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Abstract. This work aims to interpolate parametrized Reduced Order Model
(ROM) basis constructed via the Proper Orthogonal Decomposition (POD) to
derive a robust ROM of the system’s dynamics for an unseen target parameter
value. A novel non-intrusive Space-Time (ST) POD basis interpolation scheme is
proposed, for which we define ROM spatial and temporal basis curves on compact
Stiefel manifolds. An interpolation is finally defined on a mixed part encoded in
a square matrix directly deduced using the space part, the singular values and
the temporal part, to obtain an interpolated snapshot matrix, keeping track of
accurate space and temporal eigenvectors. Moreover, in order to establish a well-
defined curve on the compact Stiefel manifold, we introduce a new procedure,
the so-called oriented SVD. Such an oriented SVD produces unique right and left
eigenvectors for generic matrices, for which all singular values are distinct. It is
important to notice that the ST POD basis interpolation does not require the
construction and the subsequent solution of a reduced-order FEM model as clas-
sically is done. Hence it is avoiding the bottleneck of standard POD interpolation
which is associated with the evaluation of the nonlinear terms of the Galerkin pro-
jection on the governing equations. As a proof of concept, the proposed method
is demonstrated with the adaptation of rigid-thermoviscoplastic finite element
ROMs applied to a typical nonlinear open forging metal forming process. Strong
correlations of the ST POD models with respect to their associated high-fidelity
FEM counterpart simulations are reported, highlighting its potential use for near
real-time parametric simulations using off-line computed ROM POD databases.
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Notations
Matn,p(R) Set of n× p matrices in R
Ip Identity matrix in Matp,p(R)
[y1, . . . ,yp] Matrix in Matn,p(R) Matrix with column vectors yi ∈ Rn

O(p) Orthogonal group on Rp
{
Q ∈ Matp,p(R), QTQ = Ip

}

G(p, n) Grassmann manifold Set of p linear subspaces in Rn

π−1(m) Fiber at m ∈ G(p, n)
If y1, . . . ,yp is an orthonormal basis of m
π−1(m) = {YQ, Q ∈ O(p), Y = [y1, . . . ,yp]}

Tm := TmG(p, n) Tangent space of G(p, n) at
m

For Y ∈ π−1(m), one model of Tm is{
Z ∈ Matn,p(R), ZTY = 0

}

St(p, n) Stiefel manifold
Set of ordered p-tuples independent
vectors in Rn

Stc(p, n) Compact Stiefel manifold
Set of ordered p-tuples of orthonormal
vectors in Rn

Stc(p, n) =
{
Y ∈ Matn,p(R), YTY = Ip

}

HorY Horizontal space at Y HorY :=
{
Z ∈ Matn,p(R), ZTY = 0

}

v ∈ Tm Velocity vector on the tan-
gent plane Tm

Represented by a horizontal lift Z ∈
HorY, with Y ∈ π−1(m)

S(i) Snapshot matrix S(i) ∈ Matn,m(R) corresponding to pa-
rameter value λi

1. Introduction

Computational metal forming has been widely used in academic laboratories and
the manufacturing industry over the last decades, becoming nowadays a mature, well
established technology. Nevertheless, new challenging fields are emerging, among
others, uncertainty quantification, optimization of processes and parameter identifi-
cation in design analysis [1, 2]. One of the key challenging topics mentioned in [1]
is the introduction of Model Order Reduction (MOR) methods to combat the high
computational cost, which is also of paramount interest in the above-mentioned
fields. Moreover, due to the multiple sources of strong non-linearities inherent in
manufacturing problems, design optimization and multi-parametric studies of large
scale models turns out to be prohibitively expensive. Indeed, simulation of complex
configurations can be intractable since the computational times can highly increase.

To this end, meta-model techniques are often used to tackle the computational
burden. These rely on a manifold learning stage during which we need to capture
the original space where the solution of the model problem lies. This data collection
consists of solving the full-scale model for an ensemble of training data over the
parametric range and is commonly referred to as the offline stage. Even though
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meta-models can speed up the simulation time, nevertheless their construction with
standard computations based on full-order models is expensive.

Closely related to the concept of metamodeling, Reduced Order Models (ROMs)
have been chosen to reduce the problem’s dimensionality while at the same time
maintaining solution accuracy. ROMs can decrease the computational complexity
of large-scale systems, solving parametrized problems and offering the potential for
near real-time analysis. The methods for building ROMs can be classified into two
general families: a priori and a posteriori ones. The well known a priori MOR
includes methods such as the Proper Generalized Decomposition (PGD) [3], and
the a priori reduction method (APR) [3, 4]. The main characteristic of all these
methods is that they do not require any precomputed ROMs. In the second class of
methods, the reduced basis is built, a posteriori, from the state variable snapshots
in the parametric space. One popular method is the POD [5, 6, 7], also known
as Kharhunen-Loève Decomposition (KLD) [8, 9], Singular Value Decomposition
(SVD) [10] or Principal Component Analysis (PCA) [11, 12, 13, 14].

For nonlinear systems, even though a Galerkin projection reduces the number of
unknowns, however, the computational burden for obtaining the solution could still
be high due to the computational costs involved in the evaluation of nonlinear terms.
Hence, the nonlinear Galerkin projection principally leads to a ROM, but its evalua-
tion could be more expensive than the corresponding one of the original problem. To
this effect, to make the resulting ROMs computationally efficient, a sparse sampling
method is used, also called hyper reduction, to mention among others, the missing
point estimation (MPE) [15], the empirical interpolation method (EIM) [16], the
discrete empirical interpolation method (DEIM) [17], the Gappy POD method [18],
and the Gauss-Newton with approximated tensors (GNAT) method [19]. Thus, all
these methods imply the solution of a new ROM FEM problem.

In the case of a parametric analysis using POD basis interpolation on Grassmann
manifolds [20, 21], the method starts with a training stage during which the problem
is solved for several training points. Then, using the FEM solutions, the full-order
field ‘snapshots’ are compressed using the POD to generate a ROM that is expected
to reproduce the most characteristic dynamics of its high-fidelity counterpart solu-
tion. However, the relevant information is contained in the vector spaces generated
by the (left or right) singular vectors of the snapshot matrices. Now, for a new
parameter value, interpolation methods have to be defined from such relevant sub-
spaces spanned by the POD basis vectors [20]. Other approaches obviously could
be considered, such as interpolations computed on the space of matrices of a fixed
rank, whereby the mechanical origin of the problem imposes to consider the vector
subspaces, and not the matrices themselves [21]. Nevertheless, such methods as the
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one of interpolation between two positive semidefinite matrices of fixed rank [22],
may not capture the important elements obtained from the mechanical equations.

To interpolate between different vector spaces of the same dimension (encoded
into the mode p of the POD), a Grassmann manifold [23] must be used, which is
the set of p-dimensional subspaces of Rn. Such a manifold is in fact a Riemann-
ian manifold [24], so we can construct geodesics between two points, and use such
geodesics to define a logarithm map to linearize, and conversely using the exponen-
tial map to return back to the Grassmann manifold. While an interpolation cannot
be done directly on Grassmann manifolds, linearization allows computing such an
interpolation, at least locally once a reference point has been selected [20, 21]. To
any new parameter value, thus we get a new subspace obtained from interpolation
between all subspaces related to the spatial eigenvectors of the snapshot matrices.
Another approach using inverse distance weighting was initiated in [21, 25], but it
also relies on several choices (as one of the weights). Furthermore, an extension of
Neville-Aitken’s algorithm to Grassmann manifolds which computes the Lagrange
interpolation polynomial in a recursive way from the interpolation of two points was
recently presented [26].

