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Abstract

The disassembly is a fundamental basis in converting End-of-Life (EOL) products in-

to useful components. Related research becomes a hot topic in the last decades due

to the increasing awareness of environmental protection and energy conservation.

However, there are many opening questions needed to be investigated, especially

the efficient coordination of different-level decisions is a big challenge under uncer-

tainty. In this paper, a novel integrated stochastic disassembly line balancing and

planning problem is studied to minimize the system cost, where component yield

ratios and component demands are assumed to be uncertain. In this work, available

machines are assumed to have different prices, abilities, and capacities for task pro-

cessing. For the problem, a two-stage non-linear stochastic programming model is

first constructed. Then, it is further transformed into a linear formulation. Based

on problem property analysis, a valid inequality is proposed to reduce the search

space of optimal solutions. Finally, a sample average approximation (SAA) and a

L-shaped algorithm are adopted to solve the problem. Numerical experiments on

randomly generated instances demonstrate that the valid inequality can save around

11% of average computation time, and the L-shaped algorithm can save around 64%

of average computation time compared with the SAA algorithm, without a big sac-

rifice of the solution quality.
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1. Introduction

Nowadays, the development of technology and the ever-changing demand of cus-

tomers sharply increase the creation and consumption ratio of products (Kazancoglu

and Ozturkoglu, 2018). Although this brings a lot of economic benefits, plenty of

End-of-Life (EOL) products are generated as well. As reported by the World Bank,

global annual waste generation is expected to jump to 3.4 billion tonnes over the

next 30 years (World bank report, 2018). Inappropriate management on EOL prod-

ucts may further aggravate environment pollution and irreversible resource waste

(Tian and Zhang, 2019). Therefore, EOL products should be properly managed

by remanufacturing industries to save non-renewable resources, decrease waste, and

reduce pollution (Polotski et al., 2017). As shown in Figure 1, remanufacturing

plays an essential role to recycle EOL products and it consists of a series of oper-

ations. Among them, disassembly is the key process to decompose EOL products

into reusable components for downstream manufacturers (Wu et al., 2016). Howev-

er, Zikopoulos (2017) indicates that there is a lack of mature disassembly systems

and a lot of potential values of EOL products have not been discovered. Conse-

quently, how to appropriately design a disassembly system and to efficiently dispose

EOL products are important research topics in remanufacturing.

Figure 1: The roles of remanufacturing and disassembly.
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Different kinds of disassembly line problems have been studied in the literature,

including disassembly line balancing problems (DLBP), disassembly line planning

problems (DLPP), disassembly line sequencing problems, collection-disassembly line

problems, disassembly-supply chain problems (Lee et al., 2001; Kannan et al, 2017;

Liu et al., 2020b; Özceylan et al., 2014). Among them, the DLBP and DLPP are two

widely studied disassembly line problems. To the best of our knowledge, these two

problems are usually studied separately because they belong to different decision

levels. Yet, considering disassembly line balancing and planning in an integrated

manner may save the overall cost of the disassembly line system. In this paper,

we take the first attempt to research an integrated disassembly line balancing and

planning problem. The characteristics of the considered problem are as follows.

The DLBP, belonging to a tactical level, is to select an optimal disassembly pro-

cess and assign tasks to a set of workstations to form a disassembly line (Gügör and

Gupta, 1999). In the most previous DLBP works, the machine specificity that is

an important part of line balancing has seldom been taken. In this paper, machine

specificities such as price, capacity, and ability are considered. On the other hand,

the DLPP, corresponding to an operational level, appropriately determines the pro-

curement amount of EOL products to be separated to satisfy uncertain component

demand caused by diverse factors, such as market fluctuation (Kim et al., 2007).

Besides, the unpredictable damage of EOL products leading to uncertain component

yield ratio that impacts line efficiency merits to be investigated (Kim et al., 2007;

Tian and Zhang, 2019).

In summary, we study an integrated stochastic disassembly line balancing and

planning problem (ISDLBPP) in this work. The objective is to minimize the system

cost, including the acquisition cost of machines, the configuration cost of worksta-

tions, the procurement cost of EOL products, and the inventory cost of components.

The problem is firstly formulated as a non-linear two-stage stochastic mixed-integer

programming (TSMIP). Based on problem property analysis, the nonlinear model is

transformed into a linear one and a valid inequality is proposed to reduce the search

space of optimal solutions. Then, a sample average approximation (SAA) and a

L-shaped algorithm are proposed to efficiently solve the problem. The contributions

of this study are threefold:

i. An integrated disassembly line balancing and line planning problem is first ad-

dressed, in which component demands and component yield ratios are assumed

to be uncertain.

ii. Machine specificities, such as price, ability, capacity, are considered.
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iii. The studied problem is formulated by a TSMIP model.

iv. Efficient valid inequality and solution methods are proposed based on problem

property analysis.

The rest of this paper is organized as follows. A literature review is presented in

Section 2. In Section 3, the studied ISDLBPP is described in detail and is formulated

by a TSMIP model. The valid inequality and solution methods are proposed in

Section 4. Numerical experiments are conducted and reported in Section 5. Finally,

the management insights from this research, the conclusions to this work, and the

suggestions on future research directions are established.

2. Literature review

In this section, we firstly review the existing literature for the DLBP and DLPP.

Then, we review the previous works on integrated disassembly line problems to

position our research.

2.1. The DLBP and DLPP

Özceylan et al. (2018) indicate in their review article that more than 120 papers

about DLBP have been published before. Although different characteristics of disas-

sembly lines have been considered, the machine specificity is seldom taken, at least

not be well defined. To be specific, the previous DLBP works usually focus on the

assignment of disassembly tasks to workstations from a macro perspective. Howev-

er, in reality, disassembly tasks are processed by machines executed in workstations.

Therefore, it is important to consider the machine specificity and assignment that

may greatly impact disassembly performance. Recently, He et al. (2020) first con-

sider different-technology workstations and their impacts on the system cost and

CO2 emission in a bi-objective stochastic DLBP. The authors assume that a high-

technology workstation with a higher price may generate less contaminant emission

during task processing, compared with the cheaper ones. However, a limitation of

He et al. (2020) is that each machine is supposed to process only one dedicated

task, regardless of a set of tasks. In this paper, we assume that specific machines

can have different prices, abilities, and capacities for task processing.

