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Automated Transliteration of Late Egyptian Using Neural
Networks

An Experiment in “Deep Learning”

Serge Rosmorduc!

Abstract

We apply Deep Learning techniques to the task of automated transliteration of Late Egyptian.
After a brief presentation of the technology used, we examine the result to highlight the capabi-
lities of the system, which is able to deal with a wide range of problems, including grammatical
and phraseological ones. We then proceed to extract signs values from what the system has
automatically learnt.

1 Introduction

This paper presents an automated transliteration system. As there are many transliteration
styles in Egyptology, we will define what the system is expected to do. We aim to reproduce
the kind of transliteration found in most philological works, and exemplified, for instance,
in the grammar of Frangois Neveu (Neveu 1996). Our system will not directly produce an
analysis of the sign values. As we use Machine Learning techniques, the system will be
dependent on its training corpus, extracted from the Ramses Project, and will reproduce
the style of transliteration used there. In particular, the transliteration will be highly
“normalising”. It will outline the grammatical analysis of the sentence, and occasionally
supply word endings or grammatical elements which have fallen from use by the end of
the XXth dynasty, even when they are not written.

For quite some time now, we have been interested in automated machine transliteration
of Egyptian; in 2005 we implemented a proof-of-concept system (Rosmorduc 2008), but

1 Laboratoire cebpric, Conservatoire National des Arts et Métiers, Paris (serge.rosmorducfat]
genherkhopeshef.org).
This work would not have been possible without the Ramses corpus. I especially want to thank for
their fine comments Jean Winand and Stéphane Polis, Mark-Jan Nederhof, along with the anony-
mous reviewers of this paper. The data used to produce this system, alongside a working trained
python implementation of the current transliterator, is available at https://gitlab.cnam.fr/gitlab/
rosmorse/ramses-trl. The data is expected to improve, both because of revisions of the Ramses
corpus itself and of the code we use to extract the transliterated corpus. Those improvements will
also be released as new versions of the corpus, with a different version number. A computer-science
oriented article has been written and will eventually be available through the gitlab site.

pol: https://doi.org/10.37011/lingaeg.28.07
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it required a large number of expert-created rules to be efficient. Those rules were often
conflicting: signs could have multiple values, multiple segmentations were possible...
Solving those conflict on a large scale in a reliable way was extremely difficult.

Thanks to advances in machine learning, we present a new system which can handle
Late Egyptian texts quite efficiently. One of its most interesting features is that it is able
to somehow “explain” its behaviour, by using what is called an attention mechanism. This
article will not only evaluate the system, but also highlight some of the most interesting
linguistic features the machine has learnt.

The approach taken here is to consider transliteration as a kind of rewriting task. An
input text, which is the Manuel de Codage encoding of the original Egyptian document,
is rewritten as an output text, which is the transliteration. There are now many Machine-
Learning tools and algorithms for rewriting tasks. Those tools have originally been devel-
oped for automated translation, a task far more complex than transliteration. Computer
scientists have applied them to a wide variety of problems where the output is a text which
is somehow a rewriting of the original, notably in summarisation tasks (Nallapati et al.
2016) and syntactic analysis (Vinyals ef al. 2015).

Availability of large corpora is an adamant prerequisite for most modern machine
learning algorithm. In this respect, the Ramses corpus (Winand et al. 2015, http://ramses.
ulg.ac.be) is a solid ground on which to build such a system.

After a brief state of the art about automated transliteration, we give a short overview
of neural networks, their use in Natural Language Processing, we present our corpus, and
discuss our results.

2 Previous works

The earliest attempts at automated transliteration date back to the 1990’s, with the thesis of
Sophie Billet (1995; Billet et al. 1994). These early attempts, as well as those from the present
author (Rosmorduc 2008; Barthélemy et al. 2011), were mostly based on hand-written rules,
and tested on relatively small corpora.

Those handcrafted approach suffer from the difficulty to deal with conflicting rules in
a reliable way, for instance to choose between various values for a given sign. Our own
system relied on priorities given on rules and signs values. But the ultimate choice for a
transliteration involves many different levels: sign values, possible sign combinations, the
actual vocabulary, the syntax of the text, its semantics, and even phraseology. Balancing
all of them by a trial-and-error approach can lead to good results on a limited corpus but
is somehow doomed to fail for random texts.

It was thus reasonable to try to use machine learning techniques, which allow a system
to compute its parameters from a corpus. Mark-Jan Nederhof and Fahrurrozi Rahman
(2017) took the first steps in this direction by proposing a transliteration formalism based
on statistical rules. However, his system required a specifically annotated corpus to train.

At that point, we were considering the use of Machine Translation techniques for
transliteration. We had the Ramses corpus to work on, and soon, the publication of very
efficient algorithms decided us to try this approach.
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3 Corpus

The sophisticated algorithms of machine learning would be of little use without data to feed
them. The availability of corpora is of prime importance. In our case, our participation in
the Ramses Project (Winand et al. 2015, http://ramses.ulg.ac.be) of the University of Liége
provided us with what is probably the largest collection of annotated hieroglyphic texts
available on computer today.

The Ramses corpus is an extensive annotated corpus of Late Egyptian, which has
been developed since 2006. It provides, for each text, the hieroglyphic transcription of its
words, and their analysis as inflections of specific lemmas. Containing more than 500 000
words, the corpus is large enough for deep learning methods.

Obviously, as the texts are in Late Egyptian, a system trained on it will be biased
toward this stage of the language and its graphic peculiarities. However, it also contains a
number of monumental texts, including some from the eighteenth dynasty, which cover a
bit of Middle Egyptian language and orthography.

As machine learning needs a large volume of texts, we have chosen to use the whole
Ramses corpus. It includes both the texts which have been made available on the Ramses
Website, and which have been cross-checked and carefully proofread, and the texts which
are yet to be validated. Most of those are of very high quality, but a few errors may occur
here and there. It will lead to interesting cases later, where the automated transliteration
system can actually improve some of the analysis.

The text transliteration has not been recorded in Ramses. Fortunately, each word is
normally annotated with references to a spelling, a lemma, and usually to a specific inflexion
of this lemma. In the database lexicon, “canonical” transliterations are provided for both
spellings, lemmas and inflections. Hence, we can generate an artificial transliteration,
which is the one we use later in the training process. For each word:

— if an inflection is specified, we use its transliteration;
— if'alemma is specified, but no inflection, the lemma’s transliteration is used;
— if only a spelling is specified, the spelling’s transliteration is used.

As a result, our transliteration is highly normalised. A word will be transliterated the way
it “should” be written more than the way it is actually written. For instance, the infinitive
of the verb jrj will be transliterated jrj.¢ even when it is simply written <.

This approach gives bad results in a few cases. For instance, as all occurrences of the
preposition m are grouped together (same lemma, same inflection), spellings like I are
transliterated as m and not jm.

