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Abstract This work aims to interpolate parametrized Reduced Order Model (ROM)29

basis constructed via the Proper Orthogonal Decomposition (POD) to derive a robust30

ROM of the system’s dynamics for an unseen target parameter value. A novel non-intrusive31

Space-Time (ST) POD basis interpolation scheme is proposed, for which we define ROM32

spatial and temporal basis curves on compact Stiefel manifolds. An interpolation is finally33

defined on a mixed part encoded in a square matrix directly deduced using the space part,34

the singular values and the temporal part, to obtain an interpolated snapshot matrix,35

keeping track of accurate space and temporal eigenvectors. Moreover, in order to establish36

a well-defined curve on the compact Stiefel manifold, we introduce a new procedure, the so-37

called oriented SVD. Such an oriented SVD produces unique right and left eigenvectors for38

generic matrices, for which all singular values are distinct. It is important to notice that the39

ST POD basis interpolation does not require the construction and the subsequent solution40
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of a reduced-order FEM model as classically is done. Hence it is avoiding the bottleneck41

of standard POD interpolation which is associated with the evaluation of the nonlinear42

terms of the Galerkin projection on the governing equations. As a proof of concept, the43

proposed method is demonstrated with the adaptation of rigid-thermoviscoplastic finite44

element ROMs applied to a typical nonlinear open forging metal forming process. Strong45

correlations of the ST POD models with respect to their associated high-fidelity FEM46

counterpart simulations are reported, highlighting its potential use for near real-time47

parametric simulations using off-line computed ROM POD databases.48
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Notations

Matn,p(R) Set of n× p matrices in R

Ip Identity matrix in Matp,p(R)

[y1, . . . ,yp] Matrix in Matn,p(R) Matrix with column vectors yi ∈ Rn

O(p) Orthogonal group on Rp
{
Q ∈ Matp,p(R), QTQ = Ip

}
G(p, n) Grassmann manifold Set of p linear subspaces in Rn

π−1(m) Fiber at m ∈ G(p, n)
If y1, . . . ,yp is an orthonormal basis of m

π−1(m) = {YQ, Q ∈ O(p), Y = [y1, . . . ,yp]}

Tm := TmG(p, n) Tangent space of G(p, n) at m
For Y ∈ π−1(m), one model of Tm is{
Z ∈ Matn,p(R), ZTY = 0

}
St(p, n) Stiefel manifold

Set of ordered p-tuples independent

vectors in Rn

Stc(p, n) Compact Stiefel manifold

Set of ordered p-tuples of orthonormal

vectors in Rn

Stc(p, n) =
{
Y ∈ Matn,p(R), YTY = Ip

}
HorY Horizontal space at Y HorY :=

{
Z ∈ Matn,p(R), ZTY = 0

}
v ∈ Tm Velocity vector on the tangent

plane Tm

Represented by a horizontal lift Z ∈ HorY, with

Y ∈ π−1(m)

S(i) Snapshot matrix S(i) ∈ Matn,m(R) corresponding to parameter

value λi

1 Introduction49

Computational metal forming has been widely used in academic laboratories and the man-50

ufacturing industry over the last decades, becoming nowadays a mature, well established51



ST Interpolation of Parametrized Rigid-Viscoplastic FEM Problems 5

technology. Nevertheless, new challenging fields are emerging, among others, uncertainty52

quantification, optimization of processes and parameter identification in design analysis [1,53

2]. One of the key challenging topics mentioned in [1] is the introduction of Model Or-54

der Reduction (MOR) methods to combat the high computational cost, which is also of55

paramount interest in the above-mentioned fields. Moreover, due to the multiple sources of56

strong non-linearities inherent in manufacturing problems, design optimization and multi-57

parametric studies of large scale models turns out to be prohibitively expensive. Indeed,58

simulation of complex configurations can be intractable since the computational times can59

highly increase.60

To this end, meta-model techniques are often used to tackle the computational burden.61

These rely on a manifold learning stage during which we need to capture the original space62

where the solution of the model problem lies. This data collection consists of solving63

the full-scale model for an ensemble of training data over the parametric range and is64

commonly referred to as the offline stage. Even though meta-models can speed up the65

simulation time, nevertheless their construction with standard computations based on66

full-order models is expensive.67

Closely related to the concept of metamodeling, Reduced Order Models (ROMs) have68

been chosen to reduce the problem’s dimensionality while at the same time maintaining69

solution accuracy. ROMs can decrease the computational complexity of large-scale sys-70

tems, solving parametrized problems and offering the potential for near real-time analysis.71

The methods for building ROMs can be classified into two general families: a priori and72

a posteriori ones. The well known a priori MOR includes methods such as the Proper73

Generalized Decomposition (PGD) [3], and the a priori reduction method (APR) [3,4].74
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The main characteristic of all these methods is that they do not require any precomputed75

ROMs. In the second class of methods, the reduced basis is built, a posteriori, from the76

state variable snapshots in the parametric space. One popular method is the POD [5,6,77

7], also known as Kharhunen-Loève Decomposition (KLD) [8,9], Singular Value Decom-78

position (SVD) [10] or Principal Component Analysis (PCA) [11,12,13,14].79

For nonlinear systems, even though a Galerkin projection reduces the number of un-80

knowns, however, the computational burden for obtaining the solution could still be high81

due to the computational costs involved in the evaluation of nonlinear terms. Hence, the82

nonlinear Galerkin projection principally leads to a ROM, but its evaluation could be more83

expensive than the corresponding one of the original problem. To this effect, to make the84

resulting ROMs computationally efficient, a sparse sampling method is used, also called85

hyper reduction, to mention among others, the missing point estimation (MPE) [15], the86

empirical interpolation method (EIM) [16], the discrete empirical interpolation method87

(DEIM) [17], the Gappy POD method [18], and the Gauss-Newton with approximated88

tensors (GNAT) method [19]. Thus, all these methods imply the solution of a new ROM89

FEM problem.90

In the case of a parametric analysis using POD basis interpolation on Grassmann man-91

ifolds [20,21], the method starts with a training stage during which the problem is solved92

for several training points. Then, using the FEM solutions, the full-order field ‘snapshots’93

are compressed using the POD to generate a ROM that is expected to reproduce the94

most characteristic dynamics of its high-fidelity counterpart solution. However, the rele-95

vant information is contained in the vector spaces generated by the (left or right) singular96

vectors of the snapshot matrices. Now, for a new parameter value, interpolation methods97
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have to be defined from such relevant subspaces spanned by the POD basis vectors [20].98

Other approaches obviously could be considered, such as interpolations computed on the99

space of matrices of a fixed rank, whereby the mechanical origin of the problem imposes100

to consider the vector subspaces, and not the matrices themselves [21]. Nevertheless, such101

methods as the one of interpolation between two positive semidefinite matrices of fixed102

rank [22], can be used in the special case of interpolation between two precomputed ROM103

basis and a single parameter which is not of general interest in mechanical applications.104

To interpolate between different vector spaces of the same dimension (encoded into105

the mode p of the POD), a Grassmann manifold [23] must be used, which is the set of106

p-dimensional subspaces of Rn. Such a manifold is in fact a Riemannian manifold [24],107

so we can construct geodesics between two points, and use such geodesics to define a108

logarithm map to linearize, and conversely using the exponential map to return back to109

the Grassmann manifold. While an interpolation cannot be done directly on Grassmann110

manifolds, linearization allows computing such an interpolation, at least locally once a111

reference point has been selected [20,21]. To any new parameter value, thus we get a new112

subspace obtained from interpolation between all subspaces related to the spatial eigen-113

vectors of the snapshot matrices. Another approach using inverse distance weighting was114

initiated in [21,25], but it also relies on several choices (as one of the weights). Further-115

more, an extension of Neville-Aitken’s algorithm to Grassmann manifolds which computes116

the Lagrange interpolation polynomial in a recursive way from the interpolation of two117

points was recently presented [26].118

In the standard POD interpolation mentioned above [20], the spatial ROM basis cor-119

responding to the target point is used to generate a ROM FEM, which is expected to120
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have a lower computational cost compared to the high-fidelity problem. The key idea in121

the Space-Time (ST) POD basis interpolation proposed by [27,28], is that the reduced122

spatial and temporal basis are considered separately, both defining points on two dif-123

ferent Grassmann manifolds. However, such points are strongly related: a spatial vector124

directly corresponds to a temporal vector, and vice versa. From this, firstly we need to125

consider the p-tuples of spatial (and temporal) vectors, instead of the p-dimensional sub-126

space, which defines points on an associated compact Stiefel manifold, strongly connected127

to Grassmann manifolds. Contrary to what is suggested in [28], we propose a different128

interpolation scheme, as we do not perform interpolation of the singular values, followed129

by spatial and temporal calibration. Instead, we exploit the dependence between the spa-130

tial and temporal parts. Indeed, using an interpolation algorithm defined on a Grassmann131

manifold, we derive curves on a compact Stiefel manifold, which are no longer interpolat-132

ing, but which nevertheless allow us to obtain new singular vectors for the spatial part,133

and separately for the temporal part. Such space and temporal singular vectors finally are134

taken to define a mixed part on which a classical interpolation can be computed. In the135

end, we get in this way a ROM matrix corresponding to a new parameter value. Note that136