Compared to the widely studied DLBP, only a small number of articles have

considered DLPP, most of which focus on deterministic cases (Hojato, 2016). To be

specific, Kim et al. (2005; 2006) and Prakash et al. (2012) investigate deterministic

DLPP with machine capacity. Integer programming models are formulated to mini-

mize the total cost, including the disassembly line setup, product procurement, and
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inventory costs. For solving the problems, a series of solution methods including

a Lagrangian relaxation-based heuristic, a two-stage heuristic, and a constraint-

based simulated annealing algorithm are designed. Ji et al. (2016) introduce the

yield ratios of components into a deterministic DLPP. A mixed-integer programming

(MIP) model is constructed and a Lagrangian relaxation-based two-stage heuristic

is devised for the problem. Tian and Zhang (2019) further consider that the yield

ratios of components depend on the procurement price of returned products. A MIP

model and a particle swarm-based dynamic programming algorithm are proposed to

solve the problem. For non-deterministic settings, Kim and Xirouchakis (2010) sup-

pose that component demands are uncertain. A stochastic programming model is

formulated to minimize the sum of the expected value of setup, inventory, and back-

order penalty costs. A Lagrangian relaxation-based heuristic and a fast heuristic are

proposed to solve the problem. Liu and Zhang (2018) consider simultaneously un-

certain component demands and yield ratios. For the problem, a chance-constrained

stochastic programming model is proposed to minimize the setup, procurement, and

inventory costs. A problem-based approximation heuristic is designed to solve the

problem.

For easier comparison, the main differences between the literature and this work

are listed in Table 1.

Table 1: Differences between the literature and this work.

Research Machine specificity Multi-uncertainty Integrated DLBP & DLPP

DLBP × × ×
DLPP × only one ×

This work X X X

Based on the review of DLBP and DLPP literature, we conclude in Table 1 that

(i) machine specificity is seldom considered, and an exception is the workstation di-

versity in He et al. (2020). However, there may exist different types of machines with

different prices, abilities, and capacities for processing a set of tasks. (ii) Uncertain

component demand and component yield ratio are simultaneously considered only

in Liu and Zhang (2018), but appropriately estimating these uncertainties together

may ensure systematic stability. (iii) The two related disassembly line problems

(DLBP and DLPP) have not been optimized in an integrated manner. However,

the efficient coordination of disassembly line balancing and planning decisions can

without a doubt improve system performance.
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2.2. Integrated disassembly line problems

Although some existing works study integrated assembly line balancing and plan-

ning problems (Esmaeilbeigi et al., 2016; Naderi et al., 2019; Özcan, 2019, etc.), the

characteristics of assembly problems cannot be directly used in disassembly ones

(Özceylan et al., 2019). To the best of our knowledge, only the following works

consider integrated disassembly line-related problems.

Özceylan et al. (2014) jointly optimize the strategic and tactical decisions of a

closed-loop supply chain, in which the latter concerns disassembly line balancing in

the reverse chain. The objective is to minimize the overall cost. A nonlinear MIP

formulation is constructed for the problem. Numerical examples are presented and

tested for the proposed model. Liu et al. (2020b) study a collection-disassembly

problem to minimize the system cost and to maximize the service level, with par-

tial distribution information of component demands. For the problem, a distribu-

tionally robust bi-objective formulation is proposed. A SAA-based model and an

approximated MIP model are constructed and solved via the ε-constraint method.

Especially, Ehm (2019) considers a typical disassembly line balancing and a single-

period disassembly line scheduling to minimize the makespan. For the problem, a

MIP model is developed and evaluated by randomly generated instances.

It can be seen from the above literature that although some papers investigate

integrated disassembly line problems, the DLBP and DLPP have not been studied

before. Besides, some specific characteristics mentioned in Section 2.1 have not been

taken into account. Compared with the previous literature, we novelly address an

ISDLBPP integrating a machine-specific DLBP and a multi-cycle stochastic DLPP.

3. Problem statement and formulation

In this section, the considered ISDLBPP is first described in detail, then a two-

stage stochastic programming model is formulated for it.

3.1. Description of the considered ISDLBPP

Given a type of EOL product, the corresponding disassembly scheme set L and

disassembly task set J are revealed. The potential disassembly schemes have the

same function for separating EOL products into components but may contain dif-

ferent tasks. The following Figure 2 shows three disassembly schemes for separating

an EOL hand light (Tang et al., 2002), denoted by L1, L2, and L3, respectively.

In this figure, each rectangle indicates a product status and each circle represents a

disassembly task. For example, disassembly scheme L1 is formed by tasks 1, 3, 6, 7,

9, and 10. Specifically, task 1 can decompose the product (with 7 components) into
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two parts: one consists of components 2, 3, 4, and 5; the other one is of components

1, 6, and 7. Then, task 9 can segregate component 1 from part {1, 6, 7}. Respecting

the task precedence constraint, tasks 3 and 9 cannot be processed before task 1, tasks

6 and 7 should be started after tasks 3, and task 10 follows after task 9.

Figure 2: Three different disassembly schemes with disassembly tasks.

The disassembly tasks can be accomplished by specific machines from a machine

setM, and each machine is able to process a set of tasks. In Figure 3, there are five

available machines for the previously mentioned hand-light instance. For example,

machine 1 can process tasks 1, 3, and 9; machine 2 can only process task 1; machine

3 is available for tasks 3 and 9; machine 4 can accomplish tasks 6 and 7; machine 5

can serve task 10. To formulate a disassembly line based on scheme L1, one option

is to buy machines 1, 4, and 5. While the other option is to acquire machines 2,

3, 4, and 5. Note that machines 1 and 2 (or machines 1 and 3) cannot be selected

simultaneously for a disassembly scheme since they have an overlapping task 1.
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Figure 3: Two machine acquisition options for disassembly scheme L1.

The purchased machines are assigned into workstations, and configuring a work-

station for allocating these machines require a workstation configuration cost. Note

that machine assignment to workstations must respect the cycle time constraint and

task precedence relation. Specifically, the cycle time denotes the maximal total task

processing times among the configured workstations. On the other hand, the follow-

ing Figure 4 illustrates a disassembly line that violates the precedence relation in

scheme L1, i.e., tasks 3 and 9 processed by machine 3 cannot be served after tasks

6 and 7 processed by machine 4. A potential adjustment is to change the positions

of machines 3 and 4. Then, the disassembly line can be feasible for separating EOL

products if the cycle time is respected.

Figure 4: A disassembly line violating the precedence constraint.

Consider a time horizon T , a decomposition planning determines the number

of EOL products to be purchased and decomposed in each period. Suppose that a

physical-complete EOL product contains a set of components, i.e., I. The demand

of each component is uncertain over the horizon and the number of component i

obtained from an EOL product depends on a stochastic yield ratio ri ∈ [0, 1]. For

example, if the EOL product contains 4 units of component 1 whose yield ratio ri

is 0.8, then 4× 0.8 = 3.2 units of component 1 can be obtained from a product.

In summary, the following assumptions should be respected in this work:
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i. Potential disassembly schemes are known for separating a kind of EOL product

into components.

ii. Each disassembly scheme (line) has a dedicated task sequence that has to be

respected, and different schemes may have task overlaps.

iii. The total task processing time in each workstation should be less than the

given cycle time.

iv. The candidate machines can process a set of tasks, and they have different

acquisition prices, abilities, and capacities.

v. A task can only be accomplished by one machine.

vi. The component demand and yield ratio are stochastic and scenario-based.

