one can use the Lippmann�Schwinger integral equation (12) for
ψ+ and the integral formula (13) for f ; see Section 2.

We recall that in quantum mechanics the complex (phased) values of the functions ψ+ and
f have no direct physical sense, whereas the phaseless values of |ψ+|2 and |f |2 have probabilistic
interpretation (the Born's principle) and can be obtained in experiments; see [6], [11]. On the other
hand, in acoustics or electrodynamics the complex values of ψ+ and f can be directly measured,
at least, in principle. However, in many important cases of monochromatic electro�magnetic wave
propagation described using the model (1), (3) (e.g., X�rays and lasers) the frequency ω is so
great that only phaseless values of |ψ+| and |f | can be measured in practice by modern technical
devices; see, e.g., [13] and references therein.

Let

MΛ = ∪E∈ΛME, where Λ ⊂ R+ = (0,+∞). (7)

We consider, in particular, the following inverse scattering problems for equation (1):

Problem 1.1. Reconstruct potential v on Rd from its scattering amplitude f on some appro-
priateM′ ⊆MR+ .

Problem 1.2. Reconstruct potential v on Rd from its phaseless scattering data |f |2 on some
appropriateM′ ⊆MR+ .

Let F denote the Fourier transform de�ned by the formula

ν̂(p) = Fν(p) = (2π)−d
∫
Rd
eipxν(x)dx, p ∈ Rd, (8)

where ν is a test function.
In particular, for Problem 1.1, for d ≥ 2, it is well known that the scattering amplitude f at

high energies uniquely determines v via the formula

v̂(p) = f(k, l) +O(E−1/2) as E → +∞, (k, l) ∈ME, k − l = p ∈ Rd; (9)

see, for example, [10], [22]. For many other important results on Problem 1.1, see, for example,
[7], [9], [26] and references therein.

On the other hand, for Problem 1.2 it is well known that the phaseless scattering data |f |2 on
MR+ do not determine v uniquely, in general; see, for example, [23].

In view of the aforementioned nonuniqueness for Problem 1.2 we also consider the Problem
1.3 formulated below.

Let f be the initial scattering amplitude for v satisfying (2) and fj be the scattering amplitude
for

vj = v + wj, j = 1, . . . , n, (10)

where w1, . . . , wn are additional a priori known background scatterers such that

wj ∈ L∞(Rd), wj 6= 0 in L∞(Rd), suppwj ⊂ Ωj,

Ωj is an open bounded domain in Rd, Ωj ∩D = ∅,
wj1 6= wj2 for j1 6= j2 in L∞(Rd),

j, j1, j2 ∈ {1, . . . , n}.

(11)
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Problem 1.3. Reconstruct potential v on Rd from the phaseless scattering data |f |2,
|f1|2, ..., |fn|2 on some appropriate M′ ⊆ MR+ , for some appropriate background scatterers
w1, . . . , wn.

Problem 1.3 in dimension d = 1 was considered in [1] for n = 1. Problem 1.3 in dimension
d ≥ 2 was considered in [2], [3], [23], [24].

In particular, for Problem 1.3, for d ≥ 2, n = 2, analogs of formula (9) and related global
uniqueness results were given in [23], [24]. Reconstruction results of [23], [24] on Problem 1.3,
for d ≥ 2, n = 2, were strongly developed in [2], [3]. In particular, for the phaseless case with
background scatterers, results of [2] include an analog of the algorithm of [22]. Related numerical
implementation is also given in [2].

In the previous works [2], [3], [22], [23], [24] for uniqueness and e�ciency of reconstruction
in Problem 1.3, for d ≥ 2, the phaseless scattering data |f |2, |f1|2, |f2|2 at high energies and
background w1, w2 were necessary. In the present work we show that these data can be reduced
considerably. In particular, we show that already |f1|2 at high energies and w1 uniquely determine
v via explicit formulas, under the condition that supp v and suppw1 are su�ciently disjoint ! If the
latter condition is relaxed, we give similar formulas for �nding v from |f |2, |f1|2 at high energies
and w1. These formulas and related global uniqueness results are given in detail in Sections 3�6; see
Theorems 4.1, 4.2, Corollaries 4.1, 4.2, Propositions 4.1, 4.2, Theorems 5.1, 5.2 and Theorems 6.1,
6.2. Note that our aforementioned reconstruction formulas include approximate reconstructions
at �xed E and related error estimates; see Sections 4.2, 5, 6.

Remark 1.1. The aforementioned results on Problem 1.3 consisting in �nding v from |f1|2
and w1 can be also considered as results on Problem 1.2 with v supported in D ∪ Ω1, where v is
unknown in D and v = w1 in Ω1.

In addition, the present work involves considerations of the following problem of reconstruction
from phaseless Fourier transforms, under assumptions (2), (9)�(11) (with L1 in place of L∞ for
more generality).

Problem 1.4. Reconstruct v from the phaseless Fourier transforms |Fv|2, |Fv1|2, ..., |Fvn|2
and background w1, ..., wn.

Problem 1.4 can be considered as Problem 1.3 in the Born approximation at high energies
or/and for small v, w1, ..., wn; see formulas (16), (18).

In the literature the problem of �nding v from |Fv|2 is known as the phase retrieval problem;
see [20], [4], [8] and references therein. The problem of �nding v from |Fv1|2 and w1 was considered,
in particular, in [28], [21]. Problem 1.4 in the framework of solving Problem 1.3 was considered
in [3], [2], [23], [24] and we continue such considerations in the present work.

