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Commutator methods are applied to get limiting absorption principles for the discrete standard and Molchanov-Vainberg Schrödinger operators, ∆`V and D`V on ℓ 2 pZ d q, with emphasis on d " 1, 2, 3. Considered are electric potentials V satisfying a long range condition of the type: V ´τ κ j V decays appropriately at infinity for some κ P N and all 1 ĺ j ĺ d, where τ κ j V is the potential shifted by κ units on the j th coordinate. More comprehensive results are obtained for small values of κ, e.g. κ " 1, 2, 3, 4. We work in a simplified framework in which the main takeaway appears to be the existence of bands where a limiting absorption principle holds, and hence pure absolutely continuous (a.c.) spectrum exists. Other decay conditions at infinity for V arise from an isomorphism between ∆ and D in dimension 2. Oscillating potentials are examples in application.

Introduction

The spectral and scattering theory of quantum systems on the lattice Z d has been done primarily using the standard definition of the Laplacian (1.1)

∆ " ∆ std :"

d ÿ j"1
∆ j , where ∆ j :" 1 2 pS j `Sj q, defined on H :" ℓ 2 pZ d q.

Here S j " S 1 j and S j " S ´1 j are the shifts to the right and left respectively on the j th coordinate. So pS j uqpnq " upn 1 , . . . , n j ´1, . . . , n d q for u P H, n " pn 1 , . . . , n d q P Z d . Set |n| 2 :" n 2 1 `... `n2 d . In [MV], Molchanov and Vainberg proposed an alternative Laplacian on H defined by (1.2) D " D MV :"

d ź j"1 ∆ j " 2 ´d ÿ νPΣ S ν 1 1 S ν 2 2 ¨¨¨S ν d d ,
where Σ :" t´1, 1u d , ν " pν 1 , . . . , ν d q.

In the literature, this difference operator has been coined the Molchanov-Vainberg Laplacian. A Fourier transformation shows that the spectra of ∆ j , ∆ and D are purely absolutely continuous (a.c.) and σp∆ j q " r´1, 1s, σp∆q " r´d, ds and σpDq " r´1, 1s. Moreover d ´1∆ and D are equal when d " 1 and isomorphic when d " 2 (see below), but we believe they are fundamentally different for d ľ 3. In spite of this difference, a common point is convergence to the continuous Laplacian. Namely, in [NT] it was proved that ∆ converges to the continuous Laplacian on R d in the norm resolvent sense, when the mesh size of the lattice goes to zero. It is not very hard to prove that this is also true for D, for all dimensions, see Appendix 11. An interesting property of D is the decay of its Green's function. It satisfies Gp0, n, Eq :" xδ 0 , pD ´E ´i0q ´1δ n y " Op|n| ´d´1 2 q as |n| Ñ 8 for all E P p´1, 1qzt0u, whereas such a rate of decay for the Green's function of ∆ does not hold in dimensions d ě 3 for energies in the middle part of its spectrum. This statement was conjectured in [MV], see also [SV], and proven in [P]. The literature on the Molchanov-Vainberg Laplacian is thin. Here we study its spectral properties by means of commutator methods and obtain limiting absorption principles (LAP) in a spirit similar to that of [BSa], [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF] or [IK], for the discrete Schrödinger operators based on the standard definition of the Laplacian. But unlike these articles, here we consider a more general long-range condition on the perturbation V , which we describe shortly.

Let V model a discrete electric potential and act pointwise, i.e. pV uqpnq " V pnqupnq, for u P H. Let κ " pκ j q d j"1 P pN ˚qd (non-zero positive integers) be given. The potential shifted by κ j units on the j th coordinate is again a multiplication operator defined by pτ κ j j V qupnq :" V pn 1 , . . . , n j ´κj , . . . n d qupnq, pτ ´κj j V qupnq :" V pn 1 , . . . , n j `κj , . . . , n d qupnq.

We are interested in potentials V satisfying a non-radial condition at infinity of the form (1.3) n j pV ´τ κ j j V qpnq " Opgpnqq, @1 ĺ j ĺ d, where gpnq is a (radial) function which goes to zero at infinity. This type of condition arises rather naturally in a wider framework of applied Mourre theory/commutator methods on a square lattice which we develop here and in [START_REF] Golénia | Bands of a.c. spectrum for lattice Schrödinger operators with a more general long range condition[END_REF]. Let us also point out that condition (1.3) is close to a summability condition ř nPZ d |pV ´τ κ j j V qpnq| ă 8, especially if V is radial. If all the κ j 's are equal, which will often be our assumption, we write κ " κ j in short. So for example the notation κ " 2 means κ j " 2. When the underlying Laplacian is ∆, we refer to the case κ " 1 and gpnq " |n| ´ε, ε ą 0, as the base case condition. When the underlying Laplacian is D, we define the base case condition to be κ " 2 and gpnq " |n| ´ε, ε ą 0. For ∆, the base case condition is treated in [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]: the result is that one has a LAP locally for ∆ `V on r´d, dszt´d `2l : l " 0, ..., du, and thereby absence of singular continuous spectrum on this set. One can then look to improve the base case conditions by either (1) weakening the decay of gpnq at |n| Ñ 8, or (2) increasing the κ j 's.

Our methods indicate that these 2 points can be analyzed independently. Article [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF] tackles the former point, by weakening gpnq " |n| ´ε, ε ą 0, to functions that decay logarithmically, e.g. gpnq " log ´qp|n|q, q ą 2. In this article and [START_REF] Golénia | Bands of a.c. spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] we turn our attention to point (2). In addition to (1.3) we always assume V is real-valued and goes to zero at infinity. Thus σ ess pD `V q " σpDq and σ ess p∆ `V q " σp∆q, where σ ess p¨q is the essential spectrum. The question we attempt to answer, at least to some degree of generality, is: If we fix V satisfying (1.3) for some κ and appropriate gpnq (say gpnq " |n| ´ε for simplicity), what is the support of the pure a.c. spectra of ∆ `V and D `V ? What LAPs can be derived and at what energies?

We will formulate LAPs according to 3 distinct commutator theories: 1) Mourre's original papers [START_REF] Mourre | Absence of singular continuous spectrum for certain self-adjoint operators[END_REF], [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF], 2) the Besov space approach of [ABG], [BSa], and 3) Gérard's energy estimate approach [G], [START_REF] Golénia | Weighted Mourre's commutator theory, application to Schrödinger operators with oscillating potential[END_REF]. Novel commutator ideas have recently been advanced in [AIIS] ; we do not probe them here. Let H be a Hamiltonian on H " ℓ 2 pZ d q. For a closed interval I Ă R let I ˘:" tz P C ˘: Repzq P Iu, C ˘:" tz P C, ˘Impzq ą 0u. The LAPs are statements about the extension of the holomorphic maps

I ˘Q z Þ Ñ pH ´zq ´1 P BpK, K ˚q,
to I for some appropriate Banach space K Ă H. Here K ˚is the antidual of K, when H " H by the Riesz isomorphism ; BpK, K ˚q are the bounded operators from K to K ˚.

Let us present the framework and results. We start by fixing κ " pκ j q according to (1.3). The coordinate-wise position operators are pN j uqpnq :" n j upnq, DomrN j s "

! u P H " ℓ 2 pZ d q : ÿ nPZ d |n j upnq| 2 ă 8
) .

Commutator methods rely on a self-adjoint conjugate operator. To handle condition (1.3) it makes sense to consider a linear combination of conjugate operators, namely ř lPN ˚ρlκ A lκ , where ρ lκ P R and A lκ :" ř d j"1 A j plκq, and where the A j plκq are the closure in H of (1.4) A j plκq :" 1 2i " lκ j 2 pS on the domain of compactly supported sequences. Each A lκ is self-adjoint by a straightforward adaptation of the case κ " 1 and l " 1, see e.g. [GGo]. A lκ is more compactly expressed in Fourier space. Let F : H Ñ L 2 pr´π, πs d , dξq be the Fourier transform

(1.5) pFuqpξq :" p2πq ´d{2 ÿ nPZ d upnqe in¨ξ , ξ " pξ 1 , . . . , ξ d q.

Then A lκ is unitarily equivalent to the self-adjoint realization of the operator (1.6) FA lκ F ´1 :" 1 2i d ÿ j"1 sinplκ j ξ j q B Bξ j `B Bξ j sinplκ j ξ j q.

To our knowledge the commutator methods applied to the discrete Schrödinger operators have thus far only considered the above A lκ with κ " 1, and l " 1, see e.g. [BSa] and [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]. Here we extend the usual generator of dilations (with some inspiration based on Nakamura's paper [N]). In this article (part I) we work in the simplified framework where the linear combination ř lPN ˚ρlκ A lκ contains just the first term, i.e. ρ lκ " 1 if l " 1 and ρ lκ " 0 otherwise. Thus, henceforth we stick to the simpler notation A κ :" ř d j"1 A j where the A j 's are

(1.7) A j :" 1 4i

" pS κ j j ´S´κ j j qN j `Nj pS

κ j j ´S´κ j j q  .
In part II [START_REF] Golénia | Bands of a.c. spectrum for lattice Schrödinger operators with a more general long range condition[END_REF], which relies more heavily on numerical calculations with the computer, finite non-trivial combinations ř lPN ˚ρlκ A lκ are considered. Results in Part II add to those in Part I. Notation is set in order to treat the 2 Laplacians ∆ and D in parallel. It will be interesting to compare them afterwards. Let pD, Hq be a generic pair of (free, perturbed) Hamiltonians. Let A be a generic conjugate operator. We treat the 2 cases pD, Hq " pD, D `V q or p∆, ∆ `V q, and initially consider A " ˘Aκ but later other options arise. At a basic level, the ability to obtain a LAP on an interval I Ă σpHq depends directly on the ability to prove a strict Mourre estimate for D with respect to some conjugate operator A on this interval, that is to say, Dγ ą 0 such that (1.8) E I pDqrD, iAs ˝EI pDq ľ γE I pDq,

where E I pDq is the spectral projection of D onto I, and rD, iAs ˝means the extension of the commutator between D and A to a bounded operator in H. Consider:

(1.9) µ Ȃ pDq :" tE P σpDq : D an open interval I, I Q E, γ ą 0, s.t. (1.8) holds with ˘Au.

From the Mourre theory, µ Ȃ pDq are open subsets of R. Now define µ A pDq :" µ À pDq Y µ Á pDq.

It will be proved that choosing A equal to `Aκ or ´Aκ yields a strict Mourre estimate on some intervals I Ă σpDq, for D " D or ∆. The ˘sign depends on a number of things, namely I, κ, the dimension d, and whether D " D or ∆. A main goal of this article is to identify the sets µ Aκ pDq and µ Aκ p∆q. Denote U n p¨q the Chebyshev polynomials of the second kind of order n. In Proposition 2.1, it is shown that

(1.10) r∆, iA κ s ˝" d ÿ j"1
p1 ´∆2 j qU κ j ´1p∆ j q, and rD, iA κ s

˝" d ÿ j"1 D ∆ j p1 ´∆2 j qU κ j ´1p∆ j q.
Since D, ∆ and ∆ j are self-adjoint commuting operators, the problem of determining the sets µ Aκ pDq and µ Aκ p∆q translates into an extremization problem of polynomials in d variables of degrees respectively κ ˚`1 and κ ˚`d over a d ´1 dimensional surface on a bounded domain, where κ ˚:" max κ j . The complexity increases with κ ˚and d. The case of the multi-dimensional Standard Laplacian for κ j " 1 is well studied, see e.g. [BSa] or [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]. One has µ A κ"1 p∆q " r´d, dszt´d `2l : l " 0, ..., du. In dimension 1, our new results are comprehensive: we prove µ Aκ p∆q " µ Aκ pDq " r´1, 1szt˘cospπj{κq, j " 0, . . . , tκ{2uu, @κ P N ˚. For d ľ 2, our rigorous results are mostly partial. Now we assume κ " κ j . Tables 1 and2 collect such results for respectively ∆, κ " 2, 3, 4, and D, κ " 2, 4, 6. For these values of κ, and so for the results in Tables 1 and2, the sets µ Aκ pDq are symmetric about zero, i.e. µ Aκ pDq " ´µAκ pDq (this propriety is due to the bipartite property of Z d ).

κ d " 1 d " 2 d " 3 2 p0, 1q p1, 2q p2, 3q 3 r0, 1qzt 1 2 u ´1 2 b 1 2 p5 ´?7q, 1 ¯Y `3 2 , 2 ˘`5 2 , 3 4 p0, 1qzt 1 ? 2 u ´b 3 2 ´1 ? 5 , ? 2 ¯Y ´1 `?2 2 , 2 ¯´2 `1 ? 2 , 3 2 t0, 1u r0, 1s Y t2u r0, 2s Y t3u 3 t 1 2 , 1u " 0, 1 2 b 1 2 p5 ´?7q ı Y " 1, 3 2 ‰ Y t2u " 0, 5 2 ‰ Y t3u 4 ! 0, 1 ? 2 , 1 ) " 0, b 3 2 ´1 ? 5 ı Y " ? 2, 1 `?2 2 ı Y t2u r0, 2s Y " 3 ? 2 , 2 `1 ? 2 ı Y t3u
Table 1. Top: open sets for which we prove they are included in µ Aκ p∆qXr0, ds. Bottom: closed sets for which we prove they are included in r0, dszµ Aκ p∆q.

κ d " 1 d " 2 d " 3 2 p0, 1q p0, 1q p0, 1q 4 p0, 1q zt 1 ? 2 u `0, 1 2 ˘Y ´1 ? 2 , 1 ¯ˆ0, ? 3´?3 4 ˙Y ´1 ? 2 , 1 6 p0, 1q zt 1 2 , ? 3 2 u p0, 0.21q Y p0.53, 0.71q Y ´?3 2 , 1 ¯p0, 0.08q Y p0.57, 0.58q Y ´?3 2 , 1 2 t0, 1u t0, 1u t0, 1u 4 t0, 1 ? 2 , 1u " 1 2 , 1 ? 2 ı Y t0, 1u " 1 2 ? 2 , 1 ? 2 ı Y t0, 1u 6 t0, 1 2 , ? 3 2 , 1u " 1 4 , 1 2 ‰ Y " 3 4 , ? 3 2 ı Y t0, 1u " 1 8 , 1 2 ‰ Y " 3 ? 3 8 , ? 3 2 ı Y t0, 1u
Table 2. Top: open sets for which we prove they are included in µ Aκ pDqXr0, 1s. Bottom: closed sets for which we prove they are included in r0, 1szµ Aκ pDq.

Denote the point and singular continuous spectra of H by σ p pHq and σ sc pHq respectively. The following new result holds for pD, Hq " p∆, ∆ `V q or pD, D `V q, and A " A κ , κ P pN ˚qd : Theorem 1.1. Suppose there is ε ą 0 such that V pnq " O p|n| ´εq as |n| Ñ 8 and

(1.11) n j pV ´τ κ j j V qpnq " O `|n| ´ε˘,
as |n| Ñ 8, j " 1, . . . , d.

Let E P µ A pDqzσ p pHq, where µ A pDq is as in Tables 1 and2 for example. Then there is a closed interval I, such that E belongs to the interior of I and

(1) σ p pHq X I is finite and consists of eigenvalues of finite multiplicity, (2) @s ą 1{2 the map I ˘Q z Þ Ñ pH ´zq ´1 P B pK, K ˚q extends to a uniformly bounded map on each open set of Izσ p pHq, with K " L 2 s pNq " L 2 s,0,0,0 pNq, defined by (9.2), and N :" p1 `N 2 1 `... `N 2 d q 1{2 . In particular σ sc pHq X I " H.

A sharper version of Theorem 1.1 is stated in Theorem 9.3 -and the latter formulation also applies to classes of oscillating potentials, such as Wigner von-Neumann potentials, which decay only like Op|n| ´1q, see examples 10.3 and 10.6. The formulation of the LAP according to Mourre's original papers is Theorem 7.1; the formulation in the Besov spaces is Theorem 8.1.

The purpose of the second half of this article is to strengthen the connection between the two Laplacians. In Section 5 an isomorphism π is established between ∆ and D in dimension 2. In our view the isomorphism is not surprising afterall as it is due to the trigonometric identity 2 cospξ 1 q cospξ 2 q " cospξ 1 `ξ2 q `cospξ 1 ´ξ2 q. The isomorphism however enriches the spectral theory for the two Laplacians. For κ " pκ 1 , κ 2 q P pN ˚q2 , α P R, let ακ " pακ 1 , ακ 2 q. One finds conjugate operators πA 2κ π ´1 " (5.2) for ∆ and π ´1A κ π " (5.9) for D. The new result is:

Theorem 1.2. Fix d " 2, κ " pκ 1 , κ 2 q P pN ˚q2 . Then µ πA 2κ π ´1 p∆q " µ A 2κ p2Dq " 2 ˆµA 2κ pDq, and µ π ´1Aκπ pDq " µ Aκ p 1 2
∆q " 1 2 ˆµAκ p∆q.