The considered ISDLBPP consists of (i) selecting a disassembly line for a kind of

EOL product, purchasing appropriate specific machines, and depositing them into

configured workstations; (ii) determining EOL-product decomposition planning to

satisfy component demands over the planning horizon. The objective is to minimize

the overall system cost, including the machine acquisition cost, workstation config-

uration cost, EOL-product procurement cost, and component inventory cost. In the

following, a non-linear TSMIP model is formulated for the studied problem.

3.2. Two-stage stochastic mixed-integer programming formulation

Before presenting the TSMIP model, the related parameters and decision vari-

ables are first introduced as follows.

Parameters:

- l : Index of disassembly schemes, and l ∈ L.

- j : Index of disassembly tasks, and j ∈ J . Note that Jl ∈ J denotes the task

set in the l-th disassembly scheme.

- m,m′ : Indices of machines, and m,m′ ∈M,m 6= m′.

- w : Index of workstations, and w ∈ W .

- i : Index of components, and i ∈ I.

- t : Index of time periods, and t ∈ T .

- ω : Index of scenarios, and ω ∈ Ω.
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- aj,m : Binary parameter, equaling to 1 if task j can be accomplished by machine

m, 0 otherwise, where j ∈ J and m ∈M.

- bm,m′ : Binary parameter, equaling to 1 if machines m and m′ can process the

same task(s), 0 otherwise, where m,m′ ∈M and m 6= m′.

- cm,m′ : Binary parameter, equaling to 1 if the task on machines m and m′

respect the precedence relation, 0 otherwise, where m,m′ ∈M and m 6= m′.

- pm : Total task processing time in machine m, where m ∈M.

- qi : Number of component i obtained from one unit of product, where i ∈ I.

- ri(ω) : yield ratio of component i under scenario ω, where i ∈ I and ω ∈ Ω.

- di,t(ω) : demand of component i in period t under scenario ω, where i ∈ I,

t ∈ T and ω ∈ Ω.

- CT : Cycle time.

- CPm,t : Capacity of machine m in period t, where m ∈M and t ∈ T .

- CI
m : Acquisition cost of machine m, where m ∈M.

- CII : Configuration cost of a workstation.

- CIII : Procurement cost of an EOL product.

- CIV
i : Inventory cost of component i, where i ∈ I.

- G : a sufficiently large number.

First-stage decision variables:

- zl: Binary variable, equaling to 1 if disassembly scheme l is selected for the

disassembly line, 0 otherwise, where l ∈ L.

- xj,m: Binary variable, equaling to 1 if task j is assigned to machine m, 0

otherwise, where j ∈ J and m ∈M.

- ym: Binary variable, equaling to 1 if machine m is purchased for the disassem-

bly line, 0 otherwise, where m ∈M.

- um,w: Binary variable, equaling to 1 if machine m is assigned to workstation

w, 0 otherwise, where m ∈M and w ∈ W .
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- vw: Binary variable, equaling to 1 if workstation w is configured for locating

the acquired machines, 0 otherwise, where w ∈ W .

Second-stage decision variables:

- βt(ω): Real-number variable, representing the amount of disassembled EOL

products in period t, where t ∈ T and ω ∈ Ω.

- γi,t(ω): Real-number variable, indicating the inventory amount of component

i at the end of period t, where i ∈ I, t ∈ T and ω ∈ Ω.

Based on Birge and Louveaux (2011), in two-stage stochastic programming, de-

terministic decisions are taken in the first stage, after which the occurred random

events can affect the outcome of the first-stage decision. To compensate for the po-

tential effects in the first-stage, recourse decisions are made in the second stage for

each scenario. Therefore, two decision stages have interacted relation (Küçükyavuz

and Sen, 2017). For the considered ISDLBPP, the first-stage deterministic decisions

consist of machine acquisition and workstation configuration. And the second-stage

decisions optimize the numbers of purchased EOL products and component inven-

tory in each period for each realization of component demand and yield ratio (i.e.,

scenario ω). The TSMIP model for the considered problem is established as follows.

TSMIP Model [P1]:

min

( ∑
m∈M

CI
m · ym + CII ·

∑
w∈W

vw

)
+ EΩ [Q (ym,ω)] (1)

Subject to: ∑
l∈L

zl = 1 (2)∑
m∈M

xj,m ≤ 1 + G · (1− zl), ∀j ∈ Jl (3)∑
m∈M

xj,m ≥ 1− G · (1− zl), ∀j ∈ Jl (4)

xj,m ≤ aj,m, ∀j ∈ J ,∀m ∈M (5)∑
j∈J

xj,m =
∑
j∈J

aj,m · ym, ∀m ∈M (6)

ym + ym′ ≤ 2− bm,m′ , ∀m,m′ ∈M,m 6= m′ (7)

um,w ≤ ym, ∀m ∈M,∀w ∈ W (8)
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∑
w∈W

um,w ≤ 1 + G · (1− ym), ∀m ∈M (9)∑
w∈W

um,w ≥ 1− G · (1− ym), ∀m ∈M (10)

um,w + um′,w ≤ 1 + cm,m′ , ∀m,m′ ∈M,m 6= m′,∀w ∈ W (11)∑
m∈M

pm · um,w ≤ CT, ∀w ∈ W (12)∑
m∈M

um,w ≤ |M| · vw, ∀w ∈ W (13)

zl, xj,m, ym, um,w, vw ∈ {0, 1}, ∀l ∈ L,∀j ∈ J , ∀m ∈M, w ∈ W (14)

Q (ym,ω) = min
∑

t∈T \0

(
CIII · βt(ω) +

∑
i∈I

CIV
i · γi,t(ω)

)
(15)

γi,0(ω) = 0, ∀i ∈ I, t = 0, ∀ω ∈ Ω (16)

γi,t(ω) = γi,t−1(ω) + ri(ω)qi · βt(ω)− di,t(ω), ∀i ∈ I,∀t ∈ T \ 0, ∀ω ∈ Ω (17)

βt(ω) · ym ≤ CPm,t, ∀t ∈ T ,∀m ∈M, ∀ω ∈ Ω (18)

βt(ω), γi,t(ω) ≥ 0, ∀i ∈ I, ∀t ∈ T , ∀ω ∈ Ω (19)

The objective function (1) consists of two parts: (i) minimizing machine ac-

quisition and workstation configuration costs for line balancing, and (ii) minimizing

product procurement and component inventory costs for line planning, i.e.,Q (ym,ω)

calculated in formula (15), known as the recourse objective. In model P1, constraints

(2) to (14) are related to the first-stage decisions, while constraints (16) to (19) as-

sociate the second-stage decisions. Especially, E[·] in objective function (1) means

the mathematical expectation.