The Ramses corpus also supplies prepositions when they are omitted in the first
present, sequential, or third future. As we specify that those are “editor additions”, they
will not appear in the hieroglyphic transcription of the text, but they will be present in the
transliteration, between ecdotic marks. For instance, _o¥ ... LoD o D RN D Q0—»
S will be transliterated twy (hr) dd n jmn-r™-hr-3hty.
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As the system will be trained to produce transliterations by using the corpus as a sam-
ple, it will learn to supply missing prepositions, thus providing a rough morpho-syntactic
analysis of the texts.

When we create the transliteration corpus, the words are kept in the same order as in the
hieroglyphic text. It means that honorific transpositions are ignored, save in proper names
and the like, where the transliteration is extracted as-is from the lexicon. This shortcoming
is linked to the building of our particular corpus, and not to the machine learning process.

3.1 Corpus organisation

The first problem to solve was to choose #ow the corpus would be prepared for the machine
learning task. We have decided to work on the sentence level, which is large enough to be
useful, and small enough to be tractable on relatively small computers.

When working on Machine learning tasks, the standard approach is to cut the corpus
into three sub-corpora:

— atraining corpus on which the actual learning is done;
— avalidation corpus which we explain below;
— atest corpus, which will be used to evaluate the results.

The system is repeatedly trained on sentences from the training corpus. The difference
between the computed result and the expected output ends up as a numerical error. This
error is used to gradually modify the system’s parameters, improving again and again its
results. However, with this criterium alone, a system which would learn to transliterate
exactly its training corpus, no less, no more, would be considered perfect, while it is in fact
useless. Thus, training algorithms try to avoid “rote learning”.

One way to detect rote learning is to run the system on a different corpus, the validation
corpus. This first evaluation shows how the system performs on texts outside its training
corpus, measuring its capacity to generalize what it has learnt. To improve performances
on the validation corpus, the computer scientist might change the learning algorithm. Its
use to tweak the learning process, however, makes the validation corpus unsuitable to
evaluate how the system would perform on random texts, and, in particular, unsuitable to
compare the performances of two different systems.

The test corpus, in turn, solves this problem. While not used during the training process
at all, the sole purpose of this corpus is to provide a final evaluation, in particular when
comparing different machine learning approaches. It is technically sound to analyse the
results obtained on the validation corpus to modify our training algorithms; but in theory
the machine learning specialist should not even look at the test corpus content.

To build our training, validation, and test corpus, we had to decide how to dispatch our
data. It seemed ill-advised to divide the sentences from a given text between the three corpora,
as ideally, those corpora should be completely separated. The same word, occurring in two
lines of the same text, is likely to have the same orthography and the same transliteration.
This would likely result in over-optimistic evaluation of the learning quality.

Hence, we have assigned each text in the database to exactly one of the sub-corpora. We
have randomly assigned 200 texts to each of the validation and test corpus, and 4403 texts
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to training. The respective sizes have been chosen on relatively arbitrary ground. Besides,
we have kept the same proportion of hieroglyphic texts and hieratic texts in each sub-corpus
(7% of hieroglyphic texts and 93% of hieratic texts, corresponding to the current ratio in the
Ramses corpus). The resulting training corpus is 1426499 sign long. From a statistical point
of view, this approach is still somehow problematic, as it supposes that our texts are a repre-
sentative random sample of the Late Egyptian language, which is not true: the ratio of Deir
el Medina texts, for instance, is very high. For machine learning purpose, we do not have a
good solution to this problem, as the original corpus is still relatively small, and that further-
more, whole areas of the country are completely absent from it. It would be, however, pos-
sible to evaluate our system on sub-corpora, both on geographic and chronological ground.

Each sub-corpus is made of two files: a source file, which contains the hieroglyphic
texts, represented as lists of Gardiner codes (plus a few codes for lacunas), and a target file,
containing the transliterations. The sentences are listed in a random order, one sentence
per line, a line in the source file corresponding to a line in the target file.

For instance, these two lines? from the source test corpus:

N28 D36 D36 V31 S34 N35 Aal G24A Z2
M17 G17 G17 D36 D4 X1 Z7 V31AM17M17 D21 T25D58 Z7Y1 19

corresponds to the transliterations in the target corpus:

xaa_ =k _anx_rxy.t_
imy iry.tw_ky r DbA_ =f_

and to the hieroglyphs:

@;JQJU'Y'M@%I 11
1) N PP |y | 1§ Y

In the corpus, large lacunas for which no content is supplied are indicated with the code
“LACUNA” instead of a Gardiner glyph code; words in lacuna which have been restored
by the encoder are indicated with the code “MISSING”.

We have not kept the Manuel de Codage position codes, such as “*’, > and ‘-’, in the
source file. They can be useful, as word limits fend to occur at quadrant breaks. However,
in the Ramses corpus, each word is encoded separately. As a result, the glyphs positions
at the beginning and end of each word are unsure. Using them in training would lead the
system to systematically consider that word limits are aligned with quadrant limits.

3.2 Evaluation Criteria

To assess the quality of the system, we need to check if transliterations produced by the
system on the test corpus are correct. However, two transliterations of the same text are
very unlikely to come out exactly identical, even when made by two expert human phi-
lologists.

2 The lines in the corpus are shuffled, so those two are taken from different texts (KR/ 5, 15, 7 and
KRI 1, 325, 4 respectively).
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Machine Translation specialist evaluate their system by comparing each translation to
multiple human-written “gold” translations. As the test corpus must be large enough to be
reasonably significant, it requires a considerable amount of work.

As transliteration is somewhat simpler than translation, we have chosen to consider the
transliteration in the test “target” file as the correct, “gold” transliteration. It is a gross ap-
proximation: some correct results will likely differ from the content of the “gold” corpus.
However, the size of the data used in Natural Language Processing is so large that we have
to make some compromises.

It would be overly pessimistic to assess the system quality by counting the number of
identical lines in gold standard and the generated result. Instead, we resort to the system
used in spell checkers: the Levenshtein distance. 1t’s simply the number of characters
which must be modified in the computed transliterations to obtain the gold standard. A
perfect match will give a distance of 0; if the expected result was sw Ar stp, and the com-
puted result was sww hr stp, we would need to remove one of the “w” to get the correct
result, which would give a distance of 1.

To get a coherent result on the corpus, given that the sentences have different lengths,
we divide this distance by the length of the gold sentence, to get an “average number of
edits by characters”. For the previous example, we would then divide the distance by 9,
the length of the expected result (including spaces) and get '/o.

The variant of the distance we use is also somehow rough, as it considers only character
insertion and removal, which means that a character replacement like jst vs. jst will end
up as a distance of two edits.

The final result will be a mean evaluation over the whole corpus, which we hope to
get well below 1.

4 Machine Learning and Neural Networks

Natural language processing, has come a long way since its beginning in the late 50°s. In
particular, the 1990°s have seen a shift from hand-tailored formal system toward increasing
use of data-intensive techniques, based on statistical models. The last ten years have seen
a huge breakthrough with the use of Neural Networks, under the name of Deep Learning.

