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Abstract 14 

Purpose: Covariance between grey-matter measurements can reflect structural or functional brain networks though 15 
it has also been shown to be influenced by confounding factors (e.g. age, head size, scanner), which could lead to 16 
lower mapping precision (increased size of associated clusters) and create distal false positives associations in mass-17 
univariate vertex-wise analyses.  18 

Approach: We evaluated this concern by performing state-of-the-art mass-univariate analyses (general linear 19 
model, GLM) on traits simulated from real vertex-wise grey matter data (including cortical and subcortical thickness 20 
and surface area). We contrasted the results with those from linear mixed models (LMMs), which have been shown 21 
to overcome similar issues in omics association studies.  22 

Results: We showed that when performed on a large sample (N=8,662, UK Biobank), GLMs yielded greatly 23 
inflated false positive rate (cluster false discovery rate>0.6). We showed that LMMs resulted in more parsimonious 24 
results: smaller clusters and reduced false positive rate but at a cost of increased computation. Next, we performed 25 
mass-univariate association analyses on five real UKB traits (age, sex, BMI, fluid intelligence and smoking status) 26 
and LMM yielded fewer and more localised associations. We identified 19 significant clusters displaying small 27 
associations with age, sex and BMI, which suggest a complex architecture of at least dozens of associated areas with 28 
those phenotypes. 29 

Conclusions: The published literature could contain a large proportion of redundant (possibly confounded) 30 
associations, that are largely prevented using LMMs. The parsimony of LMMs results from controlling for the joint 31 
effect of all vertices, which prevents local and distal redundant associations from reaching significance.  32 

Keywords: structural brain MRI, vertex-wise processing, linear mixed model, association, brain mapping. 33 
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Brain MRI scans can generate hundreds of thousands of vertex/voxel-wise measurements per 43 

individual, which can be linked to other measured traits/diseases using mass univariate 44 

vertex/voxel-wise association analyses. Results of association analyses (and subsequent follow-45 

up analyses) can shed light on the brain networks or cell composition relevant for the 46 

trait/disease and may be leveraged for brain-feature based phenotype prediction. However, brain 47 

measurements may exhibit a pattern of correlation, owing to factors (e.g. head size, MRI 48 

scanner/artefact (1) or demographics (2)) which can generate confounded brain-trait associations. 49 

Induced local correlations with a true brain-biomarker can generate a smear of association (i.e. a 50 

cluster of associated vertices) which may limit the precise localisation of the directly associated 51 

regions. On the other hand, long-range vertex correlations caused or inflated by factors irrelevant 52 

to the trait of interest, may be more prejudicial, as they can yield distal false positives (Figure 1).  53 

 54 

Figure 1: Illustration of the traditional confounding paradigm a) and of the confounding that may arise in association studies performed across 55 
correlated brain features b). 56 
One sided arrows represent a causal effect, and two-sided arrows a correlation. 57 
 58 
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Two approaches can be used to limit the inflation of false positives described above. One is to 59 

control for the confounders in the association testing, although it requires knowledge and 60 

measurement of the factors influencing (or more generally associated with) the covariance 61 

between brain measurements. Note that these factors can overlap with traditional confounders of 62 

neuroimaging studies (e.g. head size, age, sex, head motion), and additional confounders are 63 

being identified as sample sizes increase (3). Another correction strategy is to control for the 64 

other vertices in the association testing, in order to remove the signal that could be attributed to 65 

another brain vertex or region. The difficulty of such approach is that typically, the number of 66 

vertex/voxel-wise measurements (p) far exceeds the number of participants (N) in the study. The 67 

p>>N paradigm implies that the marginal joint associations with all p vertices cannot be 68 

estimated in a single general linear model (GLM).  69 

Statistically, the challenge of mass univariate vertex-wise analyses resembles that of genome-70 

wide association studies (GWAS) or methylation-wide associations studies (MWAS), which aim 71 

to identify genomic regions associated with a phenotype in the presence of correlated features 72 

(i.e., genetic variants or DNA methylation probes). Several studies have demonstrated that 73 

feature correlation (i.e., Linkage Disequilibrium (LD) or population structure in genetics) can 74 

result in inflated false positive rate (4-6), even more so when the sample size increases (5). This 75 

led GLMs to be replaced by linear mixed models (LMMs) (6-8) which co-varies out all features 76 

by fitting them as random effects. LMMs have been shown to better control the inflation of false 77 

positive associations arising from LD or correlation between probes and to minimise the 78 

occurrence of false positives in both GWAS and MWAS (6, 7, 9).  79 

LMMs are commonly used in neuroimaging to model longitudinal data(10). Instead, we rely 80 

here on a novel formulation that allows fitting the high-dimensional brain image as a single 81 
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random-effect. Such LMMs allow estimation of the overall degree of association between a trait 82 

and a high-dimensional brain image, coined “morphometricity” in the context of structural brain 83 

measurements(11, 12). Recently, we have shown that  a single LMM framework was suited to 84 

estimate morphometricity in large datasets, to draw links between traits through their 85 

associations with similar brain structure (grey-matter correlation) and to build brain-based 86 

predictors(12). The LMMs we propose here complement our previous work by identifying the 87 

vertices/voxels that contribute to the morphometricity and phenotype prediction.  88 

Here, we sought to evaluate whether the inflation of false positives observed in omics data is 89 

also present in neuroimaging data. In the first part of the analysis, we performed extensive 90 

simulations of continuous phenotypes from real grey-matter data to quantify false positive rate as 91 

well as statistical power, mapping precision and prediction accuracy achieved from mass-92 

univariate analyses. We compared the performances of the current state-of-the-art GLMs to that 93 

of LMMs inspired by omics association studies. In the second part, we sought to characterise the 94 

brain regions associated with real phenotypes (i.e., age, sex, BMI, fluid IQ, and smoking status) 95 

that previously exhibited significant morphometricity(12), in order to confirm the results 96 

obtained on simulated traits. Our analyses relied on 14,451 MRI images collected by the UK 97 

Biobank (UKB), one of the largest brain imaging initiative (13). 98 

1.1 Novelties and contribution 99 

The novelties and contributions of our paper are as follows:  100 

 We propose novel linear mixed models for brain mapping, inspired from those using in 101 

genetics, which aims at overcoming false positive issues found in standard analyses. 102 
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 By controlling for all brain measurements (fitted as a random effect) the LMMs remove 103 

redundant associations leading to more parsimonious results. 104 

 We demonstrate that, compared to the current state-of-the-art, the LMMs minimise false 105 

positive rate while also maximising power, mapping precision and prediction accuracy. 106 

