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a b s t r a c t 

This work is focused on the electrochemical behaviour of uranium in molten eutectic LiCl–LiF (70–

30 mol%) in the 550–650 °C temperature range. On tungsten electrode, U(III) ions were reduced in one 

step to U metal exchanging 3 electrons and oxidized also in one step to U(IV) exchanging one electron. 

Both systems were studied by cyclic and square wave voltammetries and chronopotentiometry. The re- 

duction and oxidation mechanisms of U(III) ions were found to be diffusion controlled processes. The 

diffusion coefficient of U(III) was measured at different temperatures, and it followed an Arrhenius “type 

law”. Apparent standard potentials were measured in chloride-fluoride (LiCl-LiF eutectic) and pure chlo- 

ride media (LiC-KCl eutectic). The addition of fluoride ions into a chloride salt leads to the formation of 

more stable complexes reduced at more negative potentials. This shift of reduction potentials is more 

pronounced for the U(IV)/U(III) transition ( ~500 mV) than for the U(III)/U system ( ~100 mV).

1. Introduction

Molten salts are studied in the nuclear industry because of their

resistance to radiolysis and their large electrochemical window al- 

lowing the production of actinide metals. Chloride salts, and par- 

ticularly the LiCl-KCl eutectic, has been proposed and used in semi

industrial scale as solvent for the treatment of U-Zr and U-Pu-Zr ir- 

radiated metallic fuels by electro-refining [1–3] . In this electrolytic

process, actinides and fission products (mainly alkali metals and

lanthanides) are anodically dissolved in the molten salt while pure

uranium metal can be collected on inert cathode [4] . The group

recovery of actinides, i.e. U together with transuranium elements

(Pu, Np, Am, Ac, Cm), is limited on inert cathode by the chemical

reactions between U(III) ions dissolved in the molten salt phase

and deposited transuranium elements (TRU’s) [5–8] :

U ( III ) + TRU = TRU ( III ) + U (1)

Liquid cadmium cathodes were therefore developed for the re- 

covery of TRU(s) [9–11] by solubilizing the TRU(s) into liquid Cd

trough the formation of stable alloys. Other reactive cathode mate- 

rials such as bismuth [12] , aluminum [13] and gallium [ 14 , 15 ] were

proven suitable for homogeneous recovery of all actinides as al- 

loys. The use of reactive cathodes, however, requires an additional

step to obtain actinide for new fuel fabrication. For example, the

actinide/cadmium separation step is carried out by distillation un-
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der reduced pressure. In the case of U-Pu-Cd alloys, Cd concen- 

tration in the final product is below 100 ppm [16] . However, the

lanthanides/actinides separation factor on these reactive cathodes

is lower than on an inert solid cathode [17] .

Fluoride salts application in the nuclear field are numerous,

from the metallic uranium production by reduction of UF 4 green

salt [18] or by electrolysis of uranium oxides [19] , to the develop- 

ment of molten salt reactors [ 20 , 21 ] and separation processes for

clean-up of the MSR fuel salt and for recovery of actinides from

spent nuclear fuel by different pyrochemical processes including- 

fluoride volatility process [22] . In comparison to chloride salts, flu- 

oride solvents limit the number of species oxidation states as re- 

ported for instance by Lambertin et al. [23] for the americium

case. The results obtained by Quaranta et al. [24] and Sakamura

et al. [25] on Zr(IV) electrochemical reduction in LiF-NaF and LiCl-

KCl also illustrate the difference between chloride and fluoride sol- 

vent in terms of complexation: in LiF-NaF, a single transition from

Zr(IV) to Zr is obtained, whereas Zr(IV), Zr(II) and Zr(I) are ob- 

served in LiCl-KCl. Limiting the number of stable oxidation states

helps the quantitative recovery of metals by molten salt electroly- 

sis as showed for neodymium and dysprosium by Diaz et al. [26] .

The uranium systems have been studied in both chloride and

fluoride media.

In molten chloride salt, uranium ions electrochemical behavior

was studied by Serrano et al. between 973 K and 988 K in NaCl-KCl

[27] , and in LiCl-KCl by various authors [28–34] . The U(III) ions are

reduced in one step, exchanging 3 electrons, to U and oxidized to

https://doi.org/10.1016/j.electacta.2020.136784 



U(IV) in one step exchanging 1 electron. Both systems were found

reversible and diffusion controlled.