First used mainly for image processing, modern neural networks, thanks to increased
computing power, much larger corpora, and theoretical improvements, have proved very
efficient for many standard Natural Language Processing tasks, such as lemmatisation,
named entities recognition, and machine translation.

4.1 A short overview of Neural Networks

Neural network are computer programs remotely inspired by the way actual neurons work.
Figure 1, which shows a simple and classical system, will be used to explain their basic
principles.

Let‘s suppose we want to recognise hieroglyphs. We have a picture of a sign, and we
want to know to which Gardiner-code it corresponds.
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(01)m
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Hidden layers \

N

Z1

®
&)

Figure 1 | A simple neural network

The neural network will learn how to do this from a large sample of already-labelled
examples. The input is a numerical representation of the hieroglyph picture, and the output
will represent the Gardiner code of the sign. The input would actually be a long list of
numbers, which would correspond to the pixels in the sign’s image. The output in this case
would typically be another list of numbers as long as the number of Gardiner codes we
would like to discriminate.

For each Gardiner code, the output layer provides a numerical value between 0 and
1, which indicates to what extent the original image depicts the sign associated with the
Gardiner code. For instance, the value of 0.85 in Figure 1 indicates that G17 is a pretty
good match for the picture, whereas the 0.1 value of code Al tends to exclude ¥ In the
final system, we might get intermediate result, which will indicate that the system hesitates
between a number of similar signs.

Between the input and the output, we have the so-called “hidden layers”. They simulate
neural activation by assigning a numeric weight to each connection between two neurons,
which indicate how strong this connection is and how much signal it conveys. The goal of
the training process is actually to learn the best possible weights for the system. The compu-
tation of the output from the input obeys relatively simple mathematical laws. The system’s
complexity and ability to “learn” come largely from the sheer size of the network.

We would then #rain the network by presenting to it thousands of already identified
examples. The weights are originally random values, so the first results are meaningless.
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However, the system will adjust them to minimise the difference between the computed
result and the expected one.

If both the training set and the network are large enough, training for a few hours or a
few days will give a system which achieve good (but usually not perfect) performances.
If properly trained, the system will be able to generalise from its input and will correctly
classify data it has not already seen.

4.2 Encoder/Decoders and Attention

Text rewriting system, such as automated translators, or, in our case, automated translit-
erators, are a bit more complex than the system we have presented above. The main issue
is that their input and their output have varying length.

4.2.1 Encoder and Decoder

The system we have used is called an Encoder/Decoder (Cho et al., 2014).

The encoder builds a numerical representation for each symbol in the input. Each
Gardiner code in the input text will be represented as a list of numbers (usually a few
hundreds). This representation is contextual: the list of numbers associated with a symbol
will be influenced by the values associated with the neighbouring symbols (both before
and after the sign).

The decoder generates the transliteration. We start with a special “begin of translitera-
tion” character (let’s say ‘#’), and then, one character at a time, knowing both the encoded
hieroglyphic input and the already-generated transliteration, it will compute a probability
for each existing transliteration character; we will usually choose the one with the higher
computed probability.

For instance, if the input is } " __, and we have already generated the text “#sw”, the
“space” character, i.e. a separation between words, is most likely to occur next.

Once we have computed the next character, we feed it in turn to the decoder, and thus,
character by character, we compute the “most likely” transliteration®. We stop when we
predict a special character we have chosen as “end of sentence”.

The whole process of generating the result one character at a time might seem very
local. Yet, the system we built handles problems which can require to use information from
the whole sentence to be solved. A number of architectural features in the network allows
this. As the encoder is “bidirectional”, i.e. the representation built at a given sign position
depends on both the previous and the following signs, each encoder output depends on the
whole input sentence. This capability is further improved by the attention mechanism we
are about to discuss.

4.2.2 Attention

When the encoder/decoder computes the best value for the next sign, it needs to use a
simple representation for the whole input. The original version of the encoder/decoder
architecture uses the last encoder value. But it does not perform well on long sentences.

3 It’s not mathematically true but will do in this presentation.
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Figure 2 | Encoder/Decoder

As a result, a new mechanism, called atfention, has been introduced (Bahdanau et al.
2015). When predicting the next sign in the output, it gives a weight, from 0 to 1, to each
sign in the input. This weight captures the relevance of the hieroglyphic sign regarding the
transliteration letter about to be generated. This attention is also learnt; it’s not something
defined beforehand.

In Figure 2, the source text is 1™ . If we have already generated the beginning
of the output, “s,w”, and try to generate the next character, our current system gives an
attention of 0.85 on T, of 0.09 on 1; and 0.06 on the “sentence begin” code (‘# in the
figure). The rest of the signs, (") and =), have negligible attention values. In a way,
the system, which “knows” it has already generated sw, concentrates its attention on
the glyphs at the beginning of the sentence (including the “#” which precisely indicates
their start-of-sentence position). It then decides that sw is probably a word by itself and
proposes a space as the next character.

If we go one set further, the system gives a very heavy weight (0.991) to ™, and
actually propose a “(” as the next most likely output character following the space. In the
end, we correctly generate the transliteration “sw (hr) dd”.

Attention mechanisms have two interesting features: they improve the accuracy of the
transliteration system, and they provide an insight into the inner working of the system,
mitigating the “black box” aspect of neural networks in general.

5 Results

As we have explained above, the corpus is divided into three parts:

— atraining corpus, on which the actual automated learning takes place;

— avalidation corpus, which is used to evaluate if the learning has really improved, or
if the system is doing rote-learning on the training corpus;

— a test corpus which is used to compare the respective performances of different
learning systems.

The quantitative results below have been computed on the test corpus, and we will discuss
qualitative results from the validation corpus. We made a number of experiments, using
various systems and architectures, including OpenNMT and Tensor2Tensor. The best re-
sult corresponded with our own implementation of encoder/decoder with general global
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attention, following Luong et al. (2015). We used Python 3 and the Keras framework.
The hidden layers are 500 neurons wide; the network has 8,693,256 weights and uses 101
megabytes of memory. A detailed description of our system will be given in a technical
article.

5.1 Quantitative Results

The test corpus is 2728 sentences long. The results for our best output on the test corpus give
us an average edit distance of 0.094. It means that if we make an automated transliteration
of a Late Egyptian text, we should expect to edit approximatively one letter out of ten.

The system has found the gold transliteration (0 error) for 1246 sentences — a little less
than half of all sentences. A more in-depth study of the error distribution shows that the
system performs better on the average for sentences whose transliteration is between 25
and 60 character long and degrades slightly with shorter or longer sentences.

If we take into account the various writing systems, the average Levenshtein distance
is 0.092 on hieratic texts and 0.111 on hieroglyphic texts. This was expected, as hieratic
has more redundancies the system can use, and the current corpus is richer in terms of
hieratic texts.

5.2 Qualitative Results

To stay in line with our principles, the qualitative results are extracted from the validation
corpus.

