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Advocating for Multiple Defense Strategies against Adversarial Examples

It has been empirically observed that defense mechanisms designed to protect neural networks against ∞ adversarial examples offer poor performance against 2 adversarial examples and vice versa. In this paper we conduct a geometrical analysis that validates this observation. Then, we provide a number of empirical insights to illustrate the effect of this phenomenon in practice. Then, we review some of the existing defense mechanism that attempts to defend against multiple attacks by mixing defense strategies. Thanks to our numerical experiments, we discuss the relevance of this method and state open questions for the adversarial examples community.

Introduction

Deep neural networks achieve state-of-the-art performances in a variety of domains such as natural language processing [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], image recognition [START_REF] He | Deep residual learning for image recognition[END_REF] and speech recognition [START_REF] Hinton | Deep neural networks for acoustic modeling in speech recognition[END_REF]. However, it has been shown that such neural networks are vulnerable to adversarial examples, i.e., imperceptible variations of the natural examples, crafted to deliberately mislead the models [START_REF] Globerson | Nightmare at test time: robust learning by feature deletion[END_REF][START_REF] Biggio | Evasion attacks against machine learning at test time[END_REF][START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Since their discovery, a variety of algorithms have been developed to generate adversarial examples (a.k.a. attacks), for example FGSM [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF], PGD [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] and C&W [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], to mention the most popular ones.

Because it is difficult to characterize the space of visually imperceptible variations of a natural image, existing adversarial attacks use surrogates that can differ from one attack to another. For example, [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] use the ∞ norm to measure the distance between the original image and the adversarial image whereas [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF] use the 2 norm. When the input dimension is low, the choice of the norm is of little importance because the ∞ and 2 balls overlap by a large margin, and the adversarial examples lie in the same space. An important insight in this paper is to observe that the overlap between the two balls diminishes exponentially quickly as the dimensionality of the input space increases. For typical image datasets with large dimensionality, the two balls are mostly disjoint. As a consequence, the ∞ and the 2 adversarial examples lie in different areas of the space, and it explains why ∞ defense mechanisms perform poorly against 2 attacks and vice versa.

Building on this insight, we advocate for designing models that incorporate defense mechanisms against both ∞ and 2 attacks and review several ways of mixing existing defense mechanisms. In particular, we evaluate the performance of Mixed Adversarial Training (MAT) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] which consists of augmenting training batches using both ∞ and 2 adversarial examples, and Randomized Adversarial Training (RAT) [START_REF] Salman | Provably robust deep learning via adversarially trained smoothed classifiers[END_REF], a solution to benefit from the advantages of both ∞ adversarial training, and 2 randomized defense.

Outline of the paper. The rest of this paper is organized as follows. In Section 2, we recall the principle of existing attacks and defense mechanisms. In Section 3, we conduct a theoretical analysis to show why the ∞ defense mechanisms cannot be robust against 2 attacks and vice versa. We then corroborate this analysis with empirical results using real adversarial attacks and defense mechanisms. In Section 4, we discuss various strategies to mix defense mechanisms, conduct comparative experiments, and discuss the performance of each strategy.

Preliminaries on Adversarial Attacks and Defenses

Let us first consider a standard classification task with an input space X = [0, 1] d of dimension d, an output space Y = [K] and a data distribution D over X × Y. We assume the model f θ has been trained to minimize the expectation over D of a loss function L as follows:

min θ E (x,y)∼D [L(f θ (x), y)] .
(1)

Adversarial attacks

Given an input-output pair (x, y) ∼ D, an adversarial attack is a procedure that produces a small perturbation τ ∈ X such that f θ (x + τ ) = y. To find the best perturbation τ , existing attacks can adopt one of the two following strategies: (i) maximizing the loss L(f θ (x + τ ), y) under some constraint on τ p5 (a.k.a. loss maximization); or (ii) minimizing τ p under some constraint on the loss L(f θ (x + τ ), y) (a.k.a. perturbation minimization).