In molten LiF-CaF 2 , uranium ions were studied by Hamel et al.

[35] and Nourry et al. [36] at 1083 K. The reduction of U(IV) pro- 

ceeds via two steps exchanging 1 and 3 electrons, leading to the

formation of uranium metal. Both systems are found to be diffu- 

sion controlled.

The influence of fluoride addition to chloride salt on the re- 

duction mechanism of various metals (e.g. Zr, Ti, Hf, Nb, Ta, Nd)

has been frequently reported to improve the electrolytic recovery

yields. In these studies, the molar ratio between fluoride ions and

the metal ions to be plated in molten chloride is usually low. Stud- 

ies devoted to mixed chloro-fluoride salts are scarce, plating iron

in CaCl 2 –CaF 2 was reported by Haarberg and al. [37] and, more re- 

cently, Ti electrodeposition in both LiCl-LiF and water soluble KCl-

KF has been investigated [38] .

In this work, the chloro-fluoride salts were considered as a po- 

tential solvent for recycling the nuclear metallic fuel. They com- 

bine the stabilizing effects of fluoride ions, which usually simplify

the reduction mechanisms, and the presence of chloride ions that

allow the production of chlorine gas in electrolytic conditions of

oxygen free medium. This type of salts would make the electrolytic

recovery of americium more efficient by limiting the existence of

Am(II) species as shown for neodymium and dysprosium [39] , both

having superior recovery rates and faradic yields in LiCl-LiF than in

LiCl-KCl. The chloro-fluorinated mixture chosen is LiCl-LiF and the

actinide studied in this work is uranium as there are no available

published data in this field.

2. Experimental

2.1. Electrochemical experiment

The experiments on uranium in LiCl-LiF were performed in a

glove box under air atmosphere. The cell consisted of a vitre- 

ous carbon crucible placed in a quartz counter crucible to pre- 

vent molten salt from leaking into the quartz cell. The two cru- 

cibles were placed in a cylindrical quartz reactor. The reactor was

flushed with argon ( < 0.1 ppm O 2 and < 0.5 ppm H 2 O). The elec- 

trochemical experiments were carried out with a three-electrode

set up connected to an Autolab potentiostat/galvanostat controlled

with Nova 1.11 software. A Mo rod of 3 mm diameter immersed

in the salt was used as a comparison electrode (RE). Its poten- 

tial being dependent on oxide concentration in the melt, chlorine

evolution and lithium metal deposition potentials were frequently

checked for more accurate measuring. All RE potentials were re- 

ferred to Cl 2 /Cl 
− redox couple. the conversion was obtained by

graphical estimation of the potential at zero current in the lin- 

ear variation region during the positive scan of voltammograms as

shown in Fig. 1 [38] . The working electrode (WE) was 0.5 mm di- 

ameter W wire and the counter electrode (CE) was a 1 mm di- 

ameter Mo wire. Cyclic voltammetry, square wave voltammetry

(SWV) and chronopotentiometry were used to investigate the elec- 

trochemical system.

2.2. Preparation of the melt

Vitreous carbon was selected as material for the crucible. LiCl

and LiF (Sigma Aldrich 99.99%) were used for the solvent prepa- 

ration. The eutectic LiCl-LiF mixture (70–30 mol%) was prepared

in the glove box under inert atmosphere ( < 10 ppm O 2 and <

10 ppm H 2 O) by mixing the pure chemicals. The mixture was

heated at 473 K in a reactor flushed with argon ( < 0.1 ppm O 2 and

< 0.5 ppm H 2 O) for 24 h before being melted. The LiCl-KCl eutec- 

tics (59–41 mol%) were prepared using pure LiCl and KCl (Sigma

Aldrich 99.99%) with the same methodology.