 107 

2. Material and methods 108 

2.1.  Models of mass-univariate vertex wise analyses 109 

First, we considered five GLMs that differ in term of covariates used when estimating the 110 

association (  ) between the trait and the ith (standardised) vertex-wise measurement     . They 111 

can be written under the form: 112 

                 (1) 113 

with   the vector of phenotype for the N individuals,   a matrix of size Nxq of q covariates 114 

and   a vector of the q fixed effects.  115 

The five GLMs are differentiated as follows: 1) GLM with no covariates (“no covariates”), 2) 116 

GLM including the most commonly used covariates in similar analyses: age, sex and intra-117 

cranial volume (ICV) (“age, sex, ICV corrected”), 3) & 4) GLMs including 5 and 10 principal 118 

components (PCs) of grey-matter variation, respectively (“5 global PCs”, “10 global PCs”), 5) 119 

GLM including 10 PCs specific to the measurement type (cortical thickness, cortical surface, 120 

subcortical thickness or subcortical surface area), referred to as “10 modality specific PCs”. 121 

Grey-matter PCs capture the main axes of covariations between vertices, and we expect that by 122 

controlling for them we may be able to remove unmeasured or unknown factors contributing to 123 

long-range correlation between vertices (which might include demographics, MRI machine, head 124 
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motion, software update, processing option etc.). Note that PCs from genetic data are commonly 125 

used in GWAS in order to limit the false positive rate of GLMs analyses (14) but are rarely used 126 

in neuroimaging analyses. The difficulties of PC correction are to determine the optimal number 127 

of PCs, which controls for confounding effects without removing signals of interest. In practice, 128 

this may prove extremely difficult considering that the optimal number of PCs could depend on 129 

the trait/variable of interest, and that PCs are notoriously hard to interpret and have not been 130 

comprehensively investigated on these data. Thus, we arbitrarily chose two scenarios with the 131 

first 5 or 10 PCs. In addition, GLMs without covariates are also very rare, but worth considering 132 

in order to appreciate the effect of including covariates.  133 

Finally, we considered three LMMs that can be seen as extensions of the previous approaches 134 

in that they further control for all vertex-wise measurements. The first LMM model (“LMM 135 

global BRM”), analogous to the MOA (MLM-based Omic Association) model (6), can be 136 

written as: 137 

                 (2) 138 

Here,   is the Nxp matrix of all standardised vertex-wise measurements,   is the px1 vector 139 

of joint vertex-trait associations.   is a vector of random effects, allowing for p>N, with 140 

         
  , and   is the error term assumed to follow          

     
  and   

  are the 141 

variances of the random effects   and  . The variance-covariance matrix for   is          142 

     
  +    

       
  +    

  . Here, we regard         as the brain relatedness matrix and 143 

   
  the morphometricity (proportion of phenotypic variance captured by all vertices) (15).  144 
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We considered a second LMM (“LMM with covariates”) that includes known covariates (age, 145 

sex and ICV) fitted as fixed effects. Thus, we can separate the effect of the random effects from 146 

that of the known covariates on the results. The model becomes:  147 

                     (3) 148 

Our third LMM (“LMM multi. BRM”) includes 4 random effects (            , each 149 

corresponding to a type of vertices (cortical thickness, cortical surface area, subcortical thickness 150 

and subcortical surface area).  151 

                              (4) 152 

This more general LMM allows the distribution of effect sizes to differ based on vertex type, 153 

rather than enforcing a single distribution over all types of measurements (15). Note that each 154 

random effect takes up a single degree of freedom meaning that LMMs and GLMs have a 155 

comparable (large) numbers of degrees of freedom given the same sample size. 156 

 157 

2.2. Statistical testing and multiple comparison 158 

We performed a  2
 test of the association between a vertex (    and the phenotype using that, for 159 

large sample size N,  
  

      
 
 

    
  under the null hypothesis of no association. In each model 160 

(GLM or LMM), we accounted for multiple testing over the vertices using Bonferroni correction, 161 

thus setting a brain-wide significance threshold of 0.05/652,283=7.6e-8. We chose the 162 

straightforward Bonferroni correction over random field theory (RFT)(16) as RFT requires 163 

stationarity and a smooth mesh of vertex-wise residuals, which is unlikely to be the case here 164 

(we did not apply kernel smoothing on the data as it reduced the estimated morphometricity of 165 

the UKB phenotypes (15)). In addition, RFT is not currently implemented to be performed using 166 
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residuals of LMMs or across several surfaces and type of measurements. Bonferroni correction is 167 

expected to be conservative under the null hypothesis (no association) because the correlations 168 

between vertices means that the effective number is tests lower than the number of tests 169 

conducted and used for the Bonferroni correction. 170 

2.3. MRI Image processing  171 

MRI images were mostly collected in Cheadle (for 96% of the sample) and Newcastle using a 172 

3T Siemens Skyra machine (software platform VD13) and a 32-channel head coil (13) (see 173 

Supp. 1, for MRI sequence details). 174 

We processed the T1w and T2 FLAIR images together to enhance the tissue segmentation in 175 

FreeSurfer 6.0 (17), which should result in a more precise skull stripping and pial surfaces 176 

definition. When the T2 FLAIR was not acquired or not usable, we processed the T1w image 177 

alone, though a recent report showed this results in systematic differences in cortical thickness 178 

(18). This may represent a source of noise in the data, albeit it was limited in term of number of 179 

individuals (see quality control, Supp. 1). We extracted vertex-wise data mapping cortical 180 

surface area and thickness (“recon-all” processing in FreeSurfer) and used the maximal 181 

resolution allowed by the software (fsaverage atlas - unsmoothed). In short, FreeSurfer segments 182 

the grey/white and grey/cerebrospinal fluid borders, which delimitate the grey-matter. Surfaces 183 

are mapped onto a spherical atlas to align the cortical folding patterns of the individuals, and a 184 

tessellation is applied. Cortical thickness is calculated as the closest distance from the two grey-185 

matter boundaries, for each vertex on the tessellated surface (19). Surface area is measured as the 186 

mean area of all faces that meet at a particular vertex, on the grey/white matter surface(20). We 187 

previously showed that this cortical processing maximised the morphometricity for a wide range 188 
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of phenotypes (15). In other words, this cortical processing maximised the information retained 189 

by the processed MRI images. In addition, we applied the ENIGMA-shape processing (21, 22), 190 

where subcortical structures segmented in FreeSurfer are projected onto spherical atlases to 191 

quantify vertex-wise radial thickness and log Jacobian determinant (21, 22), which is analogous 192 

to a surface area (23). This yielded a vertex-wise characterization of the hippocampus, putamen, 193 

amygdala, thalamus, caudate, pallidum and accumbens. Overall, the imaging data used in the 194 

analyses comprised 652,283 vertex measurements per individual: 299,009 for cortical thickness, 195 

another 299,034 for cortical surface area, 27,120 for subcortical thickness and 27,120 for 196 

subcortical surface area.  197 

In a post-hoc analysis, we also utilised smoothed cortical data (surface based kernel with 198 