(i) Loss maximization. In this scenario, the procedure maximizes the loss objective function, under the constraint that the p norm of the perturbation remains bounded by some value , as follows:

argmax τ p ≤ L(f θ (x + τ ), y).
(

) 2 
The typical value of depends on the norm • p considered in the problem setting. In order to compare ∞ and 2 attacks of similar strength, we choose values of ∞ and 2 (for ∞ and 2 norms respectively) which result in ∞ and 2 balls of equivalent volumes. For the particular case of CIFAR-10, this would lead us to choose ∞ = 0.03 and 2 = 0.8 which correspond to the maximum values chosen empirically to avoid the generation of visually detectable perturbations. The current state-of-the-art method to solve Problem (2) is based on a projected gradient descent (PGD) [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] of radius . Given a budget , it recursively computes

x t+1 = Bp(x, ) x t + α argmax δ s.t. ||δ||p≤1 ∆ t |δ (3) 
where

B p (x, ) = {x + τ s.t. τ p ≤ }, ∆ t = ∇ x L (f θ (x t ) , y)
, α is a gradient step size, and S is the projection operator on S. Both PGD attacks with p = 2, and p = ∞ are currently used in the literature as state-of-the-art attacks for the loss maximization problem.

(ii) Perturbation minimization. This type of procedure search for the perturbation that has the minimal p norm, under the constraint that L(f θ (x + τ ), y) is bigger than a given bound c:

argmin L(f θ (x+τ ),y)≥c τ p . (4) 
The value of c is typically chosen depending on the loss function L6 . Problem (4) has been tackled in [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], leading to the following method, denoted C&W attack in the rest of the paper. It aims at solving the following Lagrangian relaxation of Problem (4): argmin

τ τ p + λ × g(x + τ ) (5) 
where g(x + τ ) < 0 if and only if L(f θ (x + τ ), y) ≥ c. The authors use a change of variable τ = tanh(w) -x to ensure that -1 ≤ x + τ ≤ 1, a binary search to optimize the constant c, and Adam or SGD to compute an approximated solution. The C&W attack is well defined both for p = 2, and p = ∞, but there is a clear empirical gap of efficiency in favor of the 2 attack.

In this paper, we focus on the Loss Maximization setting using the PGD attack. However we conduct some of our experiments using Perturbation Minimization algorithms such as C&W to capture more detailed information about the location of adversarial examples in the vector space 7 .

Defense mechanisms

Adversarial Training (AT). Adversarial Training was introduced in [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF] and later improved in [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] is thus replaced by the following min max problem, where the classifier tries to minimize the expected loss under maximum perturbation of its input:

min θ E (x,y)∼D max τ p ≤ L (f θ (x + τ ), y) . (6) 
In the case where p = ∞, this technique offers good robustness against ∞ attacks [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF]. AT can also be used with 2 attacks but as we will discuss in Section 3, AT with one norm offers poor protection against the other. The main weakness of Adversarial Training is its lack of formal guarantees. Despite some recent work providing great insights [START_REF] Sinha | Certifying some distributional robustness with principled adversarial training[END_REF][START_REF] Zhang | Theoretically principled trade-off between robustness and accuracy[END_REF], there is no worst case lower bound yet on the accuracy under attack of this method. 

Noise injection mechanisms (NI

= f θ (x + η) (instead of f θ (x)) (7) 
where η is a random variable on R d . Even though, Noise Injection is often less efficient than Adversarial Training in practice (see e.g., Table 3), it benefits from strong theoretical background. In particular, recent works [START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF][START_REF] Li | Certified adversarial robustness with additive noise[END_REF], followed by [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF][START_REF] Pinot | Theoretical evidence for adversarial robustness through randomization[END_REF] demonstrated that noise injection from a Gaussian distribution can give provable defense against 2 adversarial attacks. In this work, besides the classical Gaussian noises already investigated in previous works, we evaluate the efficiency of Uniform distributions to defend against 2 adversarial examples.

No Free Lunch for Adversarial Defenses

In this Section, we show both theoretically and empirically that defenses mechanisms intending to defend against ∞ attacks cannot provide suitable defense against 2 attacks. Our reasoning is perfectly general; hence we can similarly demonstrate the reciprocal statement, but we focus on this side for simplicity.