In addition to V satisfying V pnq " Op|n| ´εq as |n| Ñ 8 for some ε ą 0, consider the assumptions

pn 1 ´n2 qpV ´τ κ 1 1 τ ´κ1 2 V qpnq and pn 1 `n2 qpV ´τ κ 2 1 τ κ 2 2 V qpnq " O `|n| ´ε˘,
(1.12)

pn 1 `n2 qpV ´τ κ 1 1 τ κ 1 2 V qpnq and pn 2 ´n1 qpV ´τ κ 2 1 τ ´κ2 2 V qpnq " O `|n| ´ε˘,
(1.13)

for some ε ą 0. Then Theorem 1.1 holds for pD, Hq " p∆, ∆ `V q, A " πA 2κ π ´1 and assuming (1.12) instead of (1.11) on the one hand, and pD, Hq " pD, D `V q, A " π ´1A κ π and assuming (1.13) instead of (1.11) on the other hand.

As seen in Table 3, the set µ πA 2κ π ´1 p∆q (corresponding to A " πA 2κ π ´1) covers parts of the spectrum of the 2-dimensional ∆ that are not covered by neither µ Aκ p∆q nor µ A 2κ p∆q. The spectral contributions appear to be somewhat complementary. Thus the isomorphism allows to augment the results of Theorem 1.1, but different conditions on the potential are required. We find it interesting and convenient that µ Aκ p∆q appears to cover energies close to 0 only if κ " pκ 1 , κ 2 q " p1, 1q, see Tables 11 and12 ; on the other hand µ πA 2κ π ´1 p∆q appears to cover energies close to 0 for various combinations of pκ 1 , κ 2 q, see Tables 15 and16. for d " 2 and κ 1 " κ 2 " κ 3 for d " 3. ρ " ´0.5. Numbers are rounded.

d " 2 d " 3 κ A κ πA κ π ´1 A κ πA κ,ρ π ´1 2 p1, 2q p0 
In dimension 3, ∆ and D cannot be isomorphic due to a different number of neighbors (6 for ∆ and 8 for D). Nevertheless we specify an isomorphism between ∆ and a hybrid of D and ∆ in 3d. This isomorphism is basically the aforementioned 2-dimensional isomorphism for the x ´y coordinates and the identity on the z coordinate. It is analogous to a transformation from Cartesian to cylindrical coordinates. It gives rise to another conjugate operator for ∆, which we denote πA κ,ρ π ´1. This produces results that augment those obtained with just A κ (see Tables 3, 9 and10). Another curious phenomenon observed is that for this conjugate operator, numerical results suggest that varying the parameter ρ P R against the vertical coordinate produces different bands of a.c. spectrum. This is a phenomenon we do not grasp.

pD, Hq

Aκ = (1.7) πA2κπ ´1 = (5.2) π ´1Aκπ = (5.9) πAκ,ρπ ´1 = (6.2)

p∆, H std q

d P N ˚d " 2 - d " 3 pD, H MV q d P N ˚- d " 2 - Table 4.
List of conjugate operators in this article. d " dimension. κ " pκ j q P pN ˚qd .

We conclude with a series of remarks. Table 4 summarizes all the conjugate operators A considered in this article and the Laplacians and dimensions to which they apply. Sections 3 and 4 further elaborate on the sets µ Aκ p∆q and µ Aκ pDq. Because of the complexity of the polynomial extremization problem alluded to before, numerical results with the help of the computer have been produced, see Tables 11,12,13,15,16,17, along with conjectures on exact values for the band endpoints. Those results are denoted µ NUM Aκ pDq and µ CONJ Aκ pDq respectively. In the light of the numerical results we highlight three conjectures:

(1) µ Aκ pDq is a finite union of open intervals (bands) whose size go to zero as κ ˚goes to 8.

(2) µ Aκ pDq contains a band adjacent to energy 0 in dimensions 2 and 3 for all even κ ; whereas µ Aκ p∆q contains a band adjacent to energy 0 in dimensions 2 and 3 only if κ " 1. (3) For d " 2, 3, κ " κ j , µ Aκ pDq Ă µ A κ{δ pDq whenever δ P N ˚is a divisor of κ.

The second conjecture potentially illustrates a significant contrast between the two Laplacians, and also gives further importance to the isomorphism in dimension 2. The third conjecture is quite natural from the viewpoint of the potential, in the sense that if V satisfies (1.3) for κ, then it satisfies (1.3) for κ{δ, assuming δ|κ and V goes to zero at infinity. Let V p be a periodic potential of period p " pp 1 , . . . , p d q. In spite of having rV p , A p s ˝" 0 we cannot include periodic potentials as such because compactness remains a crucial assumption in our methods. For Mourre theory adapted for periodic potentials we refer to [GN] and [START_REF] Sahbani | Spectral theory of a class of Block Jacobi matrices and applications[END_REF].

There is the broad question of whether there are other conjugate operators consistent with our working assumption (1.3) which contribute additional bands of a.c. spectrum. In part II of our investigations [START_REF] Golénia | Bands of a.c. spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] finite linear combinations ř lPN ˚ρlκ A lκ are constructed and the evidence suggests that more bands of a.c. spectrum may be uncovered in this way. This partly addresses the question.

There is the intriguing question about what is the nature of the spectrum of H between the bands of a.c. spectrum, i.e. for energies in σpHqzµ A pDq. For d " 1, Liu [START_REF] Liu | Absence of singular continuous spectrum for perturbed discrete Schrödinger operators[END_REF], based on Kiselev's work [Ki], proved that σ sc p∆ `V q " H whenever V pnq " Op|n| ´1q. This topic is an open problem for d ľ 2. Perhaps the results of this article and those in part II [START_REF] Golénia | Bands of a.c. spectrum for lattice Schrödinger operators with a more general long range condition[END_REF] can serve as an indication for this research. We also refer to articles by Stolz [START_REF] Stolz | Spectral theory for slowly oscillating potentials I. Jacobi Matrices[END_REF] and [START_REF] Stolz | Spectral theory for slowly oscillating potentials. II: Schrödinger operators[END_REF] where a.c. spectrum in dimension 1 is proved under different but akin conditions on V .

We also wonder if the band endpoints could be potential locations of resonances or embedded eigenvalues. To illustrate what we mean, consider the oscillating 1-dimensional perturbation created by Remling [R], see example 10.3. It is such that pV ´τ 2 V qpnq " Op|n| ´2q, but pV ´τ V qpnq " Op|n| ´1q. It is relevant to pick A " A κ"2 to obtain a LAP. The embedded eigenvalue of this Hamiltonian, E " 0, corresponds to the threshold between the two spectral bands p´1, 0q Y p0, 1q " µ A κ"2 p∆q. There are many open questions on the topic of embedded threshold eigenvalues. We refer to [NoTa], [START_REF] Liu | Criteria for embedded eigenvalues for discrete Schrödinger Operators[END_REF], [IJ] and [START_REF] Ito | Hypergeometric expression for the resolvent of the discrete Laplacian in low dimensions[END_REF] for recent research in this area.

Finally, we point out that the commutators r∆, A κ s ˝and rD, A κ s ˝are expressed in terms of Chebyshev polynomials and that these also enter directly in the Green's function for the Laplacian, at least in dimension 1, see e.g. [Y], but also [IJ] and [START_REF] Ito | Hypergeometric expression for the resolvent of the discrete Laplacian in low dimensions[END_REF]. It would be interesting to understand if there is a deeper connection.

The plan of the article is as follows. Section 2 reviews operator regularity and practical criteria for the potential. In Sections 3 and 4 the sets µ Aκ p∆q and µ Aκ pDq are determined to the best of our capability, with numerical additions in Appendices 13 and 14 respectively. In Sections 5 and 6 we discuss isomorphisms in dimensions 2 and 3 respectively. In Sections 7, 8 and 9 the main Theorems (LAPs) are stated with respect to the three commutator theories. Section 10 has examples. Appendix 11 details the convergence between the 2 different discrete Laplacians. Appendix 12 details the procedure used numerically estimate the sets µ Aκ p∆q and µ Aκ pDq. Acknowledgements: It is a pleasure to thank Vojkan Jaksić for drawing our attention to the Molchanov-Vainberg Laplacian, and Shu Nakamura for very helpful explanations. Notation: N denotes the non-negative integers, it contains 0. Given a countable set X, ℓ 0 pXq :" tf : X Ñ C, with finite supportu. BpHq are the bounded operators on a Hilbert space H. }rT, e itA s ˝, e itA s ˝}t ´2dt ă 8.

Regularity and

One has C 2 pAq Ă C 1,1 pAq Ă C 1 u pAq Ă C 1 pAq, see [ABG]. For each of these classes, the subclass comprising of the bounded operators on H constitutes a C´vector space.

2.2. Mourre estimate: Abstract definitions and properties. Suppose T P C 1 pAq, with T, A self-adjoint. The Mourre estimate for T holds w.r.t. A on an interval I, if Dγ ą 0 such that (2.2) E I pT qrT, iAs ˝EI pT q ľ γE I pT q `K, where E I pT q is the spectral projection of T onto I and K is some compact operator. Consider:

(2.3) μȂ pT q :" tE P σpT q : D an open interval I, I Q E, γ ą 0, s.t. (2.2) holds with ˘Au.

Let µ Ȃ pT q be the subset of μȂ pT q consisting of those energies for which (2.2) holds with K " 0.

The general theory provides useful results. First [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Proposition 7.2.10] ensures µ Ȃ pT q X σ p pT q " H. Second [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Theorem 7.2.13] μȂ pT qzµ Ȃ pT q consists of eigenvalues of T of finite multiplicity. Third [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Theorem 7.2.9] (see [START_REF] Golénia | Propagation estimates for one commutator regularity[END_REF]Lemma 3.3] for a proof) one has that μȂ pT q " μȂ pSq whenever T ´S is compact. Now let µ A pT q :" µ À pT q Y µ Á pT q and μA pT q :" μÀ pT q Y μÁ pT q. In the context of our Schrödinger operators we have µ A pDq " μA pDq " μA pHq " µ A pHq Y teigenvalues of H of finite multiplicityu, for pD, Hq " p∆, ∆ `V q or pD, D `V q, and any A as in Table 4, κ " pκ j q (we always assume V pnq " op1q as |n| Ñ 8, hence compact). Alternatively, we note that, since we assume V pnq " op1q and V P C 1 pAq in Theorems 7.1, 8.1 and 9.3, then we have , @κ " pκ i q d i"1 P pN ˚qd , @1 ĺ j ĺ d. Let U n be the Chebyshev polynomials of the second kind of order n. They are defined by U 0 :" 1, U 1 :" 2X, and U n`1 :" 2XU n ´Un´1 , @n ľ 1. (2.4) Note that U n is a polynomial of degree n and that U n p1q " n `1 for all n ľ 0. One also has (2.5)

sinpnξq " 2 n´1 n´1 ź j"0 sin ˆπj n `ξ˙" sinpξqU n´1 pcospξqq, @n ľ 1.

It implies that

U n pcos pkπ{pn `1qqq " 0, @k P t1, . . . , nu. (2.6) Finally, if n is even, note that

U n´1 pxq x " 2 n´1 n{2´1 ź k"1
px 2 ´cos 2 pkπ{nqq. (2.7) Given j P t1, . . . , du and κ j ľ 1, thanks to (2.5), one computes on ℓ 0 pZ d q : r∆ j , iA κ s " F ´1 rsinpξ j q sinpκ j ξ j qs F " F ´1 " sin 2 pξ j qU κ j ´1pcospξ j qq ‰ F " p1 ´∆2 j qU κ j ´1p∆ j q. Extending by density to all sequences in ℓ 2 pZ d q allows to conclude that ∆ j P C 1 pA κ q. Using linearity and obvious induction, this leads to the result: Proposition 2.1. Let κ " pκ j q d j"1 be given. Then @1 ĺ j ĺ d, ∆ j , ∆, D P C 8 pA κ q. Moreover:

r∆, iA κ s ˝" d ÿ j"1 r∆ j , iA j s ˝" d ÿ j"1 p1 ´∆2 j qU κ j ´1p∆ j q, (2.8) rD, iA κ s ˝" d ÿ j"1 D ∆ j r∆ j , iA j s ˝" d ÿ j"1 D ∆ j p1 ´∆2 j qU κ j ´1p∆ j q. (2.9) Remark 2.1. Note that D ∆ j " ź i"1,...,d;i‰j
∆ i is a bounded operator.

2.4.

Regularity criteria for the potential: Application. Let κ " pκ j q P pN ˚qd be given. The basic criterion for the C 1 pA κ q class is:

Lemma 2.2. Suppose n j pV ´τ κ j j V qpnq " Op1q, as |n| Ñ 8, j " 1, ..., d. Then V P C 1 pA κ q. Proof. On compactly supported sequences one computes rV, iA κ s " 1 4

d ÿ j"1 p2N j ´κj qpV ´τ κ j j V qS κ j j ´p2N j `κj qpV ´τ ´κj j V qS ´κj j .
Then one extends the validity of the commutator to all sequences in ℓ 2 pZ d q by density. In Lemma 2.2 if the assumption Op1q is replaced with op1q, and if also V is compact, then

V P C 1 u pA κ q, see [GM, Proposition 2.1].
According to [ABG], [BSa], the main criteria for the C 1,1 pA κ q class is: Lemma 2.3. Short and long range components satisfy V s , V l P C 1,1 pA κ q whenever respectively (2.10)

ż 8 1 sup ră|n|ă2r
|V s pnq|dr ă 8, and

(2.11) V l pnq " op1q as |n| Ñ 8, and ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ j j V l qpnq ˇˇdr ă 8, j " 1, ..., d.

Remark 2.2. The criteria in Lemma 2.3 are not thorough to check the C 1,1 pA κ q condition. For example, let V pnq "

ř d i"1 lnp2 `|n i |q ¨ln ´3p1 `xnyq.
Then for d ľ 2, V satisfies neither (2.10) nor (2.11), regardless of the choice of κ, but V clearly satisfies the criterion for the C 2 pA κ"1 q class (see Lemma 2.4 below), and so V P C 1,1 pA κ"1 q.

Remark 2.3. Recall the notation (9.1). If there are m P N and 1 " r ă q such that V s pnq and pV l ´τ κ j j V l qpnq " Op|n| ´1 ¨pw q,r m pnqq ´1q as |n| Ñ 8, 1 ĺ j ĺ d, then (2.10) and (2.11) are true respectively.

The appendix of [BSa] has a detailed proof of Lemma 2.3 for the case A κ"1 . There is no point in reproducing the argument here as it readily applies to the more general A κ , thanks to Lemma 9.1 (in [START_REF] Boutet De Monvel | On the spectral properties of discrete Schrödinger operators: the multi-dimensional case[END_REF]Theorem 6.1] one uses Λ " xN y " p1 `N 2 1 `... `N 2 d q 1{2 and A " A κ ). Finally the basic criterion for the C 2 pA κ q class is:

Lemma 2.4. If n j pV ´τ κ j j V qpnq " Op1q and n i n j " pV ´τ κ i i V q ´τ κ j j pV ´τ κ i i V q ‰ pnq " Op1q, as |n| Ñ 8, @1 ĺ i, j ĺ d, then V P C 2 pA κ q. Proof. It is enough to compute rrV, iA κ s ˝, ř i N i S κ i i s on the compactly supported sequences. « rV, iA κ s, ÿ i N i S κ i i ff " ´1 4 ÿ i κ i p2N i ´κi qpV ´τ κ i i V qS 2κ i i `κi p2N i `κi qpV ´τ ´κi i V q `2 4 ÿ i κ i N i S κ i i pV ´τ κ i i V qS κ i i ´κi N i S κ i i pV ´τ ´κi i V qS ´κi i `1 4 ÿ i,j p2N i ´κi qN j ´pV ´τ κ i i V q ´τ κ j j pV ´τ κ i i V q ¯Sκ j j S κ i i ´1 4 ÿ i,j p2N i `κi qN j ´pV ´τ ´κi i V q ´τ κ j j pV ´τ ´κi i V q ¯Sκ j j S ´κi i .
The validity of the commutator extends to all sequences in ℓ 2 pZ d q by density.