The results of the present work on Problem 1.4 are given in Section 3 and consist in Theorems
3.1 and 3.2. Actually, Theorems 3.1 is a proper mathematical formalization of some of consid-
erations of [21] related with �nding v from |Fv1|2 and w1, under the condition that supp v and
suppw1 are su�ciently disjoint.

In addition to Problems 1.2, 1.3, 1.4, there are also other possible formulations of phaseless
inverse scattering problems for equation (1) and for other equations of wave propagation. In
connection with such formulations and related results, see, for example, [12]�[14], [17]�[19], [23],
[25]�[27], [29]�[31] and references therein.

Finally, note that the further structure of the present article is as follows. In Section 2 we
recall some known results on direct scattering for equation (1) under assumptions (2) (or when
v is replaced by vj of (10), (11)). The results of the present work on Problem 1.4 are given in
Section 3. The results of the present work on Problem 1.3 (and on Problem 1.2, see Remark 1.1)
are given in Sections 4, 5, 6. In addition, estimates of Sections 5 and 6 are proved in Sections 7
and 8.

3



2 Preliminares on direct scattering for equation (1)

For equation (1), under assumptions (2), we consider the scattering solutions ψ+ speci�ed by
(4) and the scattering amplitude f arising in (4), (6). We recall that ψ+ satisfy the Lippmann�
Schwinger integral equation

ψ+(x, k) = eikx +

∫
D

G+(x− y, k)v(y)ψ+(y, k)dy,

G+(x, k) = −(2π)−d
∫
Rd

eiξxdξ

ξ2 − k2 − i0
= G+

0 (|x|, |k|, d),

(12)

where x, k ∈ Rd, k2 = E, and for f the following formula holds:

f(k, l) = (2π)−d
∫
D

e−ilyv(y)ψ+(y, k)dy, (13)

where k, l ∈ Rd, k2 = l2 = E > 0; see, for example, [5], [26] and references therein.
We also recall that for any s > 1/2, the following Agmon estimate holds:

‖ < x >−s G+(k) < x >−s ‖L2(Rd)→L2(Rd) = a0(d, s)|k|−1, |k| ≥ 1, (14)

where < x > denotes the multiplication operator by the function (1 + |x|2)1/2, G+(k) denotes the
integral operator such that

G+(k)u(x) =

∫
Rd
G+(x− y, k)u(y)dy, (15)

where G+(x, k) is de�ned in (12), u is a test function. See, for example, the proof of (14) given in
[9]; following this proof an explicit estimate for a0(d, s) can be given.

Using (12), (13), (14) one can show that, under assumptions (2), (10), (11), formula (9) is
valid and the following formulas hold:

|Fvj(p)|2 = |fj(k, l)|2 +O(E−1/2) as E → +∞, (k, l) ∈ME, k − l = p ∈ Rd, (16)

where fj is the scattering amplitude for vj, j = 0, ..., n, and v0 = v, f0 = f, vj = v+wj, j ≥ 1;
see, for example, [22], [24] and references therein.

We recall that formulas (9), (16) hold for any �xed p ∈ Rd for d ≥ 2.
Suppose that, in addition to (2), (10), (11), we have that

max(‖v‖∞, ‖wj‖∞) ≤ η, (17)

where j = 1, ..., n, ‖ · ‖∞ = ‖ · ‖L∞(Rd). Then the following more precise version of (16) holds (see
formula (2.15) in [24]):

||Fvj(p)|2 − |fj(k, l)|2| ≤ c(D ∪ Ωj)η
3E−1/2, (k, l) ∈ME, k − l = p

for E1/2 ≥ ρ(D ∪ Ωj, η),
(18)

where j = 0, ..., n, Ω0 = ∅, and c > 0, ρ ≥ 1 are the constants de�ned by the formulas:

ρ(U , η) = max(2a0(d, σ/2)c2(U , σ)η, 1), (19)

c(U) = 6(2π)−2da0(d, σ/2)(c1(d, σ))4(c2(d, σ))3, (20)

c1(d, σ) =

(∫
Rd

dx

(1 + |x|2)σ/2

)1/2

, (21)

c2(U , σ) = sup
x∈U

(1 + |x|2)σ/2, (22)

for some �xed σ > d, a0(d, σ) is the constant of (14), U is open bounded domain in Rd.
Remark 2.1. The constants c, ρ have the following monotonicity properties:

c(U1 ∪ U2) ≥ c(U1), (23)

ρ(U1 ∪ U2, η) ≥ ρ(U1, η), ρ(U , η2) ≥ ρ(U , η1) for η2 > η1, (24)

where U , U1, U2 are bounded domains in Rd, η, η1, η2 > 0.
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3 Reconstruction from phaseless Fourier transforms

We consider v and w such that

v, w ∈ L1,loc(Rd), w 6= 0, d ≥ 1, (25)

supp v ⊂ D, suppw ⊂ Ω, (26)

D, Ω are open convex and bounded domains in Rd. (27)

Let

diam U = sup
x,y ∈U

|x− y|, (28)

U1 + U2 := {x+ y : x ∈ U1, y ∈ U2}, (29)

where U , U1, U2 are bounded sets in Rd.
Note that

Br1(a1) +Br2(a2) = Br1+r2(a1 + a2), where

Br(a) = {x ∈ Rd : |x− a| < r}, a ∈ Rd, r > 0.
(30)

We suppose that the Fourier transformation F is de�ned by formula (8).
In this case F−1 is given by the formula

F−1ϕ(x) :=

∫
Rd
e−ipxϕ(p)dp, (31)

where ϕ is a test function.