Constraint (2) indicates that only one disassembly scheme can be selected. Con-

straints (3) and (4) guarantee that if a scheme is selected, each task in it can only be

assigned to one machine. Constraints (5) and (6) ensure that each task can only be

assigned to the machine that is acquired and can handle it (task processing ability).

Constraints (7) assure that any two machines with overlap cannot be purchased

together. Constraints (8) to (10) ensure that each machine can only be allocated

in one workstation if it is purchased. Constraints (11) state that any two machines

respecting task precedence relation can be placed in the same workstation. Con-

straints (12) ensure that the total processing time in each workstation must respect

the cycle time. Constraints (13) guarantee that is a workstation is configured, the
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number of machines in it must be smaller than |M|. In constraints (14), the ranges

of decision variables in the first stage are presented.

In terms of the second-stage formulas, constraint (15) defines product purchase

cost and component inventory cost. Constraints (16) regulate the initial inventory.

Constraints (17) assume the flow conservation of each component in each period.

Constraints (18) guarantee that the capacity of each machine in each period should

be respected. Finally, constraints (19) mark variable ranges in the second stage.

The above model P1 is non-linear since two decision variables βt(ω) and ym

multiply in constraints (18). Therefore, it cannot be directly solved by calling com-

mercial optimization solvers, for example, CPLEX. For easier solving model P1, we

linearize it as follows.

3.3. Model linearization

To linearize constraints (18), an auxiliary variable κm,t(ω) = βt(ω) · ym is intro-

duced. It is obvious that if ym = 1, then κm,t(ω) = βt(ω) means that if a machine is

purchased, its capacity has to be respected for each disassembly period; otherwise

ym = 0, and κm,t(ω) = 0 means that if a candidate machine has not been selected,

the disassembly quantity of this machine is zero. Then, constraints (18) can be

linearized by a group of constraints.

κm,t(ω) ≤ βt(ω), ∀m ∈M,∀t ∈ T ,∀ω ∈ Ω (20)

κm,t(ω) ≥ βt(ω)− G · (1− ym), ∀m ∈M,∀t ∈ T ,∀ω ∈ Ω (21)

κm,t(ω) ≤ CPm,t, ∀m ∈M,∀t ∈ T ,∀ω ∈ Ω (22)

κm,t(ω) ≥ 0, ∀m ∈M,∀t ∈ T ,∀ω ∈ Ω (23)

To be specific, if ym = 1, constraints (20) and (21) together guarantee that

κm,t(ω) = βt(ω). Otherwise ym = 0, all constraints are verified. Consequently,

constraints (20) to (23) jointly insure that constraints (18) are established. Now a

linear formulation of model P1 can be constructed.

Linear TSMIP model [P2]:

min

( ∑
m∈M

CI
m · ym + CII

∑
w∈W

vw

)
+ EΩ [Q (ym,ω)]

s.t.: (2)− (17), (19), (20)-(23)

In the following, problem properties are analyzed and solution methods are pro-

posed to efficiently solve linear TSMIP model P2.
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4. Solution methods

In this section, a valid inequality is first proposed to tighten model P2 in Section

3 such that the search space of the optimal solution can be reduced. Then, the SAA

method and the L-shaped method are adopted to solve the studied problem.

4.1. Model improvement

In this part, a valid inequality is proposed with the purpose to pre-determine

the maximum number of purchased machines for a disassembly line.

For the EOL product shown in Figure 5, there are two potential disassembly

schemes (i.e., |L| = 2) for product separation, each of which has a known task

set Jl (l ∈ L). For each disassembly scheme, the available machine combinations

for accomplishing the tasks can be computed. For example, we have two machine

combinations 1a and 1b for disassembly scheme 1; and combinations 2a and 2b

for scheme 2. Among them, it is observed that the number of machines included in

combination 2b is the largest, which can be denoted as the upper bound of purchased

machines for this EOL product. To this respect, a parameter Mupper is introduced

to guarantee that the number of purchased machines is no more than the worst case.

The valid inequality is established in the following formula, denoted as VI.

VI:
∑
m∈M

ym ≤Mupper (24)

Figure 5: The main idea of the valid inequality.
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This VI is redundant for defining the studied problem, but it may enhance the

search efficiency of the optimal solution. Experimental results in Section 5 also prove

its effectiveness. Therefore, the proposed VI is added into model P2, denoted as

model P3 below.

Linear TSMIP model with the VI [P3]:

min

( ∑
m∈M

CI
m · ym + CII

∑
w∈W

vw

)
+ EΩ [Q (ym,ω)]

s.t.: (2)− (17), (19)− (23), (24)

In the following, two widely used scenario-based solution methods, including the

SAA method and the L-shaped method, are applied to solve model P3.

4.2. The SAA method

The SAA method, based on Monte Carlo Sampling (MCS) technique, generates

a random sample (consisting of |S| scenarios) from scenario set Ω and approximates

the objective value by the sample average formulation (Emelogu et al., 2016). With-

out loss of generality, the approximate sample average formulation of model P3 is

proposed as follows, where S ∈ Ω.

Sample average formulation [P4]:

fS = min

( ∑
m∈M

CI
m · ym + CII

∑
w∈W

vw

)
+

1

|S|

|S|∑
s=1

Q (ym, s)

s.t.: (2)− (14), (24)

Q (ym, s) = min
∑
t∈T

(
CIII · βt(s) +

∑
i∈I

CIV
i · γi,t(s)

)
, ∀s ∈ S (25)

γi,0(s) = 0, ∀i ∈ I, t = 0,∀s ∈ S (26)

γi,t(s) = γi,t−1(s) + ri(s) · qi · βt(s)− di,t(s), ∀i ∈ I,∀t ∈ T \ 0, ∀s ∈ S (27)

κm,t(s) ≤ βt(s), ∀m ∈M, ∀t ∈ T , ∀s ∈ S (28)

κm,t(s) ≥ βt(s)− G · (1− ym), ∀m ∈M,∀t ∈ T ,∀s ∈ S (29)

κm,t(s) ≤ CPm,t, ∀m ∈M, ∀t ∈ T , ∀s ∈ S (30)

βt(s), γi,t(s), κm,t(s) ≥ 0, ∀m ∈M,∀i ∈ I,∀t ∈ T ,∀s ∈ S (31)

Exactly solving model P4 can obtain an approximate solution to the original

problem. However, it is hard to guarantee that this solution is good since only one
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sample with |S| scenarios is tested until now. Based on Beltran-Royo (2017), Liu et

al. (2019), etc., the SAA method can test more than one random samples (denoted

as |K| samples) and obtain their sample average objective values, respectively. Then,

computing the mean objective value of all samples can get an approximate solution.

That is, model P4 is solved for |K| times to obtain the objective value for each

sample k, denoted as fkS, and the mean value is calculated via 1
|K|
∑|K|

k=1 fkS.