Theoretical analysis

Let us consider a classifier f ∞ that is provably robust against adversarial examples with maximum ∞ norm of value ∞ . It guarantees that for any input-output pair (x, y) ∼ D and for any perturbation τ such that τ ∞ ≤ ∞ , f ∞ is not misled by the perturbation, i.e., f ∞ (x + τ ) = f ∞ (x). We now focus our study on the performance of this classifier against adversarial examples bounded with a 2 norm of value 2 . Using Figure 1(a), we observe that any 2 adversarial example that is also in the ∞ ball, will not fool f ∞ . Conversely, if it is outside the ball, we have no guarantee. To characterize the probability that such an 2 perturbation fools an ∞ defense mechanism in the general case (i.e., any dimension d), we measure the ratio between the volume of the intersection of the ∞ ball of radius ∞ and the 2 ball of radius 2 . As Theorem 1 shows, this ratio depends on the dimensionality d of the input vector x, and rapidly converges to zero when d increases. Therefore a defense mechanism that protects against all ∞ bounded adversarial examples is unlikely to be efficient against 2 attacks. Theorem 1 (Probability of the intersection goes to 0).

Let B 2,d ( ) := τ ∈ R d s.t τ 2 ≤ and B ∞,d ( ) := τ ∈ R d s.t τ ∞ ≤ . If for all d, we select and ' such that Vol (B 2,d ( )) = Vol (B ∞,d ( )), then Vol (B 2,d ( ) B ∞,d ( )) Vol (B ∞,d ( )) → 0 when d → ∞.
Proof. Without loss of generality, let us fix = 1. One can show that for all d,

Vol B 2,d 2 √ π Γ d 2 + 1 1/d = Vol (B ∞,d (1)) ( 8 
)
where Γ is the gamma function. Let us denote

r 2 (d) = 2 √ π Γ d 2 + 1 1/d . (9) 
Then, thanks to Stirling's formula

r 2 (d) ∼ 2 πe d 1/2 . ( 10 
)
Finally, if we denote U S , the uniform distribution on set S, by using Hoeffding inequality between Equation 14 and 15, we get:

Vol(B 2,d (r 2 (d)) B ∞,d (1)) Vol(B ∞,d (1)) (11) =P x∼U B ∞,d (1) [x ∈ B 2,d (r 2 (d))] (12) =P x∼U B ∞,d (1) 
d i=1 |x i | 2 ≤ r 2 2 (d) (13) 
≤ exp -d -1 r 2 2 (d) -dE|x 1 | 2 2 (14) ≤ exp - 2 πe - 1 3 2 d + o(d) . ( 15 
)
Then the ratio between the volume of the intersection of the ball and the volume of the ball converges towards 0 when d goes to ∞.

Theorem 1 states that, when d is large enough, 2 bounded perturbations have a null probability of being also in the ∞ ball of the same volume. As a consequence, for any value of d that is large enough, a defense mechanism that offers full protection against ∞ adversarial examples is not guaranteed to offer any protection against 2 attacks8 . Note that this result defeats the 2-dimensional intuition: if we consider a 2 dimensional problem setting, the ∞ and the 2 balls have an important overlap (as illustrated in Figure 1(a)) and the probability of sampling at the intersection of the two balls is bounded by approximately 98%. However, as we increase the dimensionality d, this probability quickly becomes negligible, even for very simple image datasets such as MNIST. An instantiation of the bound for classical image datasets is presented in Table 1. The probability of sampling at the intersection of the ∞ and 2 balls is close to zero for any realistic image setting. In large dimensions, the volume of the corner of the ∞ ball is much bigger than it appears in Figure 1(a).

No Free Lunch in Practice

Our theoretical analysis shows that if adversarial examples were uniformly distributed in a high-dimensional space, then any mechanism that perfectly defends against ∞ adversarial examples has a null probability of protecting against 2bounded adversarial attacks. Although existing defense mechanisms do not necessarily assume such a distribution of adversarial examples, we demonstrate that whatever distribution they use, it offers no favorable bias with respect to the result of Theorem 1. As we discussed in Section 2, there are two distinct attack settings: loss maximization (PGD) and perturbation minimization (C&W). Our analysis is mainly focusing on loss maximization attacks. However, these attacks have a very strict geometry 9 . This is why, to present a deeper analysis of the behavior of adversarial attacks and defenses, we also present a set of experiments that use perturbation minimization attacks. . Results are presented in Table 2. 11The analysis is unambiguous: the average ∞ norm of a bounded 2 perturbation more than double between an unprotected model and a model trained with AT PGD-∞ . This phenomenon perfectly reflects the illustration of Figure 1 (c). The attack will generate an adversarial example on the corner of the ∞ ball thus increasing the ∞ norm while maintaining the same 2 norm. We can observe the same phenomenon with AT-2 against PGD-∞ attack (see Figure 1 (b) and Table 2). PGD-∞ attack increases the 2 norm while maintaining the same ∞ perturbation thus generating the perturbation in the upper area.