FeCl 2 (Sigma Aldrich 99.99%) was added to LiCl-KCl and LiCl-LiF

salts and purity of the system was checked by cyclic voltammetry

before cool down for salt solidification. The frozen salt was trans- 

ferred to the air glovebox experiment compatible with uranium

experiments. The quick transfer is realized in a sealed container

under argon atmosphere. After melting of the salt in the air glove- 

box, the electrochemical signal of FeCl 2 on cyclic voltammogram

remained unchanged indicating that no moisture pickup occurred

during the transfer.

A molybdenum basket containing uranium metal was lifted

down in the salt phase. Uranium(III) ions were produced by chem- 

ical oxidation of metallic uranium by Fe(II) ions. The melts were

prepared according to reactions (2), (3) and (4) with an excess of

U metal:

3 Fe ( II ) + 2U = 2 U ( III ) + 3 Fe 1G 
◦

= −654 kJ . mo l −1 (2)

2 Fe ( II ) + U = U ( IV ) + 2 Fe 1G 
◦

= −306 kJ . mo l −1 (3)

3 U ( IV ) + U = 4 U ( III ) 1G 
◦

= −391 kJ . mo l −1 (4)

The concentration of uranium species in the bath was deter- 

mined by X-ray fluorescence analysis of salt samples ( ~ 0.2 g), dis- 

solved in 10 mL of HNO 3 (4 M).

3. Results and discussion

3.1. Uranium ions reduction mechanism on inert electrode

3.1.1. Cyclic voltammetry

Cyclic voltammograms of pure LiCl-LiF solvent and with addi- 

tion of U(III) (0.039 mol kg −1 ) are presented in Fig. 1 on W elec- 

trode at 100 mV s −1 and 550 °C. Two electrochemical systems are

observed: the first soluble-soluble system (I red and I ox ) at a poten- 

tial of –2.0 V vs Cl 2 /Cl 
− associated to the U(IV)/U(III) couple, and

the second one at −2.8 V vs Cl 2 /Cl 
− with a reduction peak II red and

a reoxidation peak II ox associated to the U(III)/U couple. The shape

of II ox and II red peaks is characteristic of the electrodeposition of a

metal and its dissolution (stripping peak).

The limiting processes of both systems were investigated by

plotting the square root of the scan rate versus the peak current

density.

For U(III)/U soluble/insoluble system, the reduction peak cur- 

rent density (II red ) increases linearly with the square root of the

scan rate in the range 10–300 mV s −1 as shown in Fig. 2 , meaning

that the electrochemical reduction of U(III) is controlled by diffu- 

sion.

As the value of the peak potential Ep(II red ) does not depend on

the scan rate (cf. Fig. 2 ), the reduction process can be considered as

reversible. The Berzins-Delahay relationship for the U(III)/U system

at the studied working concentration can be applied because of the

verified reversibility and soluble-insoluble system [40] :

I p = 0 . 6102 n FSC ◦
(

nF 

RT 

)0 . 5 

D 
0 . 5 v 0 . 5 (5)

Where I p is the peak intensity (A), n the number of exchanged

electrons, F the Faraday constant (96,500 C mol −1 ), C ° the solute

concentration (mol cm −3 ), R the gas constant (8.314 J.mol −1 K −1 ),

T the temperature (K), D the diffusion coefficient (cm ² s −1 ) and v

the scan rate (V s −1 ).

The equation slope for the reduction of U(III) into U reversible

system in LiCl-LiF at 550 °C is:

i pic
v 0 . 5

= −0 . 32 A . s 0 . 5 . c m 
−2 . V 

0 . 5 (6)



Fig. 1. Cyclic voltammograms on W of the LiCl-LiF system at 100 mV s −1 and T = 823 K: pure solvent (black) and with U(III) concentration of 0.039 mol kg −1 (grey). 

Fig. 2. Variation of the peak current density (left axis) and the reduction peak potential (right axis) vs. the square root of the potential scan rate on W in LiCl-LiF-U(III) 

(0.039 mol kg −1 ) system at T = 823 K. Working el.: W; auxiliary el.: Mo; comparison el.: W. 

According to Eq. (5) , the peak intensity attributed to the reduc- 

tion of U(III) ions to U metal increases linearly with the concen- 

tration of U(III) in the solution. The slope of the calibration curve

was found to be −8 . 6 A . kg . s 0 . 5 . c m −2 . V −0 . 5 . mo l −1 and can be used

to determine the U(III) concentration into the solution at 823 K.