There may be a tradeoff between the size of |S| and |K|. To be specific, if |S|
is big enough, the one-sample test may be sufficient to get a near-optimal solution;

Otherwise, if |S| is quite small, the |K|-sample test may ensure that more instances

can be tested, which may be more accurate than the one-sample test.

Most existing works simply test |K| random samples with replacement, however,

there is a risk that two samples contain totally the same scenarios. To avoid this,

we regulate that the number of the repeated scenarios between any two samples

should be no more than Ū , such that there are less repetition-tested scenarios. The

framework of the SAA algorithm for model P3 is presented in Algorithm 1.

Algorithm 1: The SAA algorithm for model P3.

Input: Model P4 and related parameters, |K| and |S|.
1 Let k = 1, obtain |S| scenarios from Ω;

2 Solve exactly model P4 to obtain f1
S;

3 while k < |K| do
4 Set k = k + 1;
5 Obtain |S| scenarios for the k-th sample such that the number of the same

scenarios between the k-th sample and any previously tested sample is no
more than Ū . Solve exactly model P4 to obtain fkS;

6 end

7 Compute the average objective value of |K| samples via 1
|K|
∑|K|

k=1 fkS;

Output: The approximate objective value.

Although this algorithm is easy to be implemented to find an approximate ob-

jective value of model P3, its computational efficiency may have a sharp decrease

with the growth of the numbers of samples |K| and scenarios |S|. In the following,

the L-shaped method is adapted to resolve model P3.

4.3. The L-shaped method

The L-shaped method, based on Benders decomposition, is a widely used scenario-

based iterative solution method for two-stage stochastic programming (Birge and

Louveaux, 2011). The main basis of the L-shaped method is to split the original

two-stage stochastic problem into the master problem MP (first-stage problem) and
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the recourse problem RP (second-stage problem). In each iteration of the method,

a MP is exactly solved to obtain the solution that will be used to form a RP. Then,

for each scenario, the optimal solution of the dual problem of the RP is obtained

to generate a new cut that is added to the current MP to form a new MP. In this

way, the MP and RP are iteratively solved until a stop criterion is met.

For the considered ISDLBPP, the first stage is considered as the MP since

the disassembly line selection, machine acquisition and workstation configuration

decisions are tactical decisions for a disassembly line. Among them, the capacities

of the acquired machines determine the upper limits of EOL products that can be

decomposed in each period, so it also indirectly affects the number of products to be

purchased. The second stage is seen as the RP, in which the product procurement

and component inventory decisions are made for each scenario, based on the decisions

in the MP. Then the decisions obtained from the RP compensate for the effects of

uncertainty and urge the MP to adjust its decisions. In the following, we introduce

the formulations of the MP and RP of the considered problem and explain in detail

the iterative procedures of the L-shaped method.

Define n as the iteration index. In the initial iteration (i.e., n = 1), MP(1) can

be formulated as follows.

MP(1): min
∑
m∈M

CI
m · ym + CII

∑
w∈W

vw

s.t.: (2)− (14), (24)

Exactly solving MP(1) can obtain its optimal solution (z1
l , y

1
m, v

1
w, x

1
j,m, u

1
m,w).

Among them, solution vector y1
m will be used to form the initial recourse problem

since machine capacity is directly related to the number of EOL products to be

separated. For each scenario ω ∈ Ω, the initial recourse problem can be formulated

as follows.

RP(1,ω): min
∑
t∈T

(
CIII · βt(ω) +

∑
i∈I

CIV
i · γi,t(ω)

)
s.t.: γi,0(ω) = 0, ∀i ∈ I, t = 0 (32)

γi,t(ω) = γi,t−1(ω) + ri(ω) · qi · βt(ω)− di,t(ω), ∀i ∈ I, ∀t ∈ T \ 0 (33)

κm,t(ω) ≤ βt(ω), ∀m ∈M,∀t ∈ T (34)

κm,t(ω) ≥ βt(ω)− G · (1− y1
m), ∀m ∈M, ∀t ∈ T (35)

κm,t(ω) ≤ CPm,t, ∀m ∈M,∀t ∈ T (36)

βt(ω), γi,t(ω), κm,t(ω) ≥ 0, ∀m ∈M,∀i ∈ I,∀t ∈ T (37)
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Then, optimal commercial softwares, for example CPLEX, can be called to obtain

the optimal solution of the dual problem of RP(1,ω) for each scenario ω ∈ Ω,

denoted as π1
ω. Next, the following MP(2) can be formed by adding a new cut

into MP(1), i.e., constraints (38), where θ2 is a decision variable that is related

to the stop criterion, and E1 and e1 are parameters that can be calculated by

formulas E1 =
∑|Ω|

ω=1 pω(π1
ω)TTω, and e1 =

∑|Ω|
ω=1 pω(π1

ω)Thω, respectively. Note

that vectors Tω and hω represent the coefficients of y1
m and the constant term in

RP(1,ω) under scenario ω.

MP(2): min
∑
m∈M

CI
m · ym + CII

∑
w∈W

vw + θ2

s.t.: (2)− (14), (24)

E1 · ym + θ2 ≥ e1, ∀m ∈M (38)

θ2 ∈ R (39)

Without losing of generality, the generic form MP(n) is established below, in

which constraints (40) represent the set of added cuts after each iteration, and (n−1)

represents the number of cuts.

MP(n): min
∑
m∈M

CI
m · ym + CII

∑
w∈W

vw + θn

s.t.: (2)− (14), (24)

Eb · ym + θn ≥ eb, b = 1, 2, ..., n− 1,∀m ∈M (40)

θn ∈ R (41)

The solution vector yn
m from the optimal solution of MP(n) is used to build the

generic form RP(n,ω) of the considered problem.

RP(n,ω): min
∑
t∈T

(
CIII · βt(ω) +

∑
i∈I

CIV
i · γi,t(ω)

)
s.t.: (32)− (34), (36)− (37)

κm,t(ω) ≥ βt(ω)− G · (1− ynm), ∀m ∈M, ∀t ∈ T (42)

Similar to the procedures for RP(1,ω), we calculate thatEn =
∑|Ω|

ω=1 pω(πn
ω)TTω

and en =
∑|Ω|

ω=1 pω(πn
ω)Thω, where Tω and hω represent the coefficients of yn

m and

the constant term in RP(n,ω). Let on = en −En · yn
m. In fact, θn express the ap-

proximation of the objective of the recourse problem (Laporte and Louveaux, 1993).

Then θn < on means that the obtained objective is smaller than the current one,
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we add a new cut into MP(n) to form MP(n + 1) for further test. Otherwise, the

L-shaped algorithm stops and outputs the approximate solution and objective value.

The framework of the L-shaped algorithm is detailed in Algorithm 2 and Figure 6.

Algorithm 2: The L-shaped algorithm for model P3.