3. Strict Mourre estimate for the Standard Laplacian ∆, d ľ 1

In the previous Section the commutator r∆, iA κ s ˝was computed to justify operator regularity. Now it is used to determine the sets µ Aκ p∆q to the best of our capability. In a nutshell we prove Theorem 3.1. The results mentioned in Table 1 are true. Proof. See Lemmas 3.9, 3.10, 3.11, 3.12, 3.13 of this Section.

Again, we emphasize that the sets µ Aκ p∆q that appear in Table 1 are symmetric about zero, i.e. µ Aκ p∆q " ´µAκ p∆q, see Lemma 3.7. To paint a more complete picture, we also derive in this Section other properties about the sets µ Aκ p∆q. Numerical evidence is given in Tables 11 and13. To r∆, iA κ s ˝given by (2.8) one associates the polynomial g

E : r´1, 1s d Þ Ñ R, (3.1) g E pE 1 , ..., E d q :" d ÿ j"1 p1 ´E2 j qU κ´1 pE j q.
Consider the constant energy surface for the Standard Laplacian:

(3.2) S E :" # pE 1 , ..., E d q P r´1, 1s d : E " d ÿ j"1 E j + .
By functional calculus and continuity of the function g E , we have that E P µ Ȃκ p∆q if and only if ˘gE | S E is strictly positive. We cover the 1´dimensional case first.

Lemma 3.2. Let d " 1. Then @κ P N ˚, µ Aκ p∆q " r´1, 1szt˘cospπj{κq, j " 0, ..., tκ{2uu.

In particular, ∆ has κ `1 thresholds with respect to A κ , where the thresholds are defined as σ ess p∆qzµ Aκ p∆q.

Remark 3.1. When d " 1, 0 P µ Aκ p∆q if and only if κ is even.

Proof. In Fourier space we have sinpξq sinpκξq " 0 ô ξ P ˘πj{κ : j " 0, ..., κ ( . One takes the image of this set by the cosine function to get the corresponding threshold energies. Note that tcospπj{κq, j " 0, ..., κu " t˘cospπj{κq, j " 0, ..., tκ{2uu. Let us be specific about the choice of conjugate operator in the Mourre estimate (1.8). Since d " 1, it is straightforward to decide this, especially if one has a graph of the function ξ Þ Ñ sinpξq sinpκξq at hand, see Figure 1. For κ " 1, one takes A " A κ for any E P p´1, 1q. For κ " 2, one takes A " A κ if E P p0, 1q and A " ´Aκ if E P p´1, 0q. For general κ ě 1, one takes

(3.3) A :" $ ' ' & ' ' % A κ , if E P Ť t κ´1 2 u j"0 ´cosp p2j`1qπ κ q, cosp 2jπ κ q Āκ , if E P Ť t κ 2 u j"1 ´cosp 2jπ κ q, cosp p2j´1qπ κ q ¯.
A convenience of the 1´dimensionnal case is that the best constant in the strict Mourre estimate at energy E is simply equal to |g E pEq| " p1 ´E2 q|U κ´1 pEq|.

-π -π 2 π 2 π -1 1 ξ E -π ´2π 3 ´π 3 π 3 2π 3 π ´1 1 2 1 2 1 ξ E Figure 1. Plot of ξ Þ Ñ sinpξq sinpκξq, ξ Þ Ñ cospξq " dotted. κ " 2 (left), κ " 3 (right).
We now proceed with some results in higher dimensions. To stress the dependence on the dimension, write ∆ d to mean ∆ on ℓ 2 pZ d q.

Lemma 3.3. For any d ľ 1, any κ " pκ j q, ˘d R µ Aκ p∆ d q.

Proof. E " d iff E j " 1 ñ g E | S E " 0. This implies the statement. Similarly for E " ´d.

Lemma 3.4. For any d even, for any κ " pκ j q, 0 R µ Aκ p∆q. For any d odd, any κ " pκ j q with all κ j even, 0 R µ Aκ p∆q.

Proof. For the case where d is even, take half of the E j 's equal to 1, the other half equal to ´1. Then E " ř E j " 0 and g E pE 1 , ..., E d q " 0. For the case where we assume d odd and all the κ j even, let E j " 0. Then E " ř E j " 0 and g E pE 1 , ..., E d q " 0 since U κ j ´1p0q " 0.

Lemma 3.5. Let d ľ 2. For all κ " pκ j q, # d ÿ q"1 cospj q π{κ q q : pj 1 , ..., j d q P d ź q"1 t0, ..., κ q u + Ă r´d, dszµ Aκ p∆q.

Remark 3.2. This lemma supports the conjectures in Tables 11 and13.

Proof.

Recalling (2.6), the roots of x Þ Ñ p1 ´x2 qU n´1 pxq are tcospπj{nqu n j"0 . Let E q " cospj q π{κ q q, q " 1, ..., d. Then E " ř d q"1 E q " ř d q"1 cospj q π{κ q q and g E pE 1 , ..., E d q " 0. For the next Lemma we require more notation to avoid confusion. Let g rds E denote the function g E from (3.1) to specify it is a function of the d variables pE 1 , ..., E d q. For a multi-index κ, denote κrds the restriction of κ to its first d components.

Lemma 3.6. For any d ľ 2, for any κ " pκ j q d j"1 , one has

µ A κrds p∆ d q ˘1 Ă µ A κrd´1s p∆ d q.
Proof. From (3.1), g

rd´1s E pE 1 , ..., E d´1 q " g rds E pE 1 , ..., E d´1 , ˘1q. Therefore, inf pE 1 ,...,E d´1 qPS rd´1s E g rd´1s E pE 1 , ..., E d´1 q ľ inf pE 1 ,...,E d qPS rds E˘1 g rds E pE 1 , ..., E d q gives µ Àκrds p∆ d q ˘1 Ă µ Àκrd´1s p∆ d q and sup pE 1 ,...,E d´1 qPS rd´1s E g rd´1s E pE 1 , ..., E d´1 q ĺ sup pE 1 ,...,E d qPS rds E˘1 g rds E pE 1 , ..., E d q ensures µ Áκrds p∆ d q ˘1 Ă µ Áκrd´1s p∆ d q.
This implies the statement.

Lemma 3.7. For any d ľ 1, @κ " pκ j q with all κ j even or all κ j odd, µ Aκ p∆q " ´µAκ p∆q.

Proof. This follows from (3.1) and the fact that the U n p¨q are even when n is even, odd when n is odd. Then use the fact that S ´E " ´SE .

For this reason, we focus only on positive energies whenever all the κ j 's have the same parity.

Lemma 3.8. For any d ľ 1, for any κ " pκ j q, set κ ˚:" max 1ĺjĺd κ j . We have:

pd ´1 `cos pπ{κ ˚q , dq Ă µ Aκ p∆q.

Moreover if all κ j have the same parity, we also get ´pd ´1 `cos pπ{κ ˚q , dq Ă µ Aκ p∆q.

Proof. Consider the d one variable polynomials, h j pxq :" p1 ´x2 qU κ j ´1pxq, j " 1, ..., d. Clearly g E pE 1 , ..., E d q " ř d j"1 h j pE j q. Recalling (2.6) and that U n p1q " n `1 for all n ľ 1, we infer that h j pxq ą 0, @x P pcospπ{κ j q, 1q.

Furthermore, E P pd´1`cospπ{κ ˚q, dq implies S E Ă pcospπ{κ ˚q, 1q d Ă µ Àκ p∆q. For the negative part, use Lemma 3.7.

Remark 3.3. The interval pd ´1 `cos pπ{κ ˚q , dq is maximal in µ Aκ p∆) due to Lemma 3.5 by taking j κ ˚" 1 and the other j i " 0.

Assumption: For the rest of this Section we suppose all κ j 's are equal. Thus we always assume without loss of generality that E P p0, dq.

For some of the following results we use a ratio test, to rule out some energies where a strict Mourre estimate can hold. It goes as follows: one considers two points belonging to S E . For example one may choose (1) pE 1 , E 2 , ..., E d q " pE ´d `1, 1, ..., 1q, and (2) pE 1 , E 2 , ..., E d q " pE{d, E{d, ..., E{dq. Then one looks at the sign of the ratio Lemma 3.9. Let d ľ 1. Suppose κ " 2. Then µ Aκ p∆q " ˘pd ´1, dq.

Proof. The inclusion Ą follows from Lemma 3.8. For the reverse inclusion, we assume E ą 0 and d ľ 2 (the statement is true for d " 1). We apply the ratio test to the points pE 1 , x 2 , x 3 , ..., x d q and pE{d, E{d, ..., E{dq where the x i are equal to 0 or 1. Say that there are j x i 's that are equal to 1, then E 1 " E ´j. j takes any of the values from 1 to d´1. We must assume ´1 ĺ E ´j ĺ 1 and ´1 ĺ E{d ĺ 1. Then RpEq " dpE ´jq{E. This is negative for j ´1 ă E ă j. The result now follows from the fact that the set of points where a Mourre estimate holds is an open set.

Lemma 3.10. Let d " 2, κ " 3. Then µ Aκ p∆q " ˘´1

2 b 1 2 p5 ´?7q, 1 ¯Y ˘`3 2 , 2 ˘.
Proof. Fix 0 ă E ă 2. For κ " 3, it is still human to do an analysis of the function hpxq :" g E pE ´x, xq " p1 ´x2 qp4x 2 ´1q `p1 ´pE ´xq 2 qp4pE ´xq 2 ´1q, defined for x P rE ´1, 1s. We give a brief sketch. The roots of h 1 are x " E{2 and also

x " E{2 ˘a5{2 ´3E In the two previous Lemmata, note that the three numbers that are on the right, appear also in Lemma 3.5. Lemma 3.12. Let d " 3, κ " 3. Then µ Aκ p∆q " ˘`5 2 , 3 ˘.

Proof. Inclusion Ą follows from Lemma 3.8. Now let qpE, xq :" r4pE ´xq 2 ´1sr4pE{3q 2 ´1s ´1.

For the reverse inclusion we use the ratio test. First we apply it to the points pE ´2, 1, 1q and pE{3, E{3, E{3q. We have RpEq " qpE, 2q. This ratio is valid for ´1 ĺ E ´2 ĺ 1, and negative for E P p1, 5{2q. Then we apply it to the points pE ´3{2, 1{2, 1q and pE{3, E{3, E{3q. Use U 2 p1{2q " 0. We have RpEq " qpE, 3{2q. This ratio is valid for ´1 ĺ E ´3{2 ĺ 1, and negative for E P p1{2, 1q Y p3{2, 2q. Finally we apply it to the points pE ´1, 1{2, 1{2q and pE{3, E{3, E{3q.

We have RpEq " qpE, 1q. This ratio is valid for ´1 ĺ E ´1 ĺ 1, and negative for E P p0, 1{2q.

Taking closures rules out a Mourre estimate at all energies between 0 and 5{2. In Section 2 the commutator rD, iA κ s ˝was computed to justify operator regularity. Now it is used to determine the sets µ Aκ pDq to the best of our capability. In a nutshell we prove Theorem 4.1. The results mentioned in Table 2 are true.

Proof. See Corollary 4.8, Lemma 4.9, and subsections 4.2, 4.3, 4.5, 4.6 of this Section.

Again, we emphasize that the sets µ Aκ pDq that appear in Table 2 are symmetric about zero, i.e. µ Aκ pDq " ´µAκ pDq, see Lemma 4.5. To paint a more complete picture, we also derive in this section other properties about the sets µ Aκ pDq. Numerical evidence is given in Tables 15 and17. To rD, iA κ s ˝given by (2.9) one associates the function g

E : r´1, 1s d Þ Ñ R, (4.1) g E pE 1 , ..., E d q :" d ÿ j"1 E E j p1 ´E2 j qU κ j ´1pE j q.
Consider the constant energy surface for the Molchanov-Vainberg Laplacian:

(4.2) S E :" # pE 1 , ..., E d q P r´1, 1s d : E " d ź j"1 E j + .
Note that on g E restricted to S E becomes a polynomial. By functional calculus and continuity of the function g E , we have that E P µ Ȃκ pDq if and only if ˘gE | S E is strictly positive.

Lemma 4.2. For any d ľ 1, any κ " pκ j q, 0, ˘1 R µ Aκ pDq.

Proof. If E P t0, ˘1u then g E | S E " 0. This implies the statement.

For the next Lemma we require more notation to avoid confusion. Write D d to mean D on ℓ 2 pZ d q. Let g rds E denote the function g E from (4.1) to specify it is a function of the d variables pE 1 , ..., E d q. For a multi-index κ, denote κrds the restriction of κ to its first d components.

Lemma 4.3. For any d ľ 2, any κ " pκ j q d j"1 , µ A κrds pD d q Ă µ A κrd´1s pD d´1 q.

Proof. From (4.1), g rd´1s E pE 1 , ..., E d´1 q " g rds E pE 1 , ..., E d´1 , 1q. This implies the statement.

Lemma 4.4. Let d ľ 2. Let κ " pκ j q and suppose at least two parameters κ j 1 and κ j 2 are odd. Then µ Aκ pDq " H.

Proof. We start with the two-dimensional case. In this case we have

g E pE 1 , E 2 q " E 2 p1 ´E2 1 qU κ 1 ´1pE 1 q `E1 p1 ´E2 2 qU κ 2 ´1pE 2 q. Fix E " E 1 E 2 P ˘p0, 1q
. κ 1 and κ 2 odd implies U κ 1 ´1p¨q and U κ 2 ´1p¨q are even functions. Note that if E ą 0, then p´E 1 q¨p´E 2 q " E 1 E 2 and g E pE 1 , E 2 q " ´gE p´E 1 , ´E2 q, whereras if E ă 0, p´E 1 q ¨E2 " E 1 ¨p´E 2 q and g E p´E 1 , E 2 q " ´gE pE 1 , ´E2 q. So g E cannot be strictly positive or strictly negative.

We now extend this observation to the case d ľ 3. Assume, without lost of generality, that κ 1 and κ 2 are odd. Fix E P ˘p0, 1q.

If E ą 0, g E pE 1 , E 2 , `1, ..., `1q " ´gE p´E 1 , ´E2 , `1, ..., `1q, whereas if E ă 0 we have g E p´E 1 , E 2 , `1, ..., `1q " ´gE pE 1 , ´E2 , `1, ..., `1q.
Assumption: For the rest of this Section we suppose all κ j 's are even. Applying (2.5) to ξ " π{2 ´ξj , we infer sinpκ j ξ j q " p´1q κ j {2´1 cospξ j qU κ j ´1psinpξ j qq.

Thus, r∆ j , iA κ s " F ´1 rsinpξ j q sinpκ j ξ j qs F and

(4.3) rD, iA κ s ˝" DF ´1 d ÿ j"1 sinpξ j q sinpκ j ξ j q cospξ j q F " DF ´1 d ÿ j"1
p1 ´cos 2 pξ j qq sinpκ j ξ j q cospξ j q sinpξ j q

F " D d ÿ j"1 p´1q κ j {2´1 p1 ´∆2 j qF ´1 " U κ j ´1psinpξ j qq sinpξ j q  F " D d ÿ j"1 p´1q κ j {2´1 2 κ j ´1 κ j {2 ź l"1 psin 2 plπ{κ j q ´∆2 j q,
where we used (2.7) for the last line. Thus we also have

(4.4) g E pE 1 , ..., E d q " E d ÿ j"1 p´1q κ j {2´1 2 κ j ´1 κ j {2 ź l"1
psin 2 plπ{κ j q ´E2 j q.

Lemma 4.5. For any d ľ 1, for any κ " pκ j q with all κ j even, µ Aκ pDq " ´µAκ pDq.

Proof. This follows from (4.4) and the fact that

S ´E " d ď j"1 tλ j pE 1 , ..., E d q : pE 1 , ..., E d q P S E u,
where λ j pE 1 , ..., E d q :" pF 1 , ..., F d q, with F i " E i if i ‰ j and F j " ´Ej .

For this reason, we focus only on positive energies for the rest of this section.

Lemma 4.6. Let d ľ 2. For any κ " pκ j q with all κ j even, # d ź

q"1 sinpj q π{κ q q : pj 1 , ..., j d q P d ź q"1 t0, 1, ..., κ q {2u + Ă r0, 1szµ Aκ pDq.

This supports the conjectures in Tables 15 and17.

Proof.