in order to obtain a well-defined curve on compact Stiefel manifolds, we have to introduce137

a new procedure, the so-called oriented SVD. Such an oriented SVD produces unique right138

and left eigenvectors for snapshot matrices, supposed to be generic matrices, for which all139

non–zero singular values are distinct.140

The off-line stage in the ST approach consists of solving FEM problems which are141

corresponding to the training points of the given parameter. The on-line stage concerns142

the use of a curve defined on a compact Stiefel manifold to determine the spatial and143
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temporal ROM basis for the target point, in order to construct the related ROM snapshot144

matrix. In fact, the ST interpolation offers the advantage of reconstructing a snapshot145

matrix without relaunching ROM FEM computations. To this end, it results in near-real-146

time solutions due to direct matrix multiplications in the on-line stage.147

We could also mention some other ST approaches [29,30,31,32], where neither Grass-148

mann nor compact Stiefel manifolds are considered. For instance, an approximation of the149

spatial and temporal basis functions by linear interpolation of their modes is proposed150

in [29] to study the flow past a cylinder at low Reynolds numbers. A non-intrusive ROM151

approach for nonlinear parametrized time-dependent PDEs based on a two-level POD152

method by using Radial Basis Functions interpolation is presented in [30,33].153

The method proposed in this work is applied to a coupled thermomechanical rigid154

visco-plastic (RVP) FEM analysis based on an incremental implicit approach [34,35,36,155

37]. Note that the RVP formulation specifically is tailored for metal forming simulations,156

where the plastic flow is unconstrained and usually of finite magnitude, involving large157

strain-rates and high temperatures. In the present study, all simulations are performed158

by using an in-house Matlab code which consists of two independent FEM solvers. A159

mechanical solver for the viscoplastic deformation analysis [38] and a thermal solver for160

the heat transfer analysis. A staggered procedure is used to solve the system of coupled161

equations.162

The paper is organized as follows: in section 2, the Proper Orthogonal Decomposition163

is presented, followed by an introduction to some basic notions about the geometry of164

the Grassmann and Stiefel manifolds to make the article reasonable self-contained. POD165

basis interpolation on Grassmannian manifolds is introduced considering the underlying166
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formulation of the logarithm and the exponential map. The core of this paper is illustrated167

in section 3, where the computational framework for the ROM adaptation based on a168

novel non-intrusive Space-Time POD basis interpolation on compact Stiefel manifolds is169

developed. The following section 4 covers the rigid visco-plastic formulation, the general170

framework of the thermal field equations, and the thermomechanical coupling. In section 5,171

the interpolation performance applied to a metal forming process is shown, as well as172

further computational aspects are discussed. Finally, section 6 highlights the main results173

and some important outcomes.174

2 Space–Time POD, Grassmann and compact Stiefel manifolds175

Let us recall here the important link between Proper Orthogonal Decomposition and176

Grassmann manifold [20,39,40,21,25].177

Assume S ∈ Matn,m(R) to be any real matrix of size n×m (with n ≥ m), taken here178

to be a snapshot matrix with n = 3NS obtained from the spatial discretization Ns, and179

m = Nt obtained from the time one. Any spatial POD of mode p leads to a p-dimensional180

vector space Vp ⊂ Rm such that the Frobenius norm181

‖S−ΠpS‖2F182

is minimal, where matrix Πp corresponds to the orthogonal projection on Vp (see [21] for183

more details). Such a matrix Πp is directly obtained from a Singular Value Decomposition184

(SVD) of S. Indeed, let us write a SVD185

S = ΦΣΨT186
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with Φ = [φ1, . . . , φr] and Ψ = [ψ1, . . . , ψr], where the columns φk ∈ Rn and ψk ∈ Rm187

form a set of orthonormal vectors, and Σ ∈ Matr,r(R) is a diagonal matrix, where r188

denotes the rank of S. Then, we can define Φp := [φ1, . . . , φp] ∈ Matn,p(R) and we obtain189

Πp = ΦpΦ
T
p .190

In this classical approach, the relevant object is not the reduced matrix Sp := ΠpS,191

supposed to be of maximal rank, but the p-dimensional vector space Vp spanned by vectors192

φ1, . . . , φp, and thus the image of the matrix Φp. From this, interpolation has to be con-193

sidered on the set of all p-dimensional vector spaces, that is on the so–called Grassmann194

manifold G(p, n):195

G(p, n) := {Vp ⊂ Rn, dim(Vp) = p} .196

Note here that the point m := Vp ∈ G(p, n) defines a vector space spanned by the197

set φ1, . . . , φp represented by matrix Φp, however this matrix representation is not unique198

(see Example 1).199

Take now a set {λ1, . . . , λN} of parameter values leading to snapshot matrices S(1), . . . ,S(N)
200

with SVD201

S(k) = Φ(k)Σ(k)Ψ (k), Φ(k) = [φ
(k)
1 , . . . , φ(k)

r ], Ψ (k) = [ψ
(k)
1 , . . . , ψ(k)

r ],202

where φ
(k)
i are orthonormal vectors in Rn and ψ

(k)
j are orthonormal vectors in Rm.203

The classical approach [20,21] then considers the spatial POD of the snapshot ma-204

trices S
(1)
p , . . . ,S

(N)
p of mode p, so that we obtain points mi (i = 1, . . . , N) on G(p, n),205

respectively represented by the matrices206

Φ(k)
p := [φ

(k)
1 , . . . , φ(k)

p ] ∈ Matn,p(R),
(
Φ(k)
p

)T
Φ(k)
p = Ip.207
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To any new parameter value λ̃, it is possible to make an interpolation considering208

the spatial part based on the points mi ∈ G(p, n), using a local chart given by normal209

coordinates [20,21,25], in order to obtain a point m̃ ∈ G(p, n) represented by a matrix Φ̃.210

From such a point m̃ ∈ G(p, n), we deduce a p-dimensional vector space on which some211

POD-Galerkin approach [21] can lead to a new ROM model.212

On the contrary, we propose another approach as we consider a Space–Time interpola-213

tion, using both the spatial vector spaces represented by matrices Φ
(k)
p and the temporal214

vector spaces represented by matrices215

Ψ (k)
p := [ψ

(k)
1 , . . . , ψ(k)

p ] ∈ Matm,p(R),
(
Ψ (k)
p

)T
Ψ (k)
p = Ip.216

An important observation now is that matrices Φ
(k)
p (resp. Ψ

(k)
p ) directly define an ordered217

p-tuple of orthonormal vectors in Rn (resp. Rm), that is a point on the compact Stiefel218

manifold219

Stc(p, n) := {Ordered orthonormal p-tuple of vectors in Rn} .220

To obtain a Space-Time POD interpolation (instead of a spatial POD interpolation fol-221

lowed by Galerkin approach), we finally adopted the following strategy, when dealing with222

a parameter value λ̃:223

1. Define a curve on the compact Stiefel manifold corresponding to the spatial part224

λ 7→ Φ(λ) ∈ Stc(p, n)225

obtained using the already known interpolation algorithm on Grassmann manifold.226

2. In the same way, define a curve on the compact Stiefel manifold corresponding to the227

temporal part228

λ 7→ Ψ(λ) ∈ Stc(p,m).229
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3. Construct an interpolated curve λ 7→ S(λ) passing through the POD of mode p snap-230

shot matrices S
(k)
p , in order to obtain an interpolation of a ROM matrix S̃ := S(λ̃).231

In the next subsections, we give all important details to obtain such an interpolated curve232

λ 7→ S(λ). First, in subsection 2.1 we explain how to compute on Grassmann manifolds233

using their Riemannian structure to obtain explicit formulae for the geodesics defining234

normal coordinates. From this explicit formulae, we can deduce in subsection 2.2 a target235

algorithm in order to define the curves236

λ 7→ Φ(λ) ∈ Stc(p, n), λ 7→ Ψ(λ) ∈ Stc(p,m)237

on compact Stiefel manifolds. The question on how to define an interpolated curve for238

matrices S
(k)
p will then be addressed in section 3.239

2.1 Riemannian geometry on Grassmann manifolds240

We will summarize now some essential results about Grassmann manifolds. Such manifolds241

are in fact complete Riemannian manifolds [24], meaning for instance that we can define242

the length of a curve. Moreover, we can always construct a curve of the shortest length243

between two points, which is called a geodesic, and it will be the starting point to define244

normal coordinates via the exponential and logarithm map (Definition 1 and 2). As we245

cannot do direct computations on Riemann manifolds, normal coordinates enable us to246

obtain formulae of curves, such as the Lagrangian polynomials. Note finally that a rigorous247

mathematical background of all of this is given in [41].248

After we give a definition of the Grassmann manifold and how to represent its points249

with matrices, we propose to define the tangent plane using matrix representative, to have250
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formulae for a scalar product, given by (3). From this, we deduce a classical expression251

for geodesics (Theorem 1).252

Let p ≤ n be two non-zero integers and G(p, n) the Grassmann manifold of p-dimensional253

subspaces in Rn. In fact, Grassmann manifolds are special cases of quotient manifolds,254

meaning that a point on such a manifold can have many representatives. Let us consider255

indeed a p-dimensional linear subspace V of Rn. Such a subspace can be defined using any256

ordered set of p independent vectors v1, . . . ,vp in Rn, encoded into a full rank matrix257