Theorem 3.1. Let v, w satisfy (25)�(27), where dist(D, Ω) > diamD. Then |F(v +w)|2 and w
uniquely determine v by the formulas

Fv(p) := (Fw(p))−1Fq(p), p ∈ Rd, (32)

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
y∈Ω

w(x+ y)w(y)dy

)
, (33)

u(x) := F−1(|F(v + w)|2)(x), (34)

where χD−Ω is the characteristic function of the set D − Ω.

As it is was already mentioned in Introduction, Theorem 3.1 can be considered as a proper
mathematical formalization of some of considerations of [21] related with �nding v from |F(v+w)|2
and w, under the condition that supp v and suppw are su�ciently disjoint.

Theorem 3.2. Let v, w satisfy (25)�(27), where dist(D, Ω) > 0. Then |F(v)|2, |F(v + w)|2 and
w uniquely determine v by the formulas

Fv(p) := (Fw(p))−1Fq(p), p ∈ Rd, (35)

q(x) := χD−Ω(x)

(
u(x)− (2π)−d

∫
y∈Ω

w(x+ y)w(y)dy

)
, (36)

u(x) := F−1(|F(v + w)|2)(x)−F−1(|Fv|2)(x). (37)

Under our assumptions on w, we have that

µ ({p ∈ Rd : Fw(p) = 0}) = 0, (38)

where µ(A) denotes the d�dimentional Lebesgue measure of a set A. Therefore, formulas (32),
(35) are correctly de�ned inspite of the factor (Fw(p))−1.
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In order to prove Theorems 3.1 and 3.2 we use, in particular, that

F−1(ϕ1ϕ2) = (2π)−d(F−1ϕ1) ∗ (F−1ϕ2), (39)

(ν1 ∗ ν2)(x) :=

∫
Rd
ν1(x− y)ν2(y)dy, (40)

Fν = F ν̃, ν̃(x) = ν(−x), (41)

(2π)−dF(ν1 ∗ ν2) = Fν1Fν2, (42)

where ϕ1, ϕ2, ν, ν1, ν2 are test functions.

Proof of Theorem 3.1. Using formulas (39), (40), (41) for ϕ1 = F(v+w), ϕ2 = F(v + w), ν =
ν1 = v + w, ν2 = ṽ + w̃, we obtain that

I = (2π)dF−1(|F(v + w)|2) = (v + w) ∗ (ṽ + w̃) =

=

∫
Rd

(v(x− y) + w(x− y))(v(−y) + w(−y))dy =

=

∫
Rd
v(x− y)v(−y)dy +

∫
Rd
w(x− y)v(−y)dy +

∫
Rd
v(x− y)w(−y)dy+

+

∫
Rd
w(x− y)w(−y)dy =: I1 + I2 + I3 + I4.

(43)

Let
Br = {x ∈ Rd : |x| < r}. (44)

Note that

I1(x) =

∫
y∈−D

v(x− y)v(−y)dy, (45)

supp I1 ⊂ BdiamD, (46)

I2(x) =

∫
y∈−D

w(x− y)v(−y)dy, (47)

supp I2 ⊂ Ω−D, (48)

I3(x) =

∫
−y∈Ω

v(x− y)w(−y)dy, (49)

supp I3 ⊂ D − Ω, (50)

I4(x) =

∫
−y∈Ω

w(x− y)w(−y)dy, (51)

supp I4(x) ⊂ BdiamΩ, (52)

where Ω−D, D − Ω, Br are de�ned according to (29), (44).
Property (46) follows from the observation that if y ∈ D, x+y ∈ D, then x ∈ BdiamD; property

(48) follows from the observation that if y ∈ D, x+ y ∈ Ω, then x ∈ Ω−D; and the derivation of
(50), (52) is similar.

Using (27) and the assumption that dist(D, Ω) > diamD one can see that

dist(D,Ω) > diamD ⇔ ∀x ∈ D, y ∈ Ω : |x− y| > diamD ⇔ BdiamD ∩ (D − Ω) = ∅. (53)

SinceD and Ω are convex, the setsD−Ω and Ω−D are also convex and reciprocally symmetric.
Therefore, if their intersection is nonempty, it contains the point 0. But formula (53) implies that
0 /∈ D − Ω. Thus, we have that

(D − Ω) ∩ (Ω−D) = ∅. (54)
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From (53), (54) we conclude that

(D − Ω) ∩ (BdiamD ∪ (Ω−D)) = ∅, (55)

(Ω−D) ∩ (BdiamD ∪ (D − Ω)) = ∅. (56)

Formulas (43), (46), (48), (50), (55), (56) imply that

I2(x) = χΩ−D(x)(I(x)− I4(x)), (57)

I3(x) = χD−Ω(x)(I(x)− I4(x)). (58)

Using (42), (47), (49) we have that

(2π)−dFI2 = F ṽFw, (59)

(2π)−dFI3 = FvFw̃. (60)

The formulas (32)�(34) follow from (41), (43), (58), (60). This completes the proof of Theorem
3.1.