If some j q " 0, then ś d q"1 sinpj q π{κ q q " 0 and the result is given by Lemma 4.2. Let pj 1 , ..., j d q P ś d q"1 t1, ..., κ q {2u. Set E q :" sinpj q π{κ q q, q " 1, ..., d. Then, we get E " ś d q"1 sinpj q π{κ q q and g E pE 1 , ..., E d q " 0 by (4.4).

Lemma 4.7. For any d ľ 1, for any κ " pκ j q with all κ j even and κ j {2 with the same parity, µ Aκ pDq Ą ˘pcos pπ{κ ˚q , 1q.

Proof. Fix E P pcospπ{κ ˚q, 1q " psinppκ ˚{2´1qπ{κ ˚q, sinppκ ˚{2qπ{κ ˚qq, κ ˚:" max κ j . Note that we have E j P pcospπ{κ j q, 1q whenever E " ś E j . Moreover, given j " 1, . . . , d, we set h j pxq :" p´1q κ j {2´1 2 κ j ´1 ś κ j {2 l"1 psin 2 plπ{κ j q ´x2 q. Note that p´1q κ j {2´1 h j pxq ą 0, for x P pcospπ{κ j q, 1q. Because all the κ j {2's have the same parity and since g E pE 1 , ..., E d q " E ř d j"1 h j pE j q, we derive the statement.

Remark 4.1. Note that the interval given in Lemma 4.7 are maximal. Let q be such that κ q " κ ˚.

Taking j q " κ ˚{2 ´1 and j i " κ i {2, for i ‰ q, in Lemma 4.6 we see that sinpπ{κ ˚q R µ Aκ pDq.

Corollary 4.8. Let d ľ 1. Suppose κ " 2. Then µ Aκ pDq " ˘p0, 1q.

Lemma 4.9. Let d " 2. Suppose κ " 4. Then µ Aκ pDq " ˘p0, 1{2q Y ˘p1{ ? 2, 1q.

Proof. Let E " E 1 E 2 ą 0. Then from (4.4) we have

(4.5) g E | S E " g E pE 1 , E{E 1 q " 4E " p1 ´E2 1 qp2E 2 1 ´1q `p1 ´pE{E 1 q 2 qp2pE{E 1 q 2 ´1q ‰ .
defined for E P p0, 1q and E 1 P ˘rE, 1s. We seek the values of E such that g E | S E is a strictly positive/negative function of E 1 . We focus on E 1 P rE, 1s only as g E is an even function of E 1 .

Write g E pE 1 , E{E 1 q " 4EhpE 1 q. Solving g 1 E pE 1 , E{E 1 q " 0 is equivalent to solving h 1 pE 1 q " 0. One computes

h 1 pE 1 q " ´2E 1 p2E 2 1 ´1q `4E 1 p1 ´E2 1 q `2 E 2 E 3 1 ˆ2 E 2 E 2 1 ´1˙´4 E 2 E 3 1 ˆ1 ´E2 E 2 1 ˙.
Simplifying and factorizing leads to solving

0 " ´4E 8 1 `3E 6 1 ´3E 2 E 2 1 `4E 2 " ´pE 2 1 ´EqpE 2 1 `Eqp4E 4 1 ´3E 2 1 `4E 2 q. Now the last term in brackets is 4E 4 1 ´3E 2 1 `4E 2 " $ ' & ' % ą 0, if E 2 ą 9{64 p3 ´8E 2 1 q 2 {16, if E 2 " 9{64 4pE 2 1 ´3{8q 2 `4E 2 ´4p3{8q 2 , if E 2 ă 9{64.
For the last case of the 3 cases,

4pE 2 1 ´3{8q 2 `4E 2 ´4p3{8q 2 " 4 " E 2 1 ´3{8 ´ap3{8q 2 ´E2 ı " E 2 1 ´3{8 `ap3{8q 2 ´E2 ı .
In what follows we write simply gpE 1 q instead of g E pE 1 , E{E 1 q.

' If E ą 3{8, the roots of h 1 are E 1 " ˘?E. One computes that h 2 p˘?Eq " 24 ´64E which is strictly negative if and only if E ą 3{8. Thus g achieves global maxima at E 1 " ˘?E, and gp˘?Eq " 8Ep1 ´Eqp2E ´1q. g is increasing on rE, ? Es and decreasing on r ? E, 1s. Also gpEq " gp1q " 4Ep1 ´E2 qp2E 2 ´1q. We want g to be either strictly positive or strictly negative on rE, 1s. g is strictly negative if and only if E ă 1{2 ; g is strictly positive if and only if E ą 1{ ? 2. This gives p3{8, 1{2q Y p1{ ? 2, 1q " µ Aκ pDq X p3{8, 1q. ' If E " 3{8, the roots of h 1 are E 1 " t˘?Eu. h 2 p˘?Eq " 24 ´64E " 0. Since gp3{8q " gp1q ă 0, it must be that g achieves global maxima at E 1 " ˘?E. One computes gp˘a3{8q " ´15{32 ă 0. Thus g is strictly negative on the interval E 1 P rE, 1s. This gives 3{8 P µ Aκ pDq. ' Finally if 0 ă E ă 3{8, the roots of h 1 are

E 1 P " ˘?E, ˘b3{8 `ap3{8q 2 ´E2 , ˘b3{8 ´ap3{8q 2 ´E2
* .

The objective is to show that g is strictly negative on the interval E 1 P rE, 1s. gpEq " gp1q " 4Ep1 ´E2 qp2E 2 ´1q ă 0. Also, gp ?

Eq " 8Ep1 ´Eqp2E ´1q ă 0. One may check that g ˆb3{8 `ap3{8q 2 ´E2 ˙" g ˆb3{8 ´ap3{8q 2 ´E2 ˙ă 0 whenever E P p0, 3{8q. Thus p0, 3{8q " µ Aκ pDq X p0, 3{8q.

Assumption: For the rest of this Section we suppose all the κ j 's are equal. Thus we always assume without loss of generality that E P p0, 1q.

We now devise elementary tests that allow to glean further information about the sets µ Aκ pDq. The tests are crude but still yield partial results. We develop:

' A ratio test: it allows to determine energies that belong to r0, 1szµ Aκ pDq. ' Central & second band tests: they allow to determine energies that belong to µ Aκ pDq.

The band tests exploit oscillations of apparent decreasing intensity of the function (4.6), see Figure 7 for an illustration. The central band test probes for energies within p0, sinpπ{κqq ; the second band test examines energies within psinpπ{κq, sinp2π{κqq. Naturally we could continue with a third band test to examine energies within psinp2π{κq, sinp3π{κqq, etc.. The central band test is valid for κ ľ 4 ; the second band test is valid for κ ľ 6.

4.1.

The ratio test. As usual, we consider only E P p0, 1q. One considers 2 points belonging to S E . Unless otherwise specified we will choose (1) pE 1 , E 2 , ..., E d q " pE, 1, ..., 1q, and (2) pE 1 , E 2 , ..., E d q " pE 1{d , E 1{d , ..., E 1{d q. Then one looks at the sign of the ratio

RpEq :" dg E pE, 1, ..., 1q g E pE 1{d , E 1{d , ..., E 1{d q " ś κ{2 l"1 psin 2 plπ{κq ´E2 q ś κ{2
l"1 psin 2 plπ{κq ´E2{d q One does a sign chart of the RpEq function. If the overall sign is negative, a Mourre estimate cannot hold at energy E, i.e. E R µ Aκ pDq. In other notation, tE P p0, 1q : RpEq ă 0u Ă r0, 1szµ Aκ pDq. If the sign is overall positive, the test is inconclusive, meaning that a Mourre estimate may or may not hold at energy E.

Let us apply this test for different values of κ. For d " 1, any κ even, the test is trivial, with R d"1 pEq " 1, which is inconclusive for all energies R ˘tsinplπ{κq : l " 1, ..., κ{2u. This is consistent with the one-dimensional analysis. For any d ľ 2, κ " 2, RpEq " p1´E 2 q{p1´E 2{d q ą 0, which is inconclusive for all energies. This is consistent with Corollary 4.8. 4.2. Ratio test for κ " 4. We focus on dimensions 2 and 3. We have

R d"2 pEq " pp1{ ? 2q 2 ´E2 qp1 ´E2 q pp1{ ? 2q 2 ´Eqp1 ´Eq , R d"3 pEq " pp1{ ? 2q 2 ´E2 qp1 ´E2 q pp1{ ? 2q 2 ´E2{3 qp1 ´E2{3 q . E R d"2 pEq R d"3 pEq 0 1 2 ? 2 1 2 1 ? 2 1 ```´F igure 2. Ratio test for κ " 4, d " 2, 3.
The results for the case κ " 4, d " 2 is consistent with Lemma 4.9.

4.3. Ratio test for κ " 6. We focus on dimensions 2 and 3. We have

R d"2 pEq " pp1{2q 2 ´E2 qpp ? 3{2q 2 ´E2 qp1 ´E2 q pp1{2q 2 ´Eqpp ? 3{2q 2 ´Eqp1 ´Eq . R d"3 pEq " pp1{2q 2 ´E2 qpp ? 3{2q 2 ´E2 qp1 ´E2 q pp1{2q 2 ´E2{3 qpp ? 3{2q 2 ´E2{3 qp1 ´E2{3 q . E R d"2 pEq 0 1 4 1 2 3 4 ? 3 2 1 `´`´F igure 3. Ratio test for κ " 6, d " 2. E R d"3 pEq 0 1 8 1 2 3 ? 3 8 ? 3 2 1
`´`´F igure 4. Ratio test for κ " 6, d " 3.

4.4.

Ratio test for κ " 8. We focus on dimensions 2 and 3. We have

R d"2 pEq " p 2´?2 4 ´E2 qp 1 2 ´E2 qp 2`?2 4 ´E2 qp1 ´E2 q p 2´?2 4 ´Eqp 1 2 ´Eqp 2`?2 4 ´Eqp1 ´Eq . R d"3 pEq " p 2´?2 4 ´E2 qp 1 2 ´E2 qp 2`?2 4 ´E2 qp1 ´E2 q p 2´?2 4 ´E2{3 qp 1 2 ´E2{3 qp 2`?2 4 ´E2{3 qp1 ´E2{3 q . E R d"2 pEq 0 2´?2 4 ? 2´?2 2 1 2 1 ? 2 2`?2 4 ? 2`?2 2 1 `´`´`´F igure 5. Ratio test for κ " 8, d " 2. E R d"3 pEq 0 ˆ?2´?2 2 ˙3 1 2 ? 2 ? 2´?2 2 1 ? 2 ˆ?2`?2 2 ˙3 ? 2`?2 2 1 `´`´`´F igure 6. Ratio test for κ " 8, d " 3. 1 2 " sinp π κ q ? 3 2 " sinp 2π κ q 1 E E sinp π κ q ? E m m 2 Figure 7
. Plot of hpxq " 2p1 ´x2 qp1 ´4x 2 qp3 ´4x 2 q corresponding to κ " 6.

4.5. Central band test. The test implies a strict Mourre estimate on a subset of p0, sinpπ{κqq, at least for some values of κ and d. We consider only E ą 0. Consider the function of 1 variable

(4.6) h : r0, 1s Þ Ñ R, h : x Þ Ñ p´1q κ{2´1 2 κ´1 κ{2 ź l"1
psin 2 plπ{κq ´x2 q.

h is graphed in Figure 7 for κ " 6. The positive roots of h are tsinpjπ{κq : j " 1, ..., κ{2u. hp0q " p´1q κ{2´1 κ which is positive if κ " 4n `2 and negative if κ " 4n `4, n P N. h 1 is strictly negative (resp. positive) on p0, sinpπ{κqq, depending on whether κ " 4n `2 (resp. 4n `4). Thus, if κ " 4n `2, h is strictly decreasing from κ to 0 on p0, sinpπ{κq, whereas if κ " 4n `4, h is strictly increasing from ´κ to 0 on p0, sinpπ{κqq.

Case κ " 4n `2: Denote m " min xPrsinpπ{κq,1s hpxq. By counting the number of roots of h, κ ľ 4 implies m ă 0. When E 2 " ... " E d " sinpπ{κq, E 1 " E{ sin pd´1q pπ{κq. One solves the inequality hpE{ sin pd´1q pπ{κqq ą pd ´1q|m|. Say r0, E m q solves this inequality then p0, E m q Ă µ Àκ pDq. Case κ " 4n `4: Denote m " max xPrsinpπ{κq,1s hpxq. By counting the number of roots of h, κ ľ 4 implies m ą 0. When E 2 " ... " E d " sinpπ{κq, E 1 " E{ sin pd´1q pπ{κq. One solves the inequality hpE{ sin pd´1q pπ{κqq ă ´pd ´1qm. Say r0, E m q solves this inequality then p0, E m q Ă µ Áκ pDq.

Results of the central band test are summarized in Table 6 for κ " 4, 6, 8, d " 2, 3. Results for the case κ " 4, d " 2 are consistent with Lemma 4.9. Figure 7 may be of use in understanding the underlying idea behind this test. By way of example, fix κ " 6, d " 2. Fix an energy E " E 1 E 2 P p0, sinpπ{κqq. We start with the point pE 1 , E 2 q " pE, 1q P S E . As E 2 decreases below 1, E 1 increases above E. Eventually we get to the point pE 1 , E 2 q " pE{ sinpπ{κq, sinpπ{κqq. Further decreasing E 2 and increasing E 1 , the 2 coordinates cross at the point pE 1 , E 2 q " p ? E, ? Eq. After crossing E 1 and E 2 interchange roles. Let m 2 " max xPrsinp2π{κq,1s hpxq. κ ľ 6 ñ m 2 ą 0. Solve hpxq ă ´pd ´1qm 2 . Say pA 2 , B 2 q is the solution to this inequality that belongs to rsinpπ{κq, sinp2π{κqs. Then solve hpE{ sin pd´1q p2π{κqq ă ´pd ´1qm 2 . Say pD m 2 , E m 2 q solves this inequality then pA 2 , B 2 q X pD m 2 , E m 2 q Ă µ Áκ pDq. Case κ " 4n `4:

κ m d " 2, E m d " 3, E m 4 0.
Let m 2 " min xPrsinp2π{κq,1s hpxq. κ ľ 6 ñ m 2 ă 0. Solve hpxq ą pd ´1q|m 2 |. Say pA 2 , B 2 q is the solution to this inequality that belongs to rsinpπ{κq, sinp2π{κqs. Then solve hpE{ sin pd´1q p2π{κqq ą pd ´1q|m 2 |. Say pD m 2 , E m 2 q solves this inequality then pA 2 , B 2 q X pD m 2 , E m 2 q Ă µ Àκ pDq.

Results of the second band test are summarized in Table 7 for κ " 6, 8, d " 2, 3. For κ " 8, d " 3, the test does not yield anything, but this is actually in line with the numerical results of Table 17, in the sense that there is no band within psinpπ{8q, sinp2π{8qq » p0.383, 0.707q. Of course one may perform a third band test for κ " 8. Without going into all the details, we would find that in 2d, pA 3 , B 3 q X pD m 3 , E m 3 q » p0.729, 0.898q X p0.674, 0.830q Ă µ Aκ pD d"2 q, which is consistent with the numerical evidence of Table 15 ; whereas in 3d we would find that pA 3 , B 3 q X pD m 3 , E m 3 q » p0.756, 0.870q X p0.645, 0.743q " H. This time however the numerical evidence of Table 17 suggests that there is a band. This just means that the test is too coarse.

κ m 2 d " 2, pA 2 , B 2 q X pD m 2 , E m 2 q d " 3, pA 2 , B 2 q X pD m 2 , E m 2 q 6 7 ? 7´10 27 » 0.

Isomorphism between Molchanov-Vainberg and Standard Laplacians in dimension 2.