In the standard POD interpolation mentioned above [20], the spatial ROM basis
corresponding to the target point is used to generate a ROM FEM, which is ex-
pected to have a lower computational cost compared to the high-fidelity problem.
The key idea in the Space-Time (ST) POD basis interpolation proposed by [27, 28],
is that the reduced spatial and temporal basis are considered separately, both defin-
ing points on two different Grassmann manifolds. However, such points are strongly
related: a spatial vector directly corresponds to a temporal vector, and vice versa.
From this, firstly we need to consider the p-tuples of spatial (and temporal) vectors,
instead of the p-dimensional subspace, which defines points on an associated compact
Stiefel manifold, strongly connected to Grassmann manifolds. Contrary to what is
suggested in [28], we propose a different interpolation scheme, as we do not perform
interpolation of the singular values, followed by spatial and temporal calibration.
Instead, we exploit the dependence between the spatial and temporal parts. Indeed,
using an interpolation algorithm defined on a Grassmann manifold, we derive curves
on a compact Stiefel manifold, which are no longer interpolating, but which never-
theless allow us to obtain new singular vectors for the spatial part, and separately
for the temporal part. Such space and temporal singular vectors finally are taken to
define a mixed part on which a classical interpolation can be computed. In the end,
we get in this way a ROM matrix corresponding to a new parameter value. Note
that in order to obtain a well-defined curve on compact Stiefel manifolds, we have
to introduce a new procedure, the so-called oriented SVD. Such an oriented SVD
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produces unique right and left eigenvectors for snapshot matrices, supposed to be
generic matrices, for which all non–zero singular values are distinct.

The off-line stage in the ST approach consists of solving FEM problems which
are corresponding to the training points of the given parameter. The on-line stage
concerns the use of a curve defined on a compact Stiefel manifold to determine
the spatial and temporal ROM basis for the target point, in order to construct the
related ROM snapshot matrix. In fact, the ST interpolation offers the advantage of
reconstructing a snapshot matrix without relaunching ROM FEM computations. To
this end, it results in near-real-time solutions due to direct matrix multiplications in
the on-line stage.

We could also mention some other ST approaches [29, 30, 31, 32], where neither
Grassmann nor compact Stiefel manifolds are considered. For instance, an approx-
imation of the spatial and temporal basis functions by linear interpolation of their
modes is proposed in [29] to study the flow past a cylinder at low Reynolds numbers.
A non-intrusive ROM approach for nonlinear parametrized time-dependent PDEs
based on a two-level POD method by using Radial Basis Functions interpolation is
presented in [30, 33].

The method proposed in this work is applied to a coupled thermomechanical rigid
visco-plastic (RVP) FEM analysis based on an incremental implicit approach [34,
35, 36, 37]. Note that the RVP formulation specifically is tailored for metal forming
simulations, where the plastic flow is unconstrained and usually of finite magni-
tude, involving large strain-rates and high temperatures. In the present study, all
simulations are performed by using an in-house Matlab code which consists of two
independent FEM solvers. A mechanical solver for the viscoplastic deformation anal-
ysis [38] and a thermal solver for the heat transfer analysis. A staggered procedure
is used to solve the system of coupled equations.

The paper is organized as follows: in section 2, the Proper Orthogonal Decom-
position is presented, followed by an introduction to some basic notions about the
geometry of the Grassmann and Stiefel manifolds to make the article reasonable self-
contained. POD basis interpolation on Grassmannian manifolds is introduced con-
sidering the underlying formulation of the logarithm and the exponential map. The
core of this paper is illustrated in section 3, where the computational framework for
the ROM adaptation based on a novel non-intrusive Space-Time POD basis interpo-
lation on compact Stiefel manifolds is developed. The following section 4 covers the
rigid visco-plastic formulation, the general framework of the thermal field equations,
and the thermomechanical coupling. In section 5, the interpolation performance ap-
plied to a metal forming process is shown, as well as further computational aspects
are discussed. Finally, section 6 highlights the main results and some important
outcomes.
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2. Space–Time POD, Grassmann and compact Stiefel manifolds

Let us recall here the important link between Proper Orthogonal Decomposition
and Grassmann manifold [20, 39, 40, 21, 25].

Assume S ∈ Matn,m(R) to be any real matrix of size n×m (with n ≥ m), taken
here to be a snapshot matrix with n = 3NS obtained from the spatial discretization
Ns, and m = Nt obtained from the time one. Any spatial POD of mode p leads to
a p-dimensional vector space Vp ⊂ Rm such that the Frobenius norm

‖S−ΠpS‖2F
is minimal, where matrix Πp corresponds to the orthogonal projection on Vp (see
[21] for more details). Such a matrix Πp is directly obtained from a Singular Value
Decomposition (SVD) of S. Indeed, let us write a SVD

S = ΦΣΨT

with Φ = [φ1, . . . , φr] and Ψ = [ψ1, . . . , ψr], where the columns φk ∈ Rn and ψk ∈ Rm

form a set of orthonormal vectors, and Σ ∈ Matr,r(R) is a diagonal matrix, where r
denotes the rank of S. Then, we can define Φp := [φ1, . . . , φp] ∈ Matn,p(R) and we
obtain Πp = ΦpΦ

T
p .

In this classical approach, the relevant object is not the reduced matrix Sp := ΠpS,
supposed to be of maximal rank, but the p-dimensional vector space Vp spanned by
vectors φ1, . . . , φp, and thus the image of the matrix Φp. From this, interpolation
has to be considered on the set of all p-dimensional vector spaces, that is on the
so–called Grassmann manifold G(p, n):

G(p, n) := {Vp ⊂ Rn, dim(Vp) = p} .
Note here that the point m := Vp ∈ G(p, n) defines a vector space spanned by the

set φ1, . . . , φp represented by matrix Φp, however this matrix representation is not
unique (see Example 2.2).

Take now a set {λ1, . . . , λN} of parameter values leading to snapshot matrices

S(1), . . . ,S(N) with SVD

S(k) = Φ(k)Σ(k)Ψ(k), Φ(k) = [φ
(k)
1 , . . . , φ(k)

r ], Ψ(k) = [ψ
(k)
1 , . . . , ψ(k)

r ],

where φ
(k)
i are orthonormal vectors in Rn and ψ

(k)
j are orthonormal vectors in Rm.

The classical approach [20, 21] then considers the spatial POD of the snapshot

matrices S
(1)
p , . . . ,S

(N)
p of mode p, so that we obtain points mi (i = 1, . . . , N) on

G(p, n), respectively represented by the matrices

Φ(k)
p := [φ

(k)
1 , . . . , φ(k)

p ] ∈ Matn,p(R),
(
Φ(k)

p

)T
Φ(k)

p = Ip.
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To any new parameter value λ̃, it is possible to make an interpolation considering
the spatial part based on the points mi ∈ G(p, n), using a local chart given by
normal coordinates [20, 21, 25], in order to obtain a point m̃ ∈ G(p, n) represented

by a matrix Φ̃. From such a point m̃ ∈ G(p, n), we deduce a p-dimensional vector
space on which some POD-Galerkin approach [21] can lead to a new ROM model.

On the contrary, we propose another approach as we consider a Space–Time in-

terpolation, using both the spatial vector spaces represented by matrices Φ
(k)
p and

the temporal vector spaces represented by matrices

Ψ(k)
p := [ψ

(k)
1 , . . . , ψ(k)

p ] ∈ Matm,p(R),
(
Ψ(k)

p

)T
Ψ(k)

p = Ip.