As a consequence, we cannot expect adversarial training ∞ to offer any guaranteed protection against 2 adversarial examples .

Adversarial training vs. perturbation minimization attacks. To better capture the behavior of 2 adversarial examples, we now study the performances of an 2 perturbation minimization attack (C&W) with and without AT-∞ . It allows us to understand in which area C&W discovers adversarial examples and the impact of AT-∞ . In high dimensions, the red corners (see Figure 1 On both charts, the blue area represents the proportion of adversarial examples that are inside the ∞ ball. The red area represents the adversarial examples that are outside the ∞ ball but still inside the 2 ball (valid 2 adversarial examples). Finally, the brown-beige area represents the adversarial examples that are beyond the 2 bound. The radius of the 2 ball varies along the x-axis from to √ d. On the left chart (without adversarial training) most 2 adversarial examples generated by C&W are inside both balls. On the right chart most of the adversarial examples have been shifted out the ∞ ball. This is the expected consequence of ∞ adversarial training. However, these adversarial examples remain in the 2 ball, i.e., they are in the cap of the 2 ball. These examples are equally good from the 2 perspective. This means that even after adversarial training, it is still easy to find good 2 adversarial examples, making the 2 robustness of AT-∞ almost null. Adversarial attacks have been an active topic in the machine learning community since their discovery [START_REF] Globerson | Nightmare at test time: robust learning by feature deletion[END_REF][START_REF] Biggio | Evasion attacks against machine learning at test time[END_REF][START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Many attacks have been developed. Most of them solve a loss maximization problem with either ∞ [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Kurakin | Adversarial examples in the physical world[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF], 2 [START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF][START_REF] Kurakin | Adversarial examples in the physical world[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF],

Reviewing Defenses Against Multiple Attacks

1 [START_REF] Tramèr | Adversarial training and robustness for multiple perturbations[END_REF] or 0 [START_REF] Papernot | The limitations of deep learning in adversarial settings[END_REF] surrogate norms. As we showed, these norms are really different in high dimension. Hence, defending against one norm-based attack is not sufficient to protect against another one. In order to solve this problem, we review several strategies to build defenses against multiple adversarial attacks. These strategies are based on the idea that both types of defense must be used simultaneously in order for the classifier to be protected against multiple attacks. The detailed description of the experimental setting is described in Section 4.1.

Experimental Setting

To compare the robustness provided by the different defense mechanisms, we use strong adversarial attacks and a conservative setting: the attacker has a total knowledge of the parameters of the model (white-box setting) and we only consider untargeted attacks (a misclassification from one target to any other will be considered as adversarial). To evaluate defenses based on Noise Injection, we use Expectation Over Transformation (EOT), the rigorous experimental protocol proposed by [START_REF] Athalye | Synthesizing robust adversarial examples[END_REF] and later used by [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF][START_REF] Carlini | On evaluating adversarial robustness[END_REF] to identify flawed defense mechanisms.

To attack the models, we use state-of-the-art algorithms PGD. We run PGD with 20 iterations to generate adversarial examples and with 10 iterations when it is used for adversarial training. The maximum ∞ bound is fixed to 0.031 and the maximum 2 bound is fixed to 0.83. As discussed in Section 2, we chose these values so that the ∞ and the 2 balls have similar volumes. Note that 0.83 is slightly above the values typically used in previous publications in the area, meaning the attacks are stronger, and thus more difficult to defend against.

All experiments are conducted on CIFAR-10 with the Wide-Resnet 28-10 architecture. We use the training procedure and the hyper-parameters described in the original paper by [START_REF] Zagoruyko | Wide residual networks[END_REF]. Training time varies from 1 day (AT) to 2 days (MAT) on 4 GPUs-V100 servers.