FWHM=20mm), in order to evaluate the robustness of our results to variation in the MRI 199 

processing.  200 

 2.4. Main sample for simulation and discovery  201 

Our final sample comprised 9,890 adults with complete cortical and subcortical data, aged 62.5 202 

on average (SD=7.5, range 44.6–79.6) with slightly more (52.4%) female participants (see Supp. 203 

1 for participant inclusion and exclusion). Of note, 341 participants did not have an exploitable 204 

T2 image.  205 

We performed a stringent quality control (QC) to exclude one of each pair of individuals whose 206 

brains were too similar or dissimilar relative to most other individuals, resulting in 1,228 207 

exclusions (12.4% of the sample). The main reason for this exclusion was to prevent bias in the 208 

LMM estimates, although it should also remove individuals flagged as outliers by other QC 209 

criteria (e.g. 80.6% of the participants processed using T1w only, spike-like cortical parcellation 210 
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in FreeSurfer)(12) (see Supp. 1 for more details on QC). Importantly, all analyses were 211 

performed on the same list of individuals (post QC) to ensure that performance of the models 212 

would be comparable.  213 

2.5. Independent samples for prediction and replication  214 

Our first independent sample included an additional 4,942 participants of the UKB with a T1w 215 

image (downloaded in May 2018, most participants also had an exploitable T2w). The final 216 

sample (N=4,160 after processing and QC) was on average 63.1 years old (SD=7.46, range 46.1-217 

80.3) with 52.1% of females.  218 

In addition, we used the OASIS3 (Open Access Series of Imaging Studies) sample (24) to 219 

evaluate the generalizability of the prediction. The OASIS3 dataset gathers several longitudinal 220 

MRI studies conducted in the Washington University Knight Alzheimer Disease Research 221 

Center over the past 15 years. Our final sample included 1,006 unique participants after 222 

processing based on T1w images and QC. When several visits were available for a participant, 223 

we selected the one with the most phenotypic information. Participants were 71.1 years old on 224 

average (SD=9.18, range 42.6-95.7) and mostly female (55.5%). Almost a quarter of the 225 

participants (23.6%) had a diagnosis of Alzheimer’s disease at the time of imaging.  226 

2.6. Mass-univariate analyses on simulated phenotypes 227 

2.6.1. Simulation of phenotypic traits from real grey-matter data 228 

We simulated phenotypic traits from the UKB processed (standardised) grey-matter data, instead 229 

of relying on synthetic/simulated images. This novel approach ensures the vertex-wise data 230 

retains a realistic correlation structure. In addition, our framework includes simulation of the 231 
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phenotype under not only the null hypothesis (“H0”) that no vertex is associated with the 232 

phenotype but also the alternative hypothesis (“H1”) that a set of vertices are truly associated 233 

with the phenotype. 234 

First, we randomly selected a set of associated vertices and drew their relative effects from a 235 

normal distribution. We then calculated the simulated phenotypes as a linear combination of the 236 

individuals’ vertex values and noise (6). We considered three scenarios that differ in term of 237 

number of associated vertices and total association with the phenotype. This global association 238 

between grey-matter measurements and a trait has been coined morphometricity (11, 15) and 239 

may be expressed as the proportion of the trait variance (R
2
) captured by the vertex-wise 240 

measurement. Our scenarios were: i) 10 associated vertices accounting for a phenotype 241 

morphometricity of R
2
=0.20 (i.e. 20% of the trait variance); ii) 100 associated vertices with 242 

R
2
=0.50; iii) 1000 vertices with R

2
=40%. For each scenario, we simulated 100 phenotypes.  243 

In follow-up analyses, we simulated phenotypes using the same parameters, this time 244 

restricting the associated vertices to a single type of measurement. This allowed evaluation of the 245 

specificity of each type of measurement, which possess a unique correlation pattern. In addition, 246 

this ensures our phenotypes were not associated with cortical vertices only, which represent 90% 247 

of the vertex-wise measurements.  248 

To evaluate the effect of smoothing on our results, we simulated phenotypes from smoothed 249 

brain maps. For the ease of computation, we restricted the analysis of smoothed data to the case 250 

of 10 associated vertices (R
2
=0.2).  We kept the same associated vertices (and weights) as in the 251 

previous simulation from unsmoothed data. Finally, we randomly simulated 100 “null” traits, in 252 

order to evaluate the calibration of the models under the null hypothesis of no association. All 253 

simulations were generated using the OSCA software (6).  254 
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 255 

2.6.2. Inflation of test statistics 256 

First, we compared the empirical distribution of chi
2
 statistics to the expected distribution, 257 

which is assumed to follow a       for non-associated (null) vertices. We considered the ratio of 258 

empirical over expected median chi
2
, known as the inflation factor (λ), which is expected to be 259 

equal to one across non-associated vertices. We also used the nominal false positive rate (FPR) 260 

defined as the proportion of null vertices with p-values<0.05 (expected to be 0.05). Correlation 261 

between associated and null vertices (e.g. due to confounding factors) typically result in an 262 

inflation of test statistics, which may cause null vertices to reach significance in mass-univariate 263 

analyses. 264 

2.6.3. Discoverability and mapping precision 265 

First, we quantified the model discoverability using the true positive rate (TPR) defined as the 266 

proportion or truly associated vertices reaching significance (after Bonferroni correction). 267 

Importantly, the TPR is dependent on the false positive rate, which can limit comparison across 268 

models (see statistical power below). In addition, we quantified the mapping precision of mass-269 

univariate analyses by reporting the median size of the true positive (TP) clusters. We defined TP 270 

clusters as sets of significant contiguous vertices of the mesh that contain a true positive vertex. 271 