M := [v1, . . . ,vp] ∈ Matn,p(R).258

Any other basis v′1, . . . ,v
′
p of V will then lead to another full rank matrix259

M′ := [v′1, . . . ,v
′
p] ∈ Matn,p(R),260

and we necessary have261

M′ = MP262

where P ∈ GL(p) is some invertible matrix in Matp,p(R). From all this, we deduce that263

the point m := V ∈ G(p, n) is represented by the infinite set of matrices264

{MP, P ∈ GL(p)} .265

Now, the ordered set of p independent vectors in Rn and thus the set of full rank266

matrices in Matn,p(R) define the Stiefel manifold (see Figure 1)267

St(p, n) := {M = [v1, . . . ,vp] ∈ Matn,p(R), rg(M) = p}268

so that we obtain a natural map from such Stiefel manifold and the Grassmann manifold269

G(p, n) (see Figure 2):270

M = [v1, . . . ,vp] ∈ St(p, n) 7→m = {MP, P ∈ GL(p)} .271
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In our situation, nevertheless, we will only focus on orthonormal bases of p-dimensional272

subspaces. Doing so, we thus consider matrices defined by orthonormal vectors, leading273

to the so-called compact Stiefel manifold274

Stc(p, n) :=
{
Y ∈ Matn,p(R), YTY = Ip

}
(1)275

and any point m ∈ G(p, n) will then be represented by the infinite set276

{YQ, Q ∈ O(p)}277

where Y = [y1, . . . ,yp] is defined using an orthonormal basis y1, . . . ,yp of m. This defines278

a surjective map279

π : Y ∈ Stc(p, n) 7→m = π(Y) = {YQ, Q ∈ O(p)} ∈ G(p, n)280

and the set of all matrices representing the same point m ∈ G(p, n) is called the fiber of281

π at m (see Figure 3 for an illustration of a fiber):282

π−1(m) = {YQ, Q ∈ O(p)} .283

Remark 1 An important point here is that, from now on, any computation on G(p, n)284

will be done using a choice in the fibers. Nevertheless, for any point m ∈ G(p, n), there285

is no canonical way to choose an element Y ∈ π−1(m), so any computation has to be286

independent of that choice.287

We need now to define the geodesics of Grassmann manifold, which can be done once we288

have defined the tangent plane at each point m ∈ G(p, n) and a Riemaniann metric. Take289

any point m ∈ G(p, n) represented by a matrix Y = [y1, . . . ,yp] of orthonormal vectors,290
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the tangent plane Tm := TmG(p, n) is then represented by the p(n−p) dimensional vector291

space292

HorY :=
{
Z ∈ Matn,p(R), ZTY = 0

}
, (2)293

called the horizontal space, where Y ∈ π−1(m). From all this, a vector v ∈ Tm will be294

called a velocity vector, which can be represented by a matrix Z ∈ Matn,p(R) such that295

ZTY = 0, and Z is called a horizontal lift of v.296

Example 1 Take here p = 2 and n = 5, so that G(2, 5) is the set of planes in a five297

dimensional space. The matrices298

Y =




1
2 0

− 1
2

√
2

2

0 0

1
2

√
2

2

1
2 0




, Y′ =




√
2

4 −
√

2
4

2−
√

2
4

2+
√

2
4

0 0

2+
√

2
4

2−
√

2
4

√
2

4 −
√

2
4




299

are in the compact Stiefel manifold Stc(2, 5), representing the same plane m ∈ G(2, 5).300

The horizontal space HorY defined by (2) is a 6-dimensional vector space of matrices Z,301

for instance given by302

Z =




u1 v1

u2 v2

u3 v3

−u2 −v2

−u1 + u2 − u4 −v1 + v2 − v4




, ui, vi ∈ R.303
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Taking now velocity vectors v1, v2 ∈ Tm with respective horizontal lifts Z1,Z2 ∈ HorY304

we define the point–wise scalar product [42,40]:305

〈v1, v2〉m := tr
(
ZT1 Z2

)
. (3)306

Such a Riemannian metric leads to explicit geodesics given by [40,39]:307

Theorem 1 Let m ∈ G(p, n) represented by Y ∈ Stc(p, n). For any v ∈ Tm with horizon-308

tal lift given by Z in HorY, let Z = UΣVT be a thin SVD of Z. Then309

αv : t ∈ R 7→ αv(t) := π
[
(YV cos(tΣ) + U sin(tΣ)) VT

]
∈ G(p, n) (4)310

is the unique maximal geodesic such that αv(0) = m and initial velocity311

α̇v(0) :=
∂αv(t)

∂t
|t=0= v.312

Remark 2 Up to our knowledge, there is no proof that313

Y(t) := (YV cos(tΣ) + U sin(tΣ)) VT ∈ Stc(p, n). (5)314

In fact, this follows by direct computation. Indeed, Z = UΣVT being a thin SVD, we315

have V ∈ O(p) and316

ZTY = VΣUTY = 0 =⇒ ΣUTY = 0317

so that318

sin(tΣ)UTY = 0 and YTU sin(tΣ) = 0.319

Finally, we have:

YT (t)Y(t) = V


cos2(tΣ) + sin(tΣ)UTY︸ ︷︷ ︸

=0

V cos(tΣ)+

cos(tΣ) VTYTU sin(tΣ)︸ ︷︷ ︸
=0

+ sin2(tΣ)


VT

which concludes the proof.320
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Remark 3 In many cases, formulas of the geodesic do not use the right multiplication by321

VT , as for instance in [40,21]. Of course, as V being in O(p) both matrices322

(YV cos(tΣ) + U sin(tΣ)) VT and YV cos(tΣ) + U sin(tΣ)323

define the same point on G(p, n). Now, the choice of such right multiplication in (5) is324

related to the choice of the horizontal lift Z = UΣVT . Indeed, taking back the path given325

by (5), we have326

Ẏ(t) = (−YVΣ sin(tΣ) + UΣ cos(tΣ)) VT =⇒ Ẏ(0) = UΣVT = Z327

which corresponds to the choice of the horizontal lift for velocity vector v ∈ Tm.328

A consequence of Theorem 1 is an explicit formula for the exponential map [40,21] (see329

Figure 4):330

Definition 1 Let m ∈ G(p, n) be represented by Y ∈ Stc(p, n). For any velocity vector

v ∈ Tm with horizontal lift Z ∈ HorY, take Z = UΣVT to be a thin SVD of Z. Then we

define the exponential map

Expm : Tm −→ G(p, n),

v 7→ Expm(v) := π
[
(YV cos(Σ) + U sin(Σ)) VT

]
= αv(1).

Now, it is possible to define directly some inverse map of the exponential map, called331

the logarithm map [40], but only locally. For any m and Y in its fiber, let us first define332

the open space333

Um := {m1 ∈ G(p, n), YTY1 is invertible, Y1 ∈ π−1(m1)}. (6)334

Then we have:335



ST Interpolation of Parametrized Rigid-Viscoplastic FEM Problems 19

Definition 2 (Logarithm map on Grassmannian manifold) Let m ∈ G(p, n) be336

represented by a matrix Y ∈ Stc(p, n). For any point m1 in the open space Um represented337

by a matrix Y1 ∈ Stc(p, n), define a thin SVD338

Y1

(
YTY1

)−1 −Y = UΣVT .339

Then the logarithm Logm(m1) ∈ Tm is the velocity vector in Tm with horizontal lift340

Z = U arctan(Σ)VT ∈ HorY.341

Remark 4 The logarithm map is only defined on some open set Um. This means that for342

any point m1 /∈ Um, the associated matrix YTY1 is not invertible, so that the computa-343

tion of344

Y1

(
YTY1

)−1 −Y345

can not be done. Note finally that such an open set is strongly related to the cut-locus of346

a Grassmann manifold [43].347

2.2 Target Algorithm on compact Stiefel manifolds348

All the mathematical background summarized in subsection 2.1 can be used to obtain an349

interpolation curve between points m1, . . . ,mN on Grassmann manifold G(p, n) [20,21],350

where each point mi corresponds to a parameter value λi. Indeed, once a reference point351

mi0 ∈ {m1, . . . ,mN} is chosen (see Figure 4):352

• We use the logarithm map Logmi0
to linearize, i.e., meaning we define velocity vectors353

vi := Logmi0
(mi) on the vector space Tmi0

.354
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• We obtain an interpolation curve λ 7→ v(λ) between vectors vi, using for instance355

Lagrangian polynomial, and thus356

v(λi) = vi, ∀i = 1, . . . , N.357

• Taking the exponential map Expmi0
, we obtain back an interpolation curve358

λ 7→m(λ) := Expmi0
(v(λ))359

between the points m1, . . . ,mN on G(p, n), so that360

m(λi) = mi, ∀i = 1, . . . , N.361

We propose here to define curves on the compact Stiefel manifold St(p, n) instead of362

the ones defined on the Grassmann manifold G(p, n). The starting point is a set of matrices363

Y1, . . . ,YN in the compact Stiefel manifold St(p, n), corresponding to parameter values364

λ1, . . . , λN . Once a reference parameter value λı0 has been chosen, we obtain a curve365

