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Abstract—Multikernel Operating Systems (OSs) were intro-
duced to cope with challenges in software development and
deployment in lightweight manycores. Among the possible struc-
tures for a multikernel OS, we focus on designs based on
asymmetric kernels. This design delivers better performance
isolation, but it suffers from an overhead in energy efficiency.
In this work, we overcome this issue with a co-design solution
between the cluster of a lightweight manycore and an asymmetric
kernel. We designed a 4-core heterogeneous cluster with one core
tuned for the OS kernel and we patched the OS kernel to better
match the characteristics of this core. Our experiments unveiled
that our solution consumes 14.1% less power than the baseline
and also improves the OS kernel performance by up to 6.5%.

I. INTRODUCTION

Lightweight manycores were introduced to cope with per-
formance and energy efficiency demands of applications [1].
To deliver performance, these processors feature a clustered
layout, a distributed memory architecture and a rich on-
chip interconnect [2]. To achieve energy efficiency, they are
built with simple and low-power cores; have a Scratchpad
Memory (SPM) system with small local memories [3]; do
not feature a global cache-coherent domain [4]; and exploit
heterogeneity [5]. Some examples of lightweight manycores
are the Kalray MPPA-256 [4] and the Sunway SW26010 [2].

Although lightweight manycores stand out in performance
and energy efficiency, they currently face challenges in soft-
ware development and deployment [6]. To address these issues,
multikernel Operating Systems (OSs) were introduced [7]. In
this approach, the OS is structured as a distributed system: a
set of independent OS kernels is deployed in the processor;
these kernels communicate via message-passing; and they
implement OS subsystems in a distributed fashion.

Multiple structures for a multikernel OS are possible [8],
[9]. Nevertheless, we are interested in designs based on asym-
metric kernels, due to their outstanding compromise between
kernel-level and user-level performance [10]. In an asymmetric
design, cores within the same cluster share the same OS kernel
instance. The OS kernel runs on a dedicated core of the cluster,
named K-Core. The remainder cores are left for user threads.
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Unfortunately, having a dedicated core for the OS kernel
not only reduces the parallelism available for user threads but
also the energy efficiency of the system when the OS kernel
is underused [6]. However, increasing the number of cores of
the cluster to improve parallelism and scalability may not be
possible due to the limited amount of on-chip memory [2], [4].
In this paper, we investigate a co-designed solution between
the cluster of a lightweight manycore and an asymmetric
kernel to mitigate its energy consumption overhead. This work
delivers the following contributions to the state of the art on
hardware support of lightweight manycores for OSs:

• A co-designed cluster for lightweight manycores that is
energy-optimized for asymmetric kernels. This cluster
has a heterogeneous configuration in which the K-Core
is narrowed for executing kernel routines whereas the
reminder cores deliver high performance for user threads;

• An optimized asymmetric kernel for our co-designed
cluster. We specifically engineered our OS kernel so that
it matches the hardware characteristics of the K-Core.

Furthermore, we present an open-source implementation of
our co-designed solution. We built our solution using OpTiM-
SoC [11] and a patched version of the Nanvix kernel [6].
We prototyped our solution on a Field Programmable Gate
Array (FPGA) platform and assessed its energy efficiency
using representative benchmarks. In the next sections, we
discuss about asymmetric multikernel OSs (Section II), present
our methodology (Section III) and contributions (Section IV).
Then, we evaluate our solution (Section V), discuss related
works (Section VI) and draw our conclusions (Section VII).

II. ASYMMETRIC MULTIKERNEL OSS

Multiple structures for a multikernel OS are possible [8],
[9]. OS kernel instances may or may not feature the same
architecture and/or provide the same set of functionalities
(homogeneous vs. heterogeneous architecture). Furthermore,
they may run on all cores of the processor or on a selected
set of them (symmetric vs. asymmetric design) [6]. In this
spectrum of possibilities, in this work we are interested on
asymmetric multikernel OSs, due to their outstanding perfor-
mance isolation between kernel and user spaces [10].

Figure 1 presents a snapshot of an asymmetric multikernel
OS running in a lightweight manycore. Cores within the same
cluster share an OS kernel instance. The OS kernel runs on a
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Fig. 1. Snapshot of a multikernel OS running on a lightweight manycore.

dedicated core of the cluster (K-Core); whereas user threads
run in the remainder cores of the cluster (U-Cores). In this
design, performance isolation is delivered because hardware
structures of a core are not time-shared between two execution
flows (i.e. kernel and user) and there is no contention in
structures of the OS kernel.