Proof of Theorem 3.2. Formulas (43)�(52), (59), (60) remain valid under the assumptions of
Theorem 3.2.

The assumption dist(D, Ω) > 0 implies that

0 /∈ D − Ω. (61)

Using formula (61) and the proof of formula (54) we obtain that formula (54) also remains
valid under the assumptions of Theorem 3.2.

Formulas (43), (48), (50) and (54) imply that

I2(x) = χΩ−D(x)(I(x)− I1(x)− I4(x)), (62)

I3(x) = χD−Ω(x)(I(x)− I1(x)− I4(x)). (63)

The formulas (35)�(37) follow from (43), (60), (63). This completes the proof of Theorem 3.2.

Remark 3.1. Under the assumptions of Theorem 3.1, there exist ε > 0, an open ε�neighbourhood
Nε(D − Ω) of D − Ω, and a function χD−Ω,ε ∈ C∞(Rd), such that

χD−Ω,ε(x) = 1, x ∈ D − Ω, (64)

χD−Ω,ε(x) = 0, x ∈ Rd \ Nε(D − Ω), (65)

(Ω−D) ∩Nε(D − Ω) = ∅, (66)

BdiamD ∩Nε(D − Ω) = ∅. (67)

In addition, formulas (32)�(34) remain valid with χD−Ω replaced by χD−Ω,ε.
Remark 3.2. Under the assumptions of Theorem 3.2, there exist ε > 0, an open ε�neighbourhood

Nε(D−Ω) of D−Ω, and a function χD−Ω,ε ∈ C∞(Rd), such that properties (64)�(66) are ful�lled.
In addition, formulas (35)�(37) remain valid with χD−Ω replaced by χD−Ω,ε.

Note that Remarks 3.1 and 3.2 are used in estimates of Sections 5 and 6.

4 Reconstruction formulas and uniqueness results for Problem 1.3

In this section we give reconstruction formulas and global uniqueness results for Problem 1.3, for
d ≥ 2, n = 1, and for Problem 1.2, for d ≥ 2 (see Remark 1.1). These reconstruction formulas
and global uniqueness results develop considerably related studies of [23], [24] on Problem 1.3, for
d ≥ 2, n = 2 and n = 1.
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4.1 Uniqueness results

Theorem 4.1. Let v, w1 satisfy (2), (11), where D, Ω = Ω1 satisfy (27), dist(D, Ω1) > diamD,
and d ≥ 2. Then |f1|2 and w1 uniquely determine v via formulas (32)�(34), where w = w1, and
formula (16) for j = 1.

Theorem 4.2. Let v, w1 satisfy (2), (11), where D, Ω = Ω1 satisfy (27), dist(D, Ω1) > 0, and
d ≥ 2. Then |f |2, |f1|2 and w1 uniquely determine v via formulas (35)�(37), where w = w1, and
formula (16) for j = 0, 1.

Theorems 4.1 and 4.2 follow directly from formula (16) and Theorems 3.1 and 3.2.
In addition to f, f1 onME, we also consider f |ΓE , f1|ΓE , where

ΓE =
{
k = kE(p), l = lE(p) : p ∈ B2

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(68)

Br = {p ∈ Rd : |p| < r}, Br = {r ∈ Rd : |p| ≤ r}, r > 0, (69)

where γ is a piecewise continuous vector�function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p)p = 0, p ∈ Rd. (70)

We recall that

ΓE ⊂ME, dimΓE = d, dimME = 2d− 2, E > 0, d ≥ 2. (71)

We also consider
MΛ = ∪E∈ΛME, ΓΛ = ∪E∈ΛΓE, (72)

where Λ ⊆ R+ = (0,+∞).
Let, for example, Λ be of the following form

Λ = {Ej ∈ R+ : j ∈ N, Ej →∞, as j →∞}. (73)

Theorems 4.1 and 4.2, where we use formula (16) with k = kEj(p), l = lEj(p), imply the
following corollaries:

Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Let Λ be of the form (73). Then |f1|2
on ΓΛ and background w1 uniquely determine v in L∞(Rd).

Corollary 4.2. Let the assumptions of Theorem 4.2 hold. Let Λ be of the form (73). Then
S = {|f |2, |f1|2} on ΓΛ and background w1 uniquely determine v in L∞(Rd).

We also consider Λ of the form

Λ = {Ej ∈ R+ : j ∈ N, Ej1 6= Ej2 for j1 6= j2, Ej → E∗, as j →∞}, E∗ > 0. (74)

Proceeding from Theorems 4.1 and 4.2 we obtain the following results:

Proposition 4.1. Let the assumptions of Theorem 4.1 hold, and v, w1 be real�valued. Let Λ be
of the form (74). Then |f1|2 on ΓΛ and background w1 uniquely determine v.

Proposition 4.2. Let the assumptions of Theorem 4.2 hold, and v, w1 be real�valued. Let Λ be
of the form (74). Then S = {|f |2, |f1|2} on ΓΛ and background w1 uniquely determine v.