λ 7→ Y(λ)366

where in general,367

Y(λi) 6= Yi.368

As a consequence, such a curve will not be an interpolation curve between the matrices369

Y1, . . . ,YN (see Remark 5). Before doing so, and to obtain well-defined curves, we need370

to make a specific definition:371

Definition 3 (Genericity) A matrix is said to be generic if all its non–zero singular372

values are distinct. The set of generic matrices in Matn,p(R) is denoted Mat0
n,p(R).373
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For any generic matrix M ∈ Mat0
n,p(R), we know that its thin SVD M = UΣVT is374

well defined. Indeed, taking σ1 > . . . > σp to be its ordered singular values, we can write375

M =

p∑

i=1

σiu
ivTi (7)376

where ui (resp. vi) is a left singular vector associated to σi (resp. a right singular vector).377

All singular values being distinct, the only other possibility is to consider singular vectors378

εiui and εivi, with εi = ±1, so that the decomposition (7) remains the same. We thus379

deduce that the target Algorithm below is well defined:380

Algorithm 1 (Target algorithm)381

• Inputs:382

– Matrices Y1, . . . ,YN in Stc(p, n), corresponding to parameter values λ1 < . . . <383

λN .384

– A reference parameter value λi0 with i0 ∈ {1, . . . , N}.385

– A parameter value λ.386

• Output: A matrix Y(λ) ∈ Stc(p, n).387

1. Define Zi0 := 0 and for each k ∈ {1, . . . , N} with k 6= i0 compute a thin SVD of the388

generic matrix389

Yk

(
YT
i0Yk

)−1 −Yi0 = UkΣkV
T
k390

and define391

Zk := Uk arctan(Σk)VT
k , with assumption Zk ∈ Mat0

n,p(R).392

2. Define an n× p matrix and compute a thin SVD393

Z(λ) :=

N∑

i=1

∏

i 6=j

λ− λj
λi − λj

Zi = U(λ)Σ(λ)V(λ)T ,394
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with assumption Z(λ) ∈ Mat0
n,p(R).395

3. Define the n× p matrix in Stc(p, n) (see Remark 3):396

Y(λ) := [Yi0V(λ)cos(Σ(λ)) + U(λ)sin(Σ(λ))]V(λ)T . (8)397

Note: cos and sin act only on diagonal entries.398

In this algorithm, as already noticed and following the assumptions of genericity, the399

matrices Zk, Z(λ) and Y(λ) do not depend on the choice of matrices in the associated400

thin SVD.401

Remark 5 Using this target Algorithm to parameter value λ := λk leads to some matrix402

Y(λk) generally different from Yk (except for k = i0). Thus, such an algorithm computed403

on compact Stiefel manifold do not produce an interpolation on the points Y1, . . . ,YN404

(see Figure 3). Indeed, to represent an interpolation curve between these points means405

that if we consider the parameter value λ = λk (with k ∈ {1, . . . , N}) as input in the406

algorithm, one should expect to return as output Y(λk) (given by (8)) the initial matrix407

Yk, which is not the case in general.408

Nevertheless, matrices Y(λk) and Yk define the same point on the Grassmann manifold409

G(p, n), meaning that they both define an orthonormal basis of the same subspace mk410

(see Remark 4). As a consequence, a projection matrix onto the subspace mk is given by411

Y(λk)TY(λk) or equivalently by YT
k Yk.412
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Example 2 Take for instance the compact Stiefel manifold Stc(2, 5), and the three matrices413

Y1 :=




1 0

0 1

0 0

0 0

0 0




, Y2 :=




√
3

3

√
3

3

0
√

3
3

√
3

3 0

−
√

3
3

√
3

3

0 0




, Y3 :=




√
3

3 −
√

6
6

0
√

6
4

√
3

3

√
6

12

0
√

6
4

√
3

3

√
6

12




414

which correspond respectively to λ1 = 15, λ2 = 22 and λ3 = 27. Choosing the reference415

parameter value to be λ1 and following the target Algorithm 1 we obtain416

Y2(YT
1 Y2)−1 −Y1 =




0 0

0 0

1 −1

−1 2

0 0




, Y3(YT
1 Y3)−1 −Y1 =




0 0

0 0

1 1

0 1

1 1




417

Taking λ = λ2 and λ = λ3 as inputs in the algorithm, we finally obtain the matrices (with418

computation done using 5 digits):419

Y(λ2) =




0.77460 0.25820

0.25820 0.51640

0.51640 −0.25820

−0.25820 0.77460

0 0




6= Y2, Y(λ3) =




0.67860 −0.19876

−0.19876 0.57922

0.47984 0.38046

−0.19876 0.57922

0.47984 0.38046




6= Y3.420

3 Space-Time Interpolation on compact Stiefel manifolds421

As already noticed, POD is extracting the optimal space structures and the associated422

temporal modes. An important property is that the spatial and temporal orthogonal modes423
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are coupled : each space component is associated with a temporal component partner424

and there is a one-to-one correspondence between both spaces. Taking advance of this425

decomposition into orthogonal modes, it is natural to try a Space-Time interpolation on426

compact Stiefel manifolds based on the target Algorithm 1, instead of an interpolation of427

the space part alone, followed by a Galerkin approach as is classically done [20,21].428

As a starting point, take a set of snapshot matrices S(1), . . . ,S(N), where each matrix429

S(k) ∈ Matn,m(R) corresponds to a given parameter value λk ∈ R, with λ1 < . . . < λN430

and n = 3Ns corresponding to the spatial part, while m = Nt corresponds to the temporal431

part. For a given mode p ≤ Nt, our goal is to432

1. Extract in a unique way a POD of mode p of each matrix S(k), so that we have a well433

defined map434

S(k) ∈ Matn,m(R) 7→ S(k)
p ∈ Matn,m(R).435

2. Obtain for each S
(k)
p ∈ Matn,m(R) a unique matrix Φ

(k)
p ∈ Stc(p, n) for the spatial436

part and another unique matrix Ψ
(k)
p ∈ Stc(p,m) for the temporal part.437

3. Use the target Algorithm 1 on matrices Φ
(k)
p first, and then on matrices Ψ

(k)
p , in order438

to obtain two curves439

λ 7→ Φ(λ), λ 7→ Ψ(λ) (9)440

which are not interpolated curves, as in general Φ(λk) 6= Φ
(k)
p and Ψ(λk) 6= Ψ

(k)
p (see441

Remark 5).442

4. Define an interpolation curve λ 7→ S(λ) between matrices S
(1)
p , . . . ,S

(N)
p , using curves443

obtained by (9).444

We now detail two key points: the first concerns a new type of SVD, called oriented SVD,445

which allows defining the matrices Φ
(k)
p and Ψ

(k)
p in a unique way. Finally, we will explain446
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in subsection 3.2 how to construct the curve λ 7→ S(λ), which requires the introduction447

of a mixed part.448

3.1 Oriented SVD on generic matrices449

As already noticed in section 2, any computation of a POD of mode p of a matrix S ∈450

Matn,m(R) can be obtained from a SVD. Suppose now that S is of rank r ≥ p. Any SVD451

of S with singular values σ1 > . . . > σr leads to spatial orthonormal vectors φ1, . . . , φr452

in Rn (the left singular vectors) and temporal orthonormal vectors ψ1, . . . , ψr in Rm (the453

right singular vectors). A POD of mode p then writes454

Sp = ΦpΣpΨ
T
p , Φp := [φ1, . . . , φp], Σp := diag(σ1, . . . , σp), Ψp := [ψ1, . . . , ψp].

(10)455

Now, because of sign indeterminacy of the spatial vectors φi and temporal vectors ψi, the456

matrices Φp,Ψp are not uniquely defined.457

To overcome this difficulty, we need to introduce a new SVD so that, under the as-458

sumption of genericity (see Definition 3), the matrices Φp and Ψp given by (10) can be459

well-defined.460

The main idea of the new SVD introduced here is to make an intrinsic choice on the461

orientation for each space and temporal vector. Indeed, for each spatial vector φ, only two462

choices can occur: φ or −φ (thus inducing a choice on the associated temporal vector). A463

choice of orientation is then made as follows. Taking the column vectors S = [s1, . . . , sm]464

and s to be the first column vector such that the scalar product 〈s, φ〉 is non zero, we465

impose the sign taking 〈s, φ〉 > 0.466
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Let us now give all details to compute the oriented SVD before obtaining algorithm 2.467

A first Lemma, obtained by direct computation, allows us to use a column vector of the468

initial snapshot matrix S to choose orientation:469

Lemma 1 Let us consider s1, . . . , sm ∈ Rn to be the column vectors of S ∈ Matn,m(R)470

and take φ ∈ Rn to be a unit spatial vector of S, associated with a non–zero singular value471

σ. Then, there exists i ∈ {1, . . . ,m} such that 〈si, φ〉 = sTi φ 6= 0.472

From this, for any unit spatial vector φ ∈ Rn of S, let us define s(φ) to be the first column473

vector si in S = [s1, . . . , sn] such that 〈φ, si〉 6= 0:474

s(φ) := si, i := min {j, 〈sj , φ〉 6= 0} . (11)475

Any spatial eigenvector can therefore have a specific orientation:476

Definition 4 (Oriented eigenvectors) Let S ∈ Matn,m(R) and φ ∈ Rn a unit spatial477

vector associated to a non–zero singular value σ. Then φ is said to be oriented if 〈s(φ), φ〉 >478