An important observation now is that matrices Φ
(k)
p (resp. Ψ

(k)
p ) directly define

an ordered p-tuple of orthonormal vectors in Rn (resp. Rm), that is a point on the
compact Stiefel manifold

Stc(p, n) := {Ordered orthonormal p-tuple of vectors in Rn} .
To obtain a Space-Time POD interpolation (instead of a spatial POD interpolation
followed by Galerkin approach), we finally adopted the following strategy, when

dealing with a parameter value λ̃:

(1) Define a curve on the compact Stiefel manifold corresponding to the spatial
part

λ 7→ Φ(λ) ∈ Stc(p, n)

obtained using the already known interpolation algorithm on Grassmann
manifold.

(2) In the same way, define a curve on the compact Stiefel manifold correspond-
ing to the temporal part

λ 7→ Ψ(λ) ∈ Stc(p,m).

(3) Construct an interpolated curve λ 7→ S(λ) passing through the POD of mode

p snapshot matrices S
(k)
p , in order to obtain an interpolation of a ROM matrix

S̃ := S(λ̃).

In the next subsections, we give all important details to obtain such an interpolated
curve λ 7→ S(λ). First, in subsection 2.1 we explain how to compute on Grass-
mann manifolds using their Riemannian structure to obtain explicit formulae for the
geodesics defining normal coordinates. From this explicit formulae, we can deduce
in subsection 2.2 a target algorithm in order to define the curves

λ 7→ Φ(λ) ∈ Stc(p, n), λ 7→ Ψ(λ) ∈ Stc(p,m)
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on compact Stiefel manifolds. The question on how to define an interpolated curve

for matrices S
(k)
p will then be addressed in section 3.

2.1. Riemannian geometry on Grassmann manifolds. We will summarize now
some essential results about Grassmann manifolds. Such manifolds are in fact com-
plete Riemannian manifolds [24], meaning for instance that we can define the length
of a curve. Moreover, we can always construct a curve of the shortest length between
two points, which is called a geodesic, and it will be the starting point to define nor-
mal coordinates via the exponential and logarithm map (Definition 2.6 and 2.7). As
we cannot do direct computations on Riemann manifolds, normal coordinates enable
us to obtain formulae of curves, such as the Lagrangian polynomials. Note finally
that a rigorous mathematical background of all of this is given in [41].

After we give a definition of the Grassmann manifold and how to represent its
points with matrices, we propose to define the tangent plane using matrix represen-
tative, to have formulae for a scalar product, given by (3). From this, we deduce a
classical expression for geodesics (Theorem 2.3).

Let p ≤ n be two non-zero integers and G(p, n) the Grassmann manifold of p-
dimensional subspaces in Rn. In fact, Grassmann manifolds are special cases of
quotient manifolds, meaning that a point on such a manifold can have many repre-
sentatives. Let us consider indeed a p-dimensional linear subspace V of Rn. Such a
subspace can be defined using any ordered set of p independent vectors v1, . . . ,vp

in Rn, encoded into a full rank matrix

M := [v1, . . . ,vp] ∈ Matn,p(R).

Any other basis v′1, . . . ,v
′
p of V will then lead to another full rank matrix

M′ := [v′1, . . . ,v
′
p] ∈ Matn,p(R),

and we necessary have

M′ = MP

where P ∈ GL(p) is some invertible matrix in Matp,p(R). From all this, we deduce
that the point m := V ∈ G(p, n) is represented by the infinite set of matrices

{MP, P ∈ GL(p)} .
Now, the ordered set of p independent vectors in Rn and thus the set of full rank

matrices in Matn,p(R) define the Stiefel manifold (see Figure 1)

St(p, n) := {M = [v1, . . . ,vp] ∈ Matn,p(R), rg(M) = p}
so that we obtain a natural map from such Stiefel manifold and the Grassmann
manifold G(p, n) (see Figure 2):

M = [v1, . . . ,vp] ∈ St(p, n) 7→m = {MP, P ∈ GL(p)} .
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In our situation, nevertheless, we will only focus on orthonormal bases of p-dimensional
subspaces. Doing so, we thus consider matrices defined by orthonormal vectors, lead-
ing to the so-called compact Stiefel manifold

Stc(p, n) :=
{
Y ∈ Matn,p(R), YTY = Ip

}
(1)

and any point m ∈ G(p, n) will then be represented by the infinite set

{YQ, Q ∈ O(p)}
where Y = [y1, . . . ,yp] is defined using an orthonormal basis y1, . . . ,yp of m. This
defines a surjective map

π : Y ∈ Stc(p, n) 7→m = π(Y) = {YQ, Q ∈ O(p)} ∈ G(p, n)

and the set of all matrices representing the same point m ∈ G(p, n) is called the fiber
of π at m (see Figure 3 for an illustration of a fiber):

π−1(m) = {YQ, Q ∈ O(p)} .
Remark 2.1. An important point here is that, from now on, any computation
on G(p, n) will be done using a choice in the fibers. Nevertheless, for any point
m ∈ G(p, n), there is no canonical way to choose an element Y ∈ π−1(m), so any
computation has to be independent of that choice.

We need now to define the geodesics of Grassmann manifold, which can be done
once we have defined the tangent plane at each point m ∈ G(p, n) and a Riemaniann
metric. Take any point m ∈ G(p, n) represented by a matrix Y = [y1, . . . ,yp] of
orthonormal vectors, the tangent plane Tm := TmG(p, n) is then represented by the
p(n− p) dimensional vector space

HorY :=
{
Z ∈ Matn,p(R), ZTY = 0

}
, (2)

called the horizontal space, where Y ∈ π−1(m). From all this, a vector v ∈ Tm will
be called a velocity vector, which can be represented by a matrix Z ∈ Matn,p(R) such
that ZTY = 0, and Z is called a horizontal lift of v.

Example 2.2. Take here p = 2 and n = 5, so that G(2, 5) is the set of planes in a five
dimensional space. The matrices

Y =




1
2 0

−1
2

√
2

2
0 0
1
2

√
2

2
1
2 0



, Y′ =




√
2

4 −
√

2
4

2−
√

2
4

2+
√

2
4

0 0
2+
√

2
4

2−
√

2
4√

2
4 −

√
2

4
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are in the compact Stiefel manifold Stc(2, 5), representing the same plane m ∈
G(2, 5). The horizontal space HorY defined by (2) is a 6-dimensional vector space of
matrices Z, for instance given by

Z =




u1 v1
u2 v2
u3 v3
−u2 −v2

−u1 + u2 − u4 −v1 + v2 − v4


 , ui, vi ∈ R.

Taking now velocity vectors v1, v2 ∈ Tm with respective horizontal lifts Z1,Z2 ∈
HorY we define the point–wise scalar product [42, 40]:

〈v1, v2〉m := tr
(
ZT

1 Z2

)
. (3)

Such a Riemannian metric leads to explicit geodesics given by [40, 39]:

Theorem 2.3. Let m ∈ G(p, n) represented by Y ∈ Stc(p, n). For any v ∈ Tm with
horizontal lift given by Z in HorY, let Z = UΣVT be a thin SVD of Z. Then

αv : t ∈ R 7→ αv(t) := π
[
(YV cos(tΣ) + U sin(tΣ)) VT

]
∈ G(p, n) (4)

is the unique maximal geodesic such that αv(0) = m and initial velocity

α̇v(0) :=
∂αv(t)

∂t
|t=0= v.

Remark 2.4. Up to our knowledge, there is no proof that

Y(t) := (YV cos(tΣ) + U sin(tΣ)) VT ∈ Stc(p, n). (5)

In fact, this follows by direct computation. Indeed, Z = UΣVT being a thin SVD,
we have V ∈ O(p) and

ZTY = VΣUTY = 0 =⇒ ΣUTY = 0

so that

sin(tΣ)UTY = 0 and YTU sin(tΣ) = 0.