8



The proof of Propositions 4.1, 4.2 is similar to the proof of Theorem 2.2 of [24].
Remark 4.1 Corollary 4.2 and Proposition 4.2 of the present work develop the result of

Proposition 2.2 of [24], where it was show that:
(A) There are not more then two di�erent complex�valued potentials v satisfying (2) with

given S = {|f |2, |f1|2} on ΓΛ and background complex�valued potential w1 satisfying (11), w1 6= 0
in L∞(Rd), where Λ is de�ned as in (73);

(B) There are not more than two di�erent real�valued potentials v satisfying (2) with given
S = {|f |2, |f1|2} on ΓΛ and background real�valued potential w1 satisfying (11), w1 6= 0 in L∞(Rd),
where Λ is de�ned as in (74).

In addition, the reconstruction of Corollary 4.2 (based on formulas mentioned in Theorem
4.2) of the present work does not involve an analytic continuation in contrast with item (A) of
Proposition 2.2 of [24].

4.2 Approximate reconstruction formulas

Suppose that the assumptions of Theorem 4.1 are valid. Then, at �xed E, proceeding from
Theorem 4.1 and Remark 3.1 we reconstruct v(x) as vappr(x,E), where

vappr(x,E) := (F−1v̂appr)(x,E), x ∈ D, (75)

v̂appr(p, E) :=

{
(Fw1(p))−1(Fqappr)(p) for p ∈ B(2−δ)

√
E,

0 for p ∈ Rd \B(2−δ)
√
E,

(76)

qappr(x,E) := χD−Ω,ε(x)(uappr(x,E)− (2π)−d
∫
y∈Ω

w1(x+ y)w1(y)dy), (77)

uappr(x,E) := (F−1h)(x), (78)

h(p, E) :=

{
|f1(kE(p), lE(p))|2 for p ∈ B2

√
E,

|Fw1(p, E)|2 for p ∈ Rd \B2
√
E,

(79)

where kE(p), lE(p) are de�ned in (68), χD−Ω, ε is the function of Remark 3.1, and δ ∈ (0, 2).
Suppose that the assumptions of Theorem 4.2 are valid. Then, at �xed E, proceeding from

Theorem 4.2 and Remark 3.2 we construct v(x) as vappr(x,E), where vappr(x,E) is given by
formulas (75)�(78) with

h(p, E) :=

{
|f1(kE(p), lE(p))|2 − |f(kE(p), lE(p))|2 for p ∈ B2

√
E,

|Fw1(p, E)|2 for p ∈ Rd \B2
√
E.

(80)

In Sections 5 and 6 we give error estimates for v̂appr and vappr. These error estimates develop
considerably related studies of [23], [24], and [3] on Problem 1.3, for d ≥ 2, n ≥ 2.

5 Error estimates for v̂appr

In this section we estimate |v̂(p)− v̂appr(p, E)| for p ∈ B(2−δ)
√
E, where v̂appr is de�ned in Subsection

4.2, v̂ = Fv.
Note that the following estimate holds:

|FχD−Ω,ε(p)| ≤
C1(σ)

(1 + |p|)σ
, p ∈ Rd, σ ≥ 0, (81)

where χD−Ω, ε is the function of Remarks 3.1, 3.2, C1(σ) = C1(σ, χD−Ω, ε) is a positive constant.
Let

C2(σ) =

∫
Rd

dp

(1 + |p|)σ
, σ > d. (82)

Let µ(U) denote the Lebesgue measure of a bounded domain U ⊂ Rd.
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Theorem 5.1. Suppose that the assumptions of Theorem 4.1 are valid, and v, w1 satisfy (17).
Let v̂appr be de�ned via (76)�(79). Then:

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1

(
C3E

−1/2η3 +
C4η

2

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η),

(83)

C3 = c(D ∪ Ω)C1(σ1)C2(σ1), σ1 > d, (84)

C4 = (2π)−2d(µ(D)2 + 2µ(D)µ(Ω))C1(σ)C2(d+ α), α > 0, σ − d− α > 0, (85)

where c, ρ are the constants of (18), C1, C2 are the constants of (81), (82), δ ∈ (0, 2) is �xed.

Theorem 5.2. Suppose that the assumptions of Theorem 4.2 are valid, and v, w1 satisfy (17).
Let v̂appr be de�ned via (76)�(78), (80). Then:

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1

(
C5E

−1/2η3 +
C6η

2

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η),

(86)

C5 = (c(D) + c(D ∪ Ω))C1(σ1)C2(σ1), σ1 > d, (87)

C6 = 2(2π)−2dµ(D)µ(Ω)C1(σ)C2(d+ α), α > 0, σ − d− α > 0, (88)

where c, ρ are the constants of (18), C1, C2 are the constants of (81), (82), δ ∈ (0, 2) is �xed.

The estimates of Theorems 5.1, 5.2 can be considered as error estimates for v̂appr(p, E) at high
energies E.

Theorems 5.1, 5.2 are proved in Section 7.
In addition, it may be of interest to consider estimates (83), (86) for small v, w1, that is for

small η. In this case it is convenient to suppose also that

|Fw1(p)| ≥ η|ŵ0(p)|, ∀p ∈ Rd, (89)

where ŵ0 is independent of η, and

ŵ0(p) = Fw0(p), (90)

w0 ∈ L∞(Rd), suppw0 ⊂ Ω = Ω1, w0 6= 0. (91)

Then estimate (83) takes the form

|v̂(p)− v̂appr(p, E)| ≤ |ŵ0(p)|−1

(
C3E

−1/2η2 +
C4η

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η), α > 0, σ > d+ α,

(92)

and estimate (86) takes the form

|v̂(p)− v̂appr(p, E)| ≤ |ŵ0(p)|−1

(
C5E

−1/2η2 +
C6η

(1 + δE1/2)σ−d−α

)
for p ∈ B(2−δ)

√
E, E

1/2 ≥ ρ(D ∪ Ω, η), α > 0, σ > d+ α.