0.479

From all this, let us now deduce the new SVD:480

Lemma 2 (Oriented SVD) Let S ∈ Mat0
n,m(R) (m ≤ n) of rank r such that all its non-481

zero singular values are distinct. Then, there exists one and only one couple of matrices482

483

Φ = [φ1, . . . , φr] ∈ Matn,r(R), Ψ = [ψ1, . . . , ψr] ∈ Matm,r(R) (12)484

such that485

〈φi, φj〉 = 〈ψi, ψj〉 = δij , S = ΦΣΨT , Σ := Diag(σ1, . . . , σr) ∈ Matr,r(R) (13)486
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and φi are oriented spatial unit eigenvectors:487

〈s(φi), φi〉 > 0 (14)488

with s(φi) defined by (11). Such a decomposition is called an oriented SVD.489

Proof First, any couple (φ, ψ) of spatial–temporal unit eigenvector for S is defined modulo490

±1, and ψ is obtained in a unique way from φ.491

Let us suppose now we do not have uniqueness, so that there exist two unit spatial492

vectors φ and φ′ associated to σ such that493

〈s(φ), φ〉 > 0 and 〈s(φ′), φ′〉 > 0.494

We necessary have φ′ = −φ and s(φ) = s(φ′) so we deduce that495

〈s(φ′), φ′〉 >= −〈s(φ), φ〉 > 0496

which is a contradiction, and we can conclude our proof.497

We give now an algorithm to obtain such an oriented SVD:498

Algorithm 2 (Oriented SVD)499

• Inputs: m ≤ n and S ∈ Mat0
n,m(R) of rank r.500

• Output: Unique matrices Φ and Ψ for an oriented SVD of S.501

1. Compute a SVD of S so that to obtain spatial unit vectors φ1, . . . , φr and temporal502

unit vectors ψ1, . . . , ψr.503

2. Consider the column vectors s1, . . . , sm of S.504
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3. For i = 1, . . . , r define505

εi :=
〈s(φi), φi〉
|〈s(φi), φi〉|

506

where s(φi) is the first column vector s of S such that 〈φi, s〉 6= 0, see (11).507

4. For i = 1, . . . , r, make sign replacement508

φi ← εiφi, ψi ← εiψi.509

Example 3 Assume the rank 3 matrix510

S =




1 0 1

−1 1 0

0 2 −1

0 −1 0

1 0 1

0 0 0




= [s1, s2, s3]511

where a unit spatial vector corresponding to the largest singular value is given by (with 5512

digits)513

φ1 =




−0.31145

0.41763

0.74265

−0.28294

−0.31145




514

and we can check that s(φ1) = s1 with 〈φ1, s1〉 < 0 so that we consider −φ1 instead of515

φ1, and so on.516
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3.2 Space–Time interpolation algorithm517

In this subsection, we define a Space–Time interpolation on any family of POD of mode518

p taken from generic snapshot matrices (see an overview in Figure 5). Such interpolation519

captures both the spatial and temporal part of such matrices, which is necessary from the520

point of view of mechanical equations, but we will also need to define a specific mixed part521

of each POD (see lemma 3). The method is formalized for the general case of interest in522

mechanical applications of an arbitrary number of pre-computed POD basis N , and an523

arbitrary number of parameters Np per training point. In the following, the method is524

described for an arbitrary number of basis N and a single parameter Np = 1 by applying525

a univariate Lagrange interpolation. However, its generalization in a multivariate case is526

straightforward using an appropriate multivariate interpolation scheme [?].527

Take back parameter values λ1 < . . . < λN , corresponding to snapshot matrices528

S(1), . . . ,S(N) in Matn,m(R), with n = 3Ns and m = Nt. To make use of the oriented529

SVD, let us suppose:530

Genericity assumption: All snapshot matrices S(1), . . . ,S(N) have distinct non–zero531

singular values.532

Take now p to be some integer (less or equal than the minimum rank of all matrices533

S(k)). Using the oriented SVD given by Algorithm 2, we can consider a POD of mode p534

on each matrix S(k):535

S(k)
p := Φ(k)

p Σ(k)
p Ψ (k)

p

T ∈ Matn,m(R) (15)536
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where Σk corresponds to singular values, and Φ
(k)
p as well as Ψ

(k)
p uniquely define points537

in a compact Stiefel manifold:538

Φ(k)
p := [φ

(k)
1 , . . . , φ(k)

p ] ∈ Stc(p, n), Ψ (k)
p := [ψ

(k)
1 , . . . , ψ(k)

p ] ∈ Stc(p,m), (16)539

Recall that in previous equation, φ
(k)
1 , . . . , φ

(k)
p (resp. ψ

(k)
1 , . . . , ψ

(k)
p ) correspond to spatial540

oriented eigenvectors (resp. temporal ones) of S(k).541

Using the target Algorithm 1 first for the spatial matrices Φ
(k)
p and then for the542

temporal matrices Ψ
(k)
p , we obtain two curves543

λ 7→ Φ(λ), λ 7→ Ψ(λ).544

Now, our goal is to produce an interpolation curve between the matrices S
(k)
p , taking into545

account both spatial and temporal curves defined above. Such a curve is given by546

λ 7→ S(λ) := Φ(λ)M(λ)Ψ(λ)T with S(λk) = S(k)
p . (17)547

548

Lemma 3 For a curve defined (17) to be an interpolation curve between the matrices S
(k)
p ,549

we necessary have550

M(λk) = Φ(λk)TS(k)
p Ψ(λk). (18)551

Proof To satisfy (17), we necessary have552

S(λk) = Φ(λk)M(λk)Ψ(λk)T = S(k)
p , (19)553

where, by construction, we have Φ(λk) ∈ Stc(p, n) and Ψ(λk) ∈ Stc(p,m) (see target554

Algorithm 1). We thus have555

Φ(λk)TΦ(λk) = Ψ(λk)TΨ(λk) = Ip,556
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so that by the left and right multiplication of (19) we obtain formula (18) for the mixed557

part.558

Now we have:559

Lemma 4 Let λ 7→ M(λ) ∈ Matp,p(R) be any interpolated curve between the mixed part560

matrices561

Mk := Φ(λk)TS(k)
p Ψ(λk) ∈ Matp,p(R)562

so that M(λk) = Mk for k = 1, . . . , N . Then, using the curve λ 7→ Φ(λ) (resp. λ 7→ Ψ(λ))563

defined by the target Algorithm 1 applied on the matrices Φ
(k)
p (resp. Ψ

(k)
p ), the curve564

κ : λ 7→ Φ(λ)M(λ)Ψ(λ)T (20)565

is an interpolated curve between the matrices S
(1)
p , . . . ,S

(N)
p , so that κ(λk) = S

(k)
p for each566

k = 1, . . . , N .567

Proof We need to check that κ(λk) = S
(k)
p for each k = 1, . . . , N . Now:

κ(λk) = Φ(λk)M(λk)Ψ(λk)T = Φ(λk)MkΨ(λk)T

= Φ(λk)Φ(λk)TS(k)
p Ψ(λk)Ψ(λk)T

= Φ(λk)Φ(λk)T Φ(k)
p Σ(k)

p (Ψ (k)
p )

T

︸ ︷︷ ︸
S

(k)
p

Ψ(λk)Ψ(λk)T

whereΦ(λk)ΦT (λk) corresponds to the projection matrix on the subspace mk := π (Φ(λk)) =568

π (Φk) (see Remark 5) so that569

Φ(λk)ΦT (λk)Φ(k)
p = Φ(k)

p (21)570

and the same being true for the temporal part, we obtain the proof of the lemma.571
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The Space–Time interpolation algorithm is now given by:572

Algorithm 3 (Space–Time interpolation)573

• Inputs:574

– Generic matrices S(1), . . . ,S(N) in Mat0
n,m(R) (m ≤ n), corresponding to parameter575

values λ1 < . . . < λN .576

– A reference parameter value λi0 with i0 ∈ {1, . . . , N}.577

– A mode p ≤ m.578

– A parameter value λ̃.579

• Output: A matrix S̃ ∈ Matn,m(R).580

1. Compute an oriented SVD on each matrix S(k) and write a POD of mode p581

S(k)
p := ΦpΣ

(k)
p (Ψ (k)

p )T ∈ Matn,m(R)582

with Φ
(k)
p ∈ Stc(p, n) and Ψ

(k)
p ∈ Stc(p,m) uniquely defined.583

2. Consider the target Algorithm 1 applied to the spatial parts Φ
(1)
p , . . . ,Φ

(N)
p , reference584

parameter value λi0 and each of the N + 1 parameter values λ1, . . . , λN , λ̃, so from (8)585

we can define matrices in Stc(p, n):586

Φ(λk) := Y(λk), Φ(λ̃) := Y(λ̃). (22)587

3. Consider the target Algorithm 1 applied to the temporal parts Ψ
(1)
p , . . . ,Ψ

(N)
p reference588

parameter value λi0 and each of the N + 1 parameter values λ1, . . . , λN , λ̃, so from (8)589

we can define matrices in Stc(p,m):590

Ψ(λk) := Y(λk), Ψ(λ̃) := Y(λ̃). (23)591
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4. For each k = 1, . . . , N , define the square matrix of the mixed part592

