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Abstract. The training of deep neural network classifiers results in de-
cision boundaries whose geometry is still not well understood. This is
in direct relation with classification problems such as so called corner
case inputs. We introduce zoNNscan, an index that is intended to inform
on the boundary uncertainty (in terms of the presence of other classes)
around one given input datapoint. It is based on confidence entropy, and
is implemented through Monte Carlo sampling in the multidimensional
ball surrounding that input. We detail the zoNNscan index, give an al-
gorithm for approximating it, and finally illustrate its benefits on three
applications.
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1 Introduction

Measures provide crucial insights in all computer science domains, as far as
they allow to quantify and then analyze specific problems [18], or to serve as
a building block for designing better algorithms [8]. In the blooming field of
machine learning leveraging deep neural networks, open problems remain that
are related to the position of decision boundaries in classification tasks. Little is
known about the geometrical properties of those [6, 16, 4]. Yet, the close prox-
imity of some inputs to those boundaries is getting more problematic with the
increasing amount of critical applications that are using deep neural networks.
The case of self-driving cars is an illustration of a critical application, where
corner-cases have been recently found in production models (leading to wrong
decisions) [17]; the inputs that cause the erroneous classifications are depicted
to be close to decision boundaries. There are also recent works that are volun-
tarily tweaking the decision boundaries around given inputs, so that ownership
information can be embedded into a target model [11].

While measures are inherently in use with neural networks to evaluate the
quality of the learned model over a given dataset, we find that there is a lack of
an index that provides information on the neighborhood of given inputs, with
regards to the boundaries of other classes. Visual inspections of suspicious zones,
by plotting in 2D a given decision boundary and the considered inputs is possible
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Fig. 1. An illustration of zoNNscan runs around two inputs. The example on the left (a
6 digit) is far from the model decision boundary, thus a zoNNscan at radius r returns a
value close to 0. The example on the right is another 6 from the MNIST dataset, that
is often misclassified (here as a 0, such as in [3]); its is close to the decision boundary
of the 6 class. zoNNscan returns a higher value (up to 1) for it, as some data samples
in the ball fall into the correct digit class.

[2]. In this paper, we propose an algorithm to output an index, for it helps to
quantify possible problems at inference time.

2 Zoning classification uncertainty with zoNNscan

Classically, given an input and a trained model, the class predicted by the classi-
fier is set to be the one with the higher score in the output vector [4]. These scores
can thus be considered as membership probabilities to the model classes: output
values close to 1 are to be interpreted as a high confidence about the prediction,
and conversely, values close to 0 show high probabilities of non membership to
the corresponding class. These scores also provide the information about the
uncertainty of the model for a given input : vector scores close to each other
indicate an uncertainty between these classes, and equal scores characterize a
decision boundary point [13]. Thereby, a maximum uncertainty output refers to
an input that causes inference to return an uniform vector of probabilities 1

C
for a classification task into C-classes. Conversely, minimum uncertainty corre-
sponds to an input that causes inference to return a vector of zeros, except for
the predicted class for which a one is set. zoNNscan evaluates the uncertainty of
predictions in a given input region. This is illustrated on Figure 1.

2.1 zoNNscan: definition

Given a discrete probability distribution p = {p1, ..., pC} ∈ [0, 1]C with ΣC
i=1pi =

1 (C designates the number of events), we remind the definition of the Shannon
entropy (b designates the base for the logarithm) :

Hb : [0, 1]C → R+

p 7→ ΣC
i=1(−pi logb(pi)).
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The maximum of Hb is reached in p = { 1
C , ...,

1
C } and is equal to logb(C) and

with the convention 0 logb(0) = 0, the minimum of Hb is 0. Subsequently, we
use a C-based logarithm to make HC output values in range [0, 1]. A classifier
M is considered as a function defined on the input space [0, 1]d (on the premise
that data are generally normalized for the training phase in such a way that all
features are included in the range [0, 1]), taking its values in the space P = {p ∈
[0, 1]C s.t. ΣC

i=1pi = 1}. We introduce the composite function ϕ = Hb ◦ M to
model the indecision the network has on the input space. More specifically, we
propose the expectation of ϕ(U), EZ[ϕ(U)] (with U a uniform random variable
on Z), on an input zone Z ∈ [0, 1]d, to be an indicator on the uncertainty of the
classifier on zone Z.

Definition 1. Let the zoNNscan index be, in zone Z:
B([0, 1]d)→ [0, 1]

Z 7→ EZ[ϕ(U)] =

∫
Z
ϕ(u)fU (u) du,

where B(Rd) refers to the Rd Borel set and fU the uniform density on Z.