Input: MP(1), related parameters, |Ω| scenarios and probability pω.
1 Initialize n = 1; Set θ1 = −∞;
2 Solve exactly MP(1) and obtain its optimal solution (z1

l , y
1
m, v

1
w, x

1
j,m, u

1
m,w),

and use y1
m to form RP(1,ω);

3 for ω = 1, 2, ..., |Ω| do
4 Obtain the optimal solution of the dual problem of RP(1,ω) as π1

ω;
5 end

6 Calculate E1 =
∑|Ω|

ω=1 pω(π1
ω)TTω and e1 =

∑|Ω|
ω=1 pω(π1

ω)Thω;
7 Let o1 = e1 −E1 · y1

m;
8 while θn < on do
9 Set n = n+ 1;

10 Add a cut En−1 · ym + θn ≥ en−1 into MP(n− 1) to form MP(n);
11 Solve exactly MP(n) to obtain its optimal solution (znl , y

n
m, v

n
w, x

n
j,m, u

n
m,w)

and θn; use ynm to form RP(n,ω);
12 for ω = 1, 2, ..., |Ω| do
13 Obtain the optimal solution of the dual problem of RP(n,ω) as πn

ω;
14 end

15 Calculate En =
∑|Ω|

ω=1 pω(πn
ω)TTω and en =

∑|Ω|
ω=1 pω(πn

ω)Thω;
16 Let on = en −En · yn

m;

17 end
Output: The approximate solution and objective value.
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Figure 6: The framework of the L-shaped algorithm.
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5. Numerical experiment and analysis

In this section, numerical experiments are conducted on 24 randomly generated

instance sets to evaluate the performance of the proposed valid inequality and solu-

tion methods. Each instance set contains 5 equal-size instances, therefore, 120 in-

stances are tested in total. The proposed models and solution approaches are coded

in MATLAB 2018a by calling commercial CPLEX 12.7. Numerical experiments are

conducted on a personal computer with Core i5, 1.8GHz processor, and 8GB RAM

in Windows 10 Operating System. Before presenting the computational results, the

input information and performance indicators are first presented, respectively.

5.1. Instance settings and performance indicators

The following Table 2 collects the input information in this section. The param-

eter generation refers to the previous related works and follows the assumptions of

our problem (please see the column ‘Remarks’ in Table 2).

Table 2: Input information of parameters.

Items Settings Remarks

|J | [10, 20, 30, 40, 50, 60] Bentaha et al. (2015) test up to 37
|I| [5, 10, 15, 20, 25, 30] He et al. (2020) test up to 30
|M| [4, 8, 16, 24, 32, 48, 64] He et al. (2020) test up to 55
CT [100, 200, 300, 400] Respect He et al. (2020)
pj randomly generated in [10, 50] Respect He et al. (2020)
CPm,t randomly generated in [100, 400] Respect assumption iv
qi randomly generated in [1, 5] Respect Tian and Zhang (2019)
ri randomly generated in [0.6, 1] Respect assumption vi
dit randomly generated in [10, 50] Respect assumption vi
CI

m [100, 120, 140, 160, 180, 200] Respect assumption iv
CII, CIII 500, 2 -
CIV

i randomly generated in [1, 3] Respect Kim and Xirouchakis (2010)

The performance indicators we use in this section are presented below:

• Obj: objective value.

• Time(s): computation time in seconds.

• Gapobj: objective value gap (%) between different models or methods.

• ∆(s): computation time deviation between different models or methods.

• Avg.: average value.

21



5.2. Effect of valid inequality

To facilitate operation and inspection, we consider a special case of our problem,

in which there exists only one scenario. This means that the original problem can

be specially transformed into a deterministic problem. To help the readers follow

our idea, the following notations are used to conclude the model transformation.

• [P1]: original non-linear TSMIP model.

• [P2]: transformed linear TSMIP model.

• [P3]: transformed linear TSMIP model with the VI.

• [P2#]: the case that model P2 includes only one scenario (used for the test).

• [P3#]: the case that model P3 includes only one scenario (used for the test).

Without loss of generality, deterministic models P2# and P3# can be established

as follows for verifying the effectiveness of the VI, in which only one scenario of

component yield ratios and demands is considered.

Deterministic model [P2#]:

min
∑
m∈M

CI
m · ym + CII

∑
w∈W

vw + CIII
∑
t∈T

βt +
∑
i∈I

∑
t∈T

CIV
i · γi,t (43)

s.t.: (2)− (14)

γi,0 = 0, ∀i ∈ I, t = 0 (44)

γi,t = γi,t−1 + ri · qi · βt − di,t, ∀i ∈ I,∀t ∈ T \ 0 (45)

κm,t ≤ CPm,t, ∀m ∈M, ∀t ∈ T (46)

κm,t ≤ βt, ∀m ∈M,∀t ∈ T (47)

κm,t ≥ βt − G · (1− ym), ∀m ∈M, ∀t ∈ T (48)

βt, γi,t, κm,t ≥ 0, ∀m ∈M,∀i ∈ I, ∀t ∈ T (49)

Deterministic model [P3#]:

min
∑
m∈M

CI
m · ym + CII

∑
w∈W

vw + CIII
∑
t∈T

βt +
∑
i∈I

∑
t∈T

CIV
i · γi,t

s.t.: (2)− (14), (44)− (49), (24)

One can recall Subsection 3.2 for understanding the meaning of formulas in

models P2# and P3#. In the following, these two deterministic models are optimally

solved and computational results are presented in Table 3.
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Table 3: Comparison between models P2# and P3#

Instance sets
Input information P2# P3#

|J |(|I|) |L| |M| Obj Time(s) Time(s) ∆∗

1

10(5)

2 4 40980 0.74 0.72 -0.02
2 2 8 41290 1.46 1.43 -0.03
3 4 8 14200 1.48 1.42 -0.06
4 4 16 52570 5.95 5.88 -0.07

5

20(10)

2 4 85810 0.92 0.87 -0.05
6 2 8 56450 1.70 1.66 -0.04
7 4 8 75830 1.78 1.70 -0.08
8 4 16 70420 6.62 6.44 -0.18

9

30(15)

4 16 159720 6.95 6.06 -0.77
10 4 24 117720 18.75 15.93 -2.82
11 6 24 193770 20.81 16.73 -4.08
12 6 36 112590 54.92 49.12 -5.80

13

40(20)

4 16 217570 7.09 6.37 -0.72
14 4 24 225720 18.77 16.26 -2.51
15 6 24 112360 18.87 15.57 -3.30
16 6 36 200930 62.55 56.36 -6.19

17

50(25)

6 36 274670 58.12 53.26 -0.486
18 6 48 293160 160.03 137.36 -22.67
19 8 48 337520 158.75 129.72 -29.03
20 8 64 225570 587.70 535.66 -52.04

21

60(30)

6 36 334580 66.23 58.16 -6.07
22 6 48 459210 175.09 152.81 -22.28
23 8 48 306250 194.24 163.79 -30.45
24 8 64 304500 626.74 567.41 -59.33

Avg. - - - 179730 94.0 83.4 -11.2%

* ∆ = Time(P3#) − Time(P2#)

From Table 3, it can be seen in column ‘Obj’ that the two models output the

same objective values for each instance set. However, their computation times have

a big difference. Specifically, the computation time of model P2# changes from 0.74s

to 626.74s and has an average value of 94.01s. While the computation time of model

P3# varies from 0.72s to 567.41s with an average value of 83.4s. The computation

time deviation of the two models in column ‘∆’ demonstrates that model P3#

can reduce averagely 11.2% computation time compared with model P2# for the

tested instances. With this observation, we then draw the average computation

time deviation along with the change of the number of machines (other parameters

unchanged) in Figure 7. We find that the time difference between the two models
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is becoming larger especially when the number of machines is very big (for example

from 36 to 64 in Figure 7). Therefore, it can be concluded that embedding the VI

can reduce the computation time and reduce the search space.