The longest sentence which was transliterated with 100% accuracy (that is, in complete
agreement with the transliteration built from the corpus analysis) is the following (P. BM
10685, v° 2,1):

TN HEMIN SR E et s e B L L N B R
CCEIISCEY ) 15 el ) Nl N §015:5.1 jmi SoR 5 e S MR

With the transliteration:

hry s3ww sS.w jmn-htp n Snw.wt pr-3 Cw.s n s§ p3-n-t3-wr.t n 3 hw.t nswt bjty wsr-m3<.t-
rC-stp.n-rC w.s m pr jmn m w.s m hs.t jmn-r< nswt ntr-w.

Many small differences between the generated text and the “gold” corpus are linked with
different conventions in word endings.

For instance, *Z* )& = =002 J§:2 (0. DeM. 852, ro, 1,1) has the “gold”
transliteration rdj.t dj.w n 3bd 3 Smw rdy.t bnr.w, while the system produces: rdj.t djw n 3bd
3 Smw rdy.t bnr. A look at the lexicon for the Ramses database shows that both singular
and plural spellings for djw and bnr.w have been recorded with a Z2 111 ending - which is
not unexpected in Late Egyptian.

There are a few blatant errors, as: T, w5 ({== £a{{z= (O. Turin N 57001, r° 2), Gold:

n3 nty jb th; Computed: n3 nty jw.t (sic).



Automated Transliteration of Late Egyptian Using Neural Networks 243

We have explained above that a large part of the corpus used for this experiment used
texts from the Ramses database which have not been fully proofread yet. In quite a few
cases, differences between the “Gold” and the “Computed” texts points toward an error in
the initial analysis, or to a problem in the text itself.

In the case of o=, = TH RN T® @0 s (0. DeM 571, 1° 5) “Gold” is jw=w hr &
p3 hm-ntr tpy LACUNA, whereas the computed version restores a missing n: jw=w hr
(n) p3 hm-ntr tpy LACUNA.

In the transliteration of P. BM 10335, the system corrects the current analysis, and
renders _o_o nene ¥ P o @S twiw jw 1=j mtr.t instead of the erroneous “gold” twiw
(hr) jy.t r=j mtr.t’.

In most case, the sentences for which the computed sentences differ a lot from the

original one contain a lot of lacunas. Their content is often restored from the surrounding
texts in the gold transliteration, but this context is not available for the current system,
which works on a sentence basis. A simple example is {§\ %, (P. BM. 10190, 4), Gold:
Jjmy [snb=f], Computed: jmy [‘nh=k]. Here the process is simple: the sequence of wishes
usual in a Late Ramesside Letters entails that the lacuna must be filled with snb=t, whereas
the system, which does not know the context at all, proposes a sequel for jmy, which
accidentally almost hits the nail.

To see what kind of errors the system can make, and what it does well, we can have a
look at one of the “worst” lines in absolute number of edits (KR/ 4, 434,3):

NN T e TSN EREAN Do B AR 2 SIS
DR LD TR Zoozm B e BT B I TR R SN2 5

«NNNNNN v

The “gold transliteration” is here

s3-w3dyt nht-sw hy-nfr jmn-m-jn.t bw-kn.tw.f wiw-rn-f h-m-adw3w nb-nfr 3ny kh h-m-
nwn jmn-m-hb jpy h3m smn-3.wy gs wr 60 LACUNA

whereas the computed result is:

$3-w3dyt nht-sw hy-nfi jmn-m-jn.t kn.tw.fw3 rn=f h-sb3-nb-nfi 3ny kh h*-m-nwn jmn-m-
hb jpwy h3m smn-83.wy-m-w3st 60 LACUNA

This case is complex, because the document is a list, written with very abbreviated forms.
In some cases, our rendering is better than the “Gold” transliteration, for instance for jpwy.
In the case of the name kn.tw.f'vs. bw-kn.tw.f, the system stays closer to the actual spelling.
The name =, ,, is also probably more s%(m)-sb3 than h%-m-dw3: the Deir-el-Medine
database prefers the former, and a quick search in the whole Ramses corpus (in which
both transliterations have been used) reveals that the name never takes a determinative like
@, which would be expected for the word dws3w, morning. The system is obviously wrong
in other cases: it links 4-sb3 to nb-nfr as a single name, and makes two words of w3 rn=f.

4 Of course, both versions, including currently the “gold” one, lack an “m” in front of m#r.z.
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The signs __fj at the end of the text, hint to a number of problems in the current data.
First, those signs are actually left unanalysed in the Ramses corpus. No lemma is attached
to them: the transliteration gs wr is in fact an artefact of the system we used to produce
the corpus for this study, and not the responsibility of the encoder (KRITA suggests m j3w
here).

Forthis text, the way we have prepared the corpus discards some interesting information,
in particular about text layout and line endings on the manuscript. In the particular case
of lists, which are often tabulated, this information is quite relevant. The line break before
—I} entails that those signs do not belong to the proper name |22} — in the previous line.

One can also remark that the system can deal with the so-called “group-writings”
reasonably well (see the spelling of the proper name k#, for instance). Each group is
assigned a consonantal value, and, in the cases where determinatives occur at the end of
the group they are not confused with word-endings. As the computed results imitates its
training corpus, it does not attempt to restore any vowel.

5.3 Subject-Verb Agreement

The system “learns” at a global level. It takes a sentence in hieroglyphs and produces a
transliteration. In this process, information is spread over the numerical values computed
by the network. It encompasses both sign-level information and more global sentence-
level knowledge.

The tools used by linguists, as paradigmatic replacement, allow to explore what the
system knows — and what it has been able to generalise.

One very interesting point is that the network is able to “learn” some grammatical fea-
tures, or, to be more precise, that somehow its internal representation captures a number of
features we interpret as grammatical. To demonstrate this, we have tested the system with
sentences where parts of the grammatical morphemes are missing from the hieroglyphic
input.

We get the following results:

+5 2B TE Ll sw hms hr ns.tji<=f> jmn
o8 BT Bl N5} wj hms.kowj hr ns.t ji=j jmn
S YR80 ) ewk hms.tw hr ns.t ji=k jmn

[JP= I POy

The system has correctly supplied old perfective inflection for the verb smsj, which shows
that it has some representation of expected verb forms (a first present would also have
been possible), and of subject-verb agreement. The missing inflections are not written
between parentheses as we might expect, as “twj hms(.kwy)”, for instance, because in the
current training corpus parentheses are only used to bracket whole words. Missing parts
of word are silently restored.

Attention values for the first-person sentence (twj hms.kwj) are displayed in Figure 3.
The interesting point there is that, when emitting the old perfective inflection “.kwj,” the
system attention is focused on the group X1-G43-A42, that is _$4j. The focus is even
particularly strong on the sign A42.
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G43 | E
ad2| . f
N41 E
034 4
A3} E
D2} E
Z1} B
W11 E
X1 B
Ol¢f E
X1} B
19} B
Ad2 E
M17 B
Y5} E
N35 | B
A40 E

(darker means stronger attention)

Figure 3 | Attention for omitted inflections

Now, all the old perfective forms above are documented in the corpus for the verb
hmsj. But it we wanted to know if it worked for some forms unknown in the training
corpus, which would mean that the system is able of some kind of generalisation. For
instance, we have tried “_S @ISR KERNIHZ ... ¥ 7. The resulting transliteration
is “twj nfr.kwj m p3 j.jr n=j nb”, and the attention structure, likewise, focuses on the first
present preformant.