(93)

One can see that estimates (92), (93) are very e�cient for small η and large E, because in this
case E−1/2η2 and η(1 + δE1/2)−σ+d+α are very small.

Remark 5.1. The background w1 can be chosen as real�valued non�negative continious
compactly supported function on Rd such that

ŵ1(p) = ŵ1(p) ≥ c3(1 + |p|)−β, p ∈ Rd, (94)

for β > d and c3 > 0; see, for example, Lemma 1 in [3]. Property (94) can be convenient in the
framework of applications of the error estimates (83), (86).

Remark 5.2. If ŵ1(p) in (76), (83), (86) has zeros, then the de�nition of v̂appr(p, E) can be
modi�ed in neighborhoods of these zeros in a similar way with interpolations of Section 4 of [3].
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6 Error estimates for vappr

In this section we estimate |v(x)− vappr(x,E)| for x ∈ D, where vappr is de�ned as in Subsection
4.2 with δ depending on E, and v, w1 satisfy the assumptions of Theorem 5.1 or 5.2. In addition,
for simplicity, we assume that v ∈ Wm,1(Rd), m > d, and w1 satis�es (94), where

Wm,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
‖u‖m,1 = max

|J |≤m
‖∂Ju‖L1(Rd), m ∈ N ∪ 0.

(95)

Next, we assume that

vappr(x,E) =

∫
Br1(E)

e−ixpv̂appr(p, E)dp, x ∈ D,

r1(E) = (2− δ(E))
√
E = 2τEγ, γ =

1

2

1

m+ β
,

(96)

where E ≥ ρ2(D ∪ Ω, η) ≥ 1 as in Theorems 5.1, 5.2, β is the number of (94), τ ∈ (0, 1) is �xed.
One can see that δ(E) ∈ (0, 2) under the assumptions of formula (96).

Note that if v ∈ Wm,1(Rd), m ≥ 0, then the following estimate holds:

|v̂(p)| ≤ C7(m)

(1 + |p|)m
, p ∈ Rd, (97)

where C7(m) = C7(m, d, ‖v‖m,1) is a positive constant.
Let

γ1 =
1

2

m− d
m+ β

, γ2 =
σ − d− α− 1

2
, (98)

where α > 0, σ − d− α > 1, β > d, m > d.
Let |Sd−1| denotes the (d− 1)�dimentional Lebesgue measure of the unit sphere.

Theorem 6.1. Let v, w1 satisfy the assumptions of Theorem 5.1, where α > 0, σ − d − α > 1.
Suppose also that v ∈ Wm,1(Rd), where m > d, and w1 satis�es (94), where β > d. Let vappr be
de�ned by (76)�(79), (96). Then:

|v(x)− vappr(x,E)| ≤ A1E
−γ1 + A2E

−γ2 , x ∈ D, (99)

A1 =
|Sd−1|C7(m)

(2τ)m−d(m− d)
+ (1 + 2τ)β(2τ)dc3C3η

3µ(B1), (100)

A2 =
(1 + 2τ)β(2τ)d

(2− 2τ)σ−d−α
µ(B1)c3C4η

2, (101)

where γ1, γ2 are given by (98), C3, C4, C7 are given by (84), (85), (97), τ is the number of (96).

Theorem 6.2. Let v, w1 satisfy the assumptions of Theorem 5.2, where α > 0, σ − d − α > 1.
Suppose also that v ∈ Wm,1(Rd), where m > d, and w1 satis�es (94), where β > d. Let vappr be
de�ned by (76)�(78), (80), (96). Then:

|v(x)− vappr(x,E)| ≤ A3E
−γ1 + A4E

−γ2 , x ∈ D, (102)

A3 =
|Sd−1|C7(m)

(2τ)m−d(m− d)
+ (1 + 2τ)β(2τ)dc3C5η

3µ(B1), (103)

A4 =
(1 + 2τ)β(2τ)d

(2− 2τ)σ−d−α
µ(B1)c3C6η

2, (104)

where γ1, γ2 are given by (98), C5, C6, C7 are given by (87), (88), (97), τ is the number of (96).

The proofs of Theorems 6.1, 6.2 are given in Section 8. In these proofs we proceed from
Theorems 5.1, 5.2, formula (96) and estimates (94), (97).

Remark 6.1. If the assumption that v ∈ Wm,1(Rd), m > d, is not ful�lled, then the consid-
erations of the present section can be developed for apodized (smoothed) v in a similar way with
considerations of Section 6.1 of [15] and Theorem 3.2, Remark 3.3 of [16].
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7 Proofs of Theorems 5.1 and 5.2

Recall that

F(ϕ1ϕ2)(p) = (Fϕ1 ∗ Fϕ2)(p) =

∫
Rd
Fϕ1(p− p′)Fϕ2(p′)dp′, p ∈ Rd, (105)

where ϕ1, ϕ2 are test functions.