2.6.4. False positives and statistical power 272 

We reported the Family-Wise Error Rate (FWER) defined as the proportion of replicates with 273 

at least one false positive vertex (null vertex significant after Bonferroni correction). In the 274 

presence of strong correlation between neighboring vertices, it is statistically difficult to separate 275 
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a true positive vertex from the flanking ones, thus we can expect a FWER greater than 5%. 276 

Hence, we also reported the cluster FWER defined as the proportion of replicates with at least 277 

one false positive cluster. FWER is more stringent than False Discovery Rate (FDR), implying 278 

that any false positives that remain after FWER correction would also be observed using FDR.  279 

To account for the models’ differences in FWER, we further reported the statistical power, 280 

defined as the TPR for a set risk alpha. We chose cluster FWER<0.2, which was easier to 281 

achieve than the traditional FWER<0.05, as we enforced comparable FWER by iteratively 282 

lowering the significance threshold, for each of the models (Appendix 2). The choice of risk 283 

alpha does not impact the relative performance of the models, and we can expect models best 284 

powered for FWER<0.2 to also be best powered at other FWER levels. 285 

Finally, we reported the proportion of false positive clusters out of all significant clusters 286 

(cluster FDR). We labelled false positive clusters, the groups of significantly associated, 287 

contiguous vertices that did not contain a true positive association. 288 

In follow up analyses, we simulated associations on a single type of vertex-wise 289 

measurements, in order to evaluate the probability of false positive (FWER) arising on the same 290 

type of measurements, other types of measurements as well as contra-lateral regions.  291 

2.6.5. Prediction from significant vertices 292 

We evaluated the prediction accuracy achieved from the brain regions reaching significance, 293 

in the different mass-univariate models. We used prediction as a meta-criterion to compare the 294 

model performances, as it is dependent on power, true and false positives, and association effect 295 

sizes. We selected the most significant vertex in each cluster and constructed a linear predictor 296 

using association weights (   , see (1) and (2)) estimated from the different mass-univariate 297 
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analyses. Because some significant clusters might contain several independent signals, we also 298 

built predictors that included all significant vertices. We evaluated the prediction of in the 299 

independent UKB and OASIS3 samples. 300 

 2.6.6. Mass-univariate analyses of UK Biobank phenotypes  301 

Next, we performed mass-univariate vertex-wise analyses on five UKB phenotypes that 302 

showed significant replicated morphometricity (15): age, sex, BMI, smoking status and fluid 303 

intelligence. We used the raw fluid intelligence score provided by the UKB,  304 

a non-standard test which has demonstrated some reliability in a test-retest analysis (25).  305 

For each UKB phenotype and model, we reported the number of significant vertices, number 306 

of significant clusters as well as their sizes. We defined significance using a Bonferroni 307 

significance threshold of 0.05/(652283*5)=1.5e-8, which accounts for the total number of tests 308 

performed. For those phenotypes, the true pattern of association is unknown which prevents 309 

evaluation of the false positive rate (or power) of the different approaches. However, false 310 

positives or redundant associations should not improve prediction accuracy. In this regard, we 311 

evaluated each GLM or LMM model in both the UKB replication and OASIS3 datasets. As 312 

above, we used linear predictors, and reported the prediction accuracy (correlation) controlling 313 

for age, sex, ICV and site. In OASIS3, we also corrected for clinical status (Alzheimer’s disease 314 

and mild cognitive impairment).  315 
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3. Results 316 

3.1. Phenotypes simulated under H0  317 

We found that all GLM and LMM models behaved well under the null hypothesis, as 318 

indicated by no inflation of test statistic, FPR, or of false positive rate (FWER). As expected 319 

under a stringent Bonferroni correction, all approaches were conservative as indicated by 320 

FWER<3% (SFig. 1). 321 

3.2. Phenotypes simulated under H1  322 

3.2.1. Inflation of test statistics 323 

First, we quantified whether we could observe an inflation of test statistics on the vertices not 324 

associated with the simulated phenotypes. As expected in presence of correlation between truly 325 

associated and null vertices, we observed a global inflation of (median) test statistics when using 326 

GLMs (Figure 2, STable 1). This was confirmed by an FPR greater than 5% for all GLM 327 

models even though controlling for covariates or PCs, reduced the inflation of test-statistics 328 

compared to the “no covariates” GLM. In comparison, LMMs appropriately controlled the 329 

inflation of test statistics on null vertices (λ<1 and FDR<5%; Figure 2, STable 1). 330 

3.2.2. True Positive Rate  331 

First, we confirmed that the TPR (after Bonferroni correction) was dependent on the scenarios 332 

which corresponded to different effect sizes for the vertices. For example, about 70% of the truly 333 

associated brain regions were detected in the case of a simple trait (10 associated vertices each 334 

accounting for 2% of the phenotypic variance on average). On the other hand, less than 5% of 335 
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the associated brain regions were identified for the most complex phenotypes (scenario 3, 1000 336 

vertices each accounting for 0.04% of variance, Figure 2, STable 1).  337 

Across all scenarios, LMMs exhibited a slightly reduced TPR compared to the GLMs (Figure 338 

2, STable1). We investigated this result using phenotypes simulated from a single type of 339 

measurement. We found TPR of LMMs to be especially reduced on subcortical thickness and  340 

surface area (SFig. 2). 341 

 342 
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 343 
Figure 2: Performance of GLMs and LMMs for mass-univariates vertex-wise analyses: test inflation, statistical power and false positive rate.  344 
The columns correspond to the different scenarios considered when simulating traits. We simulated 100 phenotypic traits for each scenario. Bars 345 
represent +/- SE across the 100 replicates. Clusters are composed of groups of contiguous vertices each significantly associated with the 346 
phenotype (after Bonferroni correction). We labelled them as false positives if they did not include a true positive association. 347 
 348 
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 349 

3.2.3 False positives 350 

Here, we evaluated the occurrence of false positive vertices or clusters from our simulations. We 351 

found that every single simulation yielded at least 1 false positive vertex after Bonferroni 352 

correction (FWER=1, Figure 2). We noted that the FWER of 0.97 (SE=0.02) found for LMMs 353 

in the scenario of “1000 associated vertices”, came from three simulations returning no 354 

significant associations.  355 

When evaluating the results at a cluster level, we found that using GLMs almost always 356 

resulted in one or more false positive cluster (Figure 2, STable 1), leading to cluster 357 