One caveat, however. Neural networks are not learning “rules”. If one considers the
analogy between them and biological cortex, the closest analogy might be the first layers
of neurons dedicated to vision. In reality, they simply compute a bunch of numbers, and
optimise their weight to minimize a computed loss, but we might metaphorically think of
them as modelling a kind of “instinctive” language processing. No formal reasoning is
used to choose between the various possibilities.

It means that sometimes, very close examples might give very different results. For
instance, the first version of the network we had built for this article processed correctly
examples built on the verb 49, “to appear”. With our latest network, whose results are
overall better, the old perfective inflection was not restored for the 45 in the second
person, and, for the first person, it was only restored when the first present preformant fwj

was spelt as _ Sy and _$Al, but not _ S {).

5.4 Deciding between old perfective and infinitive

The system also captures information about specific verbs, and their possible environments.
For instance, _$__ 45\ £h— IS will give twk (hr) wam db.w, supplying the preposition
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hr. This time, the system, instead of choosing an old perfective as in the previous examples,
correctly supplies an expletive (hr). between parenthesis.

In this case, the attention information is also interesting. The attention, when producing
the (hr), is focussed on the whole segment _ S __ %\ £, and in particular on the verb wnm
itself. It might suggest that the system is taking into account both the verb, its subject, and
the beginning of the object.

5.5 Text completion and phraseology

As, in the input corpus, some of the text are damaged, the system has some limited facilities
for completing missing words or signs.

One of the most interesting examples we have found in the corpus is the following:
lor™ e T=RIK A AL= (KRI TV, 266, 5). The “MISSING” codes are used
when a word in the corpus is not associated with a spelling’. The generated transliteration
is “jw=tn hr dd n pr 3 “w.s. p3y=tn $rj nfr m mn.t”. The result is not correct, but is
relatively reasonable, linguistically and philologically speaking. Our system has supplied
a word for each MISSING element and provided a coherent grammatical sentence. We can
guess that it has extrapolated /r dd n because of the epistolary formula found, for instance

in O. DeM 327, 3: r-ntt twj hr dd n jmn m-mn.t “I say to Amun daily.”

5.6 Proper name

In the corpus, long proper names are hyphenated. It allows the reader to distinguish them
from normal sentences. The system learns to spot phrases which “look like” a proper name,
and usually deals with them correctly. We wondered whether the names were somehow
remembered, or if the system had developed a representation which would allow it to deal
with new names.

To test this, we have tried it with an imaginary, but plausible name, which we inserted
in a sentence: ¥ _ HH{F__ @ WNS B o IO B .

It is “correctly” transliterated as dd=j n s$ kdw.t hr-m-pr-3s.t. The proper name is
completely made up, so it could not be learnt through the corpus.

The attention value when producing the first letter of the proper name is focussed both
on the G5 Horus sign, and on the final determinative of the preceding title, s§ kdw.z. This
prompted us to check what would happen when removing the title. In this case, the system
does not analyse sim-m-pr-3s.t as a proper name, and opts for independent words:

* O N SR IO dd=jn hrm pr isi

Thus, the choice to render a sequence of signs as a proper name is triggered both by its
internal organisation, but also by the co(n)text.

One of the various networks we built had a very interesting bias (but we might be
over-interpreting it): when faced with an unknown — but obviously — royal name, it would
generate “wsr-m3.t-r””. This shows that the system weights both cotextual information,

5 This decree from Sethy II is not really damaged there; the missing spelling is an encoding error.
The correct transliteration is jw=tn (r) dd n=w ssnb pr-3 “w.s p3y=tn $rj nfr.
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including what it has already generated, and local information. In this case, if the string of
signs did not make a sense out of it, it would take the information from what was mostly
expected after a nsw.t-bjty group.

5.7 Grammar, phraseology, context, and neural networks

As a partial conclusion, our system capabilities sometime suggest it has learnt something
about text grammar. This leads to a number of questions. The first one is to decide what
is the limit between grammar and phraseology. A much more thorough analysis would be
needed, for instance, to determine if our system chooses to supply a “hr7” before a verb
Y because the context indicates that Y must be an active form (for instance, because it is
followed by a direct object), or simply because the corpus contains more occurrences of
“(hr) Y» than of old perfective Y.

This being said, studies on the capabilities of neural network indicate that they can at
least approximate some grammatical features. In particular Linzen (2016) has shown that
a network could be taught to compute subject-object agreement in English, even when
various substantives occurred between the subject and the object, which means the system
was not simply taking the noun nearest to the verb as the subject.

6 Uses on Middle Egyptian

We have tested our system on the text of the Shipwrecked Sailor, with a mean error of
0.175. It is way larger than the one we got for Late Egyptian, but still reasonable. As It is
possible to re-train an already trained network on different data, using a technique called
transfer learning, using our current system as a starting point for training on Middle Egyp-
tian corpora might be a valid approach.

If we dig deeper into our results, the bad score is caused by a few sentences with a very
high error rate, whereas lots of other sentences are very well rendered.

For instance, 1. 21-24 has 16 errors for an “gold transliteration” length of 62 (that is,
0.25 mean error):

2 TN A T g

“gold” transliteration: sdd=j rf n=k mjtt jry hprw m-=j ds=j Sm.kwj r bj3 n jty

computed transliteration: sdd=j r=f n=k mjt.t jry hpr m-dj=j (ds=j is missing) sm.kwj

r bhm n sbk

Among those differences, m-dj instead of m-© is expected, as both the Late Egyptian m-dj
and the Middle Egyptian m- have the same hieroglyphic spelling. Other differences are
caused by encoding habits (mjtt vs. mjt.f), by gaps in the training corpus (sbk vs. jty)or are
plain failure (the missing rendering of ds=j).

The system performs much better on the next sentence of the text, which is almost as
long:
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MRZPE o M= RN a & SR SRR B ol

“gold” transliteration: 3.kwj r wid-wr m dp.t n.t mh 120 m 3w=s mh 40 m wsh=s
computed transliteration: #3b.kwj r w3d-wr m dp.t n.t mh 100 20 m 3w=s mh 40 m
sh.wt=s

Here, the main problem is the spurious “b” in the initial verb, which is not due to a lack of
similar examples in the corpus, as the love song from O. DeM 1266 and O CG 25218,112
contains “h3.kwj r mw” as a protasis.