Finally, we have:

YT (t)Y(t) = V


cos2(tΣ) + sin(tΣ)UTY︸ ︷︷ ︸

=0

V cos(tΣ)+

cos(tΣ) VTYTU sin(tΣ)︸ ︷︷ ︸
=0

+ sin2(tΣ)


VT

which concludes the proof.
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Remark 2.5. In many cases, formulas of the geodesic do not use the right multi-
plication by VT , as for instance in [40, 21]. Of course, as V being in O(p) both
matrices

(YV cos(tΣ) + U sin(tΣ)) VT and YV cos(tΣ) + U sin(tΣ)

define the same point on G(p, n). Now, the choice of such right multiplication in (5)
is related to the choice of the horizontal lift Z = UΣVT . Indeed, taking back the
path given by (5), we have

Ẏ(t) = (−YVΣ sin(tΣ) + UΣ cos(tΣ)) VT =⇒ Ẏ(0) = UΣVT = Z

which corresponds to the choice of the horizontal lift for velocity vector v ∈ Tm.

A consequence of Theorem 2.3 is an explicit formula for the exponential map [40,
21] (see Figure 4):

Definition 2.6. Let m ∈ G(p, n) be represented by Y ∈ Stc(p, n). For any velocity
vector v ∈ Tm with horizontal lift Z ∈ HorY, take Z = UΣVT to be a thin SVD of
Z. Then we define the exponential map

Expm : Tm −→ G(p, n),

v 7→ Expm(v) := π
[
(YV cos(Σ) + U sin(Σ)) VT

]
= αv(1).

Now, it is possible to define directly some inverse map of the exponential map,
called the logarithm map [40], but only locally. For any m and Y in its fiber, let us
first define the open space

Um := {m1 ∈ G(p, n), YTY1 is invertible, Y1 ∈ π−1(m1)}. (6)

Then we have:

Definition 2.7 (Logarithm map on Grassmannian manifold). Let m ∈ G(p, n) be
represented by a matrix Y ∈ Stc(p, n). For any point m1 in the open space Um

represented by a matrix Y1 ∈ Stc(p, n), define a thin SVD

Y1

(
YTY1

)−1 −Y = UΣVT .

Then the logarithm Logm(m1) ∈ Tm is the velocity vector in Tm with horizontal lift

Z = U arctan(Σ)VT ∈ HorY.

Remark 2.8. The logarithm map is only defined on some open set Um. This means
that for any point m1 /∈ Um, the associated matrix YTY1 is not invertible, so that
the computation of

Y1

(
YTY1

)−1 −Y

can not be done. Note finally that such an open set is strongly related to the cut-locus
of a Grassmann manifold [43].
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2.2. Target Algorithm on compact Stiefel manifolds. All the mathematical
background summarized in subsection 2.1 can be used to obtain an interpolation
curve between points m1, . . . ,mN on Grassmann manifold G(p, n) [20, 21], where
each point mi corresponds to a parameter value λi. Indeed, once a reference point
mi0 ∈ {m1, . . . ,mN} is chosen (see Figure 4):

• We use the logarithm map Logmi0
to linearize, i.e., meaning we define ve-

locity vectors vi := Logmi0
(mi) on the vector space Tmi0

.

• We obtain an interpolation curve λ 7→ v(λ) between vectors vi, using for
instance Lagrangian polynomial, and thus

v(λi) = vi, ∀i = 1, . . . , N.

• Taking the exponential map Expmi0
, we obtain back an interpolation curve

λ 7→m(λ) := Expmi0
(v(λ))

between the points m1, . . . ,mN on G(p, n), so that

m(λi) = mi, ∀i = 1, . . . , N.

We propose here to define curves on the compact Stiefel manifold St(p, n) instead
of the ones defined on the Grassmann manifold G(p, n). The starting point is a set
of matrices Y1, . . . ,YN in the compact Stiefel manifold St(p, n), corresponding to
parameter values λ1, . . . , λN . Once a reference parameter value λı0 has been chosen,
we obtain a curve

λ 7→ Y(λ)

where in general,
Y(λi) 6= Yi.

As a consequence, such a curve will not be an interpolation curve between the
matrices Y1, . . . ,YN (see Remark 2.11). Before doing so, and to obtain well-defined
curves, we need to make a specific definition:

Definition 2.9 (Genericity). A matrix is said to be generic if all its non–zero
singular values are distinct. The set of generic matrices in Matn,p(R) is denoted
Mat0

n,p(R).

For any generic matrix M ∈ Mat0
n,p(R), we know that its thin SVD M = UΣVT

is well defined. Indeed, taking σ1 > . . . > σp to be its ordered singular values, we
can write

M =

p∑

i=1

σiu
ivT

i (7)

where ui (resp. vi) is a left singular vector associated to σi (resp. a right singular
vector). All singular values being distinct, the only other possibility is to consider
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singular vectors εiui and εivi, with εi = ±1, so that the decomposition (7) remains
the same. We thus deduce that the target Algorithm below is well defined:

Algorithm 2.10 (Target algorithm). • Inputs:
– Matrices Y1, . . . ,YN in Stc(p, n), corresponding to parameter values
λ1 < . . . < λN .

– A reference parameter value λi0 with i0 ∈ {1, . . . , N}.
– A parameter value λ.

• Output: A matrix Y(λ) ∈ Stc(p, n).

(1) Define Zi0 := 0 and for each k ∈ {1, . . . , N} with k 6= i0 compute a thin
SVD of the generic matrix

Yk

(
YT

i0Yk

)−1 −Yi0 = UkΣkV
T
k

and define

Zk := Uk arctan(Σk)VT
k , with assumption Zk ∈ Mat0

n,p(R).

(2) Define an n× p matrix and compute a thin SVD

Z(λ) :=
N∑

i=1

∏

i 6=j

λ− λj
λi − λj

Zi = U(λ)Σ(λ)V(λ)T ,

with assumption Z(λ) ∈ Mat0
n,p(R).

(3) Define the n× p matrix in Stc(p, n) (see Remark 2.5):

Y(λ) := [Yi0V(λ)cos(Σ(λ)) + U(λ)sin(Σ(λ))]V(λ)T . (8)

Note: cos and sin act only on diagonal entries.

In this algorithm, as already noticed and following the assumptions of genericity,
the matrices Zk, Z(λ) and Y(λ) do not depend on the choice of matrices in the
associated thin SVD.

Remark 2.11. Using this target Algorithm to parameter value λ := λk leads to
some matrix Y(λk) generally different from Yk (except for k = i0). Thus, such an
algorithm computed on compact Stiefel manifold do not produce an interpolation on
the points Y1, . . . ,YN (see Figure 3). Indeed, to represent an interpolation curve
between these points means that if we consider the parameter value λ = λk (with
k ∈ {1, . . . , N}) as input in the algorithm, one should expect to return as output
Y(λk) (given by (8)) the initial matrix Yk, which is not the case in general.

Nevertheless, matrices Y(λk) and Yk define the same point on the Grassmann
manifold G(p, n), meaning that they both define an orthonormal basis of the same
subspace mk (see Remark 2.8). As a consequence, a projection matrix onto the
subspace mk is given by Y(λk)TY(λk) or equivalently by YT

k Yk.
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Example 2.12. Take for instance the compact Stiefel manifold Stc(2, 5), and the
three matrices

Y1 :=




1 0
0 1
0 0
0 0
0 0



, Y2 :=




√
3

3

√
3

3

0
√

3
3√

3
3 0

−
√

3
3

√
3

3
0 0



, Y3 :=




√
3

3 −
√

6
6

0
√

6
4√

3
3

√
6

12

0
√

6
4√

3
3

√
6

12




which correspond respectively to λ1 = 15, λ2 = 22 and λ3 = 27. Choosing the
reference parameter value to be λ1 and following the target Algorithm 2.10 we obtain

Y2(YT
1 Y2)−1 −Y1 =




0 0
0 0
1 −1
−1 2
0 0



, Y3(YT

1 Y3)−1 −Y1 =




0 0
0 0
1 1
0 1
1 1




Taking λ = λ2 and λ = λ3 as inputs in the algorithm, we finally obtain the matrices
(with computation done using 5 digits):

Y(λ2) =




0.77460 0.25820
0.25820 0.51640
0.51640 −0.25820
−0.25820 0.77460

0 0



6= Y2, Y(λ3) =




0.67860 −0.19876
−0.19876 0.57922
0.47984 0.38046
−0.19876 0.57922
0.47984 0.38046



6= Y3.