FWER>85%. Cluster FWER was reduced to 49-72% by using LMMs (Figure 2, STable 1). 358 

Despite this improvement, no model ensured a cluster-FWER below 5%. LMMs also minimised 359 

the proportion of false positive clusters (cluster FDR), compared to the GLM approaches. At the 360 

extreme, more than 70% of the significant clusters were false positives using GLMs without 361 

covariate. This reduced to about 60% when controlling for age, sex and ICV and further reduced 362 

to less than 17% using LMMs (Figure 2, STable1). 363 

Next, we simulated phenotypes associated with a single type of measurement and reported the 364 

FWER for each type of measurement in SFig. 3-6. This allowed evaluation of whether false 365 

positives could appear as a result of associations with vertices from other types of measurements. 366 

We found that using GLMs resulted in contamination of signal between all the different types of 367 

measurements, as indicated by FWER>5% (SFig. 3-6). In comparison, LMMs always minimised 368 

the probability of false positives appearing on non-associated types of measurement. In 369 
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particular, LMMs ensured that associations on the cortex did not inflate the false positive rate on 370 

subcortical structures, and vice versa (FWER<5%). 371 

  372 

3.2.4. Statistical power 373 

We found that the models differ in terms of false positive rate, which limits the direct 374 

comparison of TPR. Instead, we reported the statistical power, which consists in the TPR for a 375 

fixed level of FWER (cluster FWER<0.2). We found the LMMs to be more powerful than the 376 

GLMs (Figure 2, Supp. 2).    377 

 3.2.5. Mapping precision 378 

We defined mapping precision as the median size of the true positive clusters. LMMs led to a 379 

more precise localisation of the associations by minimising the size of true positive clusters 380 

(whether we looked a clusters median or maximal size, Figure 3, STable1). 381 

The median size of true positive clusters was reduced by a factor greater than ten on subcortical 382 

measurements, and by a factor greater than two on cortical thickness when using LMMs (STable 383 

1). Of note, positive clusters on cortical surface area were particularly small (most clusters were 384 

composed of a single vertex), independent of the model used, Figure 3, STable 1). However, 385 

LMMs still offered a greater precision than the GLMs when considering the maximal cluster size 386 

(STable 1, SFig. 3-6). 387 

3.2.6. Prediction accuracy from significant vertices 388 

As a way of aggregating the previous metrics of performance, we compared prediction 389 

accuracy achieved from significant vertices, using the UKB replication sample. Across all 390 

models and scenarios, selecting the top vertex per significant cluster maximised prediction 391 
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accuracy, compared to including all significant vertices. This was expected, as significant 392 

vertices from the same cluster tag likely redundant information, leading to overweight the 393 

prediction signal coming from large clusters.   394 

In simulation scenarios 1 and 2, we found that including more covariates in the GLMs 395 

resulted in greater prediction accuracy despite that predictors included fewer vertices (Figure 3, 396 

STable 1). In addition, LMMs yielded marginally better prediction accuracy than the best GLM 397 

using even fewer vertices (Figure 3, STable 1), consistent with observation from previous 398 

studies (6, 9). For the third simulation scenario, the prediction accuracy was comparable and 399 

limited for all models (Figure 3, STable 1).  400 

3.2.7. Analyses using smoothed cortical surfaces 401 

We repeated the analysis using smoothed cortical meshes of surface and thickness 402 

(FWHM=20mm), which is more commonly used in the literature than unsmoothed meshes 403 

(STable 4-8). We sought to investigate how robust our results were to such variation of MRI 404 

processing.  405 

Overall, smoothing did not change the results of the model comparison. LMMs resulted again 406 

in a reduced false positive rate (lower cluster FWER and cluster FDR) as well as reduced power 407 

(seemingly more important than in the unsmoothed case). LMMs maximised mapping precision 408 

and prediction accuracy, despite relying on fewer significant clusters (SFig. 7).  Of note, 409 

performing analyses on smoothed data decreased the mapping precision, leading to true positive 410 

clusters roughly ten times larger on cortical meshes (Figure 2, SFig. 7). 411 

Data smoothing resulted in a large inflation of test statistic and FPR for GLMs (Figure 2, 412 

SFig. 7), which is to be expected as smoothing increases the amount of correlation between 413 
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vertices. We noticed that smoothing led to an increase of cluster FWER for the GLM with 10 414 

PCs, while it decreased cluster FWER for the LMMs (despite the associated vertices and effect 415 

sizes remaining the same). This result warrants a more fined-grained evaluation of the 416 

associations. We can only hypothesise that the 20mm (FWHM) smoothing can induce medium-417 

range correlations (hence medium range false positives in GLMs) while it also increases local 418 

correlation which might aggregate false positive clusters in LMMs. 419 
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 420 

Figure 3: Mapping precision and prediction accuracy from significant vertices between the different models of mass-univariate analyses  421 
The columns correspond to the different simulation scenarios. We simulated 100 phenotypic traits for each scenario. Bars represent +/- SE across 422 
the 100 replicates. Clusters are composed of groups of contiguous vertices each significantly associated with the phenotype (after Bonferroni 423 
correction). We labelled them as true positives if they included a true positive association. (Mapping) precision refers to the median size of the 424 
true positive clusters. 425 
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3.3 Morphometricity of the phenotypes 426 

First, we confirmed that the morphometricity estimates of our simulated traits matched the values 427 

chosen in simulations (SFig. 8). For the five UKB phenotypes, we also found consistent 428 

morphometricity using the three LMM models (STable 2), suggesting associations across all 429 

types of vertex measurements.  430 

BMI and fluid intelligence exhibited large and moderate morphometricity (R
2
=0.51 (SE=0.031) 431 

and R
2
=0.17 (SE=0.034)) but only a limited association with age, sex or the first 10 principal 432 

components from vertex-wise data (adjusted R
2
 with ten PCs: R

2
=0.032 for fluid intelligence, 433 

R
2
=0.033 for BMI), which resembles the case of our simulations. Age and sex displayed high 434 

morphometricity (R
2
=0.83 (SE=0.026) and R

2
=0.99 (SE=0.024)) and large associations with the 435 

first ten PCs (adjusted R
2
=0.41 for age, R

2
=0.43 for sex). Smoking status is a discrete variable 436 

(non-smoker, former smoker, still smoking) with a morphometricity of R
2
=0.12 (SE=0.029), and 437 

adjusted R
2
=9.2e-3 with first 10 PCs (STable 2). Note that the morphometricity estimates are 438 

slightly larger than the ones reported previously (15), which had mean cortical thickness and area 439 

regressed out.  440 

3.4. Analysis of UK Biobank phenotypes 441 

We sought to confirm the differences in model performance by applying them to real phenotypic 442 

traits. Using GLM without covariates resulted in many vertices and clusters reaching 443 

significance (Figure 4, STable 2).  Unsurprisingly, correcting for covariates which account for a 444 

large fraction of the phenotypic variance (see adjusted R
2
 with covariates and PCs, STable 2), 445 

drastically reduced the number of associations in the GLMs. For example, correcting for ten PCs 446 

in mass-univariate analyses of age and sex reduced the number of associated vertices by a factor 447 