Systematic errors, based on the grammatical differences between Middle and Late
Egyptian, occur as expected: the system often understands sdm n=f instead of sdm.n=f,
for instance. It has also difficulties with old perfective after %%n as in 1. 109. It tends to
interpret them as perfective sdm=f.

g | ' SRR T [Ny ) |
“gold” transliteration: % .n jn.kwj r jw pn jn wiw n wid-wr
Computed transliteration: “h%.n juj=k wj r jw pn_jn wiw n w3d-wr

Or 1. 129:

éi:‘éﬂjk*@‘?’mkm
“gold” transliteration: “h%n sb3 h3.w
computed transliteration: “h.n sb3 (hr) h3j.t

In this last case, the system has favoured the Late Egyptian narrative pattern over the
Middle Egyptian one.

Finally, 1. 36, contains one of the most tantalising examples the system has provided
us with: “{__ 77870, 2" is rendered m ht hw.t n=j sy. It gives the impression that the
system somehow “translates” Middle Egyptian into Late Egyptian. However, it is but an
artefact of the way our corpus is built. The cleft-sentence markers jn and m are recorded
under the same lemma in Ramses. As a consequence, when we have built the training
corpus, all cleft-sentence initial jn were transliterated as m. It remains that the system has
correctly identified the initial jn as a cleft sentence marker. To check this, we have tried
to see if it would differentiate this jn from the homonymic question marker by testing the
sentence “*( ° @7, which is correctly rendered as jn jnk ss. It demonstrates that
the system is able to differentiate two kinds of sentence-initial {,, depending on the fol-
lowing context.

7 Learning Sign Values?

The attention values open an interesting window on the inner parts of the system. It was
tempting to try to use them systematically. Thus, we decided to try to extract some kind of
“sign values” from the attention system. We ran the system on the training corpus (because
of its sheer size) and analysed each attention matrix. For each sentence, we extracted the
following pieces of information:
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A. for each transliteration letter, which single hieroglyph reccind the most attention?
B. for each transliteration letter, which hieroglyphs, taken together, explain up to 99 %
of the attention ?

To be more precise, for each transliteration letter, each hieroglyph in the input has an
attention value, and the sum of the attentions is one. We pick the hieroglyphic sign with
the largest attention value. This will be used in column A. Then, we pick the second largest
attention value, and we continue until we have reached a total attention of 0.99. This is the
basis of column B.

Note that in case A, we will ascribe each transliteration letter to a single hieroglyph.
Also note that a hieroglyph may not be listed at all, if no attention is focussed on it.

The final result goes from hieroglyphs to transliteration. For each hieroglyphic sign in
the input, we collect all transliteration letters for which this sign is in group A, and each
transliteration letter for which the sign is in group B.

What we really compute is not strictly the sign value as a human reader learns it. A
hieroglyphic sign will be associated with a transliteration letter when it is instrumental in
the decision of choosing this specific transliteration letter. To be clearer, in some cases,
the mere appearance of a ™ in a hieroglyphic text suffices to decide that we need to
transliterate dd, without even looking at the following d; in this case, the whole attention
for both letters of dd might be focussed on the single glyph ™. Hence, the notion of
“value” used here is a bit far-fetched and different from the intuitive idea.

Let us consider the small text fragment: _ %\ J2<5,... YN “B bw.tn p3 nt”.

a /X

Table 1 describes the values we have extracted for each sign occurrence.

o
N . N A ¥ xR 1 &
A 3 SEP bw . t SEP nSEP p3 SEP mr SEP

~
v

B w .,SEP ¢tSEP n SEP
SEP indicates word-breaks

Table 1 | Signs values from attention

In the case of ideograms, this approach often gives their actual phonetic value. For
instance, | is correctly identified as n#: In general, this algorithm tends to segment the
text in small groups whose signs are interpreted together, and to attach a transliteration
to the first hieroglyph of the group. It works well for \¢ and p3, but tends to fail for
uniliteral signs. Thus, bw in bw.t is mainly linked to ], the w sign having only a secondary
importance in the process.

Determinative and a number of uniliteral signs are also correctly identified as word
endings (A, + and k).

Appendix A lists the more common values for a number of signs. For a large number
of signs, they can occur at the beginning or at the end of words, hence the large number of
occurrences of SEP in the sign values.
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For uniliteral signs, which often occur as “phonetic complements”, their “real” value is
generally found in list B. This list is built on the basis of the signs which are needed
to explain up to 99% of attention, and not on the signs which receive the maximum of
attention. As such, it‘s most appropriate for phonetic complements. For signs like {
(M17), as the attention seems to concentrate on group beginnings, it captures in list A a
number of groups which start with “5”: jw, jm. The same is true for J or ;.

For a few signs, what we think of as their “standard” value is simply not listed in our
top five values. For instance, . is correctly listed as “=f” when it occurs as a pronoun, but
not as “/” when it occurs in the middle of words.

The system understanding of biliteral signs is more reliable. For most of them, their
usual value occurs early in list A: for instance, the first values for £\ and | are respectively
w3 and $w. For a sign like 2, the first values are p3 and wsf.

Other kinds of signs are usually relatively well recognised. ¥ and similar signs are
understood either as first-person suffix, or as word limits (SEP), which is the expected
value for determinatives. Likewise, £ gains most of its attention at SEP word endings.

The sign \ is understood as a word ending SEP, or as a writing of consonants w, ¢ or s.

The dichotomy between A and » is quite interesting. In the database, it seems that the
first is mainly a word ending (hence a determinative), and that the second, which is far less
frequently encoded, mostly encodes either jw or nm.z.

8 Limits of the system

The system has a number of shortcomings. Some come from the corpus organisation, and
others from the deep learning system.

The first limitation is the sentence-based organisation of the corpus. Trained on whole
sentences, the system will try to make a sentence with any text. For instance, | £) will be
transliterated as j.3b, considering the one-word sentence as an imperative. Now, this pre-
cise choice is quite reasonable, but will complicate some possible usages, like dictionary
searches. Above all, the system will have difficulties when the text has not been segmented
in sentences. Fortunately for us, human encoders are not always coherent in segmenting
their texts, which means that the corpus contains sentences which are actually sequences
of relatively independent propositions. The problem is also slightly mitigated by the pres-
ence in the corpus of damaged texts and of various kinds of lists.

More fundamentally, the encoder/decoder technology still builds a kind of fixed length
representation of its whole input text: the data that the encoder sends in the decoder. As a
result, the system memory can become relatively deficient on long sentences, especially if
the said sentence has a relatively uniform structure. In the following extract from the poem
of Qadesh, the decoder finds itself unable to keep track of the exact position in the input
text and skips a whole passage.
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TR E SRS R (E
TERNK=ET XSS
TRENBR BN Y

“%%k?&?ﬁ%% s NFik

gt —1|

\: 1 U"%wﬂ 1 ru_unm .:.lu_un

TR Lm0
The resulting transliteration is: (§ 1)

h3t-Cm p3 nhtw n nswt bjty wsr-m3.t-r< stp.n-r< s3 < r-ms-sw-mry-jmn dd ‘nh d.t (§ 2)
Jjra=fm p3 B n ht3 nhrn p3 3 n jre (§3) m pds (the system skips m p3 drdny (T 4) m p3 3
nms) mp3 B n krks hn® vk (§ 5) m krkms kdy 3 n kds (§ 6) m p3 8 n jkrt msnt

In other cases, some rather simple segmentation can be missed (KR/ 1V, 14,34) | £ {
(&880, is transliterated j.dj hry.t n nhh m jbws, whereas the explicit addition of

(9.8
[ 1) [a— ]

a genitive “n” enforces a better result: } 2 {{&{01 5. S508 ), /.4 hry.t n nhh m jbn
msws. On the original text, not only did the system come up with a wrong segmentation,
but it also completely neglected the groups which a rule-based system or a human
reader is unlikely to miss.