Figure 7: Computation time deviation with the number of machines.

5.3. Comparison of solution methods

In this part, model P3 that integrates the VI is used to compare the performance

of the SAA and L-shaped algorithms. Before conducting numerical experiments, pre-

liminary analysis is conducted to adjust the scenario size and the sample parameters

for the SAA algorithm (please see Appendix A and Appendix B).

5.3.1. Computational results

The computational results of the two algorithms are reported in Table 4. In this

table, the objective values of the SAA algorithm vary from 21480 to 340150 with

an average value of 170537. While the L-shaped algorithm outputs objective values

from 23400 to 335570, whose mean value is 172426. Comparing their objective

value gap in column ‘Gapobj’, we conclude that the two algorithms have a similar

performance in terms of objective values and the average objective value gap between

them is only 1.67%. Especially, in some instance sets (please see the bolded values

in column ‘Gapobj’), the L-shaped algorithm has smaller objective values than those

of the SAA algorithm. The reason may be that the SAA algorithm cannot always

guarantee the tested samples cover enough scenarios in set Ω.

In terms of the computation time, it is observed in Table 4 that the SAA algo-

rithm has an average time of 5038.4s, ranging from 11.2s to 37983.7s. On the other
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hand, the computation time of the L-shaped algorithm varies from 321.3s to 5398.2s,

whose mean value is only 1772.9s. Observing their computation time deviation in

column ‘∆’, we identify that the L-shaped algorithm can save averagely 64.8% of

computation time for the tested instances. Especially, the L-shaped algorithm shows

a big superiority when the number of machines reaches 48 and 64, which saves more

than 5000s and 30000s, respectively (please see the bolded values in column ‘∆’).

In summary, the L-shaped algorithm can save more than 60% of the computation

time compared with the SAA algorithm, without sacrificing the solution quality.

Table 4: Comparison between the SAA and L-shaped algorithms

Sets
Input information SAA L-shaped Comparison

|J |(|I|) |L| |M| Obj Time(s) Obj Time(s) Gap∗obj ∆∗∗

1

10(5)

2 4 51040 11.2 51500 321.3 0.90 309.7
2 2 8 40090 29.8 41340 425.6 3.12 395.8
3 4 8 21480 32.1 23400 419.8 8.94 387.7
4 4 16 55120 146.2 51970 688.9 -5.71 542.7

5

20(10)

2 4 80970 22.1 82370 365.7 1.73 344.5
6 2 8 37860 51.3 40290 523.6 6.42 472.3
7 4 8 79030 52.6 86410 635.1 9.34 582.5
8 4 16 78070 176.8 78810 836.6 0.95 659.8

9

30(15)

4 16 125010 168.5 125890 1011.6 0.70 843.1
10 4 24 109170 503.6 110860 1548.1 1.55 1044.5
11 6 24 175500 511.5 170850 1497.3 -2.65 985.8
12 6 36 103670 2125.6 105500 1870.2 1.77 -255.4

13

40(20)

4 16 215020 162.4 213760 1167.7 -0.59 1005.3
14 4 24 224900 499.4 228180 1498.2 1.46 998.8
15 6 24 163620 509.6 168230 1532.9 2.82 1023.3
16 6 36 202180 1908.7 200790 2037.8 -0.69 129.1

17

50(25)

6 36 267150 2005.6 270410 1823.2 1.22 -182.4
18 6 48 282490 7846.4 295470 2612.5 4.59 -5233.9
19 8 48 300080 7878.1 304350 2598.7 1.42 -5279.4
20 8 64 251210 36890.6 253960 5108.9 1.09 -31781.7

21

60(30)

6 36 290560 2478.3 296610 2250.9 2.08 -227.4
22 6 48 313110 9682.5 317050 3178.8 1.26 -6503.7
23 8 48 340150 9245.1 335570 3198.7 -1.35 -6046.4
24 8 64 285410 37983.7 284650 5398.2 -0.27 -32585.5

average - - - 170537 5038.4 172426 1772.9 1.67% 64.8%

* Gapobj = [Obj(L-shaped) − Obj(SAA)]/Obj(SAA)
** ∆ = Time(L-shaped) − Time(SAA)
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5.3.2. Sensitivity analysis

Firstly, we discuss the impact of product complexity on computational results,

that is, we focus on the number of tasks. To be specific, comparing sets 1-4 with

sets 5-8, sets 9-12, etc., we cannot find a strict relationship between the number of

tasks and the computation time. However, we observe that objective values increase

in general with the growth of the number of tasks, while other parameters remain

unchanged. Drawing the average objective values along with the number of tasks for

the two approaches in Figure 8, we see clearly that (i) the objective values and the

number of tasks have a positive correlation. (ii) The two algorithms have a similar

performance on objective values.

Figure 8: The trend of objective values with the number of tasks.

Secondly, we explore the effect of the available range of equipment on computa-

tional results. For easier illustration, we calculate the average objective values and

average computation time along with the number of machines, respectively. It is ob-

served that the number of machines cannot regularly influence the objective values.

On the contrary, we can see that the computation time increases with the growth

of the number of machines. We draw the computation times of the two algorithms

along with the number of machines in Figure 9. This figure shows obviously that (i)

the computation times of the two algorithms increase with the growth of the number

of machines; (ii) The trend of the computation time of the L-shaped algorithm is

more stable, which varies much less slowly compared with the SAA algorithm.
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Figure 9: The trend of computation time with the number of machines.

5.3.3. Management insights

There are some management insights that we can learn from the proposed prob-

lem and solution methods.

• If disassembly line balancing and planning are not optimized integrally, there

is a potential risk that the decisions made in balancing maybe not feasible in

planning, at least not a perfect match. While the overall optimization in this

paper pre-eliminates this case and may enhance disassembly performance and

reduce system cost.

• The complexity of product structure may have a big influence on the system

cost. This consultation can assist managers to make better decisions.