Unfortunately, asymmetric multikernel OSs have an intrinsic
energy-consumption overhead, since one core is restricted
to the OS kernel and cannot run user threads. Thus, the
energy efficiency of the system is reduced if the OS kernel
is underused [6]. For instance, up to 25% of energy efficiency
may be compromised in the example given in Figure 1. While
this problem may be mitigated when several cores are bundled
in a single cluster [2], [4], from a system-level perspective the
problem is not solved, but forwarded [6]. The reason for this
is two-fold. If more cores are available in a cluster, either:
(i) multiple single-threaded applications are deployed in the
same cluster, which is a challenge due to the small size of
local memories; or (ii) user applications are highly parallel and
scale up linearly in a cluster, which is not a valid assumption
in a general-purpose scenario.

III. METHODOLOGY

In this paper, we investigate a co-design solution between
the cluster of a lightweight manycore and an asymmetric OS
kernel to mitigate the energy consumption overhead discussed
in Section II. We relied on the following design decisions:

(i) start from established projects in lightweight manycores
and OSs, to contribute to ongoing research efforts;

(ii) study structural changes on hardware-side (i.e. cache as-
sociativity and arithmetic capabilities), to avoid stepping
into customization of hardware units which leads to a
space of design that cannot be thoroughly explored; and

(iii) explore optimizations in OS-side that impact multiple
workloads, to deliver a solution that effectively extends
to use-cases that are not covered in our analysis.

Based on these decisions, we employed a two-step process
to build a co-designed solution. First, we carried out a Design
Space Exploration (DSE) for the K-Core. Next, we deployed
the OS kernel in this core and studied OS-level optimizations.

We used four representative benchmarks to evaluate our co-
designed solution [6], which assess important aspects of an
asymmetric kernel:

• R-Kcall: it evaluates the upper-bound performance for
serving kernel calls by issuing multiple low-latency calls,
which are handled sequentially by the kernel.

• Fork-Join: it exercises important kernel structures, such
as the table of threads, by spawning multiple threads and
waiting for all of them to terminate.

• Buffer: it assesses thread synchronization facilities ex-
posed by the kernel by launching multiple pairs of threads
that perform buffered transfers. Data is stored in a ring
buffer in user space, and synchronization is achieved by
synchronization primitives (i.e. semaphores and mutexes).

• Server: it models the functioning of a server. Multiple
requests are launched and, for each one of them, a thread
is created to serve it. The benchmark makes intensive
use of OS kernel calls to create/terminate threads and to
synchronize the access to the buffer of requests.

To build the software stack, we employed GCC 9.1.0
and GNU Binutils 2.32.51 with -O3 optimization. We used
an Xilinx Artix-7 FPGA and Vivado 2019.2 for hardware
prototyping. We relied on reports output by Vivado to retrieve
information about resource utilization and total power con-
sumption (i.e. static and dynamic). Furthermore, we employed
performance counters to gather high-precision execution statis-
tics. We carried out 30 replications of each experimental con-
figuration. All comparisons have a 95% confidence threshold.

IV. CO-DESIGNED CLUSTER FOR ASYMMETRIC KERNEL

In this section, we detail how we applied our two-step
methodology to develop our co-designed solution.

A. Hardware Design Space Exploration

To design the cluster, we relied on OpTiMSoC, a framework
for prototyping OpenRISC-based lightweight manycores in
FPGAs [11]. We started from an initial configuration with
four cores, each of which with a 32-bit, 6-stage OpenRISC
pipeline and an 8 kB Instruction Cache (I-Cache). The pipeline
featured a simple branch predictor; a barrel shifter; a serial
divider; a three-stage multiplier; and no FPU. On the other
hand, the I-Cache presented a 2-way, 4k-set associativity. We
refer to this initial configuration as Initial-Core (I-Core). Next,
we considered structural changes in the I-Core, one at a time,
to find out the best configuration for the K-Core. Table I
details all the hardware parameters that are possible to be
changed in OpTiMSoC. Overall, we explored all the 192
possible hardware configurations. The parameters highlighted
in the table refer to the initial configuration (I-Core). As a
final remark, it is important to note that we applied OS kernel
optimizations on the best hardware configuration found.

TABLE I
DESIGN SPACE FOR KERNEL CORE (K-CORE).