24 

 

 

8-13, compared to the GLM without covariates (Figure 4, STable 2). For smoking status, the 448 

number of significant vertices and clusters also dropped despite a negligible association with PCs 449 

(Figure 4, STable 2). Similarly, for fluid intelligence, correcting for the top 10 PCs did not 450 

remove much of the trait variance over controlling for age sex and ICV (adjusted R
2
=0.030 with 451 

age, sex, ICV, adjusted R
2
=0.034 when further controlling for PCs) though it greatly reduced the 452 

number of associations. In addition, the more covariates we corrected for, the smaller the size of 453 

the associated clusters, suggesting they do remove confounding effects. 454 

 455 
Figure 4: Number of significant clusters and prediction accuracy for the real UKB phenotypes 456 
Bars represent the 95% confidence intervals of the prediction accuracy (correlations). Dots indicate prediction accuracy in the UKB replication 457 
sample, while stars correspond to the prediction achieved in the OASIS3 sample. Prediction accuracy is reported controlling for age, sex (when 458 
pertinent), ICM, site/machine. In the OASIS3 dataset, we further controlled for clinical status. The dashed lines correspond to the estimated 459 
morphometricity, which corresponds to the theoretical maximum prediction accuracy achievable from a linear predictor. 460 
 461 
 462 
We found that across all phenotypes, LMMs resulted in a more parsimonious pattern of 463 

associations (Figure 4, STable 2). Thus, using the LMM with a single random-effect 464 

component, we identified 5 clusters associated with BMI, 8 with age and 6 with sex (STable 2). 465 
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LMM with covariates yielded fewer associations, while LMM with multiple random-effects was 466 

the most conservative (STable2).  467 

Next, we compared the prediction accuracy achieved from the vertices reaching significance 468 

using each model (Figure 4, STable 2). Predicting our traits of interest allows evaluation of how 469 

power and false positive rate of the different models may counterbalance each other. In addition, 470 

prediction into independent samples quantifies the generalizability of findings obtained in the 471 

different mass-univariate approaches. For BMI, we found that prediction accuracy from GLMs in 472 

the UKB replication sample was greater than that in the OASIS3 sample, which suggests that 473 

GLMs based predictors capture information that is sample specific (e.g., the same confounders 474 

are more likely to be shared in the same cohort than across different cohorts). In contrast, the 475 

prediction accuracy from LMMs was comparable between the UKB and OASIS3 samples, 476 

pointing towards a better generalizability of the prediction. This suggests that the higher 477 

prediction accuracy in the UKB replication sample for GLM is likely to be driven by 478 

confounding factors shared between UKB data sets. The comparable performance of GLM and 479 

LMM seen on OASIS3 for BMI aligns with our simulations.  480 

For age and sex prediction, prediction accuracy of LMMs was sometimes inferior to that 481 

achieved from GLMs, in particular those from the simplest models (“no Covariates” and “age, 482 

sex, ICV”). Overall, prediction based on LMMs generalised well (comparable accuracy in the 483 

UKB and OASIS3), while the GLMs often displayed heterogeneous performances across the test 484 

samples (in particular for the GLMs with PCs, which may suffer from PCs being different 485 

between samples).  486 

Regarding fluid IQ and smoking status, no LMM predictor was available, and the different 487 

GLMs resulted in comparable, albeit limited prediction accuracy.  488 
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 3.5. Description of associated regions  489 

We listed the significant associations identified using LMM (global BRM) in STable 3 490 

(SFig.9-11 for Manhattan plots, SFig. 12-16 for brain plots). The significant associations were in 491 

the range of R
2
=0.5-1%. Most associations were observed with subcortical volumes though the 492 

top cluster for sex was spatially located at the border of the lateral-orbitofrontal and medial 493 

orbitofrontal gyri (based on the Desikan atlas(26)). Out of the 85 vertices associated with age, 494 

sex and BMI, 68 replicated in an independent UKB sample (p<0.05/85, Table 2). In particular, 495 

4/11 associations replicated for BMI, 43/47 for age, and 21/27 for sex. The replication rate was 496 

slightly lower in the OASIS3 dataset, where none of the vertices reached significance for BMI, 497 

15/47 associations were replicated for age, and 12/27 for sex. Overall, the sign of the 498 

associations was consistent across the 3 datasets (STable 3).    499 

4. Discussion 500 

Using extensive and realistic simulations, we evaluated the statistical power, false positive 501 

rate and precision of GLMs and LMMs for vertex-wise grey-matter association studies. In 502 

particular, we evaluated the different models in the context of big-data neuroimaging (large 503 

sample size but even greater number of correlated brain vertices) (27). We consistently found 504 

that using state-of-the-art GLMs resulted in a large number of false positive associations and 505 

clusters, whether we used smoothed or not-smoothed grey-matter surfaces. Thus, across all 506 

scenarios tested, more than 60% of the significant clusters were false positives using a standard 507 