• The number of available equipment in markets may directly affect the time

required to make a reasonable decision. This is also what managers need to

consider when making decisions.

6. Conclusions and perspectives

In this paper, a novel integrated stochastic disassembly line balancing and plan-

ning problem is investigated, where the demands and yield ratios of components are

uncertain. The objective of this integrated problem is to minimize the system cost.

For the problem, a non-linear two-stage stochastic mixed-integer programming mod-

el is constructed, which is further transformed into a linear one. Based on problem
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property analysis, a valid inequality is proposed and proved to be effective to reduce

the search space of an optimal solution, especially when the problem size is bigger.

Then, the SAA algorithm and L-shaped algorithm are proposed to solve the linear

two-stage stochastic programming. Computational results demonstrate that (i) the

number of disassembly task that relies on the structure of EOL products generally

impacts the objective value; (ii) The number of available machines is considerably

related to the computation time; (iii) The two algorithms have a similar performance

in terms of objective values. However, the L-shaped algorithm can save 64.8% of

computation time on average, compared with the SAA algorithm, especially when

the number of machines is bigger. In the end, several discussions on the benefits of

our problem and solution methods are provided.

Potential future research directions may include: (i) the disassembly of multi-

type EOL products can be considered, the reason is that decomposing similar EOL

products in a common disassembly line may save limited resources and enhance

disassembly efficiency; (ii) Other kinds of disassembly lines can be adopted into

integrated disassembly line problems, for example, the parallel line, U-shape line,

etc.; (iii) Some old disassembly lines may not be suitable anymore for a new EOL

product, and forming a new disassembly line may be quite expensive. Consequently,

a reconfigurable disassembly line with higher-technology equipment can be designed

for decomposing new types of EOL products; (iv) More efficient heuristics are ex-

pected to be developed for solving each sample in the SAA algorithm, and systematic

evaluation criterion is needed to identify the approximation of stochastic methods.
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Appendix A

With respect to Emelogu et al. (2016), we examine six scenario sizes including

|Ω| = 3, 5, 10, 20, 30, 40 based on the instances with 10, 20, 30, 40 tasks, respectively

(referred as tests 1-4). The parameter information respects the instance settings in

Subsection 5.1. The computational results under different scenario sizes are reported

in Table 5 and their corresponding average results are illustrated in Figure 10, where

the numbers on the horizontal axis denote the tested scenario sizes.

It is observed from Table 5 that the obtained objective values under |Ω| =

3, 5, 10, 20, 30, 40 are very close to each other. More precisely, it can be observed in
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Figure 10 that the average objective values under |Ω| = 40 and |Ω| = 20 outperform

those of other cases. As for the average computation time, it is concluded from

Figure 10 that the computation time has an obvious and sharp increase with the

growth of the scenario size. Although the objective value under |Ω| = 40 is the best,

the corresponding computation time is almost three times than that of |Ω| = 20.

Considering that the objective values under |Ω| = 20 is good and the computation

time is smaller than that of |Ω| = 40 (Liu et al., 2020a), therefore, the scenario size

is determined as 20 for the further experiments.

Table 5: Scenario-size adjusting for the proposed algorithms.

SAA under |Ω| = 3 SAA under |Ω| = 5 SAA under |Ω| = 10

Tests Obj Time(s) Obj Time(s) Obj Time(s)

1 51540 1.89 51460 2.84 51820 5.51
2 84870 2.44 90840 3.93 74640 7.89
3 118600 22.63 113200 38.75 114940 88.83
4 198800 27.33 197240 47.24 209560 102.59

Avg. 113453 13.57 113185 23.19 112740 51.20

SAA under |Ω| = 20 SAA under |Ω| = 30 SAA under |Ω| = 40

Tests Obj Time(s) Obj Time(s) Obj Time(s)

1 51260 11.16 49049 16.19 48935 21.94
2 86140 16.75 80518 23.81 79431 32.87
3 113600 228.63 115350 374.48 112980 603.19
4 198790 249.45 209760 415.89 205750 668.83

Avg. 112448 126.49 113669 207.59 111774 331.71

Figure 10: The impact of the scenario size on the objective and computation time.
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Appendix B

After deciding |Ω| = 20, the tradeoff between |K| and |S| should be well defined

for the SAA algorithm, as discussed in Subsection 4.2. In this respect, six different

combinations of |K| and |S| that guarantee |K| · |S| = 20 have been tested, based

on the instances with 10, 20, 30, 40 tasks (denoted as tests 5-8). The computational

results for these instances are collected in Table 6 and the corresponding average

values are presented in Figure 11.

It is observed from Table 6 that the average objective values under different

combinations slightly increase from 112448 to 117750, with the increase of |K| or

decrease of |S|. While the average computation times reduce from 126.49s to 91.81s.

Although the objective value under |K| = 1 and |S| = 20 is better than other ones,

its computation time is the biggest among different combinations. According to

the corresponding average results in Figure 11, we observe that the objective values

under |K| = 4, |S| = 5 and |K| = 5, |S| = 4 outperform other ones, and their

objective values is very close to each other. However, the computation time under

|K| = 5, |S| = 4 is less than that of |K| = 4, |S| = 5. Comprehensively considering

the objective value and computation time, we use |K| = 5, |S| = 4 for the SAA

algorithm because it can efficiently solve the problem with only a small sacrifice of

solution quality.

Table 6: Parameter adjusting for the SAA algorithm.

|K| = 1, |S| = 20, Ū = 0 |K| = 2, |S| = 10, Ū = 5 |K| = 4, |S| = 5, Ū = 3

Tests Obj Time(s) Obj Time(s) Obj Time(s)

5 51260 11.16 53460 11.86 53500 12.07
6 86140 16.75 86590 15.92 86140 16.38
7 113600 228.63 118640 184.92 115500 179.93
8 198790 249.45 206880 220.87 203650 198.68

Avg. 112448 126.49 116392 108.39 114687 101.77

|K| = 5, |S| = 4, Ū = 2 |K| = 10, |S| = 2, Ū = 1 |K| = 20, |S| = 1, Ū = 1

Tests Obj Time(s) Obj Time(s) Obj Time(s)

5 54200 11.56 51380 12.05 53870 11.78
6 86770 15.24 86840 14.27 87650 15.66
7 113920 168.13 114840 171.99 122360 165.12
8 204790 179.49 209180 171.26 207120 174.67

Avg. 114920 93.61 115560 92.39 117750 91.81
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Figure 11: The impact of |K| and |S| on the objective and computation time.

In summary, each generated instance contains 20 scenarios for further comparing

the SAA algorithm and the L-shaped algorithm. Moreover, the SAA algorithm tests

4 scenarios each time and repeats 5 times, i.e., |S| = 4 and |K| = 5. Therefore, it

tests finally 20 scenarios. The upper limit of the task repetition of any two samples

is 2. Differently, the L-shaped algorithm directly tests all the 20 scenarios.
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