In this precise case, the system performs better if we provide it with an indirect geni-
tive instead of a direct one. However, even if indirect genitives are more usual in Late
Egyptian, the direct construction is largely predominant in the case of jb. The error made
by the system cannot be blamed on the corpus content.

The most glaring problem is that the system can fail where a simple rule-based soft-
ware would perform well. Its training enables it to use high level information, like mor-
phology, syntax, and somehow phraseology, to transliterate a sentence. But on the other
side, its understanding of the value of individual sign is limited. This behaviour is some-
how useful for Late Egyptian, as it allows the system to ignore extraneous aleph, weak
consonants, or space fillers. On the other side, it has a bothering habit of neglecting or
misinterpreting some uniliteral signs. For instance, if the text to analyse is the single group
5, it transliterates it as “LACUNA?” (sic). On the other hand, B ghis correctly rendered
as j.gr: by interpreting the word as an imperative, the system makes a full sentence out of
it and gives a reasonable transliteration.

Another type of errors a rule-based system would not make is the generation of
apparently out-of-place parts of sentences. Transliterating the name o = &[7.%, the
system produces mry-r< h-hpr-re-snb, the initial ebeing rendered twice.

a_ﬂkﬂ

9 Corpus size sensitivity

Most of the time spent in digital humanities, especially when applying machine learning
algorithms, is devoted to the corpus preparation. Finding its minimal size is thus a
reasonable concern.
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Figure 4 | Error score versus corpus size

We have trained the system on reduced corpora to evaluate the impact of corpus size,
from 62 sentences (approximatively 1,300 signs) to 66000 (approximatively 1,400,000
signs). Figure 4 shows the corresponding average levenshtein distance scores. It seems
that reasonably good results can be expected for a corpus of 16000 to 20000 sentences, or
340,000 to 400,000 signs, preferably from various types of texts. To give an idea of the
minimal corpus size, it’s 25 times as large as Horus and Seth, our longest literary text, and
17 times as large as P. BM. 10052, the largest text in Ramses.

10 Possible Extensions

10.1 Improvements of the current system

Extensions of and improvements to this system will come from two sources. First, from
better algorithms: each year since 2014 has seen a small revolution in deep learning. Our
current system is based on Luong (2015), which has since been outperformed by the trans-
former (Vaswani et al. 2017) and BERT (Devlin et al. 2019).

The other improvement will come from the data itself. The original corpus has lots of
information we have not used. First, to overcome the “sentence boundaries” problem, we
intend to produce a new corpus which will be made from arbitrary samples of texts, some
spanning more than one sentences, some starting in the middle of a sentence, etc. The idea
would be to enable the system to start at any arbitrary point in a text, and even segment the
texts into sentences if needed.

A second improvement would be to intentionally introduce lacunas in the texts. This
is a well-known technique in machine learning to improve the generalisation capabilities



Automated Transliteration of Late Egyptian Using Neural Networks 253

of a system and to prepare it for “noisy” input. If we feed the system with a few more
sentences with lacunary input, but full transliteration, we might expect it to improve its
capacities at restoring part of a missing text. The exact amount of lacunary input which
will give reasonable results is an open question.

Finally, it would be interesting to try to mix the current, black box, approach, with a
rule-based system; in Machine learning, combining different systems, which make differ-
ent errors, is a rather usual approach; however, in the present case (and in Natural Lan-
guage Processing in general), there is no obvious way to do so.

10.2 Extension to other corpora

The present system is also a proof-of-concept. It proves that automated transliteration is
possible and gives an estimation of the size of the corpus one needs to get reasonable results.
The limitations linked with the use of the Ramses corpus regarding word boundaries or
honorific transpositions could be lifted with a plain transliterated corpus.

For extending the present work to Middle Egyptian, a technique known as transfer
learning (Goodfellow et al 2016) could possibly be used to limit the size of the necessary
corpus, by reusing part of the current network. For Ptolemaic texts, more work would be
needed, but the general principles used here would apply. We would be happy to work
with colleagues who have those corpora in electronic form.

10.3 Extension to other tasks

The current system is very much a black box, even if the attention system allows one to get
a partial understanding of how the final transliteration is produced. A number of early rea-
ders of this article have expressed their wish to get better information on each glyph value.
Given a large enough annotated corpus, this would be a relatively easy task — annotating
symbols in a sequence is a well-known application of neural networks. Learning it from
our current corpus is much more complex and left for further explorations.

As the current system “learns” some grammar to an extent, it is also tempting to try to
train it to tag individual words with their part of speech and inflections. Part of speech tag-
ging is a classical application of Natural Language Processing, but it is usually performed
with whole words as entries. Here, however, the entry would be a list of signs. Such
systems automatically deal with orthographical variation, as they don’t rely on a lexicon.
They are not that widely used on modern languages, which have a relatively rigid orthog-
raphy, because their performances tend to be lower when dealing with normalised text.

11 Conclusion

We have provided here a first usable corpus for automated transliteration. The results are
very tantalising. Transliteration as such might not be the main issue for scholars, but it’s
a proof of concept for other applications: lexical studies, teaching aids, error detection in
the corpus, to name a few. The main drawback of the current method is the huge amount
of data needed. Further improvements might reduce this requirement.
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Appendix A. Selected Computed “Sign Values”

The following section contains a number of values for selected signs, using the A and B
lists of values (section 7) The number after each value is the number of occurrences of this
value found when transliterating the training corpus. For each sign, we have listed in A and
B only the five most frequent values.

To avoid wasting printed space with an overlong list, we have picked for each type of
signs a few representative cases. The full list is however available in the git archive of the
project (https://gitlab.cnam.fr/gitlab/rosmorse/ramses-trl).