The minima of EZ[ϕ(U)] depicts observations in Z that were all returning one
confidence of 1, and C−1 confidences of 0. Conversely, the maxima indicates full
uncertainty, where each observation returned 1

C confidence values in the output
vector.

2.2 A Monte Carlo approximation of zoNNscan

In practice, as data are typically nowadays of high dimensionality (e.g., in the
order of millions of dimensions for image applications) and deep neural networks
are computing complex non-linear functions, one cannot expect to compute the
exact value of this expectation. We propose a Monte Carlo method to estimate
this expectation on a space corresponding to the surrounding zone of a certain
input.

For inspection around a given input X ∈ [0, 1]d, we consider a ball B of
center X and radius r, as zone Z introduced in previous subsection. We perform
a Monte Carlo sampling of k inputs in a ball for the infinite-norm, corresponding
to the hyper-cube of dimension d, around X (as depicted on Figure 1). We are
generating inputs applying random deformations3 εi on each components Xi

such as max(−Xi,−r) ≤ εi ≤ min(1−Xi, r).
For instance, given a normalized input X and a positive radius r, Monte

Carlo sampling is performed uniformly in the subspace of Rd defined as:

Z = B∞(X, r) ∩ [0, 1]d.

The larger the number of samples k, the better the approximation of the
index; this value has to be set considering the application and the acceptable
computation/time constraints for inspection.

3 For more advanced sampling techniques in high dimensional spaces, please refer to
e.g., [5].
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Algorithm 1 Monte Carlo approximation of zoNNscan

Require: M, X, r, k
for i = 0..k do

x′ ← Monte Carlo Sampling in B∞(X, r) ∩ [0, 1]d

Pi ←M(x′) {Inference}
entropyi ← HC(Pi)

end for

return 1
k

k∑
i=1

entropyi

The zoNNscan index, for inspection of the surrounding of input X in a model
M, is presented on Algorithm 1.

3 Illustration use of zoNNscan

We now look at three example use cases for zoNNscan.

3.1 Uncertainty around a given input

A first zoNNscan use case is to assess at which distance and in which proportions
are other classes surrounding an interesting input X.

We experiment using the multi-layer perceptron (noted MLP hereafter) pro-
posed as an example in the Keras library [1], and with k = 1, 000 for the re-
maining of the experiments. Figure 2 presents the zoNNscan values with respect
various radii r, around two input examples (a 6 digit from MNIST and the im-
age of a ship from the CIFAR-10 dataset). A radius value r = 0 is equivalent
to the simple output vector corresponding to the inference of X, i.e., without
actual sampling in B. Our algorithm starts with a r = 0, up to 14. For the
top-experiment on the MNIST digit, the confidence value for r = 0 is high for
digit 6 (around 0.9), which is reflected by zoNNscan value to be low (around
0.2). When r increases, the confidence values of other classes are increasing pro-
gressively, which results for zoNNscan increasing sharply; at radii of r = [0.25, 1]
uncertainty in such a ball is critical.

For the bottom-experiment on the ship image the CIFAR-10 dataset, we ob-
serve at r = 0 and close a higher value (around 0.25), that captures the relatively
high score for the class ’cat’. The score remains around 0.25 up to r = 0.30, be-
cause other boundaries (’frog’ and ’truck’) are nearby. Finally zoNNscan tends
to zero because the ’truck’ class occupies the input space in its vast majority.
This last fact illustrates that zoNNscan is based on probability vectors, and thus
follows the dominant class in them. For the use of zoNNscan at inference time,
it is of course more desirable to have low r values, so that the inspected zone
remains confined around the input to examine.

4 Note that for X ∈ [0, 1]d and for r ≥ 1, B∞(X, r) ∩ [0, 1]d = [0, 1]d, then the space
of normalized data is totally covered by the sampling process.
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radius r

Fig. 2. zoNNscan values (dotted black line) on y-axes, with a varying radius r ∈ [0, 1]
on x-axes. Mean confidence scores for each class in the explored zone are also reported
(colored lines). Top: MNIST dataset; a 6 digit classified by the MLP model. Bottom:
CIFAR-10 dataset; a ship classified by RESNETv2.

This experiment brings two observations: ( i) the study of the evolution of
zoNNscan values with growing radii is of interest to characterize surrounding
or problematic zones (e.g., sharp increase of the ’truck’ class starting at 0.25 on
Figure 2). ( ii) for a r covering the whole input space, we obtain an estimate of the
surface occupied by each class in the model (e.g., class 8 dominates on MNIST,
while class ’truck’ is covering most of classification space for the CIFAR-10 case).