3. Space-Time Interpolation on compact Stiefel manifolds

As already noticed, POD is extracting the optimal space structures and the as-
sociated temporal modes. An important property is that the spatial and temporal
orthogonal modes are coupled : each space component is associated with a temporal
component partner and there is a one-to-one correspondence between both spaces.
Taking advance of this decomposition into orthogonal modes, it is natural to try
a Space-Time interpolation on compact Stiefel manifolds based on the target Algo-
rithm 2.10, instead of an interpolation of the space part alone, followed by a Galerkin
approach as is classically done [20, 21].

As a starting point, take a set of snapshot matrices S(1), . . . ,S(N), where each
matrix S(k) ∈ Matn,m(R) corresponds to a given parameter value λk ∈ R, with
λ1 < . . . < λN and n = 3Ns corresponding to the spatial part, while m = Nt

corresponds to the temporal part. For a given mode p ≤ Nt, our goal is to
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(1) Extract in a unique way a POD of mode p of each matrix S(k), so that we
have a well defined map

S(k) ∈ Matn,m(R) 7→ S(k)
p ∈ Matn,m(R).

(2) Obtain for each S
(k)
p ∈ Matn,m(R) a unique matrix Φ

(k)
p ∈ Stc(p, n) for the

spatial part and another unique matrix Ψ
(k)
p ∈ Stc(p,m) for the temporal

part.

(3) Use the target Algorithm 2.10 on matrices Φ
(k)
p first, and then on matrices

Ψ
(k)
p , in order to obtain two curves

λ 7→ Φ(λ), λ 7→ Ψ(λ) (9)

which are not interpolated curves, as in general Φ(λk) 6= Φ
(k)
p and Ψ(λk) 6=

Ψ
(k)
p (see Remark 2.11).

(4) Define an interpolation curve λ 7→ S(λ) between matrices S
(1)
p , . . . ,S

(N)
p ,

using curves obtained by (9).

We now detail two key points: the first concerns a new type of SVD, called oriented

SVD, which allows defining the matrices Φ
(k)
p and Ψ

(k)
p in a unique way. Finally, we

will explain in subsection 3.2 how to construct the curve λ 7→ S(λ), which requires
the introduction of a mixed part.

3.1. Oriented SVD on generic matrices. As already noticed in section 2, any
computation of a POD of mode p of a matrix S ∈ Matn,m(R) can be obtained
from a SVD. Suppose now that S is of rank r ≥ p. Any SVD of S with singular
values σ1 > . . . > σr leads to spatial orthonormal vectors φ1, . . . , φr in Rn (the
left singular vectors) and temporal orthonormal vectors ψ1, . . . , ψr in Rm (the right
singular vectors). A POD of mode p then writes

Sp = ΦpΣpΨ
T
p , Φp := [φ1, . . . , φp], Σp := diag(σ1, . . . , σp), Ψp := [ψ1, . . . , ψp].

(10)
Now, because of sign indeterminacy of the spatial vectors φi and temporal vectors
ψi, the matrices Φp,Ψp are not uniquely defined.

To overcome this difficulty, we need to introduce a new SVD so that, under the
assumption of genericity (see Definition 2.9), the matrices Φp and Ψp given by (10)
can be well-defined.

The main idea of the new SVD introduced here is to make an intrinsic choice on
the orientation for each space and temporal vector. Indeed, for each spatial vector
φ, only two choices can occur: φ or −φ (thus inducing a choice on the associated
temporal vector). A choice of orientation is then made as follows. Taking the
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column vectors S = [s1, . . . , sm] and s to be the first column vector such that the
scalar product 〈s, φ〉 is non zero, we impose the sign taking 〈s, φ〉 > 0.

Let us now give all details to compute the oriented SVD before obtaining algo-
rithm 3.4. A first Lemma, obtained by direct computation, allows us to use a column
vector of the initial snapshot matrix S to choose orientation:

Lemma 3.1. Let us consider s1, . . . , sm ∈ Rn to be the column vectors of S ∈
Matn,m(R) and take φ ∈ Rn to be a unit spatial vector of S, associated with a non–
zero singular value σ. Then, there exists i ∈ {1, . . . ,m} such that 〈si, φ〉 = sTi φ 6= 0.

From this, for any unit spatial vector φ ∈ Rn of S, let us define s(φ) to be the
first column vector si in S = [s1, . . . , sn] such that 〈φ, si〉 6= 0:

s(φ) := si, i := min {j, 〈sj , φ〉 6= 0} . (11)

Any spatial eigenvector can therefore have a specific orientation:

Definition 3.2 (Oriented eigenvectors). Let S ∈ Matn,m(R) and φ ∈ Rn a unit
spatial vector associated to a non–zero singular value σ. Then φ is said to be
oriented if 〈s(φ), φ〉 > 0.

From all this, let us now deduce the new SVD:

Lemma 3.3 (Oriented SVD). Let S ∈ Mat0
n,m(R) (m ≤ n) of rank r such that all

its non-zero singular values are distinct. Then, there exists one and only one couple
of matrices

Φ = [φ1, . . . , φr] ∈ Matn,r(R), Ψ = [ψ1, . . . , ψr] ∈ Matm,r(R) (12)

such that

〈φi, φj〉 = 〈ψi, ψj〉 = δij , S = ΦΣΨT , Σ := Diag(σ1, . . . , σr) ∈ Matr,r(R) (13)

and φi are oriented spatial unit eigenvectors:

〈s(φi), φi〉 > 0 (14)

with s(φi) defined by (11). Such a decomposition is called an oriented SVD.

Proof. First, any couple (φ, ψ) of spatial–temporal unit eigenvector for S is defined
modulo ±1, and ψ is obtained in a unique way from φ.

Let us suppose now we do not have uniqueness, so that there exist two unit spatial
vectors φ and φ′ associated to σ such that

〈s(φ), φ〉 > 0 and 〈s(φ′), φ′〉 > 0.

We necessary have φ′ = −φ and s(φ) = s(φ′) so we deduce that

〈s(φ′), φ′〉 >= −〈s(φ), φ〉 > 0

which is a contradiction, and we can conclude our proof. �



ST INTERPOLATION OF PARAMETRIZED RIGID-VISCOPLASTIC FEM PROBLEMS 17

We give now an algorithm to obtain such an oriented SVD:

Algorithm 3.4 (Oriented SVD). • Inputs: m ≤ n and S ∈ Mat0
n,m(R) of

rank r.
• Output: Unique matrices Φ and Ψ for an oriented SVD of S.

(1) Compute a SVD of S so that to obtain spatial unit vectors φ1, . . . , φr and
temporal unit vectors ψ1, . . . , ψr.

(2) Consider the column vectors s1, . . . , sm of S.
(3) For i = 1, . . . , r define

εi :=
〈s(φi), φi〉
|〈s(φi), φi〉|

where s(φi) is the first column vector s of S such that 〈φi, s〉 6= 0, see (11).
(4) For i = 1, . . . , r, make sign replacement

φi ← εiφi, ψi ← εiψi.