Uniliteral

W (Gl) A. SEP (12737), y (5451), - (2650), w (1196), . (790)

.3(5216), SEP (3483),. (2599), £ (533), n (481)

TM17) A, iw (6599), . (6038), SEP (5149), im (4510), i (3840)

. SEP (10399),. (4717), n (3757), w (2800), ¢ (1913)

. SEP (2702), € (1546), . (651), £ (493), n (351)

B (W11) A.gr (371), ns. (216), g3 (159), 3 (110), SEP (109)

A
B
A
B

—2(D36) A. SEP (4219),. (1536),  SEP (989), - (599), w (478)
B
A
B. SEP (409),. (127), g (86), w (85), ¢ (70)

1 (D58) A. SEP (1513), bn (995), bw (963), . (631), bi (425)
B. b (1439), SEP (1115),. (303), w (255), ¢ (164)

. SEP (1959), pt (1066), . (965), pn (743), p3 (622)
. SEP (1384), p (1314), - (596), ¢ (483), y (277)

0(Q3)

A

B

— (19) A. =fSEP (12364), fSEP (2451), SEP (1296), r (713), SEP=fSEP (215)
B. SEP (3274),. (1304), = (1013),  (511), » SEP (471)
A

™ (G17) A.m SEP (9227), m- (4618), SEP (2764), y (1061), mt (1009)

. SEP (3684), m (2030), . (693), ¢ (578), ) (494)

o (F32) A.h. (196), hr (101), hd (95), ks (82), h° (22)

. SEP (57),¢(53), h (27),. (13), w (13)

— (N37) A.3m (870), SEP (837), 5r (335), 5 (278), 57 (130)

.w (628), SEP (422), 5 (415), . (116), £ (104)

. SEP (22346), . (8120), t (6441), t SEP (3777), w (1733)

= (D46) A. SEP (5029), dr (1489), . (1160), dm (313), ( (206)

.. (1692), SEP (1480), d (762), ¢ (443), d (301)

(110)  A.dd (3215), d. (568), d (356), SEP (236), (hr) (206)

B
A
B
A
B
= (X1)  A.t(8740), ¢ SEP (7090), .t (6741), SEP (5208), 3 (3935)
B
A
B
A

B. SEP (705), d (260), ) (131), £ (81), - (78)
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Biliteral

— (029) A.3(1148), 3 SEP (1076), pr (395), 3. (250), pr- (114)
B. SEP (1255), - (716), . (328), < (153), t SEP (86)

[(029v) A.3-(2), 3SEP (2), SEP 5. (1), 3- (1), By (1)
B. - (61), pr- (32), b- (23), b (21), n- (13)

L (V4) A w3 (164), 3 (137),5(56), SEP (29),. (24)
B. w (142), SEP (120),. (51), 7 (20),  (20)

% (G29)

A. b3 (1068), b3k (88), bd (41), (hr) (37), bn (29)

B. k£ (891), SEP (149), b (37), - (29), r (25)

2% (G40) A. p3 SEP (1177), piy (278), p3 (243), p3- (55), SEP p3 SEP (20)
B. SEP (305), y (85), - (37), n (29), . (27)

R (G41) A. p3 (9588), wsf (444), <> (115), 3 (104), SEP (64)
B. SEP (4193), y (1002), - (981), > (214), > SEP (185)

T M16)
T M12)

9 (U30)

T (H6A)
i (U23)

& (K1)

A
B
A
B
A
B
P6)  Aom3ce(125), sw (119), m3° (76), m3. (41), SEP (27)
B
A
B
A
B
A
B

. 13 (520), SEP (65), 3 (58), h3 SEP (40), hl (27)
. SEP (188), w (80), y (78), k (65), p (43)

. 13 (647), 3 (356), hb (160), hr (123), 1000 SEP (122)
. SEP (597), 0 (219), 00 SEP (195), 0 SEP (175), 000 SEP (77)

. SEP (252), 5 (89), 3 (22), . (20),y (5)
.3(236), 3 SEP (129), 3. (53), SEP (34), 3 (14)

.- (173), SEP (153),. (69), .t SEP (67), ¢ (46)

. 5w (101), $wy (42), 3 (7), SEP (4), m3°(2)

. SEP (113), € (51), - (45), y (36), ph (12)

. mhr (241), mhr SEP (165), 3b (128), mh (82), r (54)

. SEP (300), 7 (67), mhr SEP (62), mhr (43), r SEP (41)

.n(42), rmw (7),in (3), w (2), wn (2)
.n(95), SEP (26), w (23),. (16), n. (14)

= (D4)  A.ir (1655), iri (1224), ir (938), iry (511), ir SEP (391)

B

. SEP (1450),. (1053), i (281), i. (197), w (135)
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Selected other signs

U(Ffl)  A. SEP (3900), w (735), £ (533), . (528), s (348)

B. SEP (7423),. (1253), w (1136), t (1040), s (717)
1(Z1)  A. SEP (17074), I SEP (3271), - (1513), SEP / SEP (1040), 7 SEP (754)
B. SEP (13073), £ (4431), n (2003), = (1750), w (1126)
111(Z2)  A. SEP (4293), w SEP (1316), 5 SEP (1077), 3 SEP (955), SEP 3 SEP (794)
B. SEP (7963), w (1485), n (1436), w SEP (1251),. (1174)
n(V20) A.10SEP (2828), SEP (1853), 0 SEP (1376), 2 (1338), 20 (570)
B. SEP (11652), 0 SEP (4925), 0 (1947), s (317), SEP 60 (230)
¥ (A1) A. =i SEP (4037), SEP (2259), i SEP (1189), w SEP (443), . (239)
B. SEP (6178),. (771), n (667), w SEP (489), w (485)
£) (A2) A. SEP (1418),. (565), t SEP (291), n (206), w SEP (120)
B. SEP (1400), i (1223),  (608),  (604), . (526)
¥ (A4) A. SEP (31),. (3)
B. SEP (9), w (3),.w SEP (3), w SEP (3), SEP= (2)
% (A5)  A. SEP (1), imn (1), imn SEP (1)
B. SEP (4),1(2), = (1),- (1), 13 (1)
A (A24) A. SEP (721), nht (512), t SEP (172), w SEP (108), - (104)
B. SEP (2235), - (456), . (362), = (245), SEP m (220)
N1 (A42) A. =i SEP (554), SEP (269), i SEP (74), t SEP (23), SEP=i SEP (13)
B. = (284), SEP (169), SEP= (53),  SEP (39), (37)
M (B1)  A. SEP (724), =t SEP (285), t SEP (205), w (108), t SEP (95)
B. SEP (872), 1(585),. (317), t SEP (180), n (152)
= (D6) A. SEP (398), prr (59), ptr SEP (51),. (21), t SEP (21)
B. SEP (510), SEP= (94), = (86), n (53), . (45)
2 (D40) A. SEP (1017),.(175), .t SEP (132), nht SEP (110), ¢ SEP (110)
B. SEP (1342), w (295), = (275),. (261), SEP = (216)
~ (D54) A. SEP (982), t SEP (744), .t SEP (531), iw SEP (320), . (168)
B. SEP (1891), . (866), = (491), r (484), SEP= (351)

> (D54A)A. iw SEP (25), nmt (13), SEP (2), iw (2), iw: (2)
B. SEP (11),.£(7),-(2), 10 (2), .t SEP (2)

% (P5)  A. 8w (191), nfw (70), 8 (45), Bw SEP (38), SEP (24)
B. SEP (94), w (51), - (28), £ (24), ¢ (15)

< (P1) A. SEP (181), ¢ SEP (69), .t SEP (63), wi3 SEP (37), imw (34)
B. SEP (248), (72), . (70), n (35), £ (35)