GLM that controlled for age, sex and ICV. In comparison, false discovery rate was below 17% 508 

using LMMs, though still greater than the 5% expectation (STable 1, Figure 2, SFig. 7). In 509 

addition, we showed that unlike GLMs, LMMs could appropriately separate cortical from 510 
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subcortical associations, even though signal contamination between thickness and surface still 511 

occurred (SFig. 2-5). 512 

Our results suggest that previously reported results from mass univariate vertex-wise analyses 513 

obtained using standard GLM approaches could contain many redundant associations, some of 514 

which are likely to be false positives induced by confounding factors that cause correlation 515 

between vertices (e.g. (28-31), see also Figure 1b). Note that albeit redundant in term of 516 

association and prediction, some of the brain regions identified using GLM may correspond to 517 

indirect manifestations of the trait/disease of interest, which may be relevant to understand the 518 

dynamics of grey-matter structure. Importantly, the type 1 error (greater than 5%) we observed in 519 

simulations also warns against taking for granted results from LMMs. 520 

The increased false positive rate for GLMs has been well documented in omics association 521 

analyses studies (e.g. GWAS (8, 14) or MWAS (6, 9)) and has been attributed to proximal and 522 

distal correlations between features, caused by factors independent of the trait of interest (e.g. 523 

genetic ancestry in genetics, (14), cell composition of the biological sample and smoking status 524 

in DNA methylation (6, 32)). On the other hand, LMMs can reduce the probability of generating 525 

false positives, by fitting all other vertices as random effects which accounts for the complex 526 

correlation structure between vertices within and between individuals. In brain imaging, more 527 

work is needed to identify the factors that contribute to local and distal correlations between 528 

vertices, hence inducing a correlation between true associations and “null” vertices, beyond the 529 

usual covariates or confounders used in neuroimaging (e.g. MRI scanner/artefact (1) or 530 

demographics (2)). 531 

LMMs yielded fewer true positive associations, using the Bonferroni adjusted significance 532 

threshold (in particular for the simulated associations on the subcortical nuclei (SFig. 2)). 533 
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However, this result must be interpreted with caution as it may be partly due to a more stringent 534 

control of false positives, resulting in overall fewer vertices reach significance (Figure 2, STable 535 

2). To better compare the models performances, we estimated statistical power (i.e. TPR for a set 536 

false positive rate) and noted that the LMMs were more powerful than the GLMs  (Figure 2, 537 

STable 2, Supp. 2).  538 

Despite this, LMMs are known to suffer from a power reduction, which arises from the double 539 

fitting of the vertex of interest, once as fixed effect and again as a random effect (eq. 2)(7, 33). 540 

For subcortical structures, the effect of double-fitting could be exacerbated by the high level of 541 

correlation between vertices. A workaround (7) is to exclude the candidate vertex (and vertices 542 

strongly correlated) from the BRM calculation (33), though this requires computation of the 543 

BRM p times (complexity is O(pN
3
), with N the sample size and p the number of vertices), 544 

which becomes impractical for large sample sizes (7, 33). In comparison, the current LMM 545 

implementation makes our analysis scalable to samples sizes of tens of thousands (computational 546 

complexity of O(pN
2
+N

3
+pN)) (6). It should be noted that Restricted Maximum Likelihood 547 

(REML) estimation approach used in LMMs requires substantially more computational resources 548 

than the GLMs and thus requires the use of high performance clusters.   549 

Beyond power and false positive rate, we observed from simulations that LMMs could 550 

pinpoint the grey-matter association with greater precision (smaller clusters of true positives, 551 

Figure 3). Lastly, we found that prediction achieved from clusters reaching significance in 552 

LMMs was on par with that from the best GLMs (Figure 3), despite fewer vertices included in 553 

the predictor. This suggests a higher specificity of the LMMs. Overall, our simulations indicate 554 

that LMM with a single random effect currently offers a good trade-off between power and false 555 
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positive rate. However, it still fails to ensure a cluster FWER below 5% (also reported on 556 

MWAS (6)), despite a stringent Bonferroni correction to account for multiple testing.  557 

Next, we applied the mass-univariate vertex-wise models to five real phenotypes of the UKB: 558 

age, sex, BMI, smoking status and fluid IQ. As in the simulations, the LMMs identified fewer 559 

vertices and clusters than the GLMs (Figure 4, STable 2). The LMM with multiple random-560 

effect components was the most stringent (a single cluster of association), consistent with 561 

simulations which showed it had the lowest FWER and statistical power. In contrast, the LMM 562 

with a single random-effect component identified several cortical and subcortical associations 563 

with BMI, age and sex (STable 3). Most (12/19) of the top vertices in the associated cluster 564 

replicated in the UKB left out sample, and 6 replicated in the OASIS3 sample (STable 3). The 565 

lower replication rate in OASIS3 may be due to a lower power even though we cannot rule out 566 

that the same confounders might act similarly on the two UKB data sets. Overall, replication 567 

may be warranted to conclude about an association in future studies, considering the inflation of 568 

false positives (even when using LMMs, Figure 2). The top associated vertices with age, sex and 569 

BMI each captured less than 1% of the phenotypic variance, suggesting that many more small 570 

associations are likely to account for the full morphometricity of the phenotypes (STable 2). Our 571 

results echo the warning against the risk of small associations being confounded (e.g. by 572 

artefacts) in big-data neuroimaging (27), which was confirmed by a recent exploratory study of 573 

putative MRI confounders in the UKB (3). Note that LMMs can reduce false positive 574 

associations caused by correlations across and within the different types of measurements 575 

(Figure 2, 3). Finally, unlike in our simulations (Figure 3), LMMs often resulted in lower 576 

prediction accuracy than GLMs in the UKB left out sample (Figure 4). Nonetheless, prediction 577 

from LMMs generalised better in the OASIS3 dataset (Figure 4) (24). This suggests that LMMs 578 
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result in a more robust and parsimonious predictor, less sensitive to sample specific vertex-wise 579 

patterns and confounders.  580 

In the past years, many studies have been published on the association between grey-matter 581 

structure and our phenotypes of interest (see STable 4-8 for a selective review of publications). 582 

Our simulation and empirical results suggest that some of these studies could report a substantial 583 

number of false positive or redundant associations. Nevertheless, due to the limitations outlined 584 

below, it is unclear which of these studies suffer from this issue and to which extent. 585 

Firstly, it has been shown in the omics literature, that power of LMM may be reduced for 586 

phenotypes strongly associated with the covariation between features (7, 34). This is likely the 587 

case for age and sex as indicated by their strong association with the PCs calculated from vertex-588 

wise data (STable 2). This may be an important limitation for phenotypes associated with a 589 

cascade of changes in grey-matter, for which LMM would be over conservative.    590 

In addition, LMM assumes a normal distribution of random effects, which may not be 591 

realistic for all phenotypes studied. It is equivalent to assuming highly regionalised and 592 

specialised brain regions, each displaying a small association with the phenotype. Thus, LMM 593 

may be sub-optimal under some architectures of association, such as if only a specific but sizable 594 

brain region is associated with the trait.  Several models have been proposed to relax the LMM 595 

hypothesis, for example, to include large/outlying associations as fixed effects (stepwise 596 