Example 3.5. Assume the rank 3 matrix

S =




1 0 1
−1 1 0
0 2 −1
0 −1 0
1 0 1
0 0 0




= [s1, s2, s3]

where a unit spatial vector corresponding to the largest singular value is given by
(with 5 digits)

φ1 =




−0.31145
0.41763
0.74265
−0.28294
−0.31145




and we can check that s(φ1) = s1 with 〈φ1, s1〉 < 0 so that we consider −φ1 instead
of φ1, and so on.

3.2. Space–Time interpolation algorithm. In this subsection, we define a Space–
Time interpolation on any family of POD of mode p taken from generic snapshot
matrices (see an overview in Figure 5). Such interpolation captures both the spatial
and temporal part of such matrices, which is necessary from the point of view of
mechanical equations, but we will also need to define a specific mixed part of each
POD (see lemma 3.6).
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Take back parameter values λ1 < . . . < λN , corresponding to snapshot matrices
S(1), . . . ,S(N) in Matn,m(R), with n = 3Ns and m = Nt. To make use of the oriented
SVD, let us suppose:

Genericity assumption: All snapshot matrices S(1), . . . ,S(N) have distinct non–
zero singular values.

Take now p to be some integer (less or equal than the minimum rank of all matrices

S(k)). Using the oriented SVD given by Algorithm 3.4, we can consider a POD of

mode p on each matrix S(k):

S(k)
p := Φ(k)

p Σ(k)
p Ψ(k)

p

T ∈ Matn,m(R) (15)

where Σk corresponds to singular values, and Φ
(k)
p as well as Ψ

(k)
p uniquely define

points in a compact Stiefel manifold:

Φ(k)
p := [φ

(k)
1 , . . . , φ(k)

p ] ∈ Stc(p, n), Ψ(k)
p := [ψ

(k)
1 , . . . , ψ(k)

p ] ∈ Stc(p,m), (16)

Recall that in previous equation, φ
(k)
1 , . . . , φ

(k)
p (resp. ψ

(k)
1 , . . . , ψ

(k)
p ) correspond to

spatial oriented eigenvectors (resp. temporal ones) of S(k).

Using the target Algorithm 2.10 first for the spatial matrices Φ
(k)
p and then for

the temporal matrices Ψ
(k)
p , we obtain two curves

λ 7→ Φ(λ), λ 7→ Ψ(λ).

Now, our goal is to produce an interpolation curve between the matrices S
(k)
p , taking

into account both spatial and temporal curves defined above. Such a curve is given
by

λ 7→ S(λ) := Φ(λ)M(λ)Ψ(λ)T with S(λk) = S(k)
p . (17)

Lemma 3.6. For a curve defined (17) to be an interpolation curve between the

matrices S
(k)
p , we necessary have

M(λk) = Φ(λk)TS(k)
p Ψ(λk). (18)

Proof. To satisfy (17), we necessary have

S(λk) = Φ(λk)M(λk)Ψ(λk)T = S(k)
p , (19)

where, by construction, we have Φ(λk) ∈ Stc(p, n) and Ψ(λk) ∈ Stc(p,m) (see target
Algorithm 2.10). We thus have

Φ(λk)TΦ(λk) = Ψ(λk)TΨ(λk) = Ip,

so that by the left and right multiplication of (19) we obtain formula (18) for the
mixed part. �

Now we have:
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Lemma 3.7. Let λ 7→ M(λ) ∈ Matp,p(R) be any interpolated curve between the
mixed part matrices

Mk := Φ(λk)TS(k)
p Ψ(λk) ∈ Matp,p(R)

so that M(λk) = Mk for k = 1, . . . , N . Then, using the curve λ 7→ Φ(λ) (resp.

λ 7→ Ψ(λ)) defined by the target Algorithm 2.10 applied on the matrices Φ
(k)
p (resp.

Ψ
(k)
p ), the curve

κ : λ 7→ Φ(λ)M(λ)Ψ(λ)T (20)

is an interpolated curve between the matrices S
(1)
p , . . . ,S

(N)
p , so that κ(λk) = S

(k)
p for

each k = 1, . . . , N .

Proof. We need to check that κ(λk) = S
(k)
p for each k = 1, . . . , N . Now:

κ(λk) = Φ(λk)M(λk)Ψ(λk)T = Φ(λk)MkΨ(λk)T

= Φ(λk)Φ(λk)TS(k)
p Ψ(λk)Ψ(λk)T

= Φ(λk)Φ(λk)T Φ(k)
p Σ(k)

p (Ψ(k)
p )

T

︸ ︷︷ ︸
S
(k)
p

Ψ(λk)Ψ(λk)T

where Φ(λk)ΦT (λk) corresponds to the projection matrix on the subspace mk :=
π (Φ(λk)) = π (Φk) (see Remark 2.11) so that

Φ(λk)ΦT (λk)Φ(k)
p = Φ(k)

p (21)

and the same being true for the temporal part, we obtain the proof of the lemma. �

The Space–Time interpolation algorithm is now given by:

Algorithm 3.8 (Space–Time interpolation). • Inputs:

– Generic matrices S(1), . . . ,S(N) in Mat0
n,m(R) (m ≤ n), corresponding

to parameter values λ1 < . . . < λN .
– A reference parameter value λi0 with i0 ∈ {1, . . . , N}.
– A mode p ≤ m.

– A parameter value λ̃.

• Output: A matrix S̃ ∈ Matn,m(R).

(1) Compute an oriented SVD on each matrix S(k) and write a POD of mode p

S(k)
p := ΦpΣ

(k)
p (Ψ(k)

p )T ∈ Matn,m(R)

with Φ
(k)
p ∈ Stc(p, n) and Ψ

(k)
p ∈ Stc(p,m) uniquely defined.
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(2) Consider the target Algorithm 2.10 applied to the spatial parts Φ
(1)
p , . . . ,Φ

(N)
p ,

reference parameter value λi0 and each of the N+1 parameter values λ1, . . . , λN , λ̃,
so from (8) we can define matrices in Stc(p, n):

Φ(λk) := Y(λk), Φ(λ̃) := Y(λ̃). (22)

(3) Consider the target Algorithm 2.10 applied to the temporal parts Ψ
(1)
p , . . . ,Ψ

(N)
p

reference parameter value λi0 and each of the N+1 parameter values λ1, . . . , λN , λ̃,
so from (8) we can define matrices in Stc(p,m):

Ψ(λk) := Y(λk), Ψ(λ̃) := Y(λ̃). (23)

(4) For each k = 1, . . . , N , define the square matrix of the mixed part

Mk := Φ(λk)TS(k)
p Ψ(λk) ∈ Matp,p(R). (24)

(5) Use a standard interpolation on square matrices M1, . . .MN , for instance:

M(λ̃) :=

N∑

i=1

∏

i 6=j

λ̃− λj
λi − λj

Mi (25)

(6) Using the spatial part Φ(λ̃) ∈ Stc(p, n) from (22), the temporal part Ψ(λ̃) ∈
Stc(p,m) from (23), and the mixed part M(λ̃) ∈ Matp,p(R) from (25), the

interpolated snapshot matrix corresponding to λ̃ is finally given by

S̃ := Φ(λ̃)M(λ̃)Ψ(λ̃)T ∈ Matn,m(R).