5.1. Definition of the isomorphism between ∆ and D in dimension 2. Let G B :" pE B , V B q and G R :" pE R , V R q (B for blue, R for red) denote the graphs whose vertices are V B :" tpn 1 , n 2 q P Z 2 : n 1 `n2 is evenu and V R :" tpn 1 , n 2 q P Z 2 : n 1 `n2 is oddu

We connect the vertices of G B and G R by the diagonals. Namely, for X P tB, Gu, we set

E X ppn 1 , n 2 q, pn 1 1 , n 1 2 qq " 1, if |n 1 ´n1 1 | " |n 2 ´n1 2
| " 1 and 0 otherwise. The two graphs are illustrated in Figure 8. As Z 2 is the disjoint union of V B and V R , we have ℓ 2 pZ 2 q " ℓ 2 pV B q ' ℓ 2 pV R q. We have that D leaves invariant ℓ 2 pV B q and also ℓ 2 pV R q. Denote D B :" D| ℓ 2 pV B q and D R :" D| ℓ 2 pV R q . On the other hand, note that

ℓ 2 pV R q » ℓ 2 pV B q » ℓ 2 pZ 2 q.
For the first one, a simple translation sends ℓ 2 pV R q unitarily onto ℓ 2 pV B q. Let us clarify the second isomorphism. Let π 0 : V B Þ Ñ Z 2 , π 0 : pn 1 , n 2 q Þ Ñ 1 2 pn 1 `n2 , n 2 ´n1 q. π 0 is simply a clockwise rotation of 45 ˝followed by a 1{ ? 2 scaling, i.e. π 0 " e ´iπ{4 { ? 2. The inverse is π ´1

0 : Z 2 Þ Ñ V B , π ´1 0 : pn 1 , n 2 q Þ Ñ pn 1 ´n2
, n 1 `n2 q. π 0 induces an isometry π : ℓ 2 pV B q Þ Ñ ℓ 2 pZ 2 q, π : ψ Þ Ñ πpψq, whereby πpψqpnq " ψpπ ´1 0 nq, n " pn 1 , n 2 q. The induced inverse is π ´1 : ℓ 2 pZ 2 q Þ Ñ ℓ 2 pV B q, whereby π ´1pψqpnq " ψpπ 0 nq. With these definitions one secures the identity (5.1) 2D B " π ´1∆π ô πD B π ´1 " ∆{2.

Let n " pn 1 , n 2 q. If V B p¨q is the operator of multiplication by V B : V B Ñ C on ℓ 2 pV B q then πV B p¨qπ ´1 is the operator of multiplication V B pπ ´1 0 ¨q on ℓ 2 pZ 2 q. If V B is radial, i.e. V B pn 1 , n 2 q " V B pxnyq, then πV B π ´1 is radial and πV B π ´1pn 1 , n 2 q " V B p ? 2xnyq. Conversely if V p¨q is the operator of multiplication by V : Z 2 Ñ C on ℓ 2 pZ 2 q, then π ´1V p¨qπ is the operator of multiplication V pπ 0 ¨q on ℓ 2 pV B q. If V pn 1 , n 2 q " V pxnyq then π ´1V πpn 1 , n 2 q " V pxny{ ? 2q. To sum up, for a potential V defined on Z 2 , set

V B :" V | V B and V R :" V | V R . One has 2D `V " p2D B `VB p¨qq ' p2D R `VR p¨qq -p∆ `VB p¨qq ' p∆ `VR p¨qq,
as operators on ℓ 2 pZ 2 q " ℓ 2 pV B q ' ℓ 2 pV R qℓ 2 pZ 2 q ' ℓ 2 pZ 2 q. Remark 5.1. It is also interesting to depict the isomorphism in Fourier space. Let σ : L 2 pr´π, πs 2 , dξq Þ Ñ L 2 pr´π, πs 2 , dξq, pσf qpξ 1 , ξ 2 q " f pξ 1 `ξ2 , ξ 1 ´ξ2 q and pσ ´1f qpξ 1 , ξ 2 q " f ppξ 1 `ξ2 q{2, pξ 1 ´ξ2 q{2q. Then using the relationship 2 cospξ 1 q cospξ 2 q " cospξ 1 `ξ2 q `cospξ 1 ´ξ2 q one gets Fp2DqF ´1 " σF∆F ´1σ ´1.

5.2. Definition of the conjugate operator πA 2κ π ´1 and regularity. First we must signal a small issue of well-posedness. Let κ " pκ 1 , κ 2 q P pN ˚q2 . The shifts tS κ 1 1 , S κ 2 2 u are invariant on ℓ 2 pV B q and ℓ 2 pV R q if and only if κ 1 , κ 2 are even. The conjugate operator A κ is invariant on ℓ 0 pV B q and ℓ 0 pV R q if and only if κ 1 , κ 2 are both even. Let ακ " pακ 1 , ακ 2 q, α P R.

To determine the expression of πA 2κ π ´1, one first computes, for n P N ˚:

πS 2n 1 π ´1 " S n 1 S ´n 2 , πS ´2n 1 π ´1 " S ´n 1 S n 2 , πS 2n 2 π ´1 " S n 1 S n 2 , πS ´2n 2 π ´1 " S ´n 1 S ´n 2 , πN 1 π ´1 " N 1 ´N2 , πN 2 π ´1 " N 1 `N2 .
One computes πA 2κ π ´1 on ℓ 0 pZ d q:

(5.2)

πA 2κ π ´1 " 1 4i pN 1 ´N2 q `Sκ 1 1 S ´κ1 2 ´S´κ 1 1 S κ 1 2 ˘`1 4i `Sκ 1 1 S ´κ1 2 ´S´κ 1 1 S κ 1 2 ˘pN 1 ´N2 q `1 4i pN 1 `N2 q `Sκ 2 1 S κ 2 2 ´S´κ 2 1 S ´κ2 2 ˘`1 4i `Sκ 2 1 S κ 2 2 ´S´κ 2 1 S ´κ2 2 ˘pN 1 `N2 q.
Of course (5.2) may be expressed in Fourier space. By computing on smooth functions that are 2π´periodic, one has FS κ j j F ´1 " e iκ j ξ j and FiN j F ´1 " B{Bξ j . When κ 1 " κ 2 ,

FπA 2κ π ´1F ´1 " ´i cospκξ 2 q " sinpκξ 1 q B Bξ 1 `B Bξ 1 sinpκξ 1 q  ´i cospκξ 1 q " sinpκξ 2 q B Bξ 2 `B Bξ 2 sinpκξ 2 q  . (5.3)
(5.2) and (5.3) are to be compared with (1.7) and (1.6). Regularity with respect to ∆ is excellent: Proposition 5.1. ∆ P C 8 pπA 2κ π ´1q for all κ P pN ˚q2 .

Proof. Thanks to (4.3), one computes on ℓ 0 pZ d q that " ∆, iπA 2κ π

´1‰ equals ∆ 2 « p´1q κ 1 ´12 2κ 1 κ 1 ź l"1 ˆsin 2 ˆlπ 2κ 1 ˙´π∆ 2 1 π ´1˙`p ´1q κ 2 ´12 2κ 2 κ 2 ź l"1 ˆsin 2 ˆlπ 2κ 2 ˙´π∆ 2 2 π ´1˙ff ,
where

π∆ 2 1 π ´1 " 1{2 `pS 1 S ´1 2 `S´1 1 S 2 q{4, π∆ 2 2 π ´1 " 1{2 `pS 1 S 2 `S´1 1 S ´1 2 q{4.
Extending by density to all vectors in ℓ 2 pZ d q gives ∆ P C 1 pπA 2κ π ´1q. An obvious induction argument gives the C 8 pπA 2κ π ´1q regularity.

The next Lemma states the C 1 pπA 2κ π ´1q and C 1,1 pπA 2κ π ´1q regularity for the potential.

Lemma 5.2. Let κ P pN ˚q2 be given. Suppose

(5.4) pn 1 ´n2 qpV ´τ κ 1 1 τ ´κ1 2 V qpnq and pn 1 `n2 qpV ´τ κ 2 1 τ κ 2 2 V qpnq " Op1q, as |n| Ñ 8. Then V p¨q P C 1 pπA 2κ π ´1q. Now let V s satisfy (2.10). Then V s p¨q P C 1,1 pπA 2κ π ´1q. Let V l pnq " op1q as |n| Ñ 8. Then V l p¨q P C 1,1 pπA 2κ π ´1q whenever

(5.5) ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ 1 1 τ ´κ1 2 V l qpnq ˇˇdr ă 8 and ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ 2 1 τ κ 2 2 V l qpnq ˇˇdr ă 8.

Transposing the results for D

B to ∆. (5.1) implies (5.6) " ∆, iπA 2κ π ´1‰ ˝" π r2D B , iA 2κ s ˝π´1 . Let θ P C 8
c pRq be compactly supported. By the Helffer-Sjöstrand formula, θ p2D B q " π ´1θ p∆q π and θ p2Dq " θ p2D B q ' θ p2D R q . In terms of the Mourre estimate this means that θ p2D B q r2D B , ˘iA 2κ s ˝θ p2D B q ľ γθ p2D B q ðñ θ p∆q " ∆, ˘iπA 2κ π ´1‰ ˝θ p∆q ľ γθ p∆q . In other words, µ πA 2κ π ´1 p∆q " µ Ȃ2κ p2D B q. This formula says that whenever a spectral interval exhibits operator positivity for 2D B with respect to A 2κ it can be transferred into operator positivity for ∆ with respect to πA 2κ π ´1 and vice versa. Example: We treat the case κ " pκ 1 , κ 2 q " p1, 1q. A direct calculation using (5.3) gives:

(5.7) F " ∆, iπA 2κ π ´1‰ ˝F ´1 " rcospξ 1 q`cospξ 2 q, i(5.3)s ˝" 2 sin 2 pξ 1 q cospξ 2 q`2 sin 2 pξ 2 q cospξ 1 q.

On the other hand, using (5.6) and (2.9) gives (5.8) r∆, iπA 2κ π ´1s ˝" 4πD B `p1 ´∆2 1 q `p1 ´∆2 2 q ˘π´1 " 2∆ p1 ´∆1 ∆ 2 q " F ´12 pcospξ 1 q `cospξ 2 qq p1 ´cospξ 1 q cospξ 2 qq F.

We see that (5.8) and (5.7) agree. This confirms (5.6). 5.4. Definition of the conjugate operator π ´1A κ π and regularity. This time around π ´1A κ π is well defined on ℓ 0 pV B q, for all κ P pN ˚q2 . One has for n P N ˚,

π ´1S n 1 π " S n 1 S n 2 , π ´1S ´n 1 π " S ´n 1 S ´n 2 , π ´1S n 2 π " S ´n 1 S n 2 , π ´1S ´n 2 π " S n 1 S ´n 2 , π ´1N 1 π " pN 1 `N2 q{2, π ´1N 2 π " pN 2 ´N1 q{2. One computes π ´1A κ π on ℓ 0 pV B q: it is equal to (5.9) p8iq ´1pN 1 `N2 q `Sκ 1 1 S κ 1 2 ´S´κ 1 1 S ´κ1 2 ˘`p8iq ´1 `Sκ 1 1 S κ 1 2 ´S´κ 1 1 S ´κ1 2 ˘pN 1 `N2 q `p8iq ´1pN 2 ´N1 q `S´κ 2 1 S κ 2 2 ´Sκ 2 1 S ´κ2 2 ˘`p8iq ´1 `S´κ 2 1 S κ 2 2 ´Sκ 2 1 S ´κ2 2 ˘pN 2 ´N1 q.
The proof of the following 2 regularity results are left to the reader.

Proposition 5.3. D P C 8 pπ ´1A κ πq for all κ P pN ˚q2 .

Lemma 5.4. Let κ P pN ˚q2 be given. Suppose

(5.10) pn 1 `n2 qpV ´τ κ 1 1 τ κ 1 2 V qpnq and pn 2 ´n1 qpV ´τ κ 2 1 τ ´κ2 2 V qpnq " Op1q as |n| Ñ 8.

Then V p¨q P C 1 pπ ´1A κ πq. Now let V s satisfy (2.10). Then V s p¨q P C 1,1 pπ ´1A κ πq. Let V l pnq " op1q as |n| Ñ 8. Then V l p¨q P C 1,1 pπ ´1A κ πq whenever ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ 1 1 τ κ 1 2 V l qpnq ˇˇdr ă 8 and ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ 2 1 τ ´κ2 2
V l qpnq ˇˇdr ă 8.

5.5.

Transposing the results for ∆ to D B . We briefly mention the key formulas. Let κ " pκ 1 , κ 2 q P pN ˚q2 . One has (5.11) " 2D B , iπ ´1A κ π ‰ ˝" π ´1 r∆, iA κ s ˝π. Thus one has µ π´1 Aκπ p2D B q " µ Ȃκ p∆q. This formula says that whenever a spectral interval exhibits operator positivity for ∆ with respect to A κ it can be transferred into operator positivity for 2D B with respect to π ´1A κ π and vice versa. 5.6. Regularity conditions: a comparison. As discussed above, the regularity requirements imposed on the potential V by the conjugate operators A κ , πA 2κ π ´1 and π ´1A κ π are of different nature. In this subsection we illustrate some further considerations in that regard. Let ε ą 0.

In what follows we further suppose κ " pκ 1 , κ 2 q with κ 1 " κ 2 . Consider the statements: pV ´τ κ 1 V qpnq and pV ´τ κ 2 V qpnq " Op|n| ´1´ε q, (5.12) pV ´τ κ 1 τ ´κ 2 V qpnq and pV ´τ κ 1 τ κ 2 V qpnq " Op|n| ´1´ε q, (5.13) pV ´τ 2κ 1 V qpnq and pV ´τ 2κ 2 V qpnq " Op|n| ´1´ε q, (5.14) and n 1 pV ´τ κ 1 V qpnq and n 2 pV ´τ κ 2 V qpnq " Op|n| ´εq, (5.15) pn 1 ´n2 qpV ´τ κ 1 τ ´κ 2 V qpnq and pn 1 `n2 qpV ´τ κ 1 τ κ 2 V qpnq " Op|n| ´εq, (5.16) n 1 pV ´τ 2κ 1 V qpnq and n 2 pV ´τ 2κ 2 V qpnq " Op|n| ´εq, (5.17) as |n| Ñ 8. 'V p¨q P C 1,1 pA κ q 'V p¨q P C 1,1 pπA 2κ π ´1q ' (5.17) holds Table 8. Implications involving (5.12)-(5.17) in dimension 2.

6. An isomorphism for the Standard Laplacian in dimension 3

One may leverage the isomorphism of the previous section to dig out other results for ∆ on ℓ 2 pZ 3 q. We have V B ˆZ -Z 3 , where V B is given in Section 5. Define a Laplacian D that corresponds to the Molchanov-Vainberg Laplacian on the plane, and to the Standard Laplacian on the vertical coordinate:

D :" 2D B `∆3 -∆ 1 `∆2 `∆3 , on ℓ 2 pV B ˆZq -ℓ 2 pZ 3 q.
The exact specification of the isomorphism is as follows. Denote

π 0 : V B ˆZ Þ Ñ Z 3 , π 0 : pn 1 , n 2 , n 3 q Þ Ñ ppn 1 `n2 q{2, pn 2 ´n1 q{2, n 3 q Note that π ´1 0 : Z 3 Þ Ñ V B ˆZ, π ´1 0 : pn 1 , n 2 , n 3 q Þ Ñ pn 1 ´n2
, n 1 `n2 , n 3 q. π 0 and π ´1 0 induce natural isometries π : ℓ 2 pV B ˆZq Þ Ñ ℓ 2 pZ 3 q, and π ´1 : ℓ 2 pZ 3 q Þ Ñ ℓ 2 pV B ˆZq, given by π ˘1f pxq :" f pπ ¯1 0 xq. We now perform a brief spectral analysis of D with the help of an appropriate conjugate oprerator. Start by noting that σpDq " r´3, 3s. Let κ " pκ 1 , κ 2 , κ 3 q P pN ˚q3 . Consider conjugate operators of the form (6.1) A κ,ρ :" A κ 1 ,κ 2 `ρA κ 3 , on ℓ 2 pV B ˆZq.

As mentioned in the Introduction, A κ,ρ is self-adjoint and essentially self-adjoint on ℓ 0 pV B ˆZq.

We have found that it is useful to include a parameter ρ P R, for some unknown reason. A κ,ρ is invariant on ℓ 0 pV B ˆZq if and only if both κ 1 and κ 2 are even. Thanks to (2.8) and (2.9) one computes

rD, iA κ,ρ s ˝" 2∆ 2 p1 ´∆2 1 qU κ 1 ´1p∆ 1 q `2∆ 1 p1 ´∆2 2 qU κ 2 ´1p∆ 2 q `ρp1 ´∆2 3 qU κ 3 ´1p∆ 3 q.
In fact one can show by induction that D P C 8 pA κ,ρ q. To this commutator one associates a polynomial g E : r´1,

1s 3 Þ Ñ R, g E pE 1 , E 2 , E 3 q :" 2E 2 p1 ´E2 1 qU κ 1 ´1pE 1 q `2E 1 p1 ´E2 2 qU κ 2 ´1pE 2 q `ρp1 ´E2 3 qU κ 3 ´1pE 3 q.
The constant energy surface for D is S E :" tpE 1 , E 2 , E 3 q P r´1, 1s 3 : E " 2E 1 E 2 `E3 u, E P σpDq.