Mk := Φ(λk)TS(k)
p Ψ(λk) ∈ Matp,p(R). (24)593

5. Use a standard interpolation on square matrices M1, . . .MN , for instance:594

M(λ̃) :=

N∑

i=1

∏

i 6=j

λ̃− λj
λi − λj

Mi (25)595

6. Using the spatial part Φ(λ̃) ∈ Stc(p, n) from (22), the temporal part Ψ(λ̃) ∈ Stc(p,m)596

from (23), and the mixed part M(λ̃) ∈ Matp,p(R) from (25), the interpolated snapshot597

matrix corresponding to λ̃ is finally given by598

S̃ := Φ(λ̃)M(λ̃)Ψ(λ̃)T ∈ Matn,m(R).599

4 Rigid-Viscoplastic FEM Formulation600

The main defining characteristic of the RVP formulation is that it neglects the elasticity601

effects. This idealization is based on the fact that elastic components of strain remain602

small as compared with irreversible strains. This means that the additive decomposition603

of the total strain-rate tensor ε̇ij = ε̇eij + ε̇pij simplifies to ε̇ij = ε̇pij , where ε̇eij is the604

elastic component of the strain-rate tensor, ε̇pij is the plastic component and ε̇ij is the605

total strain-rate tensor. Therefore, the RVP formulation turns out to be very similar to606

fluid flow problems, and it is also called flow formulation [44]. Although it is not possible607

to calculate the residual stresses and the spring-back effect, the flow formulation presents608

several advantages. Unlike the elastoplastic FEM, the RVP formulation, even though more609

approximate, is more stable, simpler to be implemented in computer codes, and can use610

relatively larger time increments, thus improving the computational efficiency. A thorough611

overview of the foundation of the theory can be found in [34,1].612
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4.1 Governing Field Equations613

Classical rigid viscoplastic problems consider the plastic deformation of an isotropic body614

occupying a domain Ω ⊂ R3. The domain Ω and its boundary ∂Ω represent the current615

configuration of a body according to the Updated Lagrangian formulation. The governing616

equations that have to be satisfied are:617

(a) Equilibrium condition:618

σij,j = 0619

(b) Compatibility conditions:620

ε̇ij =
1

2
(vi,j + vj,i)621

(c) Yield criterion:622

σ̄ :=

(
2

3
σ′ijσ

′
ij

) 1
2

= σ̄(ε̄, ˙̄ε, T )623

(d) Constitutive equations:624

σ′ij =
2

3

σ̄
˙̄ε
ε̇ij , ˙̄ε =

(
2

3
ε̇ij ε̇ij

) 1
2

(26)625

(e) Incompressibility condition:626

ε̇v := ε̇kk = 0627

(f) Boundary conditions:

v = v̂ on ∂Ωv

F = F̂ on ∂ΩF

friction and contact on ∂Ωc
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In the above equations σσσ = (σij) is the stress tensor, ε̇εε = (ε̇ij) is the strain rate tensor,628

vi are velocity components, σ̄ is the effective stress, ˙̄ε is the second invariant of ε̇εε called629

effective strain rate, and σσσ′ = (σ′ij) is the deviatoric stress tensor defined by σ′ij = σij −630

δijσkk/3.631

The hat symbol ˆ denotes prescribed values. Generally, the boundary ∂Ω consists632

of three distinct parts: over ∂Ωv velocity conditions are prescribed (essential boundary633

conditions), ∂ΩF is the part where the traction conditions are imposed in the form of634

nodal point forces (natural boundary conditions), while the boundary conditions along635

∂Ωc are mixed, and neither the velocity nor the force can be described. Therefore, we636

have the disjoint union:637

∂Ω = ∂Ωv ∪ ∂ΩF ∪ ∂Ωc (27)638

4.2 Variational form639

In a variational formulation, the functional Π (energy rate) is defined by an integral form640

in accordance with the virtual work-rate principle641

Π(v) :=

∫

Ω

σ̄ ˙̄εdV −
∫

∂ΩF

FividS (28)642

where the first term in (28) represents the internal deformation work-rate, whereas the643

second term represents the work-rate done by the external forces. Fi denotes prescribed644

surface tractions on the boundary surface ∂ΩF . Recalling the MarKov-Hill [45,46] varia-645

tional principle, among all virtual (admissible) continuous and continuously differentiable646

velocity fields vi satisfying the conditions of compatibility and incompressibility, as well647
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as the velocity boundary conditions, the real velocity field gives to the functional Π a648

stationary value, i.e., the first-order variation vanishes. Moreover, in order to relax the649

incompressibility constraint condition ε̇v = ε̇kk = 0 on an admissible velocity field, a650

classical penalized form is used651

δΠ :=

∫

Ω

σ̄δ ˙̄εdV +
1

2

∫

Ω

Kε̇vδε̇vdV −
∫

∂ΩF

FiδvidS = 0 (29)652

where K is a large positive constant which penalizes the dilatational strain-rate com-653

ponent. It can be shown that the mean stress is σm = Kε̇kk.654

Remark 6 A limitation of the Updated Lagrangian method for large deformation problems655

is the excessive element distortion. To this end, remeshing processes are necessary to656

simulate unconstrained plastic flows. A mesh generation process is activated in case of657

zero or negative determinant of the Jacobian matrix, or due to various element quality658

criteria. Then, a new mesh is calculated conforming to the current state of the geometry659

followed by an interpolation of the state variables between the old and the newly generated660

mesh. Thus, the information of the remapping process has to adequately be transferred661

to the ROM basis obtained using the POD snapshot method. We remark that at this first662

attempt, we avoid remeshings of the workpiece during the course of the simulation. This663

topic will be addressed in a future investigation.664

4.3 Discretization and iteration665

The discretization of the functional follows the standard procedure of the finite element666

method. Eq. (29) is expressed in terms of nodal point velocities vi and their variations667
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δvi. Using the variational principle668

δΠ =

M∑

m=1

∂Π(m)

∂vi
δvi = 0, i = 1, 2, ..., 2Ns, (30)669

where δvi are arbitrary except that they must be zero to satisfy the corresponding essential670

boundary conditions, and M denotes the number of elements. From the arbitrariness of671

δvi, a set of algebraic equations (stiffness equations) are obtained672

∂Π

∂vi
=

M∑

m=1

∂Π(m)

∂vi
= 0. (31)673

As the resulting algebraic equations are highly nonlinear, they linearized by the Taylor674

expansion near an assumed velocity field v = v0 as675

∂Π

∂vi

∣∣∣∣∣
v=v0

+
∂2Π

∂vi∂vj

∣∣∣∣∣
v=v0

∆vj = 0 (32)676

where the first factor of the second term is also known as the Jacobian of the system677

(Hessian matrix), and ∆vj is a first-order correction of the velocity component vj . Solv-678

ing (32) with respect to ∆vj , the assumed velocity field is updated by the form (written679

in vector notation)680

v(i) = v(i−1) + α(∆v)(i) (33)681

where 0 ≤ α ≤ 1 and i is the iteration step. The solution is obtained by the Direct682

iteration method [34,47] and/or by Newton-Raphson type methods. The iteration process683

is repeated until the following described convergence criteria are satisfied simultaneously684

‖ ∆v ‖L2

‖ v ‖L2

≤ e1,

∥∥∥∥
∂Π

∂v

∥∥∥∥
L2

≤ e2 (34)685
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namely, the velocity error norm and the norm of the residual equations, where e1 and686

e2 are sufficiently small specified tolerance numbers.687

4.4 Heat Transfer Analysis688

In the present model, a thermodynamically sound derivation is adopted using the conser-689

vation of energy690

−ρc∂T
∂t

+ k∇2T + ξσ̄ ˙̄ε = 0 (35)691

where ρc is the volume-specific heat of the material, ξσ̄ ˙̄ε represents the work heat692

rate per unit volume due to plastic deformation, k is the thermal conductivity, T is the693

temperature and ξ is a coefficient that presents the fraction of the deformation energy694

dissipated into heat also known as the Taylor-Quinney coefficient.695

In a weak form, and using the divergence theorem696

−
∫

Ω

ξσ̄ ˙̄εδTdV +

∫

Ω

k∇Tδ(∇T )dV +

∫

Ω

ρc
ϑT

ϑt
δTdV −

∫

∂Ω

qnδTdS = 0 (36)697

where698

qn := k
∂T

∂n
(37)699

is the heat flux across the boundary ∂Ω and n denotes the unit normal vector to the700

boundary surface ∂Ω.701
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In standard finite element books, e.g. [48], it can be seen that the heat balance equa-702

tions such as (36), upon finite element discretization are reduced to the form:703

CṪ +KT = Q (38)704

where C is the heat capacity matrix, K denotes the heat conduction matrix, Q is705

the heat flux vector, T is the vector of nodal point temperatures, and Ṫ is the rate of706

temperature increase vector of nodal points.707

The theory necessary to integrate (38) can be found in numerical analysis books [49,708

50]. It suffices to say that one-step time integration is used. The convergence of a scheme709

requires consistency and stability. Consistency is satisfied by a general time integration710

scheme711

t+∆tT =t T +∆t[(1− θ)tṪ + θt+∆tṪ ] (39)712

where θ is a parameter varying between 0 and 1 (θ = 0: Forward difference, θ = 1/2:713