MAT -Mixed Adversarial Training

Earlier results have shown that ATp improves the robustness against corresponding p -bounded adversarial examples, and the experiments we present in this section corroborate this observation (See Table 3 [START_REF] Tramèr | Adversarial training and robustness for multiple perturbations[END_REF], there are several possible strategies to mix the adversarial training examples. The first strategy (MAT-Rand) consists in randomly selecting one adversarial example among the two most damaging ∞ and 2 , and to use it as a training example, as described in Equation ( 16):

MAT-Rand : min θ E (x,y)∼D E p∼U ({2,∞}) max τ p ≤ L (f θ (x + τ ), y) . (16) 
An alternative strategy is to systematically train the model with the most damaging adversarial example ( ∞ or 2 ). As described in Equation ( 17):

MAT-Max : min θ E (x,y)∼D max p∈{2,∞} max τ p ≤ L (f θ (x + τ ), y) . (17) 
The accuracy of MAT-Rand and MAT-Max are reported in Table 3 (Column: MAT). As expected, we observe that MAT-Rand and MAT-Max offer better robustness both against PGD-2 and PGD-∞ adversarial examples than the original AT does. More generally, we can see that AT is a good strategy against loss maximization attacks, and thus it is not surprising that MAT is a good strategy against mixed loss maximization attacks. However efficient in practice, MAT (for the same reasons as AT) lacks theoretical arguments. In order to get the best of both worlds, [START_REF] Salman | Provably robust deep learning via adversarially trained smoothed classifiers[END_REF] proposed to mix adversarial training with randomization.

RAT -Randomized Adversarial Training

We now examine the performance of Randomized Adversarial Training (RAT) first introduced in [START_REF] Salman | Provably robust deep learning via adversarially trained smoothed classifiers[END_REF]. This technique mixes Adversarial Training with Noise Injection. The corresponding loss function is defined as follows:

min θ E (x,y)∼D max τ p ≤ L fθ (x + τ ), y) . ( 18 
)
where fθ is a randomized neural network with noise injection as described in Section 2.2, and • p define which kind of AT is used. For each setting, we consider two noise distributions, Gaussian and Uniform as we did with NI. We also consider two different Adversarial training AT-∞ as well as AT-2 .

The results of RAT are reported in Table 3 (Columns: RAT-∞ and RAT-2 ). We can observe that RAT-∞ offers the best extra robustness with both noises, which is consistent with previous experiments, since AT is generally more effective against ∞ attacks whereas NI is more effective against 2 -attacks. Overall, RAT-∞ and a noise from uniform distribution offers the best performances but is still weaker than MAT-Rand. These results are also consistent with the literature, since adversarial training (and its variants) is the best defense against adversarial examples so far.

Conclusion & Perspective

In this paper, we tackled the problem of protecting neural networks against multiple attacks crafted from different norms. We demonstrated and gave a geometrical interpretation to explain why most defense mechanisms can only protect against one type of attack. Then we reviewed existing strategies that mix defense mechanisms in order to build models that are robust against multiple adversarial attacks. We conduct a rigorous and full comparison of Randomized Adversarial Training and Mixed Adversarial Training as defenses against multiple attacks.

We could argue that both techniques offer benefits and limitations. We have observed that MAT offers the best empirical robustness against multiples adversarial attacks but this technique is computationally expensive which hinders its use in large-scale applications. Randomized techniques have the important advantage of providing theoretical guarantees of robustness and being computationally cheaper. However, the certificate provided by such defenses is still too small for strong attacks. Furthermore, certain Randomized defenses also suffer from the curse of dimensionality as recently shown by [START_REF] Kumar | Curse of dimensionality on randomized smoothing for certifiable robustness[END_REF].

Although, randomized defenses based on noise injection seem limited in terms of accuracy under attack and scalability, they could be improved either by Learning the best distribution to use or by leveraging different types of randomization such as discrete randomization first proposed in [START_REF] Pinot | Randomization matters how to defend against strong adversarial attacks[END_REF]. We believe that these certified defenses are the best solution to ensure the robustness of classifiers deployed into real-world applications.
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  as a first defense mechanism to train robust neural networks. It consists in augmenting training batches with adversarial examples generated during the training procedure. The standard training procedure from Equation (1)

Fig. 1 .