One has that E P µ Ȃκ,ρ pDq if and only if ˘gE | S E is strictly positive.

Table 9 shows results obtained with the computer together along with conjectures on the exact values. Choosing ρ " 0.5 gives a band of a.c. spectrum that is already covered by the Standard Laplacian in Section 3 (although conditions on V are different). But if we take ρ " ´0.5 we get another band, adjacent to the other one, which is not covered by the Standard Laplacian, see Table 13. The choice of ρ is based on observation, trial and error. κ ρ " 0.5, num. ρ " 0.5, conjecture ρ " ´0.5, num.

ρ " ´0. To obtain the results in Tables 9 and10 we plotted the polynomial g E given above and then used the small algorithm:

' For all E P r0, 3s: ' For all E 3 P rmaxpE ´2, ´1q, 1s:

-let E 2 " pE ´E3 q{p2E 1 q, -check if the function E 1 Þ Ñ g E pE 1 , E 2 , E 3 q has same sign on E 1 P ˘r|E ´E3 |{2, 1s.
Lemma 6.1. For κ 1 , κ 2 , κ 3 all even, any ρ, µ Aκ,ρ pDq " ´µAκ,ρ pDq.

Proof.

The U κ j ´1p¨q are odd functions. Also,

S ´E " tp´E 1 , E 2 , ´E3 q, pE 1 , ´E2 , ´E3 q : pE 1 , E 2 , E 3 q P S E u. Thus g ´E p´E 1 , E 2 , ´E3 q " g ´E pE 1 , ´E2 , ´E3 q " ´gE pE 1 , E 2 , E 3 q.
This implies the statement. Lemma 6.2. Let ρ P R. t2 cospj 1 π{κ 1 q cospj 2 π{κ 2 q `cospj 3 π{κ 3 q : j i " 0, ..., κ i , i " 1, 2, 3u Ă r´3, 3szµ Aκ,ρ pDq whenever κ 1 , κ 2 , κ 3 are all even. This supports the conjectures in Table 9.

Proof. Let E i " cospj i π{κ i q, j i " 0, ..., κ i . Then g E pE 1 , E 2 , E 3 q " 0 (see Lemma 3.5).

6.1.

Transposing the results for D to ∆. First we need to compute the action of the transformed conjugate operator πA κ,ρ π ´1. However to ensure it is well defined on ℓ 0 pZ 3 q we choose to adjust the notation (we face the same obstacle as in Subsection 5.2). Instead of using κ " pκ 1 , κ 2 , κ 3 q P pN ˚q3 , we use κ :" p2κ 1 , 2κ 2 , κ 3 q, κ P pN ˚q3 . In this way one finds (6.2)

πA κ,ρ π ´1 " (5.2) `ρp4iq ´1 " pS κ 3 3 ´S´κ 3 3 qN 3 `N3 pS κ 3 3 ´S´κ 3 3 q ‰ .
It is well defined on ℓ 0 pZ 3 q, @κ P pN ˚q3 . When κ 1 " κ 2 , setting κ to κ 1 " κ 2 in (5.3) gives:

FπA κ,ρ π ´1F ´1 " (5.3) `ρp2iq ´1 " sinpκ 3 ξ 3 q B Bξ 3 `B Bξ 3 sinpκ 3 ξ 3 q  .
We mention without proof the obvious result: Proposition 6.3. Fix d " 3 and κ " pκ j q P pN ˚q3 . Then ∆ P C 8 pπA κ,ρ π ´1q and " ∆, iπA κ,ρ π ´1‰ ˝"

π rD, iA κ,ρ s ˝π´1 . In particular µ πA κ,ρ π ´1 p∆q " µ A κ,ρ pDq. The latter set is numerically estimated (see Tables 9 and10).

Finally we outline the change in regularity requirements for the potential.

Lemma 6.4. Fix κ " pκ j q P pN ˚q3 . Suppose V satisfies (5.4) and n 3 pV ´τ κ 3 3 V qpnq " Op1q as |n| Ñ 8. Then V p¨q P C 1 pπA κ,ρ π ´1q. If V s satisfies (2.10) then V s p¨q P C 1,1 pπA κ,ρ π ´1q. Finally V l p¨q P C 1,1 pπA κ,ρ π ´1q whenever V l pnq " op1q as |n| Ñ 8, V l p¨q satisfies (5.5), and ż 8 1 sup ră|n|ă2r ˇˇpV l ´τ κ 3 3 V l qpnq ˇˇdr ă 8.

The LAP based on Mourre's original paper

Notation is fixed. Let ℓ 2 pL 8 pRqq be the space of real-valued measurable functions gptq with }g} ℓ 2 pL 8 q :" t ř 8 n"0 s n pgq 2 u 1{2 ă 8, where s n pgq :" ess sup t|gpxq| : n ĺ |x| ĺ n `1u. Let T be a self-adjoint operator in H, E Σ pT q its spectral projection onto a set Σ. Let Σ j :" tx P R : 2 j´1 ď |x| ď 2 j u, for j ě 1 and Σ 0 :" tx P R : |x| ď 1u. Define the Banach spaces with the obvious norms:

BpT q :" ! ψ P H : }ψ} BpT q :" 8 ÿ j"0 ? 2 j }E Σ j pT qψ} H ă 8
) .

The dual of BpT q is the Banach space obtained by completing H in the norm

}ψ} B ˚pT q " sup jPN ? 2 ´j }E Σ j pT qψ} H .
We refer to [JP] and the references therein for these definitions. The following result holds for pD, Hq " p∆, ∆ `V q or pD, D `V q, and any A as in Table 4 (for example: A " A κ ).

Theorem 7.1. Suppose that V P C 2 pAq and V pnq " op1q as |n| Ñ `8. Then for any closed interval I Ă µ A pDqzσ p pHq, any f 1 , f 2 P ℓ 2 pL 8 pRqq there is c ą 0 such that

sup zPI ˘}f 1 pAqpH ´zq ´1f 2 pAq} ĺ c}f 1 } ℓ 2 pL 8 q }f 2 } ℓ 2 pL 8 q .
In particular the map I ˘Q z Þ Ñ pH ´zq ´1 P BpK, K ˚q extends to a weak-˚continuous map on I, with K " BpAq and σ sc pHq X I " H. By Lemma 9.1 the statement also holds for K " BpNq.

Theorem 7.1 is an application of [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF]Theorem I.2]. Since H is a bounded operator, the technical assumptions of [START_REF] Mourre | Opérateurs conjugués et propriétés de propagation[END_REF]Theorem I.2] are trivially fulfilled. Under our hypothesis, the Mourre estimate holds, see Section 2.2. The statement about the LAP holding in the BpAq BpAq ˚spaces is proved exactly as in [START_REF] Jensen | Commutator methods and Besov space estimates for Schrödinger operators[END_REF]Proposition 2.1].

The LAP in the Besov spaces

Notation is fixed. For each real s, denote by H s pAq the Sobolev space associated to A. For s ľ 0 it is the domain of xAy s and for s ă 0, set H s pAq :" pH ´spAqq ˚. By identifiying H with its space of anti-linear forms, we can choose on H s pAq, the norm }f } s :" }xAy s f }, f P H s pAq, for s P R. For real numbers t ĺ s, one has the continuous dense embedding H s pAq Ă H t pAq. By interpolation the Besov spaces H s,p pAq associated to A are obtained, namely H s,p pAq " pH s 1 pAq, H s 2 pAqq θ,p , for s 1 ă s 2 , 0 ă θ ă 1, s " θs 1 `p1 ´θqs 2 , 1 ĺ p ĺ 8.

We refer to [ABG] and [BSa] for more facts on the Besov spaces. The following result holds for pD, Hq " p∆, ∆ `V q or pD, D `V q, and any A as in Table 4 (for example: A " A κ ).

Theorem 8.1. Suppose that V P C 1,1 pAq and V pnq " op1q. Then for any closed interval I Ă µ A pDqzσ p pHq, the map I ˘Q z Þ Ñ pH ´zq ´1 P B pK, K ˚q extends to a weak-˚continuous map on I, with K " H 1 2 ,1 pAq. In particular σ sc pHq X I " H. By Lemma 9.1 the statement also holds for K " H 1 2 ,1 pNq. Theorem 8.1 is a straightforward application of [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Theorem 7.3.1].

The LAP based on energy estimates

Notation is fixed. Let log 0 pxq :" 1, log 1 pxq :" logp1 `xq, and for integer k ě 2, log k pxq :" log `1 `log k´1 pxq ˘. Thus k is the number of times the function logp1 `xq is composed with itself. Also denote log q k pxq :" plog k pxqq q , q P R. Let xxy :" ?

1 `x2 . Let (9.1) w α,β M pxq :" log α M `1 pxxyq M ź k"0 log β k pxxyq , α, β P R, M P N.
Let T be a self-adjoint operator. Let s, p, p 1 P R, M P N. Define a family of Banach spaces with the obvious norms: (9.2) L 2 s,p,p 1 ,M pT q :" ! ψ P H : }ψ} L 2 s,p,p 1 ,M pT q :" }xT y s w p,p 1 M pT qψ} H ă 8

) .

The dual with respect to the inner product on H is pL 2 s,p,p 1 ,M pT qq ˚" L 2 ´s,´p,´p 1 ,M pT q. Write L 2 s pT q :" L 2 s,0,0,0 pT q. For any s, p ą 1{2 and M P N, the following inclusions hold:

L 2 s pT q Ĺ L 2 1{2,p,1{2,M pT q Ĺ BpT q Ĺ L 2 1{2 pT q, and L 2 ´1{2 pT q Ĺ B ˚pT q Ĺ L 2 ´1{2,´p,´1{2,M pT q Ĺ L 2 ´spT q. We need the obvious extension of [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]Lemma 4.13], see also [START_REF] Boutet De Monvel | On the spectral properties of discrete Schrödinger operators: the multi-dimensional case[END_REF]Lemma 5.1].

Lemma 9.1. Fix d and κ " pκ j q d j"1 P pN ˚qd . Then for all conjugate operators A in Table 4 there is c ą 0 such that for all α P r0, 1s, pA 2 `1q α ĺ cpN 2 1 `... `N 2 d `1q α . Thus, we can apply all the estimates of [GM2, Section 4] to all such A. Now let P K :" 1 ´P , where P is the projection onto the pure point spectral subspace of H. Let K A pHq :" σpHqztE P σ p pHq : teigenspace of H associated to Eu Ć DomrAsu.

Because we include a projector P K in the LAP we need an additional local regularity verification, i.e. a version of [GM2, Lemma 5.2]: Lemma 9.2. Suppose V satisfies (9.3), (9.4). Let E P Ω, Ω as in Theorem 9.3. Then there is a closed interval I of E such that I Ă Ω and for all J Ă I, for all θ P C 8 c pRq with supppθq " J, P E J pHq and P K θpHq P C 1 pAq.

Proof. E P µ A pDq together with the compactness of V implies that a Mourre estimate holds for H and A in a neighborhood I of E. In particular σ p pHq is finite on I, see [START_REF] Amrein | C0-groups, commutator methods and spectral theory of N -body hamiltonians[END_REF]Corollary 7.2.11]. So P E J pHq is a finite rank operator whenever J Ă I. By reducing the size of I it is possible to have I Ă supppηq and I Ă K A pHq. We apply [GM2, Proposition 5.1] to get P E J pHq P C 1 pAq. Write P K θpHq " θpHq ´P E J pHqθpHq to see it too belongs to C 1 pAq.

Remark 9.1. This remark concerns the Standard Laplacian and A " A κ when κ " 1, (which is the case in [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF] for example). The assumptions (9.3) and (9.4), coupled with [Ma2, Theorem 1.5], imply that the eigenfunctions of ∆ `V , if any, belong to DomrA κ"1 s. For more general κ " pκ j q we do not know of a similar result, but there is the abstract result [FMS] which roughly says that if V P C 1`n pA κ q then the eigenfunctions of ∆ `V belong to DomrA n κ s, n P N

˚.

The following result holds for pD, Hq " p∆, ∆ `V q or pD, D `V q, and any A as in Table 4 (for example: A " A κ ).

Theorem 9.3. Let ϕ p,m be the function in (9.6). Let W p M pxq :" xxy

1 2 w p, 1 2 M pxq. Suppose (9.3) V P C 1 pAq, (9.4) 
there are m P N and 2 " r ă q such that V pnq " Oppw q,r m pnqq ´1q, and there are η P C 8 c pRq, m P N, p ą 1{2, and bounded and compact operators on H, B and K respectively, whose norms are uniformly bounded with respect to t, such that for t P R `large enough, (9.5) W p m pA{tqηpDqrV, ϕ p,m pA{tqs ˝ηpDqW p m pA{tq " t ´2B `t´1 K. Denote Ω :" supppηq X µ A pDq X K A pHq. Let E P Ω. Then there is a closed interval I of E such that for any integer M ě m, and any p ą 1{2, the map I ˘Q z Þ Ñ pH ´zq ´1P K P B pK, K ˚q extends to a uniformly bounded map on I with K " L 2 1 2 ,p, 1 2 ,M pAq. In particular σ sc pHq X I " H. By Lemma 9.1 the statement also holds for K " L 2 1 2 ,p, 1 2 ,M pNq. Proof. The proof is that of [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]Theorem 1.3], the only difference being the formulation of the assumptions. A sketch of proof is outlined for convenience. For m P N, p ą 1{2, let (9.6) ϕ p,m : R Þ Ñ R, ϕ p,m ptq :"

ż t ´8xxy ´1w ´2p,´1 m pxqdx.
ϕ p,m is a bounded function and its derivative yields the weights that appear in the LAP, i.e.

W p m pxq " `d dx ϕ p,m pxq ˘´1{2 . One considers the operator F :" P K θpHqrH, iϕ p,m pA{tqs ˝θpHqP K , where t P R `is a parameter that will be chosen sufficiently large later. One writes (9.7) F " P K θpHqrD, iϕ p,m pA{tqs ˝θpHqP K `P K θpHqrV, iϕ p,m pA{tqs ˝θpHqP K .

Using assumptions (9.3) and (9.4) one may show that the first term on the rhs. of (9.7) is ľ

γt ´1P K θpHq `Wp M pA{tq ˘´2 θpHqP K (9.8) `P K θpHq `Wp M pA{tq ˘´1 `t´2 B `t´1 K ˘`W p M pA{tq ˘´1 θpHqP K . (9.9)
γ ą 0 comes from applying the strict Mourre estimate to D with respect to A ; B and K denote respectively bounded and compact operators whose norms do not grow with t, and the norm of K goes to zero as the support of θ shrinks. As for the second term on the rhs. of (9.7), again using assumptions (9.3) and (9.4) one shows it is equal to (9.10) P K θpHqηpDqrV, iϕ p,m pA{tqs ˝ηpDqθpHqP K plus another term of the form (9.9). Then applying (9.5) one shows that (9.10) is also of the form (9.9). Taking t large enough implies F ľ (9.8) with γ 1 instead of γ, γ 1 P p0, γq. It is explained in [GM2, Section 2] how the weighted estimate F ľ (9.8) implies the LAP. Alternatively one can also argue as in [G, proof of Theorem 1] starting from the equation (3.30) of that article.

Remark 9.2. Theorems 1.1 and 1.2 are special cases of Theorem 9.3 because assumptions (1.11), (1.12) and (1.13) all imply (9.5) when respectively A " A κ , A " πA 2κ π ´1, and A " π ´1A κ π.

To prove this, one applies the Helffer-Sjöstrand formula to express the commutator in (9.5) as an integral, and then a simple analysis proves that this integral converges in norm to a compact operator whose norm does not depend on t. In this case the localization ηpDq is both harmless and useless.

Remark 9.3. Unlike in the preceding remark, there are instances where the localization ηpDq is resourceful. It is the case for some oscillating potentials, such as Wigner von-Neumann potentials, which decay like Op|n| ´1q, see examples 10.3 and 10.6.