4. Rigid-Viscoplastic FEM Formulation

The main defining characteristic of the RVP formulation is that it neglects the
elasticity effects. This idealization is based on the fact that elastic components
of strain remain small as compared with irreversible strains. This means that the
additive decomposition of the total strain-rate tensor ε̇ij = ε̇eij + ε̇pij simplifies to

ε̇ij = ε̇pij , where ε̇eij is the elastic component of the strain-rate tensor, ε̇pij is the
plastic component and ε̇ij is the total strain-rate tensor. Therefore, the RVP formu-
lation turns out to be very similar to fluid flow problems, and it is also called flow
formulation [44]. Although it is not possible to calculate the residual stresses and
the spring-back effect, the flow formulation presents several advantages. Unlike the
elastoplastic FEM, the RVP formulation, even though more approximate, is more
stable, simpler to be implemented in computer codes, and can use relatively larger
time increments, thus improving the computational efficiency. A thorough overview
of the foundation of the theory can be found in [34, 1].
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4.1. Governing Field Equations. Classical rigid viscoplastic problems consider
the plastic deformation of an isotropic body occupying a domain Ω ⊂ R3. The do-
main Ω and its boundary ∂Ω represent the current configuration of a body according
to the Updated Lagrangian formulation. The governing equations that have to be
satisfied are:
(a) Equilibrium condition:

σij,j = 0

(b) Compatibility conditions:

ε̇ij =
1

2
(vi,j + vj,i)

(c) Yield criterion:

σ̄ :=

(
2

3
σ′ijσ

′
ij

) 1
2

= σ̄(ε̄, ˙̄ε, T )

(d) Constitutive equations:

σ′ij =
2

3

σ̄
˙̄ε
ε̇ij , ˙̄ε =

(
2

3
ε̇ij ε̇ij

) 1
2

(26)

(e) Incompressibility condition:

ε̇v := ε̇kk = 0

(f) Boundary conditions:

v = v̂ on ∂Ωv

F = F̂ on ∂ΩF

friction and contact on ∂Ωc

In the above equations σσσ = (σij) is the stress tensor, ε̇εε = (ε̇ij) is the strain rate
tensor, vi are velocity components, σ̄ is the effective stress, ˙̄ε is the second invariant
of ε̇εε called effective strain rate, and σσσ′ = (σ′ij) is the deviatoric stress tensor defined

by σ′ij = σij − δijσkk/3.
The hat symbolˆdenotes prescribed values. Generally, the boundary ∂Ω consists

of three distinct parts: over ∂Ωv velocity conditions are prescribed (essential bound-
ary conditions), ∂ΩF is the part where the traction conditions are imposed in the
form of nodal point forces (natural boundary conditions), while the boundary con-
ditions along ∂Ωc are mixed, and neither the velocity nor the force can be described.
Therefore, we have the disjoint union:

∂Ω = ∂Ωv ∪ ∂ΩF ∪ ∂Ωc (27)
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4.2. Variational form. In a variational formulation, the functional Π (energy rate)
is defined by an integral form in accordance with the virtual work-rate principle

Π(v) :=

∫

Ω
σ̄ ˙̄εdV −

∫

∂ΩF

FividS (28)

where the first term in (28) represents the internal deformation work-rate, whereas
the second term represents the work-rate done by the external forces. Fi denotes
prescribed surface tractions on the boundary surface ∂ΩF . Recalling the MarKov-
Hill [45, 46] variational principle, among all virtual (admissible) continuous and
continuously differentiable velocity fields vi satisfying the conditions of compati-
bility and incompressibility, as well as the velocity boundary conditions, the real
velocity field gives to the functional Π a stationary value, i.e., the first-order varia-
tion vanishes. Moreover, in order to relax the incompressibility constraint condition
ε̇v = ε̇kk = 0 on an admissible velocity field, a classical penalized form is used

δΠ :=

∫

Ω
σ̄δ ˙̄εdV +

1

2

∫

Ω
Kε̇vδε̇vdV −

∫

∂ΩF

FiδvidS = 0 (29)

where K is a large positive constant which penalizes the dilatational strain-rate
component. It can be shown that the mean stress is σm = Kε̇kk.

Remark 4.1. A limitation of the Updated Lagrangian method for large deforma-
tion problems is the excessive element distortion. To this end, remeshing processes
are necessary to simulate unconstrained plastic flows. A mesh generation process
is activated in case of zero or negative determinant of the Jacobian matrix, or due
to various element quality criteria. Then, a new mesh is calculated conforming to
the current state of the geometry followed by an interpolation of the state variables
between the old and the newly generated mesh. Thus, the information of the remap-
ping process has to adequately be transferred to the ROM basis obtained using the
POD snapshot method. We remark that at this first attempt, we avoid remeshings
of the workpiece during the course of the simulation. This topic will be addressed
in a future investigation.

4.3. Discretization and iteration. The discretization of the functional follows
the standard procedure of the finite element method. Eq. (29) is expressed in terms
of nodal point velocities vi and their variations δvi. Using the variational principle

δΠ =

M∑

m=1

∂Π(m)

∂vi
δvi = 0, i = 1, 2, ..., 2Ns, (30)
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where δvi are arbitrary except that they must be zero to satisfy the corresponding
essential boundary conditions, and M denotes the number of elements. From the
arbitrariness of δvi, a set of algebraic equations (stiffness equations) are obtained

∂Π

∂vi
=

M∑

m=1

∂Π(m)

∂vi
= 0. (31)

As the resulting algebraic equations are highly nonlinear, they linearized by the
Taylor expansion near an assumed velocity field v = v0 as

∂Π

∂vi

∣∣∣∣∣
v=v0

+
∂2Π

∂vi∂vj

∣∣∣∣∣
v=v0

∆vj = 0 (32)

where the first factor of the second term is also known as the Jacobian of the sys-
tem (Hessian matrix), and ∆vj is a first-order correction of the velocity component
vj . Solving (32) with respect to ∆vj , the assumed velocity field is updated by the
form (written in vector notation)

v(i) = v(i−1) + α(∆v)(i) (33)

where 0 ≤ α ≤ 1 and i is the iteration step. The solution is obtained by the Direct
iteration method [34, 47] and/or by Newton-Raphson type methods. The iteration
process is repeated until the following described convergence criteria are satisfied
simultaneously

‖ ∆v ‖L2

‖ v ‖L2

≤ e1,

∥∥∥∥
∂Π

∂v

∥∥∥∥
L2

≤ e2 (34)

namely, the velocity error norm and the norm of the residual equations, where e1

and e2 are sufficiently small specified tolerance numbers.

4.4. Heat Transfer Analysis. In the present model, a thermodynamically sound
derivation is adopted using the conservation of energy

−ρc∂T
∂t

+ k∇2T + ξσ̄ ˙̄ε = 0 (35)

where ρc is the volume-specific heat of the material, ξσ̄ ˙̄ε represents the work heat
rate per unit volume due to plastic deformation, k is the thermal conductivity, T is
the temperature and ξ is a coefficient that presents the fraction of the deformation
energy dissipated into heat also known as the Taylor-Quinney coefficient.

In a weak form, and using the divergence theorem

−
∫

Ω
ξσ̄ ˙̄εδTdV +

∫

Ω
k∇Tδ(∇T )dV +

∫

Ω
ρc
ϑT

ϑt
δTdV −

∫

∂Ω
qnδTdS = 0 (36)
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where

qn := k
∂T

∂n
(37)

is the heat flux across the boundary ∂Ω and n denotes the unit normal vector to
the boundary surface ∂Ω.

In standard finite element books, e.g. [48], it can be seen that the heat balance
equations such as (36), upon finite element discretization are reduced to the form:

CṪ + KT = Q (38)

where C is the heat capacity matrix, K denotes the heat conduction matrix, Q
is the heat flux vector, T is the vector of nodal point temperatures, and Ṫ is the
rate of temperature increase vector of nodal points.

The theory necessary to integrate (38) can be found in numerical analysis books [49,
50]. It suffices to say that one-step time integration is used. The convergence of a
scheme requires consistency and stability. Consistency is satisfied by a general time
integration scheme

t+∆tT =t T + ∆t[(1− θ)tṪ + θt+∆tṪ ] (39)

where θ is a parameter varying between 0 and 1 (θ = 0: Forward difference,
θ = 1/2: Crank-Nicholson, θ = 2/3: Galerkin, θ = 1: Backward difference).