7.1 Proof of Theorem 5.1

We consider

∆h(p, E) = |F(v + w1)(p)|2 − h(p, E), p ∈ Rd, (106)

∆u(x,E) = u(x)− uappr(x,E), x ∈ Rd, (107)

∆q(x,E) = q(x)− qappr(x,E), x ∈ Rd, (108)

∆v̂(p, E) = v̂(p)− v̂appr(p, E), p ∈ B(2−δ)E, (109)

where v̂ = Fv, q, u are the functions of (32)�(34) with χD−Ω, ε in place of χD−Ω, and v̂appr,
qappr, uappr, h are the functions of (76)�(79). We have that

∆u(·, E) = F−1∆h(·, E), ∆q(·, E) = χD−Ω,εF−1∆h(·, E), (110)

∆v̂(p, E) = (Fw1(p))−1F∆q(p, E), (111)

F∆q(p, E) =

∫
Rd
FχD−Ω, ε(p− p′)∆h(p′, E)dp′, p ∈ B(2−δ)

√
E, (112)

where in (112) we used (105) and (110).
First, we estimate ∆h. De�nition (106) can be rewritten as

∆h(p, E) = |F(v + w1)(p)|2 − |f1(kE(p), lE(p))|2, p ∈ B2
√
E, (113)

∆h(p, E) = |F(v + w1)(p)|2 − |Fw1(p)|2, p ∈ Rd \B2
√
E. (114)

Due to (18), (113), we have that

|∆h(p, E)| ≤ c(D ∪ Ω)η3E−1/2, p ∈ B2
√
E, for E1/2 ≥ ρ(D ∪ Ω, η). (115)

In addition, we have that

|∆h(p, E)| ≤ (2π)−2dη2(µ(D)2 + 2µ(D)µ(Ω)), p ∈ Rd \B2
√
E. (116)

Estimate (116) follows from the following estimates∣∣|F(v + w1)|2 − |Fw1|2
∣∣ ≤ ||F(v + w1)| − |Fw1|| (|F(v + w1)|+ |Fw1|) ≤

≤ |Fv|2 + 2|Fv||Fw1|, (117)

|Fv| ≤ (2π)−dηµ(D), |Fw1| ≤ (2π)−dηµ(Ω). (118)

In (117) we used the inequalities

−|a| ≤ |a+ b| − |b| ≤ |a|, a = Fv, b = Fw1. (119)

In view of (111), (112), estimating ∆v̂ consists of the following. We have that

|F∆q(p, E)| ≤
∫
B2
√
E

|FχD−Ω, ε(p− p′)| |∆h(p′, E)|dp′+

+

∫
Rd\B2

√
E

|FχD−Ω, ε(p− p′)| |∆h(p′, E)|dp′ = I1(p, E) + I2(p, E), (120)
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where p ∈ B(2−δ)
√
E.

Using (81), (115) we estimate I1 as follows:

|I1(p, E)| ≤ c(D ∪ Ω)η3E−1/2

∫
B2
√
E

|FχD−Ω, ε(p− p′)|dp′, (121)∫
B2
√
E

|FχD−Ω, ε(p− p′)|dp′ ≤
∫
Rd
|FχD−Ω, ε(p

′)|dp′ ≤

≤ C1(σ1)

∫
Rd

dp′

(1 + |p′|)σ1
= C1(σ1)C2(σ1), σ1 > d, (122)

where p ∈ B(2−δ)
√
E, C1, C2 are the constants of (81), (82).

Using (81), (116) we estimate I2 as follows:

|I2(p, E)| ≤ (2π)−2dη2(µ(D)2 + 2µ(D)µ(Ω))C1(σ)

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ
, (123)∫

Rd\B2
√
E

dp′

(1 + |p− p′|)σ
=

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ−d−α(1 + |p− p′|)d+α
≤

≤ 1

(1 + δE1/2)σ−d−α

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)d+α
≤

≤ 1

(1 + δE1/2)σ−d−α

∫
Rd

dp′

(1 + |p− p′|)d+α
≤ C2(d+ α)

(1 + δE1/2)σ−d−α
, (124)

where p ∈ B(2−δ)
√
E, α > 0, σ − d− α > 0, C1, C2 are the constants of (81), (82).

Formulas (83)�(85) follow from (109), (111), (120)�(124).
Theorem 5.1 is proved.

7.2 Proof of Theorem 5.2

We consider
∆h(p, E) = |F(v + w1)(p)|2 − |Fv(p)|2 − h(p, E), p ∈ Rd, (125)

where h is de�ned in (80). We also consider ∆u, ∆q, ∆v̂ de�ned as in (107)�(109), where u, q, v̂ =
Fv are de�ned by (35)�(37), uappr, qappr, v̂appr are de�ned by (76)�(78), (80).