 1 Fig. 1. Left: 2D representation of the ∞ and 2 balls of respective radius and . Middle: a classifier trained with ∞ adversarial perturbations (materialized by the red line) remains vulnerable to 2 attacks. Right: a classifier trained with 2 adversarial perturbations (materialized by the blue line) remains vulnerable to ∞ attacks.

  (a)) are very far away from the 2 ball. Therefore, we hypothesize that a large proportion of the 2 adversarial examples will remain unprotected. To this assumption, we measure the proportion of adversarial examples inside of the 2 ball before and after ∞ adversarial training. The results are presented in Figure 2 (left: without adversarial training, right: with adversarial training).

Fig. 2 .

 2 Fig. 2. Comparison of the number of adversarial examples found by C&W, inside the ∞ ball (lower, blue area), outside the ∞ ball but inside the 2 ball (middle, red area) and outside the 2 ball (upper gray area). is set to 0.3 and varies along the x-axis. Left: without adversarial training, right: with adversarial training. Most adversarial examples have shifted from the ∞ ball to the cap of the 2 ball, but remain at the same 2 distance from the original example.

Table 1 .

 1 Bounds of Theorem 1 on the volume of the intersection of 2 and ∞ balls at equal volume for typical image classification datasets. When d = 2, the bound is 10 -0.009 ≈ 0.98.

	Dataset	Dim. (d)	Vol. of the intersection
	-	2	10 -0.009 (≈ 0.98)
	MNIST	784	10 -144
	CIFAR	3072	10 -578
	ImageNet	150528	10 -28946

Table 2 .

 2 Average norms of PGD-2 and PGD-∞ adversarial examples with and without ∞ adversarial training on CIFAR-10 (d = 3072).

		Attack PGD-2	Attack PGD-∞
		Unprotected AT-∞	Unprotected AT-2
	Average 2 norm	0.830	0.830	1.400	1.640
	Average ∞ norm	0.075	0.200	0.031	0.031

Adversarial training vs. loss maximization attacks

To demonstrate that ∞ adversarial training is not robust against PGD-2 attacks we measure the evolution of 2 norm of adversarial examples generated with PGD-∞ between an unprotected model and a model trained with AT-∞ , i.e., AT where adversarial examples are generated with PGD-∞ 10

Table 3 .

 3 This table shows a comprehensive list of results consisting of the accuracy of several defense mechanisms against 2 and ∞ attacks. This table main objective is to compare the overall performance of 'single' norm defense mechanisms (AT and NI presented in the Section 2.2) against mixed norms defense mechanisms (MAT & RAT mixed defenses presented in Section 4).

		Baseline	AT		MAT	NI	RAT-∞	RAT-2
		-	∞	2	Max Rand	N U	N	U	N U
	Natural	0.94	0.85 0.85	0.80 0.80	0.79 0.87 0.74 0.80	0.79 0.87
	PGD-∞	0.00	0.43 0.37	0.37 0.40	0.23 0.22 0.35 0.40	0.23 0.22
	PGD-2	0.00	0.37 0.52	0.50 0.55	0.34 0.36 0.43 0.39	0.34 0.37

  , column: AT). Building on this, it is natural to examine the efficiency of Mixed Adversarial Training (MAT) against mixed ∞ and 2 attacks. MAT is a variation of AT that uses both ∞ -bounded adversarial examples and 2 -bounded adversarial examples as training examples. As discussed in

with p ∈ {0, • • • , ∞}.

For example, if L is the 0/1 loss, any c > 0 is acceptable.

As it has a more flexible geometry than the Loss Maximization attacks.

Th. 1 can easily be extended to any two balls with different norms. For clarity, we restrict to the case of ∞ and 2 norms.

Due to the projection operator, all PGD attacks saturate the constraint, which makes them all lies in a very small part of the ball.

To do so, we use the same experimental setting as in Section 4 with ∞ and 2 such that the volumes of the two balls are equal.

All experiments in this section are conducted on CIFAR-10, and the experimental setting is fully detailed in Section 4.1.
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