Hardware Unit Parameters

Branch Predictor Simple, SatCounter and GShare
Shift Unit Serial and Barrel
Divider None and Serial
Multiplier None and Three-Stage
FPU None, IEEE-754
I-Cache 1-way 8k-set, 2-way 4k-set, 4-way 2k-set, 8-way 1k-set

B. OS Kernel Optimizations

We considered the asymmetric microkernel of Nanvix [6]:
a multikernel OS for lightweight manycores. This kernel
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is structured in three layers. On the bottom, the Hardware
Abstraction Layer (HAL) enables the portability of the kernel
across multiple processors. In the middle, the Modules Layer
hosts the implementation of the functionalities of the micro-
kernel, such as thread management, memory management and
inter-cluster communication. On the top, the Kernel Call Layer
exposes the functionalities of each module to user space. This
layer performs security checking, controls execution flow, and
handles the asymmetric characteristic of the kernel.

We focused on optimizing the Modules Layer and Kernel
Call Layer, since they implement most of the abstractions
and facilities exposed to user space and any changes to these
layers impact multiple OS workloads. We considered three
optimizations: (i) software emulation of hardware division and
multiplication operations; (ii) macro-inlining of performance–
critical functions; and (iii) branch condition hinting.

The rationale behind these optimizations is three-fold. First,
we explored software emulation for division and multipli-
cation operations because they are not extensively used by
the Nanvix kernel, thus some specific hardware could be
removed. Second, macro-inlining was exploited to improve
spatial locality of performance-critical functions at compile-
time, thus enabling us to extract performance from a simple
instruction cache (i.e. direct-mapped cache). Noteworthy, the
size of inlined code was small enough to fit in the I-Cache.
Finally, we leveraged condition branch hinting to enable a
simpler branch condition unit to be employed, while delivering
low performance penalties due to miss-predicted branches.

V. EXPERIMENTAL RESULTS

In this section, we first show the results of the hardware
design. Then, we discuss the OS kernel optimizations.

A. Hardware Design

Table II details the resource utilization for designs of a
core, such as LUTs (Look-up Tables), Registers (Regs), F7
Multiplexers (M) and Block RAMs (B). We depict statistics for
the designs that targeted: (i) the branch predictor; (ii) I-Cache;
and (iii) shift unit. Moreover, we present these statistics for the
selected configurations to build up our co-designed cluster,
which has 1 K-Core and 3 U-Cores (in bold).

When evaluating the possible designs for the branch pre-
dictor, we observed that the Simple and SatCounter predictors

TABLE II
DESIGN SPACE EXPLORATION (DSE) FOR CORES OF THE CLUSTER.

Design LUTs Regs M B P (mW)

I-Core (I) 2987 2042 57 8 28

(I) + Branch SatCounter 2988 2046 57 8 29
(I) + Branch GShare 5968 4112 434 8 38

(I) + I-Cache 1 Way, 8k Set 2874 1947 57 9.5 28
(I) + I-Cache 4 Way, 2k Set 3175 2159 57 9 30
(I) + I-Cache 8 Way, 1k Set 3701 2666 55 7 29

(I) + Shift Serial 2830 2080 56 8 26

K-Core (proposed) 2500 1829 56 9.5 23
U-Core (proposed) 7564 4853 414 12 53
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Fig. 2. Static instruction class analysis of the kernel.

yield similar resource utilization and power consumption. In
contrast, we noted that the GShare predictor consumes about
1.31× more power, due to an increase on the number of
LUTs, registers and F7 multiplexers. On the other hand,
concerning the layouts for the I-Cache, we did not spot a
significant variance in terms of power consumption. Each
design minimized the utilization of a particular resource in
the experimental FPGA. Similarly, we noted little difference
in power consumption in both designs for the shift unit.
However, this result unveiled a small overhead for having a
more complex shift unit (i.e. barrel shifter).

Finally, for deciding whether or not floating point opera-
tions as well as integer divisions and multiplications should
be supported by the hardware in K-Core, we relied on a
static analysis of the binary file of the OS kernel. If these
operations are heavily used, having hardware support would be
desirable. Notwithstanding, as Figure 2 pictures, this analysis
unveiled that these operations are barely used by the kernel.
Floating point operations were not used at all, and multiplica-
tions/divisions were employed in initialization code.