Crank-Nicholson, θ = 2/3: Galerkin, θ = 1: Backward difference).714

Remark 7 Unconditional stability is obtained for θ ≥ 0.5. This is important, because it is715

desirable to take time steps as large as the deformation formulation allows, since this is716

the most expensive part of the process.717

4.5 Computational Procedure for Thermo-Mechanical Analysis718

For solving coupled thermomechanical problems, two different approaches can be used.719

In the traditional monolithic approach, a single solver is in charge of the solution of720
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the entire system of equations. In an alternative approach, the mechanical and thermal721

solvers deal respectively with the viscoplastic flow and the thermal field equations. Thus,722

in the so-called staggered solution procedure used here, the state of the system is advanced723

by sequentially executing and exchange information between these two solvers [51]. The724

equations for the mechanical analysis and the temperature calculation are strongly coupled,725

thereby making necessary the simultaneous solution of the finite element counterparts [34,726

52,53].727

5 Numerical Investigations728

The purpose of this section is to evaluate the performance of the ST POD interpolation729

using the velocity and temperature fields during the course of the simulation of the forming730

process. As a benchmark test case, a rectangular cross-section bar is compressed between731

two parallel flat dies under the condition of a constant shear friction factor m at the732

die-workpiece interface. The initial workpiece has dimensions h = 20 mm (height) and733

w = 20 mm (width). Plane strain conditions are considered. Due to the symmetry of the734

problem, only one quarter of the cross-section is analyzed. The velocity of the upper and735

the lower die is set to v = 1 mm/s. The initial temperature of the die and the workpiece736

is set to T = 25 ◦C. The bar is compressed until a 35% reduction in height is achieved.737

The final simulation state is accomplished in 7-time steps with a constant time increment738

∆t = 0.5 s. One can observe the complexity of the nonuniform deformation presented by739

the barreling of the free surface (Figure 6). In our calculations, we employ a conventional740

rate-dependent power law to describe the material flow stress equation741

σ̄( ˙̄ε) = 1000 ˙̄ε0.1 (MPa) (40)742
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The solution convergence is assumed when the velocity error norm and the force error743

norm (34) becomes less than 10−6. The type of element used is the linear isoparametric744

rectangular element with four-point integration. However, one point integration is used745

for the dilatation term, the second integral of the functional in (29). This is known as the746

reduced integration scheme which imposes the volume constancy averaged over the linear747

rectangular element. The computational grid composed of 100 elements interconnected at748

Ns = 121 nodes with 2 degrees of freedom, resulting in a global stiffness matrix of size749

242×242. For the rigid-viscoplastic analysis, the limiting strain rate ˙̄ε0 is chosen to be750

0.01 and the penalty constant (or bulk modulus) K is set to 105.751

Among the various models of friction, the one proposed in [54] is adapted to model752

the sliding contact at the tool-workpiece interface. This model allows the variation of the753

tangential traction with the relative velocity at the tool-workpiece interface754

tf = −mk vs
|vs|
' −mk

{
2

π
arctan

(
|vs|
v0

)}
vs
|vs|

755

where vs is the relative velocity in the tangential direction between the tool and the756

workpiece, and v0 is a positive constant several orders of magnitude smaller than vs; m is757

the friction factor (0 < m < 1) and k is the material shear yield stress k = σ̄/
√

3. For the758

compression tests considered here, the relative tangential velocity at the tool-workpiece759

interface at the beginning of deformation is zero. The present analysis assumes that the760

friction factor remains constant throughout compression. Investigations on frictional shear761

stress measurements over the interface between a cylindrical workpiece and a die during762

plastic compression are reported in [55]. The basic characteristics of algorithms used in763

the RVP FEM analysis are summarized in Table 1.764
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Basic characteristics of algorithms in RVP FEM

Type of problem Two dimensional, plane strain, rigid viscoplastic material

flow, isotropic, homogeneous

Thermomechanical problem

solution

Loose coupling (staggered) - Backward Euler difference

(θ = 1)

Type of elements 4-node quadrilateral isoparametric elements, bilinear

shape functions

Flow stress equation Power law: σ̄( ˙̄ε) = c ˙̄εp, c, p constants

Iteration method Direct, BFGS with line search

Remeshing N/A

Boundary conditions Sliding friction on Sc

Table 1: Numerical algorithms.

Remark 8 Note that during the course of the simulation we avoid remeshing of the workpiece. As765

discussed in [56], remeshing techniques can be taken into account provided that mesh transfer766

operations are applied to the reduced-basis.767

5.1 Mechanical field768

The first case for numerical illustration of the method considers the velocity field during the769

simulation of the forming process using the shear friction factor m as the investigated parameter.770

From now on, let the shear friction factor m denoted as λ for convenience with the previous771

sections notation. For the numerical study, the following training points are selected λ ∈ Λt =772

{0.1, 0.5, 0.9}. The choice made here, is to use a minimum number of sampling points equi-773
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distributed over the parametric range. The target point is set to λ̃ = 0.3. See the FEM solutions774

for the training and target points at the final state of the computation in Figure 6.775

For each parametric simulation, a sequence of snapshots uniformly distributed over time using776

an increment of ∆t = 0.5 s is extracted for all nodes of the workpiece. The space-time snapshot777

matrices S(i) ∈ Mat2Ns,Nt(R) with 2Ns = 242 and Nt = 7, corresponding to parameter values778

λi, are associated with the nodal velocity field in x and y directions.779

For the parametric Space-Time interpolation, the snapshot matrix S̃ of mode p corresponding780

to the target point λ̃ is computed via the target Algorithm 3. The target Algorithm 1 is applied781

to the spatial Φ
(1)
p , . . . ,Φ

(N)
p and temporal parts Ψ

(1)
p , . . . ,Ψ

(N)
p , with reference parameter value782

λi0 = 0.5. In order to assess the interpolation acuracy, the snapshot matrix S̃ is compared783

against the high-fidelity FEM solution by introducing the following a posteriori errors. Using the784

interpolated and the HF-FEM snapshot matrices S̃ and SFEM, respectively, the relative L2-error785

measure is defined as786

eL2(s̃i) :=
‖s̃i − sFEM

i ‖L2

‖sFEM
i ‖L2

, i = 1, . . . , p ≤ Nt. (41)787

Additionally, the relative Frobenius error norm of S̃ and SFEM is defined as788

eF (S̃) := ‖S̃− SFEM‖F /‖SFEM‖F . (42)789

The eigenvalue spectrum of snapshot matrices S(i) corresponding to training points λi ∈ Λt790

is exhibited in a semi-log scale in Figure 7. We can observe that the distance between the first791

and the last eigenvalue is from 5 up to 6 orders of magnitude. Moreover, the percentage of energy792

E(k) =
∑k

i=1 σ
2
i /
∑Nt

i=1 σ
2
i captured from the POD modes is shown in Figure 8. It is evident that793

most of the 99.9% of the total energy is contained by the first two POD modes.794

The relative L2-error norm eL2(s̃i) (see (41)) between the interpolated and the HF-FEM795

solution for various POD modes is displayed in Figure 9. In general, the relative error for all796

POD modes lie within a range of 0.0175 up to 0.038. It can be observed that the interpolated ST797
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POD solution delivers good accuracy and is reliable enough to predict the velocity field for the798

investigated target point.799

Remark 9 In the case of using p = 7 POD modes for the temporal basis interpolation, the Grass-800

mannian manifold G(p, p) reduces to one point, so it is not relevant to use the target Algorithm 1:801

any new parameter value will give rise to the same matrix Ψi0 in the associated compact Stiefel802

manifold, corresponding to the reference point.803

Additionally, the position vector error eL2(x̃(t)) = ‖x̃(t)− xFEM(t)‖L2 at the nodal points is804

computed for p =2,3,5 and 7 POD modes, where x̃(t) and xFEM(t) denotes the position vector805

of the ST POD and the high-fidelity FEM solutions, respectively, at the time increments during806

the deformation. Figure 10 presents the local error eL2(x̃(t)) superimposed at the final loading807

state t = 0.35 s obtained from the high-fidelity FEM solution. Different patterns of the spatial808

error distribution can be observed concerning the number of POD modes p. It is interesting to809

observe that in both cases, the maximum error is located near the upper-right location of the810

deforming workpiece.811

The evolution of the deformation process can be also represented using the time-displacement812

histories of some selected nodes of the workpiece (Figure 11). The ST POD predictions are813

compared against the high-fidelity FEM counterpart solution using p = 2 POD modes. Again, it814

can be observed that the interpolated ST POD solution is accurate and reliable to predict the815

evolution of the displacement field for the investigated target point during the forming process.816

For the preceding numerical investigations, the ST POD efficiency is demonstrated using a817

single target point, i.e., λ̃ = 0.3. To further assess the interpolation performance, a new target818

point is now considered, λ̃ = 0.8. Interpolation is performed using the same set of training points819