Examples

10.1. Radial potential modulo κ j in dimension d. Fix κ " pκ j q P pN ˚qd . Consider any functions σ :

d ź j"1 t0, ..., κ j ´1u Þ Ñ t˘1u, α : d ź j"1 t0, ..., κ j ´1u Þ Ñ R `.
Let V pκ 1 n 1 `i1 , ..., κ d n d `id q " σpi 1 , ..., i d qxny ´αpi 1 ,...,i d q , for all n " pn 1 , ..., n d q P Z d and i j P t0, ..., κ j ´1u, j " 1, ..., d. This defines a potential on ℓ 2 pZ d q. We view V as the product of a periodic component times a damping factor that decays radially. V pnq " Op|n| ´min αpi 1 ,...,i d q q and pV ´τ κ j j V qpnq " Op|n| ´1´min αpi 1 ,...,i d q q, for all 1 ĺ j ĺ d. In particular, V P C 1,1 pA κ q. Now let d " 2. As per the isometry π of Section 5, V induces a potential π ´1V π defined on ℓ 2 pG B q. What does it look like? To illustrate, consider the case κ 1 " κ 2 " κ " 2. The graph on the right in Figure 8 illustrates the "periodic pattern" rotated by 45 ˝. It satisfies

π ´1V πpn 1 , n 2 q " V pπ 0 pn 1 , n 2 qq " V `2X n 1 `n2 4 \ `f p n 1 `n2 2 q, 2 X n 2 ´n1 4 \ `f p n 2 ´n1
2 q ˘, where f pxq " x modulo 2. 10.2. A class of oscillating potentials in dimension 1. Let d " 1. Fix α P p0, 1q. We pose the ansatz V pnq ´V pn ´1q " p´1q n {n α , n ľ 1. Then pV ´τ 2 V qpnq " Op|n| ´1´α q. By means of a telescoping sum one finds V p2nq ´V p0q " ´H2n,α `21´α H n,α " p2 1´α ´1qζpαq `2´1´α n ´α Òp|n| ´α´1 q, where we have used the fact that the generalized harmonic numbers H n,α satisfy H n,α " ζpαq `p1 ´αq ´1n 1´α `2´1 n ´α `Op|n| ´α´1 q. Set V p0q :" ´p2 1´α ´1qζpαq so that V pnq " op1q at infinity. Thus V is actually purely alternating (at least for n sufficiently large), i.e. V pnq " p´1q n Ṽ pnq, with 0 ĺ Ṽ pnq " Op|n| ´αq. One is inclined to choose A " A κ"2 . 10.3. An oscillating potential in dimension d. Let κ :" pκ j q P pN ˚qd . Set V pnq :" σpnq Ṽ pnq, with σpnq :" p´1q n 1 `...`n d , and suppose there are m P N and 2 " r ă q such that Ṽ satisfies ' pH 0 q Ṽ pnq " Oppw q,r m pnqq ´1q, ' pH 1 q n i p Ṽ ´τj Ṽ qpnq " Oppw q,r m pnqq ´1q for 1 ĺ i, j ĺ d, ' pH 2 q the κ j 's are all even, or ' pH 1 2 q n j Ṽ pnq " Op1q, for j " 1, ..., d.

On ℓ 0 pZ d q we see that rA κ , V p¨qs "

1 2i d ÿ j"1
2 ´1κ j rpS κ j j ´S´κ j j q, V p¨qs `rpS κ j j ´S´κ j j q, σs Ṽ p¨qN j `σrpS κ j j ´S´κ j j q, Ṽ p¨qsN j .

Assuming pH 0 q, pH 1 q and either pH 2 q or pH 1 2 q, since ℓ 0 pZ d q is a core for A κ and since the commutator extends to a element of Bpℓ 2 pZ d qq, we infer that V P C 1 pA κ q. For specific 1-dimensional examples, let us mention for pH 2 q, V pnq " p´1q n log ´pp2 `|n|q, p ą 2, with A κ"2 , and for pH 1 2 q, V pnq " n ´1p´1q n p1 `2{ logpnqq with A κ"1 . The latter is Remling's example from [R].

The point about this class of oscillating potentials is that it is relevant to use localizations to verify the hypothesis (9.5). First we treat the Standard Laplacian. Thanks to the relation σ∆ " ´∆σ, in all dimensions d, one has ηp∆qσηp∆q " ηp∆qηp´∆qσ for any η P C 8 c pRq. Furthermore by functional calculus ηp∆qηp´∆q " 0 whenever supppηq Ť ˘p0, ds. Thus for η localized away from E " 0, ηp∆qrV, A κ s ˝ηp∆q " ηp∆qσr Ṽ A κ , ηp∆qs ˝´rηp∆q, A κ Ṽ s ˝σηp∆q.

One may check that the assumptions pH 0 q and pH 1 q mean that (9.5) holds for any p P p1{2, q{2q. Now we briefly discuss the Molchanov-Vainberg Laplacian. One may check that for even dimensions d, one has Dσ " σD, which in turn implies ηpDqσηpDq " η 2 pDqσ, which is non-zero regardless of the localization. So we cannot expect to use a localization argument. For odd dimensions d however, one has ηpDqσηpDq " ηpDqηp´Dqσ which is equal to 0 whevener supppηq Ť ˘p0, 1s. Thus we may use a localization argument exactly as described above to obey (9.5).

10.4. Oscillating potential in dimension 2. This example is relevant for Section 5. Let V B pn 1 , n 2 q " piq n 1 `n2 xny ´ε, ε ą 0, defined on ℓ 2 pG B q (recall n 1 `n2 is even). It satisfies (5.13) with κ " 2, but not (5.12) with κ " 2.

10.5. Oscillating potential in dimension 2. This example is relevant for Section 5. For ε ą 0, let V B pn 1 , n 2 q " p´1q n 1 logpn 1 qxny ´ε `p´1q n 2 logpn 2 qxny ´ε, defined on ℓ 2 pG B q. V B satisfies (5.15) with κ " 2. By the unitary transformation, πV B π ´1pn 1 , n 2 q " p´1q n 1 ´n2 logpn 1 ´n2 qxny ´ε `p´1q n 1 `n2 logpn 1 `n2 qxny ´ε defined on ℓ 2 pZ 2 q satisfies (5.16) with κ " 1.

10.6. Wigner-von Neumann potential. We consider the Wigner-von Neumann potential (10.1) W pnq :" |n| ´1 ¨sinpkpn 1 `... `nd qq, k P p0, πq.

We stick to k P p0, πq for simplicity. The LAP for ∆ `W p¨q was treated in [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF], [START_REF] Golénia | Limiting absorption principle for discrete Schrödinger operators with a Wignervon Neumann potential and a slowly decaying potential[END_REF]. W satsifies (9.3) for any A as in Table 4,and (9.4). The point of this potential is that localization in energy ηp∆q is necessary to satisfy criterion (9.5). It is proved in [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] that (10.2) μAκ"1 p∆ `W p¨qq " p´1, 1qztE ˘pkqu for d " 1, μAκ"1 p∆ `W p¨qq Ą p´d, ´d `Epkqq Y pd ´Epkq, dq for d ě 2.

with equality in the case d " 2. Here E ˘pkq :" ˘cos pk{2q and Epkq " 2 ´2| cospk{2q|. We refer to [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Lemma 3.4 and Proposition 4.4] for this result. Given a triplet pV, D, Aq and H " D `V p¨q, define ℵpV, D, Aq :" tE P σpHq : Dη P C 8 c pRq supported on I, I Q E, such that (9.5) holdsu. Based on the work [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF] it follows quite forwardly that:

Theorem 10.1. For any relevant A as in Table 4, ℵpW, ∆, Aq Ą μAκ"1 p∆ `W p¨qq, given by (10.2). If H std " ∆`W p¨q`V p¨q, and V satisfies (9.3), (9.4) and (9.5) for some A as in Table 4, then for any E P ℵpW, ∆, Aq X ℵpV, ∆, Aq X µ A p∆q X K A pH std q, the conclusion of Theorem 9.3 holds. Now we develop the analogous result for H MV " D `W p¨q `V p¨q. To this end we parallel the calculation of [START_REF] Mandich | The limiting absorption principle for the discrete Wigner-von Neumann operator[END_REF]Section 3]. The underlying idea is traced back to [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators[END_REF]Lemma 2.5]. Let T k be the operator of multiplication on ℓ 2 pZ d q given by pT k uqpnq :" e ikpn 1 `...`n d q upnq. Then pFT k F ´1f qpξq " f pξ`kq. Denote by q 1 r0,πs,i the operator on ℓ 2 pZ d q satisfying pF q 1 r0,πs,i F ´1f qpξq " 1 r0,πs pξ i qf pξq. q 1 r0,πs,i is a bounded self-adjoint operator with spectrum σp q 1 r0,πs,i q " t0, 1u. Let (10.3)

g k : r´1, 1s ˆt0, 1u Þ Ñ R, g k px, yq :" x cospkq ´sinpkq a 1 ´x2 p2y ´1q.
Then one easily proves the following key relation:

T k D " ˜d ź i"1 g k p∆ i , q 1 r0,πs,i q ¸Tk .
By the Helffer-Sjöstrand formula this implies:

(10.4) T k θpDq " θ ˜d ź

i"1 g k p∆ i , q 1 r0,πs,i q ¸Tk .

Since t∆ i , q 1 r0,πs,i u d i"1 forms a family of self-adjoint commuting operators, we may apply the functional calculus for such operators. Let r Epkq :" maxtcos 2 pk{2q, sin 2 pk{2qu " cos 2 pk{2q f or k P p0, π{2q Y p3π{2, 2πq and sin 2 pk{2q f or k P pπ{2, 3π{2q.

Lemma 10.2. Let d " 2. For every E P r´1, 1szr´r Epkq, r

Epkqs there is ε ą 0 such that for any θ P C 8 c pRq supported on I :" pE ´ε, E `εq, θpDqθ ˜d"2 ź

i"1 g k p∆ i , q 1 r0,πs,i q ¸" θpDqθ ˜d"2 ź

i"1 g 2π´k p∆ i , q 1 r0,πs,i q ¸" 0.

In particular, writing W " p2iq ´1pT k ´T´k q|N | ´1, it follows by (10.4) that for any relevant A ℵpW, D, Aq " ˘p r Epkq, 1q, f or d " 2.

Remark 10.1. The choice of A is not important for W because it is the localization in energy that is doing the job.

Proof. We assume k P p0, πq. The case k P pπ, 2πq is similar. Let us explain the strategy in dimension d. We want to find εpEq ą 0 such that for the interval I :" pE ´ε, E `εq we have (10.5) I X ź 1ďiďd g k px i , y i q : px 1 , ..., x d q P S I and py 1 , ..., y d q P t0, 1u d ( " H, where S I is the region defined by S I :" tpx 1 , ..., x d q P r´1, 1s d : ś d i"1 x i P Iu. In this way if supppθq " I, then we will have θp ś i x i qθp ś i g k px i , y i qq " 0 as required. Set E d pkq :" tE P r´1, 1s : D px i q d i"1 P r´1, 1s d and py i q d i"1 P t0, 1u d s.t. E "

d ź i"1 x i " d ź i"1 g k px i , y i qu.
If E P E d pkq, then (10.5) does not hold at E. By a continuity argument, the converse is true as well, provided ε is sufficiently small. Note also that E d pkq " E d p2π ´kq. We only identify the set E 2 pkq, as the problem becomes too complex for d ľ 3. We solve (10.6)

x 1 x 2 " g k px 1 , y 1 qg k px 2 , y 2 q.

One makes the change of variable cospφ i q " x i , φ i P r0, πs. So it's the same as solving cospφ 1 q cospφ 2 q " cospφ 1 ˘kq cospφ 2 ˘kq. Case y 1 " y 2 " 1. Thanks to the product to sum cosine formula one shows that (10.6) is equivalent to sinpφ 1 `φ2 `kq " 0, which has solutions φ 1 `φ2 `k " π or 2π, as we assume k P p0, πq. Let f pφ 1 , φ 2 q :" cospφ 1 q cospφ 2 q. We have tf pφ 1 , π ´k ´φ1 qu φ 1 Pr0,πs "

" f ˆπ ´k 2 , k 2 ˙, f ˆπ ´k 2 , π ´k 2 ˙ " " ´cos 2 ˆk 2 ˙, sin 2 ˆk 2 ˙.
tf pφ 1 , 2π ´k ´φ1 qu φ 1 Pr0,πs " t´f pφ 1 , π ´k ´φ1 qu φ 1 Pr0,πs "

" ´sin 2 ˆk 2 ˙, cos 2 ˆk 2 ˙.
Case y 1 " y 2 " 0. (10.6) is equivalent to sinpφ 1 `φ2 ´kq " 0. Thus, since we assume k P p0, πq, we have φ 1 `φ2 ´k " 0 or π.

tf pφ 1 , k ´φ1 qu φ 1 Pr0,πs " " f ˆπ `k 2 , π ´k 2 ˙, f ˆk 2 , k 2 ˙ " " ´sin 2 ˆk 2 ˙, cos 2 ˆk 2 ˙. tf pφ 1 , π `k ´φ1 qu φ 1 Pr0,πs " t´f pφ 1 , k ´φ1 qu φ 1 Pr0,πs " " ´cos 2 ˆk 2 ˙, sin 2 ˆk 2 ˙.
Case y 1 " 1, y 2 " 0. (10.6) is equivalent to sinpφ 1 ´φ2 `kq " 0. Thus, since we assume k P p0, πq, we have φ 1 ´φ2 `k " 0 or π.

tf pφ 1 , k `φ1 qu φ 1 Pr0,πs " tf pφ 1 , 2π ´k ´φ1 qu φ 1 Pr0,πs .

tf pφ 1 , ´π `k `φ1 qu φ 1 Pr0,πs " tf pφ 1 , π ´k ´φ1 qu φ 1 Pr0,πs .

Case y 1 " 0, y 2 " 1. This is the same as the previous case, with φ 1 interchanged with φ 2 . So the solutions are the same as in the previous case by symmetry.

The statement of the Lemma follows by taking max kPr0,πs tsin 2 pk{2q, cos 2 pk{2qu. We now have our LAP for H MV :" D `W `V .

Theorem 10.3. Let d " 2. If H MV " D `W p¨q `V p¨q, and V satisfies (9.3), (9.4) and (9.5) for some A as in Table 4, then for any E P ℵpW, D, Aq X ℵpV, D, Aq X µ A pDq X K A pH MV q, the conclusion of Theorem 9.3 holds.

Finally let us make an observation. We continue with d " 2. On the one hand, one has πW π ´1pn 1 , n 2 q " p ? 2|n|q ´1 sinp2kn 1 q, where W is given by (10.1), and π as in Section 5. Thanks to the isomorphism we infer ℵpπW π ´1, ∆, Aq " ˘p2 r Epkq, 2q, for any relevant A as in Table 4. On the other hand, one can confirm this directly working only with ∆ as follows. Let Tk be the operator of multiplication by e ikn 1 on ℓ 2 pZ 2 q. One has Tk ∆ " ´gk p∆ 1 , q 1 r0,πs,1 q `∆2 ¯T k . Thus Tk θp∆q " θ ´gk p∆ 1 , q 1 r0,πs,1 q `∆2 ¯T k . To solve the equation θp∆qθ ´gk p∆ 1 , q 1 r0,πs,1 q `∆2 ¯" 0 one is led to solve x 1 `x2 " g k px 1 , yq `x2 , which has solutions E " x 1 `x2 " ˘cospk{2q r´1, 1s. By this approach we conclude that ℵpπW π ´1, ∆, Aq " ˘pepkq, 2q, where epkq :" maxt1c ospkq, 1 ´cospkqu (note we have to plug in 2k instead of k). The conclusions are in agreement, i.e. epkq " 2 r Epkq because of the identities 1 `cospkq " 2 cos 2 pk{2q and 1 ´cospkq " 2 sin 2 pk{2q.

Appendix: Convergence of the 2 Laplacians

Consider the Hilbert space H h :" ℓ 2 phZ d q, where hZ d is the square lattice, d ě 1 is the dimension, and h ą 0 is a scaling parameter determining the mesh size. To establish convergence between the 2 Laplacians we shift and rescale them. Instead of (1.1) and (1.2) we use :

∆ h :" h ´2 d ÿ j"1 p2 ´Sj ´Sj q " 2h ´2 d ÿ j"1
p1 ´∆j q, ∆ j :" pS j `Sj q{2, (11.1)

D h :" 2h ´2 ´2´d`1 h ´2 d ź j"1 pS j `Sj q " 2h ´2 ˜1 ´d ź j"1 ∆ j ¸. (11.2)
The spectra of ∆ h and D h are h ´2r0, 4ds and h ´2r0, 4s respectively. The next result extends those proved in [NT].

Proposition 11.1. For any fixed µ P CzR we have }p∆ h ´µq ´1 ´pD h ´µq ´1} BpH h q " Oph 2 q, as h Ñ 0.