Our DSE unveiled important aspects. First, the branch
predictor has an important impact on the overall power
consumption of the core. Hence, runtime benchmarking is
required to identify the configuration that delivers the best
compromise between energy consumption and performance.
Second, the layout for the I-Cache does not result in significant
differences in power consumption. Thus, we can fine-tune the
I-Cache for better supporting execution flows of the kernel.
Third, the impact of the shift unit in power consumption is very
small, so a more complex hardware (i.e. barrel shifter) can be
used to better support execution flows that heavily rely on it.
Finally, floating point operations, multiplications and divisions
are barely used by the kernel, thus hardware support for them
could be removed to further reduce power consumption.

B. OS Kernel Optimizations

Table II also details the resource utilization of the two types
of cores that we proposed and used to build up our cluster:

• 1 K-Core with the following configuration: simple branch
predictor, barrel shifter, no divider, no multiplier, no FPU
and 8 kB 1-way 8k-set I-Cache.
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TABLE III
BENCHMARK RESULT FOR CO-DESIGNED CORE.

Metric Design R-Kcall Fork-Join Buffer Server

Energy U-Core 84.06 1994 27640 32903
( µJ) K-Core 41.07 1002 12750 14983

K-Core+Opt Kernel 39.65 859 11215 13372

Time U-Core 1.58 37.63 521.51 620.82
(ms) K-Core 1.78 43.56 554.37 651.43

K-Core+Opt Kernel 1.72 37.34 487.64 581.41

• 3 U-Cores with the following configuration: GShare
branch predictor, barrel shifter, serial divider, three-stage
multiplier, IEEE 754 FPU and 8 kB 2-way 4k-set I-Cache.

Overall, the K-Core features the best configuration found in
our analysis. The configuration of the U-Core was built with
the best general-purpose variant for each hardware unit.

Table III presents an assessment of these two core designs. It
unveils how efficient it is to run kernel-intensive workloads in a
general-purpose core, like it would happen in a homogeneous
cluster design. Results obtained with the K-Core show the
gains on energy consumption when running benchmarks in
a more specialized core. Finally, the assessment of the K-
Core running on an optimized version of the kernel illustrates
the upper-bound energy efficiency that may be achieved. The
energy consumed by the OS kernel drops about 50% when
we move from the U-Core to the K-Core. Additionally, when
running an optimized version of the kernel in the K-Core
(see Section IV-B), we further reduced energy consumption
in 10% and improved performance by up to 6.5% (Fork-Join
benchmark). The rationale for this behavior is two-fold. First,
the U-Core inherently consumes more power, once it features
more complex units. Second, this extra complexity does not
necessarily imply on better support for the kernel execution
flow. For instance, our co-design unveiled that a simple direct-
mapped cache better handles the kernel workload than set-
associative ones. As a concluding remark, we observed that a
heterogeneous cluster composed of one K-Core and three U-
Cores (our solution) consumes 14.1% less power than a cluster
with four U-Cores (baseline). In multi-cluster architectures we
expect that these outcomes scale up linearly with the number
of clusters in the processor.

VI. RELATED WORK

Lightweight manycores are being shipped with an extra
core in their clusters for local resource management. For in-
stance, clusters of Kalray MPPA-256 [4] have a firmware core
that handles on-chip communication; and clusters of Sunway
SW26010 [2] have a management processing element that
features a general-purpose design and is intended for running
a full-weight OS on top of it. Similarly, a fabric controller
is included in the cluster to orchestrate the application in
PULP [3], [12]. Alternative approaches look for integrating a
special hardware units for driving a cluster from a remote OS
kernel [10], [13]. In contrast, we targeted a co-design solution
that comprises the cluster of a lightweight manycore and the
OS kernel to improve the energy efficiency of asymmetric
multikernel OSs.

VII. CONCLUSIONS

Multikernel OSs were introduced to cope with challenges in
software development and deployment in lightweight many-
cores. Multiple structures for multikernel OSs are possible,
but in this work we focused on designs based on asymmetric
kernels. This design delivers better performance isolation
between user and kernel execution flows, but it has a worse
energy efficiency. In this work, we aimed at mitigating this
drawback with a co-design solution between the cluster of
a lightweight manycore and an asymmetric OS kernel. We
designed a heterogeneous cluster with one core tuned for OS
kernel execution and we patched the OS kernel to better match
the characteristics of the hardware. Overall, our experiments
unveiled that our co-designed cluster consumes 14.1% less
power than the baseline and also improves the OS kernel
performance by up to 6.5%. As future work, we intend to
explore changes in OpTiMSoC to enable cores in the cluster to
switch to low power modes dynamically, thus improving even
further the energy efficiency. Furthermore, we highlight future
investigations may also exploit software-level optimizations in
the HAL of Nanvix.
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