λ ∈ Λt = {0.1, 0.5, 0.9}, with reference parameter value λi0 = 0.5. The relative L2-error norm820

eL2(s̃i) for various POD modes p corresponding to target point λ̃ = 0.8 is shown in Figure 12.821
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Again, one can observe that the relative error lies within a narrow range of the values, i.e., 0.014822

up to 0.026.823

5.2 Temperature field824

To further investigate the performance of the proposed ST POD interpolation, the temperature825

field obtained from the coupled thermomechanical simulation of the forming process is considered.826

Again, for the temperature field, we consider the shear friction factor m as the investigated system827

parameter. The training points selected for the mechanical field analysis are also used in this study,828

i.e., λ ∈ Λt = {0.1, 0.5, 0.9}. The target point is set to λ̃ = 0.3. For each parametric problem,829

snapshots are uniformly distributed over time using an increment step size ∆t = 0.5 s. The final830

deformation state is reached at t = 0.35 s. The space-time snapshot matrices S(i) ∈ MatNs,Nt(R)831

of size 121×7, corresponding to λi, are associated with nodal temperatures. We will now compare832

the Space-Time interpolation (see Algorithm 3) against the high-fidelity FEM solution. Again, for833

the target Algorithm 1 applied to the spatial Φ
(1)
p , . . . ,Φ

(N)
p and temporal parts Ψ

(1)
p , . . . ,Ψ

(N)
p ,834

the reference parameter value λi0 = 0.5 is used.835

Figure 13 presents the temperature profiles at the final compression state obtained using836

different values of the shear friction factor m (represented by parameter λ). The temperature837

rises due to plastic work conversion to heat assuming a constant value for the Taylor-Quinney838

coefficient ξ = 0.9. In all cases, the maximum temperature is located at the center of the workpiece839

with values ranging from T = 89.5 ◦C up to T = 98 ◦C.840

The eigenvalue spectrum of snapshot matrices S(i) corresponding to training points λi ∈ Λt841

is shown in a semi-log scale in Figure 14. We can observe that the distance between the first and842

the last eigenvalue of the curves is of the order of 5 up to 6 orders of magnitude. Moreover, the843

system energy E(k) =
∑k

i=1 σ
2
i /
∑Nt

i=1 σ
2
i captured from the POD modes is shown in Figure 15.844

Most of the 99.9% of the total energy is contained by the first two POD modes.845
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The relative L2-error norm eL2(s̃i) (41) between the interpolated and the HF-FEM snapshot846

matrices S̃ and SFEM, respectively, for various modes p is shown in Figure 16. Additionally, the847

Frobenius relative error norm (42) for the POD modes is presented in Figure 17. In general, the848

obtained results are found to have less than 1% relative error for POD modes p > 1 and therefore849

are acceptable as fast near real-time numerical predictions.850

Finally, Figure 18 shows the ST POD time-temperature histories for some selected nodes851

of the workpiece using p = 7 modes. The predictions are compared against the high-fidelity852

counterpart solution, and it is difficult to distinguish differences among these plots. It is revealed853

that the interpolated ST POD solution delivers good accuracy for all selected nodes.854

5.3 Computational complexity855

The computational cost of the ST POD interpolation scales with the computational complexity856

of SVD and the matrix operations in the target ST Algorithm 3. It is evident, that the cost857

of ST POD interpolation will be lower compared to the standard POD Galerkin nonlinear ap-858

proaches and even lower than the full order FEM solution. The coupled thermomechanical FEM859

simulation for the target point takes 35.123 seconds in wall-clock time. On the other hand, the860

ST interpolation for the mechanical problem using a ROM POD basis of mode p = 4 results in861

0.147 seconds in wall-clock time. The ST interpolation for the thermal problem using a ROM862

POD basis of mode p = 4 results in 0.153 seconds in wall-clock time. Therefore, the total ST863

interpolation takes 0.3 seconds in wall-clock time corresponding to a time speed-up of 116.96. All864

experiments in this section were implemented in Matlab and run on a 4th Generation Intel(R)865

Core(TM) i7-4600U CPU @ 2.10GHz, 8GB RAM, 250 GB SSD, Debian 9 x64.866
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6 Conclusions867

A novel non-intrusive Space-Time POD basis interpolation scheme on compact Stiefel manifolds868

is developed and applied to parametric high nonlinear metal forming problems. Apart from the869

separate interpolation of POD spatial and temporal basis on associated Grassmannian mani-870

folds, an interpolation function is defined on a set of parametric snapshot matrices. This function871

results from curves, which are defined on compact Stiefel manifolds both for space and the tem-872

poral part, and also the use of some mixed part encoded by a square matrix. This latter matrix873

provides a link between the interpolated space and temporal basis for the construction of the874

target ROM snapshot matrix. To prove the efficiency of the method it has been used a coupled875

thermomechanical rigid-viscoplastic FEM formulation which is integrated into the manufactur-876

ing industry in a variety of applications. The performed numerical investigations have considered877

the reconstruction of the ROM snapshot matrices both of the velocity and the temperature878

fields. Moreover, the error norms of the Space-Time POD interpolated ROM models concern-879

ing the associated high-fidelity FEM counterpart solutions are validating the accuracy of the880

proposed interpolation scheme. In conclusion, the overall results demonstrate the potential use881

of the proposed ST POD interpolation scheme for near real-time parametric simulations using882

off-line computed ROM POD databases, supporting thus manufacturing industries to accelerate883

design-to-production timespans, and thereby reducing costs while ensuring the design of superior884

processes.885
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Fig. 1: Points on Stiefel manifold. The linearly independent vectors in R3 spanning the

red and blue planes correspond to points in Stc(2, 3).
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Fig. 2: Points on Stiefel St(2, 3) and Grassmann manifold G(2, 3).
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Y(λ2)
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Y(λ3)
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•

•m2

•
m3•
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Fig. 3: There is a natural projection π : Stc(p, n) −→ G(p, n) from the compact Stiefel

manifold Stc(p, n) to the Grassmannian G(p, n) of p-dimensional subspaces in Rn which

sends a p-frame to the subspace spanned by that frame. The fiber over a given point m on

G(p, n) is the set of all orthonormal p-frames spanning the subspace m. Computations on

Stc(p, n) using the target Algorithm 1 for λ := λk, lead to some matrix Y(λk) generally

different from Yk (except for the reference point), and thus do not produce an interpolation

on the points Y1, . . . ,YN .
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Fig. 4: The exponential Expm and the logarithm Logm map on the Grassmann manifold

G(p, n).
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Fig. 5: The Space-Time Algorithm.
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(a) For λ = 0.1 (b) For λ = 0.3

(c) For λ = 0.5 (d) For λ = 0.9

Fig. 6: Deformation patterns of the benchmark metal forming example using different

values for the shear friction factor m represented by the parameter λ.
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Fig. 7: The eigenvalue spectrum of snapshot matrices S(i) corresponding to training points

λ ∈ Λt = {0.1, 0.5, 0.9}.
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Fig. 8: Energy captured by the singular values of snapshot matrices S(i) corresponding to

training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Fig. 9: Performance of ST POD interpolation using the relative L2-error norm eL2
(s̃i)

for various modes p; training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter value

λi0 = 0.5; target point λ̃ = 0.3.



54 Orestis Friderikos et al.

0 2 4 6 8 10 12
0

2

4

6

8

10

0

0.005

0.01

0.015

0.02

0 2 4 6 8 10 12
0

2

4

6

8

10

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10 12
0

2

4

6

8

10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 2 4 6 8 10 12
0

2

4

6

8

10

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fig. 10: The position vector error eL2(x̃(t)) = ‖x̃(t)− xFEM(t)‖L2 of the nodal points at

the final deformation state t = 0.35 s superimposed on the high-fidelity FEM solution;

POD modes p = {2, 3, 5, 7}; training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter

value λi0 = 0.5; target point λ̃ = 0.3.
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Fig. 11: Comparison of the total displacement of selected nodes against the high-fidelity

FEM solution; training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5;

target point λ̃ = 0.3; POD modes p = 2.
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Fig. 12: Performance of ST POD interpolation using the relative L2-error norm eL2
(s̃i)

for various POD modes p; training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter

value λi0 = 0.5; target point λ̃ = 0.8.
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(c) For m = 0.5

Temperature field (C)

0 2 4 6 8 10 12

0

2

4

6

8

10

80

82

84

86

88

90

92

94

96

98

(d) For m = 0.9

Fig. 13: Temperature profiles at the final compression state t = 0.35 s obtained using

different values of the shear friction factor m represented by parameter λ.
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Fig. 14: The eigenvalue spectrum of snapshot matrices S(i) corresponding to training

points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Fig. 15: Energy captured by the singular values of snapshot matrices S(i) corresponding

to training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Fig. 16: Performance of ST POD interpolation using the relative L2-error norm eL2
(s̃i)

for various POD modes p; training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter

value λi0 = 0.5; target point λ̃ = 0.3.
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Fig. 17: Performance of the POD interpolation using the relative Frobenius error norm

eF (S̃) against the number of POD modes p; training points λ ∈ Λt = {0.1, 0.5, 0.9};

reference parameter value λi0 = 0.5; target point λ̃ = 0.3.
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Fig. 18: Temperature evolution of selected nodal points validated against the high-fidelity

FEM solution; ST POD and HF-FEM solutions virtually coincide; training points λ ∈

Λt = {0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5; target point λ̃ = 0.3; POD

modes p = 7.
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