The U(III) concentration in solution was also verified by X-ray flu- 

orescence after sampling the melt.

The oxidation peak current density (I ox ) for U(IV)/U(III) soluble- 

soluble system increases linearly with the square root of the scan

rate in the 50–300 mV s −1 range as shown in Fig. 3 , showing

that U(III) electrochemical oxidation is diffusion controlled. Thus,

the Randles–Sevcik relationship for a soluble/soluble system can be

used [40] :

I p = 0 . 446 n FSC ◦
(

nF 

RT 

)0 . 5 

D 
0 . 5 v 0 . 5 (7)

The slope of this equation for the oxidation of U(III) into U(IV)

reversible system in LiCl-LiF at 550 °C is:

i pic
v 0 . 5

= 0 . 056 A . s 0 . 5 . c m 
−2 . V 

−0 . 5 (8)

The open circuit potential (OCP) on W electrode was −2.65 V

vs Cl 2 /Cl 
−, closed from the U(III)/U system, permitting to conclude

that the U(IV) concentration was negligible regarding to U(III) one.

It can be also noted that no additional peak was observed on the

voltammogramm, showing that presence of Fe(II) is not detected.

3.1.2. Square-wave voltammetry (SWV)

SWV was used to determine the number of exchanged elec- 

trons. In the case of a soluble/soluble system, the square wave

voltammetry curve has a Gaussian shape. For the soluble/insoluble

system the curve obtained is an asymmetric Gaussian due to a nu- 

cleation phenomenon [35] . When the linear relationship between

the differential peak current density and the square root of the fre- 

quency is verified, Eqs. (9) and (10) can be used to calculate the

number of exchanged electrons using the width of the peak W 1/2

at half of the peak height [ 41 , 42 ]:

δi p = n FC ◦
1 − Ä

1 + Ä

(

Df 

π

)0 . 5 

with Ä = exp 

(

nF 1E 

2 RT

)

(9)



Fig. 3. Variation of the peak current density (left axis) and the oxidation peak potential (right axis) vs. the square root of the potential scan rate on W in LiCl-LiF-U(III) 

(0.039 mol kg −1 ) system at T = 823 K. Working el.: W; auxiliary el.: Mo; comparison el.: W. 

Fig. 4. Square wave voltammogram on W in LiCl-LiF-U(III) (0.06 mol kg −1 ) system at 9 Hz and T = 823 K. Inset. Variation of the peak current density (left axis) and the 

reduction peak potential (right axis) vs. the square root of frequency. 

W 1 / 2 = 3 . 52
RT

nF
(10)

where δi p is the differential peak current density (A.cm −²), f the

frequency (Hz), 1E the square signal amplitude (V), W 1/2 the width

of the peak at half height of the considered peak (V).

Figs. 4 and 5 show typical square wave voltammograms with

the variation of the differential peak current density versus the

square root of the frequency for the U(III)/U and U(IV)/U(III) sys- 

tems. Both voltammograms show a single peak in reduction and

oxidation in LiCl-LiF at 550 °C and 9 Hz. This confirms that only

U(III) is present in the molten salt (U in excess) and validates the

experimental procedure for melt preparation.

The shape of the reduction peak is an asymmetric Gaussian

caused by a nucleation overvoltage, leading to a delay in the oc- 

currence of faradic current. This is frequently observed with sol- 

uble/insoluble systems involving metal deposition. The validity of

Eq. (9) was verified by the linear relationship between the differ- 

ential peak current density versus the square root of the frequency.

The half-width was determined by doubling the value of the half- 

width of the left side (2 ∗W L ) not modified by nucleation overvolt- 

age [ 24 , 35 ]. By applying this method and Eq. (10) , the number of

exchanged electrons was determined and is equal to 3.2 ± 0.1 with

W 1/2 = 80 mV. The reduction of U(III) into U in LiCl-LiF is therefore

a single step exchanging 3 electrons. Based on the work of Nourry

et al. [43] , square wave voltammetry can be used to determine the

nucleation overvoltage η, using the following equation:

η = 2 ( W L −W R ) (11)

where W L and W R are respectively, the half-width of the left and

on the right side of the peak. In our experiments, the nucleation

overvoltage is equal to 123 mV.