3.2 Disagreement on corner case inputs

Arguably interesting inputs are the ones that make several deep neural network
models disagree, as depicted in the case of self-driving cars [17]. Indeed, they
constitute corner cases, that have to be dealt with for most critical applications.
While this problem may be masked using voting techniques by several indepen-
dent classifiers [9], we are interested in studying the zoNNscan value of those
particular inputs.

We add two models for the experiment, also from Keras [1]: a convolutional
neural network (CNN), and a recurrent neural network (IRNN), and focus on
the MNIST dataset. Given two models, those inputs are extracted by comparing
the predictions of the two models on a given dataset. In the MNIST dataset, we
identify a total of 182 disagreements (i.e., corner cases) for the three models.

We plot on Figure 3 the two following empirical distributions. First, in blue,
the distribution of 1, 000 zoNNscan values around test set inputs; second, in
red, the distribution of the 182 corner case inputs. The zoNNscan index is also
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Fig. 3. Relative distributions of zoNNscan around 1, 000 random test set inputs (blue)
and the 182 corner case inputs (red). From left to right: the MLP, CNN and IRNN
models.

estimated with r = 0.025. We observe a significant difference in the distributions
(means are reported on Table 1).

In order to formally assess this difference in the two distributions, we per-
formed the statistical Kolmogorov-Smirnov 2-sample test [15]. It tests the null
hypothesis that two samples were drawn from the same continuous distribution.
The p-values of this test correspond to the probabilities of observing the val-
ues under the null hypothesis. In any of the three case (MLP, CNN and IRNN
models), the test rejects the null hypothesis with p-values lower than 10−3.

3.3 Effects of watermarking on model boundaries

As a final illustration, we consider the recent work [11] consisting in water-
marking a model. This operation is performed as follows: first, a watermark key
consisting of inputs is created. Half of the key inputs are actually adversarial
examples [7]. Second, the watermarking step consists in finetuning the model
by retraining it over the key inputs, in order to re-integrate the adversarial ex-
amples in their original class. That last step is by definition moving the model
decision boundaries, which constitutes the watermark that the model owner has
sought to introduce.

All three models are watermarked with keys of size 100. Each input of those
three keys is used as input X for zoNNscan, for 100 runs of Algorithm 1 with
k = 1, 000 samples each, r = 0.05. Two distributions of zoNNscan values are
computed: one for the un-marked model, and another for the watermarked one.

If the watermarked model were indistinguishable from the original one, the
two distributions would be the same. Once again, the Kolmogorov-Smirnov 2-
sample test returns p-values lower than 10−3. This reflects the fact that bound-
aries have changed around the key inputs, at least enough to be observed by
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zoNNscan. As the watermarking process is expected to be as stealthy possible,
this highlights that the key is to remain a secret for the model owner only [11].

Table 1. Mean of the empirical zoNNscan distributions, for the three neural networks.

Scenario MLP CNN IRNN

1,000 inputs from test set 0.3709 0.3457 0.2403

182 corner case inputs 0.6857 0.6564 0.2989

4 Related works

While some metrics such as distance-from-boundaries [8] have been developed
for support vector machines for instance, the difficulty to reason about the clas-
sifier decision boundaries of neural networks have motivated research works since
decades. Lee et al. [12] proposed the extraction of features from decision bound-
aries, followed by [13] that targets the same operation without assuming un-
derlying probability distribution functions of the data. An interesting library
for visual inspection of boundaries, from low dimensional embedding is available
online [2]. Fawzi et al. propose to analyze some geometric properties of deep neu-
ral network classifiers [6], including the curvature of those boundaries. Van den
Berg [4] studies the decision region formation in the specific case of feedforward
neural networks with sigmoidal nonlinearities.

If one can afford to use an ensemble of models, as well as joint adversarial
training to assess the uncertainty of a model’s decisions, the work in [10] provides
an interesting approach; this makes it a good candidate for offline analysis of
decisions. Cross entropy is one of the most basic measure for the training of
neural networks. While it evaluates the divergence of the dataset distribution
from the model distribution, it is not applied to inspect the confidence in the
inference of specific zones in the input space. This paper addresses the relation
of the surrounding of a given input with respect to the presence of decision
boundaries of other classes; this relation is captured by the zoNNscan index,
possibly at runtime, by leveraging the Shannon entropy.

5 Conclusion

We introduced a novel index, zoNNscan, for inspecting the surrounding of given
inputs with regards to the boundary entropy measured in the zones of interest.
We have presented a Monte Carlo estimation of that index, and have shown its
applicability on a base case, on a technique for model watermarking, and on
a concern regarding the adoption of current deep neural networks (corner case
inputs). As this index is intended to be generic, we expect other applications to
leverage it; future works include the study of the link of zoNNscan values with
regards to other identified issues such as trojaning attacks on neural networks
[14], and on the intensification of the Monte Carlo search.
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