If V is a real-valued bounded potential on hZ d , then

(11.3) }p∆ h `V ´µq ´1 ´pD h `V ´µq ´1} BpH h q " Oph 2 q, as h Ñ 0.
The first convergence formula is proved by expressing the Laplacians as operators of multiplication by functions in Fourier space and performing a Taylor expansion. Now let H h :" ∆ h `V , Hh :" D h `V . The second formula follows directly from the first thanks to the identity :

p Hh ´µq ´1 ´pH h ´µq ´1 " " 1 ´p Hh ´µq ´1V ı " pD h ´µq ´1 ´p∆ h ´µq ´1‰ p∆ h ´µqpH h ´µq ´1.
12. Appendix: Algorithm details When D " ∆ in dimension 2: For the results in Tables 11 and12 we used the simple algorithm: ' For all E P r´2, 2s:

let E 2 " E ´E1 check if the function E 1 Þ Ñ g E pE 1 , E 2 q has same sign on the interval E 1 P rmaxpE ´1, ´1q, minpE `1, 1qs. When D " ∆ in dimension 3: For the results in Tables 13 and14 we used the simple algorithm:

' For all E P r0, 3s: ' For all E 3 P rmaxpE ´2, ´1q, minpE `2, 1qs:

-

let E 2 " E ´E1 ´E3 -check if the function E 1 Þ Ñ g E pE 1 , E 2 , E 3 
q has same sign on the interval E 1 P rmaxpE ´E3 ´1, ´1q, minpE ´E3 `1, 1qs When D " D in dimension 2: For the results in Tables 15 and16 we used the simple algorithm:

' For all E P r´1, 1s:

-let E 2 " E{E 1 -check if the function E 1 Þ Ñ g E pE 1 , E 2 
q has same sign on the interval E 1 P r´1, ´|E|s Y r|E|, 1s.

When D " D in dimension 3: For the results in Tables 17 and18 we used the simple algorithm: ' For all E P r´1, 1s: ' For all E 3 P r´1, ´|E|s Y r|E|, 1s: ˘Y `sinp π 4 q, 1 6 `0, sin 2 p π 6 q ˘Y `_p ˚q_ , sin 2 p 2π 6 q ˘Y `sinp 2π 6 q, 1 8 `0, sin 2 p π 8 q ˘Y `sinp π 8 q, sin 2 p 2π 8 q ˘Y `__ , sin 2 p 3π 8 q ˘Y `sinp 3π 8 q, 1 10 `0, sin 2 p π 10 q ˘Y `__ , sin 2 p 2π 10 q ˘Y `sinp 2π 10 q, sin 2 p 3π 10 q ˘Y `__ , sin 2 p 4π 10 q ˘Y `sinp 4π 10 q, 1 12 ´18 `0, sin 2 p π κ q ˘Y ´sinp p κ 2 ´3qπ κ q, sin 2 p p κ 2 ´2qπ κ q ¯Y ´__ , sin 2 p p κ 2 ´1qπ κ q ¯Y ´sinp p κ 2 ´1qπ κ q, 1 Table 15. µ NUM Aκ pDq X r0, 1s and µ CONJ Aκ pDq X r0, 1s in dimension 2, κ 1 " κ 2 .

-let E 2 " E{pE 1 E 3 q -check if the function E 1 Þ Ñ g E pE 1 , E 2 , E 3 q has same
In Table 15, κ " 6 we do not know a closed form solution for the missing value p ˚q. But it appears that for E P r0.4, 0.6s the function g E pE 1 , E{E 1 q has a global maximum attained at E 1 " hpEq :" 1 2 Table 16. µ NUM Aκ pDq X r0, 1s in dimension 2, κ " pκ 1 , κ 2 q, κ 1 ‰ κ 2 .

d
There appears to be no strict positivity for D in dimension 2 wrt. A κ for pκ 1 , κ 2 q " p1, 2q, p1, 3q, p1, 4q, p1, 5q, p2, 3q, p2, 4q, p2, 5q, p3, 4q, p3, 5q, p4, 5q, p5, 5q 

Figure 8 .

 8 Figure 8. Left: Z 2 " G B ' G R . Right: rotation by 45 ˝of a "periodic" pattern of 2 ˆ2 squares containing vertices (S, M, L, XL), see example 10.1

Table 3

 3 

. µ A p∆q X r0, ds for ∆ in dimensions d " 2, 3. A as in the table. κ 1 " κ 2

  Mourre estimate for the full Hamiltonians 2.1. Regularity: Abstract definitions. Consider three self-adjoint operators T, S and A acting in some complex Hilbert space H. Suppose also T, S P BpHq. T is of classC k pAq, k P N, in notation T P C k pAq, if the map (2.1) R Q t Þ Ñ e itA Te ´itA P BpHq has the usual C k pRq regularity with BpHq endowed with the strong operator topology. Write T P C 8 pAq, if T P C k pAq for all k P N. The form rT, As is defined on DomrAs ˆDomrAs by xψ, rT, Asφy :" xT ψ, Aφy ´xAψ, T φy. By [ABG, Lemma 6.2.9] T P C 1 pAq if and only if the form rT, As extends to a bounded form on H ˆH, in which case we denote the extended bounded form by rT, As ˝. T is of class C k u pAq, k P N, in notation T P C k u pAq, if the map (2.1) has the usual C k pRq regularity with BpHq endowed with the norm operator topology. T P C 1,1 pAq if

	ż 1
	0

  V P C 1 u pAq if and only if rV, As

	2.3. Regularity for the free operators D and ∆: Application. Notation given in the In-
	troduction is assumed, notably (1.1), (1.2), (1.5), and (1.7). A simple computation on compactly
	supported sequences leads to the conclusion that
	rN j , S	κ j j s ˝" κ j S	κ j j , rN j , S ´κj j	s ˝" ´κj S ´κj j
	compact, see [GM, Proposition 2.1].	is

  rpEq :" d g E pE ´d `1, 1, ..., 1q g E pE{d, E{d, ..., E{dq " p1 ´pE ´d `1q 2 qU κ´1 pE ´d `1q p1 ´pE{dq 2 qU κ´1 pE{dq . Assuming ´1 ĺ E ´d `1 ĺ 1 and ´1 ĺ E{d ĺ 1, the sign of rpEq is the same as that of RpEq " U κ´1 pE ´d `1qrU κ´1 pE{dqs ´1. If RpEq ă 0, a Mourre estimate cannot hold at E, i.e. E R µ Aκ p∆q. If RpEq ą 0, the test is inconclusive, i.e. a Mourre estimate may or may not hold at E. For warm up Table 5 applies the ratio test for some values of κ in 2d.

	κ 1	RpEq 1	tE P p0, 2q : RpEq ă 0u (test inconclusive)
	2 3 4 r8pE ´1q 3 ´4pE ´1qsr8pE{2q 3 ´4pE{2qs ´1 E P p1{2, 1q Y p 2pE ´1qE ´1 E P p0, 1q r4pE ´1q 2 ´1srE 2 ´1s ´1 E P p0, 1{2q Y p1, 3{2q ? 2, 3{2q

Table 5 .

 5 Ratio

test. d " 2, κ " 1, 2, 3, 4. Applied to points pE ´1, 1q and pE{2, E{2q.

  Aκ Again we merely sketch a proof. We propose to analyze the function hpxq :" g E pE ´x, xq " p1 ´x2 qp8x 3 ´4xq `p1 ´pE ´xq 2 qp8pE ´xq 3 ´4pE ´xqq defined for x P rE ´1, 1s. It reaches its maximum at x " E{2 ˘a9{5 ´E2 {2 or x " E{2 depending on E. Plug these values into h and find the positive root of h. They are

	p∆q "	˘´b 3 2 ´1 ? 5 ,	?	2 , 2 2 ¯Y ˘´1 `?2 ¯.
	respectively.			b	3 2 ´1 ? 5 and	?	2

2 {2 provided E P p0, a 5{6q. If E P p0, a 5{6q, h reaches its maximum at x " E{2 ˘a5{2 ´3E 2 {2 ; if E P p a 5{6, 2q h reaches its maximum at x " E{2. Plug these values into h and find the positive roots of h. They are 1 2 b 1 2 p5 ´?7q and 1 respectively. Lemma 3.11. Let d " 2, κ " 4. Then µ Proof. Fix 0 ă E ă 2.

  Proof. Let qpE, xq :" r8pE ´xq 3 ´4pE ´xqsr8pE{3q 3 ´4pE{3qs ´1 . First we apply the ratio test to the points pE ´2, 1, 1q and pE{3, E{3, E{3q. We have RpEq " qpE, 2q. Next we apply it to the points pE ´1, 1{2, 1{2q and pE{3, E{3, E{3q. We have RpEq " qpE, 1q. This ratio is valid for ´1 ĺ E ´1 ĺ 1, and negative for E Finally we apply it to the points pE ´1{2, 1{2, 0q and pE{3, E{3, E{3q. We have RpEq " qpE, 1{2q. This ratio is valid for ´1 ĺ E ´1{2 ĺ 1, and negative for E P p0, 1{2q. This implies the statement. 4. Strict Mourre estimate for the Molchanov-Vainberg Laplacian D, d ľ 2

	Lemma 3.13. Let d " 3, κ " 4. Then r0, 2s Y r3{	?	2, 2 `1{	?	2s Ă r0, 3szµ Aκ p∆q.
	This ratio is valid for 2q. Next we apply it to the points pE ´3{2, 1{2, 1q and pE{3, E{3, E{3q. We have RpEq " qpE, 3{2q. This ratio is valid for ´1 ĺ E ´2 ĺ 1, and negative for E P p2 ´1{ ? 2, 2q Y p3{ ? ? 2, 2 `1{ ´1 ĺ E ´3{2 ĺ 1, and negative for E P p3{2 ´1{ ? 2, 3{2q Y p3{ ? 2, 3{2 `1{ ? 2q. P p1 ´1{ ? 2, 1q Y p1 `1{ ? 2, 2q.

Table 6 .

 6 Central band test for κ " 4, 6, 8, d " 2, 3. p0, E m q Ă µ Aκ pDq.

	5 » ´1.056 » 1.56 ? 6 ´10`7 7 27 8	1 2	b	3 2 ´1 ? 2 » 0.44 » 0.21 » 0.12	?	3´?3 4 » 0.089 » 0.28 » 0.038
	4.6. Second band test. The procedure of the previous test is adjusted to probe for energies
	E P psinpπ{κq, sinp2π{κqq. Case κ " 4n `2:					

Table 7 .

 7 Second band test. κ " 6, 8, d " 2, 3. pA 2 , B 2 qXpD m 2 , E m 2 q Ă µ Aκ pDq.

	8	316 » p0.5283, 0.8236q X p0.4575, 0.7133q » ´0.692 » p0.421, 0.649q X p0.297, 0.458q	» p0.563, 0.780q X p0.422, 0.585q » p0.480, 0.577q X p0.240, 0.288q " H

  Table 8 gives relationships between these statements.

	Assumption	(5.12) holds	(5.13) holds	(5.15) holds	(5.16) holds
	Consequences ' (5.13) holds ' (5.15) holds	' (5.14) holds ' (5.16) holds	'V satisfies (9.5) 'V satisfies (9.5) with A " A κ with A " πA 2κ π ´1

Table 9 .

 9 µ NUM Aκ,ρ pDq X r0, 3s in dimension 3. κ 1 " κ 2 " κ 3 , denoted κ in short

	5, conjecture

Table 10 .

 10 More results for µ NUM Aκ,ρ pDq X r0, 3s for the operator D in dimension 3

Table 14 .

 14 sign on the interval E 1 P r´1, ´|E{E 3 |s Y r|E{E 3 |, 1s.13. Appendix: Numerical evidence for Standard LaplacianIn the tables below, the decimal numbers were obtained using computer software. We denote those results by µ NUM A pDq. The horizontal single line towards the top of the table separates the values of κ for which we have proved the results rigorously from the values for which we don't have a rigorous proof. Below the horizontal double line towards the bottom of the table we have included conjectures on closed form formulas for the results, which we denote µ CONJ 2s for which a Mourre estimate holds for ∆ wrt. A κ , d " 2. __ , 2 cospπ{κqq Y p1 `cospπ{κq, 2q Table 11. µ NUM Aκ p∆q X r0, 2s above the double horizontal line and µ CONJ 2s below the horizontal double line. Dimension 2, κ 1 " κ 2 κ " pκ 1 , κ 2 q energies in r´2, 2s for which a Mourre estimate holds for ∆ wrt. A κ , d " 2. ´1.834695q Y p1.509219, 1.672531q Y p1.866025, 2q Table 12. µ NUM Aκ p∆q X r´2, 2s in dimension 2, κ 1 ‰ κ 2 . κ energies in r0, 3s for which a Mourre estimate holds for ∆ wrt. A κ , d " 3. energies in r0, 3s for which a Mourre estimate holds for ∆ wrt. A κ , d " 3 , 6q p2.1444, 2.3765q Y p2.8660, 3q p4, 4, 4q p2.0719, 2.1213q Y p2.7071, 3q µ NUM Aκ p∆q X r0, 3s in dimension 3. 14. Appendix: Numerical evidence for Molchanov-Vainberg LaplacianAs in the previous section, the horizontal single line towards the top of the table separates the values of κ for which we have proved the results rigorously from the values for which we don't have a rigorous proof. Below the horizontal double line towards the bottom of the table we have included conjectures on closed form formulas for the results, which we denote µ CONJ

	A	pDq.

p __ , 3 cospπ{κqq Y p2 `cospπ{κq, 3q

Table 13. µ NUM Aκ p∆qXr0, 3s and µ CONJ Aκ p∆qXr0, 3s in dimension 3, κ 1 " κ 2 " κ 3 . κ κ energies in r0, 1s for which a Mourre estimate holds for D wrt. A κ , d " 2.

  The value p ˚q is therefore the root of g E phpEq, E{hpEqq, which can be estimated numerically to high accuracy.κenergies in r0, 1s for which a Mourre estimate holds for D wrt. A κ , d " 2 8q p0.382683, 0.647959q Y p0.923880, 1q p6, 8q p0.710171, 0.797581q Y p0.923880, 1q p2, 10q p0.587786, 0.750000q Y p0.951056, 1q p6, 10q p0, 0.145934q Y p0.809728, 0.818608q Y p0.951057, 1q p4, 6q p0.502625, 0.605938q Y p0.866025, 1q p8, 10q p0.811615, 0.877563q Y p0.951057, 1q

		1 6	ˆ8 `a144E 2 `7 `b16 a	144E 2 `7 `71 ´432E 2	˙.
	p2, 4q p2, 6q p2,	p0.707107, 1q p0, 0.445133q Y p0.866025, 1q	p4, 8q p4, 10q	p0, 0.246095q Y p0.923880, 1q p0.309017, 0.379323q Y p0.951057, 1q

Table 17 .

 17 . κ energies in r0, 1s for which a Mourre estimate holds for D wrt. A κ , d " 3. µ NUM Aκ pDqXr0, 1s and µ CONJ Aκ pDqXr0, 1s in dimension 3, κ 1 " κ 2 " κ 3 . κ energies in r0, 1s for which a Mourre estimate holds for D wrt. A κ , d " 3

	2	p0, 1q
	4 6 8 10 12 14 16 18 20 24 4 ´24	p0, 0.3535q Y p0.7071, 1q p0, 0.125q Y p0.5148, 0.6495q Y p0.8660, 1q p0, 0.0560q Y p0.7187, 0.78858q Y p0.9238, 1q p0, 0.029508q Y p0.81751, 0.8602q Y p0.951056, 1q p0, 0.01734q Y p0.87235, 0.9012q Y p0.965925, 1q p0, 0.0110q Y p0.9058, 0.9266q Y p0.9749, 1q p0, 0.007425q Y p0.927666, 0.943456q Y p0.980785, 1q p0, 0.0052q Y p0.9428, 0.9551q Y p0.9848, 1q p0, 0.0038q Y p0.9536, 0.9635q Y p0.9877, 1q p0, 0.0022q Y p0.9677, 0.9746q Y p0.9914, 1q `0, sin 3 6 `π 4 ˘˘Y `sin `π 4 ˘, 1 `0, sin 3 `π κ ˘˘Y ´__ , sin 3 ´p κ 2 ´1qπ κ ¯¯Y ´sin ´p κ 2 ´1qπ κ ¯, 1

Table 18 .

 18 µ NUM Aκ pDq X r0, 1s in dimension 3