For the soluble/soluble system the validity of Eq. (9) was ver- 

ified in the frequency range 9–36 Hz, Eq. (10) was directly ap- 

plied as the Gaussian curve is symmetric. The number of ex- 

changed electrons was determined and equal to 1 ± 0.1 with

W 1/2 = 250 mV. This confirms that this step involves the trans- 



Fig. 5. Square wave voltammogram on W in LiCl-LiF-U(III) (0.039 mol kg −1 ) system at 9 Hz and T = 823 K. Inset. Variation of the peak current density (left axis) and the 

oxidation peak potential (right axis) vs. the square root of frequency. 

Fig. 6. Reversal chronopotentiogram on W in LiCl-LiF-U(III) (0.039 mol kg −1 ) system at T = 823 K; applied current = ± 9.5 mA. Working El.: W; auxiliary el.: Mo; comparison 

el.: W. 

fer of 1 electron and corresponds to the oxidation of the U(III) into

U(IV).

3.1.3. Reverse chronopotentiogram

To confirm U deposition, a reversal chronopotentiogram was

carried out at ± 9.5 mA and T = 832 K in LiCl-LiF-U(III) and the

signal is plotted in Fig. 6 . The anodic transition time τ ox was found
to be equal to the cathodic one τ red with τ ox = τ red = 4.7 s and

is typical of a solid phase deposition on the electrode [44] .

3.1.4. Chronopotentiometry

Chronopotentiograms were obtained in LiCl-LiF-U(III)

(0.039 mol kg −1 ) at 823 K for different intensities ( −10 to

−18 mA). Fig. 7 shows a single plateau at −2.7 V vs Cl 2 /Cl 
−,

corresponding to the reduction potential of U(III) observed in

cyclic voltammetry. As described by the Sand’s Law, the transition

time τ decreases with the increase of the current density [45] .

i τ 0 . 5 
= 0 . 5 π0 . 5 . n . F . D 

0 . 5 . C ◦ (12)

where i is the current density applied (A cm −²), τ the transition

time (s).

According to the data plotted in Fig. 7:

i τ 0 . 5 
= 0 . 095 A . s 0 . 5 . c m 

−2 (13)

The Sand’s law verification confirmed that the electrochemical

reaction is controlled by the U(III) ions diffusion in the melt.

3.2. Determination of experimental physico-chemical data

3.2.1. U(III) diffusion coefficient

The U(III) diffusion coefficient was calculated in the 823–

923 K temperature range, using the Berzins Delahay relation- 

ship. The numbers of exchanged electrons taken in account for

the calculation was 3 according to the SWV. At T = 823 K and

[U(III)] = 0.039 mol.kg −1 , the diffusion coefficient was found to

be (2.0 ± 0.1) 10 −5 cm 2 s − 1 considering the U(III) reduction.

With the Sand’s law, U(III) diffusion coefficient was found to be

(2.3 ± 0.1) 10 −5 cm 2 s − 1 at the same temperature. The results

obtained are in the same order of magnitude than the previous

ones determined by Serrano et al. with 5.6 10 −5 cm ².s-1 for U(III)

in NaCl-KCl at 973 K and by Hoover et al. with 1.04 10 −5 cm ² s −1

in LiCl-KCl for U(III) [ 27 , 28 ].



Fig. 7. Chronopotentiograms on W LiCl-LiF-U(III) (0.039 mol kg −1 ) system from at −10, −11, −12, −15 and −18 mA and T = 823 K. Working El.: W; auxiliary el.: Mo; 

comparison el.: W. Inset. Variation of i. τ 1/2 vs. the intensity at 823 K. Working el.: W; auxiliary el.: Mo; comparison el.: W. 

Fig. 8. Variation of the logarithm of the diffusion coefficient versus the inverse of the absolute temperature. 

The U(III) diffusion coefficient was determined by cyclic voltam- 

metry at three temperatures using the reduction of U (III) and the

linear relationship between ln D and the inverse of the tempera- 

ture (K) is plotted in Fig. 8 . This Figure shows that the variation of

the diffusion coefficient follows an Arrhenius’ type law:

ln D U ( III ) = −2 . 42 −
6907

T
(14)

The activation energy can be estimated to 57.4 kJ.mol −1 .