LMM(35)), break down the feature list into sets of small and large associations (data driven 597 

approach: MOMENT(6)), or consider more complex distributions using Bayesian LMMs 598 

(Bayesian alphabet (34, 36)). They remain to be evaluated in the context of vertex-wise analyses. 599 

More simulations are warranted, to study other trait architectures, different trait distributions 600 

(e.g. skewed, discrete) or to evaluate more sophisticated models. Of note, we limited our trait 601 
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complexity to 1,000 associated brain regions, even if the true pattern of association might be 602 

more complex. Our simulations suggest that LMM outperform GLM independently of the trait 603 

complexity, but also that larger samples are required to study traits with more complex 604 

architecture (Figure 2). Our framework of simulation may be easily adapted for such 605 

investigations, and offers the advantage of estimation of statistical power as well as false positive 606 

rate, which are not often reported at the same time (37, 38).  607 

The nature of the grey-matter regions identified in our GLM analyses of real phenotypes (for 608 

which the truth is unknown) can be a matter of debate, which depends on the (also unknown) 609 

nature of the correlation between vertices. Two key scenarios can explain the correlation but the 610 

data currently available to us does not allow to differentiate between them. First, the correlation 611 

could be solely due to confounders (e.g. Figure 1b), in which case the distal associations are 612 

false positives. Second, the correlation between vertices could reflect dynamic brain pathways 613 

relevant to the trait of interest. In this case, one could describe the GLM associations not found 614 

using LMM as redundant rather than false positives. Since we cannot differentiate between these 615 

two important causes of between-vertex correlation, we chose to label LMM models as 616 

parsimonious, until we understand better the effect of confounders on the vertices correlation 617 

structure as well as the longitudinal changes in grey-matter and their relationship with the 618 

phenotypes.   619 

Finally, some additional limitations are worthy of note as they may limit the interpretation of 620 

mass-univariate vertex-wise analyses (compared to GWAS results). First, grey-matter 621 

associations may be both causes or consequences of the phenotype studied, unlike GWAS 622 

findings, which can impact how to consider redundant associations. At one end of the spectrum 623 

are phenotypes such as age for which the direction of the causality is obvious (nothing causes 624 
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chronological age). When describing which parts of the brain are affected by aging, one may be 625 

interested in reporting all associations, including all indirect and redundant. Though, there is no 626 

guarantee that those brain regions correctly map the brain pathway of ageing as they might also 627 

reach significance due to confusion factors. On the other hand, for many other phenotypes, the 628 

direction of causality is unclear (e.g. smoking, BMI) and one may prefer a more parsimonious 629 

and robust brain mapping. Second, grey-matter vertices are semi-arbitrary features which may be 630 

defined and measured in different ways (e.g. different cortical meshes in FreeSurfer). For 631 

instance, the resolution of the cortical tessellation is arbitrary and thus so is the number of local 632 

vertices which are found to be significant. Hence, the results presented might differ if one were 633 

to use a different MRI processing or vertex definition (e.g., volume processing from SPM, 634 

coarser surface mesh). In addition, we used Bonferroni to control for multiple testing, although 635 

approaches based on RFT are more commonly used (STable 4-8)(16). RFT based correction is 636 

reportedly less stringent than Bonferroni, (at least for smoothed data, on which the RFT 637 

hypotheses are more likely to be met)(39), which suggests that RFT would also suffer from the 638 

inflation of test statistics that we reported.  639 

Furthermore, we did not consider all possible covariates in GLM analysis, focussing on the 640 

more commonly used in previous analyses (age, sex, ICV, STable 4-8). More work is needed to 641 

evaluate the extended set(s) of covariates which have been recently proposed, from a large-scale 642 

study of the UKB data(3). Finally, mass-univariate results may depend on the study sample used, 643 

which raises the question of generalisability into to samples from different age or ethnic groups 644 

or with different MRI qualities for instance.  645 

In summary, we found that results obtained using the current state-of-the-art models (GLMs) 646 

used in MRI-trait association analyses likely suffer from a large inflation of false positive or 647 
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redundant associations due to the unaccounted correlation between vertices. In contrast, LMMs 648 

allow to control for all vertices fitted as a random effect, which result in a more parsimonious, 649 

robust and conservative characterisation of the localised associations between a phenotype and 650 

grey-matter structure. However, LMM results should still be interpreted with caution as our 651 

simulations show that the false positive rate remains higher than the standard type 1 error of 5%, 652 

even after Bonferroni correction.  653 
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Figure 1: Illustration of the traditional confounding paradigm a) and of the confounding that 818 

may arise in association studies performed across correlated brain features b). 819 

One sided arrows represent a causal effect, and two-sided arrows a correlation. 820 

 821 

Figure 2: Performance of GLMs and LMMs for mass-univariates vertex-wise analyses: test 822 

inflation, statistical power and false positive rate.  823 

The columns correspond to the different scenarios considered when simulating traits. We 824 

simulated 100 phenotypic traits for each scenario. Bars represent +/- SE across the 100 825 

replicates. Clusters are composed of groups of contiguous vertices each significantly associated 826 

with the phenotype (after Bonferroni correction). We labelled them as false positives if they did 827 

not include a true positive association. 828 

 829 

Figure 3: Mapping precision and prediction accuracy from significant vertices between the 830 

different models of mass-univariate analyses  831 

The columns correspond to the different simulation scenarios. We simulated 100 phenotypic 832 

traits for each scenario. Bars represent +/- SE across the 100 replicates. Clusters are composed of 833 

groups of contiguous vertices each significantly associated with the phenotype (after Bonferroni 834 

correction). We labelled them as true positives if they included a true positive association. 835 

(Mapping) precision refers to the median size of the true positive clusters. 836 

 837 

Figure 4: Number of significant clusters and prediction accuracy for the real UKB phenotypes 838 

Bars represent the 95% confidence intervals of the prediction accuracy (correlations). Dots 839 

indicate prediction accuracy in the UKB replication sample, while stars correspond to the 840 

prediction achieved in the OASIS3 sample. Prediction accuracy is reported controlling for age, 841 

sex (when pertinent), ICM, site/machine. In the OASIS3 dataset, we further controlled for 842 

clinical status. The dashed lines correspond to the estimated morphometricity, which corresponds 843 

to the theoretical maximum prediction accuracy achievable from a linear predictor. 844 
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