Note that formulas (110)�(112) remain valid with ∆h given by (125).
First, we estimate ∆h. De�nition (125) can be rewritten as

∆h(p, E) = (|F(v + w1)(p)|2 − |f1(kE(p), lE(p))|2)− (|Fv(p)|2 − |f(kE(p), lE(p))|2),

p ∈ B2
√
E,

(126)

∆h(p, E) = |F(v + w1)(p)|2 − |Fv(p)|2 − |Fw1(p)|2, p ∈ Rd \B2
√
E. (127)

Due to (18), (126), we have that

|∆h(p, E)| ≤ (c(D ∪ Ω) + c(D))η3E−1/2, p ∈ B2
√
E,

for E1/2 ≥ ρ(D ∪ Ω, η).
(128)

In addition, we have that

|∆h(p, E)| ≤ 2(2π)−2dη2µ(D)µ(Ω), p ∈ Rd \B2
√
E. (129)

Estimate (129) follows from (118) and the following estimate

||F(v + w1)|2 − |Fv|2 − |Fw1|2| ≤ 2|Fv||Fw1|. (130)
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Estimate (120) for F∆q remains valid with ∆h given by (125).
In addition: using (128) we have that

|I1(p, E)| ≤ (c(D) + c(D ∪ Ω))η3E−1/2

∫
B2
√
E

|FχD−Ω, ε(p− p′)|dp′, p ∈ B(2−δ)
√
E; (131)

using (129) we have that

|I2(p, E)| ≤ 2(2π)−2dη2µ(D)µ(Ω)C1(σ)

∫
Rd\B2

√
E

dp′

(1 + |p− p′|)σ
, p ∈ B(2−δ)

√
E, σ > d. (132)

Formulas (86)�(88) follow from (109), (111), (120), (122), (124), (131), (132).
Theorem 5.2 is proved.

8 Proof of Theorems 6.1 and 6.2

The following formulas hold:

v(x) =

∫
Rd
e−ixpv̂(p)dp, vappr(x,E) =

∫
B(2−δ)

√
E

e−ixpv̂appr(p, E)dp, x ∈ D, (133)

|v(x)− vappr(x,E)| ≤
∫
B(2−δ)

√
E

|v̂(p)− v̂appr(p, E)|dp+

∫
Rd\B(2−δ)

√
E

|v̂(p)|dp, (134)

where in (133) we used the inversion formula for the Fourier transform and the de�nition of
vappr.

Recall that according to (96) we have that

(2− δ(E))
√
E = 2τEγ, γ =

1

2

1

m+ β
. (135)

Using (97), (135) we have that

I0 :=

∫
Rd\B(2−δ)

√
E

|v̂(p)|dp ≤ C7(m)|Sd−1|
∫ ∞

(2−δ)
√
E

dr

rm−d+1
=

=
C7(m)|Sd−1|

(m− d)((2− δ)
√
E)m−d

=
C7(m)|Sd−1|

(m− d)(2τ)m−d
E−γ(m−d).

(136)

From Theorem 5.1 we have that

|v̂(p)− v̂appr(p, E)| ≤ |ŵ1(p)|−1(C3E
−1/2η3 +

C4η
2

(1 + δE1/2)σ−d−α
), p ∈ B(2−δ)

√
E. (137)

From (94), (135) and (137) we obtain∫
B(2−δ)

√
E

|v̂(p)− v̂appr(p, E)|dy ≤ c3

∫
B(2−δ)

√
E

(1 + |p|)β
(
C3η

3E−1/2 +
C4η

2

(1 + δE1/2)σ−d−α

)
dp =

= c3(C3η
3I1 + C4η

2I2), (138)

I1 := E−1/2

∫
B(2−δ)

√
E

(1 + |p|)βdp ≤ E−1/2(1 + (2− δ)
√
E)βµ(B1)((2− δ)

√
E)d ≤

≤ E−1/2+d/2(2− δ)d(1 + (2− δ)
√
E)βµ(B1) = E−1/2(2τ)dEγd(1 + 2τEγ)βµ(B1),

(139)

I2 :=

∫
B(2−δ)

√
E

(1 + |p|)βdp

(1 + δE1/2)σ−d−α
≤ (1 + (2− δ)

√
E)β(2− δ)dEd/2µ(B1)

(1 + δE1/2)σ−d−α
=

=
(1 + 2τEγ)β(2τ)dEγdµ(B1)

(1 + δE1/2)σ−d−α
.

(140)
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15

Using (135), (139), (140), for E ≥ 1 as in (96), we have that

I1 ≤ (1 + 2τ)βµ(B1)(2τ)dE−1/2+γd+γβ, (141)

I2 ≤
(1 + 2τ)β(2τ)βµ(B1)Eγβ+γd

(δE1/2)σ−d−α
≤ (1 + 2τ)β(2τ)βµ(B1)Eγβ+γd

(2
√
E(1− τEγ−1/2))σ−d−α

≤

≤ (1 + 2τ)β(2τ)βµ(B1)Eγβ+γd

2σ−d−αE(σ−d−α)/2(1− τEγ−1/2)σ−d−α
≤ (1 + 2τ)β(2τ)βµ(B1)Eγβ+γd

2σ−d−αE(σ−d−α)/2(1− τ)σ−d−α
,

(142)

where in the last inequality we used that γ < 1/2.
In addition, taking into account the value of γ we have that, for E → +∞ :

I0 = O(E−
1
2
m−d
m+β ) = O(E−γ1), (143)

I1 = O(E−
1
2

+ 1
2
d+β
m+β ) = O(E−

1
2
m−d
m+β ) = O(E−γ1), (144)

I2 = O(E
1
2
β+d
β+m

−σ−d−α
2 ) = O(E−

σ−d−α−1
2 ) = O(E−γ2). (145)

Estimate (99) follows from formulas (134), (136), (138), (141)�(145).
Theorem 6.1 is proved.
The proof of Theorem 6.2, proceeding from formula (96) and Theorem 5.2, is similar to the

proof of Theorem 6.1, proceeding from formula (96) and Theorem 5.1.
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