3.2.2. Apparent standard potentials

The apparent standard potentials of the U(IV)/U(III) and

U(III)/U redox couple were measured in LiCl-LiF at 823 K and

[U(III)] = 0.039 mol kg −1 (x U(III) = 1.42 10 −3 ). To compare the elec- 

trochemical behavior of uranium in chloride and chloro-fluoride

salts and the influence of fluoride complexation, voltammograms

of uranium ions were carried out in LiCl-KCl salt at 823 K. Voltam- 

mograms presented on Fig. 9 were referred to the experimental

Cl 2 /Cl 
− redox couple. in order to take into account the difference

of activity of Cl − in the two media, the potentials measured in LiCl-

LiF versus the experimental reference were corrected by the term

1E assuming an activity of Cl − equal to its molar ratio, a Cl 
− = 0.7.

For T = 823K , 1E =
RT

F
ln

1

x C l −
= 0 . 0253 V (16)

It can be pointed out that this value of 1E is low.

The comparison of the two voltammograms obtained in LiCl-

KCl-U(III) and LiCl-LiF-U(III) are shown in Fig. 9 . It can be observed

that (i) the presence of fluoride ions tends to form more stable

complexes which are reduced at more negative potentials as fre- 

quently observed, and (ii) the difference between the potential of

U(IV)/U(III) system in the two media is significantly more affected

than the one of U(III)/U system.

The apparent standard potentials for both systems have been

estimated in LiCl-LiF taking into account the activity of Cl −:

v E 0 
′

U ( IV ) /U ( I I I ) 
, according to the theory of linear sweep voltamme- 

try for a soluble-soluble system, can be expressed by [46] :

E 0 
′

U ( IV ) / U ( III ) = 
E c p + E ap

2
(17)

Where E c p and E 
a 
p are the experimental anodic and cathodic

peaks potentials graphically determined on cyclic voltammograms

(V) and E 0 
′ 

U( IV ) / U( III ) 
is the apparent standard potential of the



Fig. 9. Cyclic voltammograms on W of LiCl-LiF-U(III) (0.039 mol kg −1 ) system (grey) and LiCl-KCl-U(III) (0.08 mol kg −1 ) (black) at 100 mV s −1 and T = 823 K. 

Table 1 

Summary of E 0 ’ value for U(IV)/U(III) and U(III)/U couple in different molten salts. 

Reference Concentration of U(III) Salt T ( °C) E 0 ’ / V U(IV)/U(III) E 0 ’ / V U(III)/U �E 0 ’ / V 

Hoover [28] 1–10 wt% LiCl-KCl 500 −1.448 −2.568 1.12 

Masset [47] 9.87 10 −5 mol cm −3 LiCl-KCl 500 −1.428 −2.563 1.14 

This studysssss 1.9 wt% LiCl-KCl 550 −1.483 −2.496 1.01 

This study 0.9 wt% LiCl-LiF 550 −2.03 −2.59 0.6 

U(IV)/U(III) couple (V). The obtained value at 823 K is E 0 
′

U( IV ) / U( III ) 
= 

−2 . 02 V vs C l 2 / C l 
−

The Eq. (18) connects the apparent standard potentials variation

and the temperature in Kelvin for the U(IV)/U(III) system:

E 0 
′

U ( IV ) / U ( III ) = 1 . 4310 −3 T − 3 . 2 (18)

v E 0 
′

U( I I I ) /U 
can be expressed using the Nernst equation:

E I=0 U ( III ) / U = E 0U ( III ) / U + 
RT

nF
ln
a U ( III )
a U

(19)

E I=0 U ( III ) / U = E 0 
′

U ( III ) / U + 
RT

nF 
ln x U ( III ) (20)

Where E I =0 U( I I I ) /U is the Nernst potential (V) graphically deter- 

mined as indicated on Fig. 10 and E 0 
′ 

U( I I I ) /U 
the apparent standard

potential (V) of the U(III)/U couple. The obtained value at 823 K is:

E 0 
′

U( III ) / U 0 
= −2 . 61 V vs C l 2 / C l 

−

The relationship between the apparent standard potentials evo- 

lution and the temperature in Kelvin for the U(III)/U system is

then:

E 0 
′

U ( III ) / U = 9 . 52 10 −4 T − 3 . 4 (21)

Table 1 compares the apparent standard potentials obtained in

this study with values found in the literature for U(IV)/U(III) and

U(III)/U systems. The presence of fluoride ions (LiF) causes a shift

towards more negative values of the apparent standard potential

of U(IV)/U(III) and U(III)/U couples. The potential shift is larger

than 500 mV for the U(IV)/U(III) couple and less than 100 mV for

U(III)/U depending on the bibliographic reference considered. The

fluoride stabilizing effect is clearly more pronounced on the re- 

duction potential of U(IV)/U(III) compared to U(III)/U. The potential

difference between the 2 redox systems of uranium in presence of

fluoride (0.6 V) is smaller than in pure chloride ( > 1 V).

It is more difficult to discuss on apparent standard potentials

for pure fluoride media since most of the authors worked with

Table 2 

Cathodic potential peak difference between U(III)/U reduction potential into 

LiF-CaF 2 and LiCl-LiF. 

Reference Concentration of U(III) Salt T ( °C) �E pc (V) 

Nourry [36] 2 wt% LiF-CaF 2 810 0.58 

Hamel [35] 0.76 wt% LiF-CaF 2 810 0.53 

This study 0.9 wt% LiCl-LiF 550 0.65 

quasi-reference electrodes and cannot refer their electrochemical

systems to fluorine gas evolution, as dissolution of metallic work- 

ing electrode is observed first. Consequently, in order to compare

our results in LiCl-LiF with pure fluoride salt, instead of listing ap- 

parent redox potentials, the difference between reduction peak po- 

tentials of U(IV)/U(III) and U(III)/U systems, 1Epc, in LiF-CaF 2 and

LiCl-LiF was collected in Table 2 .

The cathodic peak potential difference observed in chlorofluo- 

rides is close to the one observed in pure fluorides. These results

show clearly that U(IV) is a stronger oxidant in chloride salt than

in fluoride salt.

4. Conclusion

The electrochemical behavior of uranium ions was investigated

in LiCl-LiF in the 823–923 K temperature range on a W elec- 

trode. In the experimental conditions, only U(III) was present in

the molten salt with an excess of U metal in solution. In LiCl-LiF,

U(III) is reduced into metal at around −2.59 V vs Cl 2 /Cl 
− and oxi- 

dized into U(IV) at around −2.03 V vs Cl 2 /Cl 
−:

Using different electroanalytical techniques such as cyclic

voltammetry and chronopotentiometry, it was shown that both

steps are diffusion controlled.

The value of diffusion coefficient for the U(III) in chloride and

fluoride media are of the same order of magnitude. In the 823–



923 K temperature range the diffusion coefficient logarithm versus

the temperature follows an Arrhenius type relationship.

The variation of the apparent standard potentials as a function

of the temperature for the uranium systems have been evaluated.

This study showed the stabilizing effect of fluoride ions (LiF) af- 

fects the reduction potential peaks of U(IV)/U(III) and U(III)/U sys- 

tems. The reduction potentials are shifted towards negative values.

A comparison of the uranium electrochemical behavior in LiCl-LiF

and LiCl-KCl salts clearly shows that the fluoride addition affects

more the U(IV)/U(III) transition (500 mV shift) than the U(III)/U

system (100 mV shift). The U(IV)/U(III) redox couple is a stronger

oxidant in chloride salt than in chloro-fluoride or fluoride.

Future works will deal with the acquisition of similar data

for Np, Pu and Am. The reduction potentials to metals of these

transuranic elements species will be investigated in LiCl-LiF to im- 

prove knowledge about fluoride ions complexation effects. Differ- 

ence in reduction potential between U and Pu species in LiCl-KCl

and LiCl-LiF will be compared; electrolyses will be carried out be- 

low and above the plutonium metal melting point to assess the

feasibility of using chloro-fluoride salts like LiCl-LiF for the group

actinides recovery on inert electrodes.
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