Remark 4.2. Unconditional stability is obtained for θ ≥ 0.5. This is important,
because it is desirable to take time steps as large as the deformation formulation
allows, since this is the most expensive part of the process.

4.5. Computational Procedure for Thermo-Mechanical Analysis. For solv-
ing coupled thermomechanical problems, two different approaches can be used. In
the traditional monolithic approach, a single solver is in charge of the solution of the
entire system of equations. In an alternative approach, the mechanical and thermal
solvers deal respectively with the viscoplastic flow and the thermal field equations.
Thus, in the so-called staggered solution procedure used here, the state of the system
is advanced by sequentially executing and exchange information between these two
solvers [51]. The equations for the mechanical analysis and the temperature calcu-
lation are strongly coupled, thereby making necessary the simultaneous solution of
the finite element counterparts [34, 52, 53].

5. Numerical Investigations

The purpose of this section is to evaluate the performance of the ST POD interpo-
lation using the velocity and temperature fields during the course of the simulation
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of the forming process. As a benchmark test case, a rectangular cross-section bar
is compressed between two parallel flat dies under the condition of a constant shear
friction factor m at the die-workpiece interface. The initial workpiece has dimensions
h = 20 mm (height) and w = 20 mm (width). Plane strain conditions are consid-
ered. Due to the symmetry of the problem, only one quarter of the cross-section is
analyzed. The velocity of the upper and the lower die is set to v = 1 mm/s. The
initial temperature of the die and the workpiece is set to T = 25 ◦C. The bar is
compressed until a 35% reduction in height is achieved. The final simulation state
is accomplished in 7-time steps with a constant time increment ∆t = 0.5 s. One
can observe the complexity of the nonuniform deformation presented by the bar-
reling of the free surface (Figure 6). In our calculations, we employ a conventional
rate-dependent power law to describe the material flow stress equation

σ̄( ˙̄ε) = 1000 ˙̄ε0.1 (MPa) (40)

The solution convergence is assumed when the velocity error norm and the force
error norm (34) becomes less than 10−6. The type of element used is the linear
isoparametric rectangular element with four-point integration. However, one point
integration is used for the dilatation term, the second integral of the functional
in (29). This is known as the reduced integration scheme which imposes the volume
constancy averaged over the linear rectangular element. The computational grid
composed of 100 elements interconnected at Ns = 121 nodes with 2 degrees of free-
dom, resulting in a global stiffness matrix of size 242×242. For the rigid-viscoplastic
analysis, the limiting strain rate ˙̄ε0 is chosen to be 0.01 and the penalty constant (or
bulk modulus) K is set to 105.

Among the various models of friction, the one proposed in [54] is adapted to model
the sliding contact at the tool-workpiece interface. This model allows the variation
of the tangential traction with the relative velocity at the tool-workpiece interface

tf = −mk vs

|vs|
' −mk

{
2

π
arctan

(
|vs|
v0

)}
vs

|vs|
where vs is the relative velocity in the tangential direction between the tool and
the workpiece, and v0 is a positive constant several orders of magnitude smaller
than vs; m is the friction factor (0 < m < 1) and k is the material shear yield stress
k = σ̄/

√
3. For the compression tests considered here, the relative tangential velocity

at the tool-workpiece interface at the beginning of deformation is zero. The present
analysis assumes that the friction factor remains constant throughout compression.
Investigations on frictional shear stress measurements over the interface between a
cylindrical workpiece and a die during plastic compression are reported in [55]. The
basic characteristics of algorithms used in the RVP FEM analysis are summarized
in Table 1.
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Basic characteristics of algorithms in RVP FEM
Type of problem Two dimensional, plane strain, rigid viscoplastic ma-

terial flow, isotropic, homogeneous
Thermomechanical prob-
lem solution

Loose coupling (staggered) - Backward Euler differ-
ence (θ = 1)

Type of elements 4-node quadrilateral isoparametric elements, bilinear
shape functions

Flow stress equation Power law: σ̄( ˙̄ε) = c ˙̄εp, c, p constants
Iteration method Direct, BFGS with line search
Remeshing N/A
Boundary conditions Sliding friction on Sc

Table 1. Numerical algorithms.

Remark 5.1. Note that during the course of the simulation we avoid remeshing of the work-
piece. As discussed in [56], remeshing techniques can be taken into account provided that
mesh transfer operations are applied to the reduced-basis.

5.1. Mechanical field. The first case for numerical illustration of the method considers
the velocity field during the simulation of the forming process using the shear friction factor
m as the investigated parameter. From now on, let the parametric points corresponding to
the shear friction factor m denoted with λ for convenience with the previous sections. For
the numerical study, the following training points are selected λ ∈ Λt = {0.1, 0.5, 0.9}. The
choice made here, is to use a minimum number of sampling points equi-distributed over the

parametric range. The target point is set to λ̃ = 0.3. See the FEM solutions for the training
and target points at the final state of the computation in Figure 6.

For each parametric simulation, a sequence of snapshots uniformly distributed over time
using an increment of ∆t = 0.5 s is extracted for all nodes of the workpiece. The space-
time snapshot matrices S(i) ∈ Mat2Ns,Nt(R) with 2Ns = 242 and Nt = 7, corresponding to
parameter values λi, are associated with the nodal velocity field in x and y directions.

For the parametric Space-Time interpolation, the snapshot matrix S̃ of mode p cor-

responding to the target point λ̃ is computed via the target Algorithm 3.8. The target

Algorithm 2.10 is applied to the spatial Φ
(1)
p , . . . ,Φ

(N)
p and temporal parts Ψ

(1)
p , . . . ,Ψ

(N)
p ,

with reference parameter value λi0 = 0.5. In order to assess the interpolation acuracy, the

snapshot matrix S̃ is compared against the high-fidelity FEM solution by introducing the

following a posteriori errors. Using the interpolated and the HF-FEM snapshot matrices S̃
and SFEM, respectively, the relative L2-error measure is defined as

eL2(s̃i) :=
‖s̃i − sFEM

i ‖L2

‖sFEM
i ‖L2

, i = 1, . . . , p ≤ Nt. (41)

Additionally, the relative Frobenius error norm of S̃ and SFEM is defined as

eF (S̃) := ‖S̃− SFEM‖F /‖SFEM‖F . (42)
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The eigenvalue spectrum of snapshot matrices S(i) corresponding to training points λi ∈
Λt is exhibited in a semi-log scale in Figure 7. We can observe that the distance between the
first and the last eigenvalue is from 5 up to 6 orders of magnitude. Moreover, the percentage

of energy E(k) =
∑k

i=1 σ
2
i /
∑Nt

i=1 σ
2
i captured from the POD modes is shown in Figure 8.

It is evident that most of the 99.9% of the total energy is contained by the first two POD
modes.

The relative L2-error norm eL2
(s̃i) (see (41)) between the interpolated and the HF-FEM

solution for various POD modes is displayed in Figure 9. In general, the relative error for all
POD modes lie within a range of 0.0175 up to 0.038. It can be observed that the interpolated
ST POD solution delivers good accuracy and is reliable enough to predict the velocity field
for the investigated target point.

Remark 5.2. In the case of using p = 7 POD modes for the temporal basis interpolation,
the Grassmannian manifold G(p, p) reduces to one point, so it is not relevant to use the
target Algorithm 2.10: any new parameter value will give rise to the same matrix Ψi0 in the
associated compact Stiefel manifold, corresponding to the reference point.

Additionally, the position vector error eL2
(x̃(t)) = ‖x̃(t)−xFEM(t)‖L2

at the nodal points
is computed for p =2,3,5 and 7 POD modes, where x̃(t) and xFEM(t) denotes the position
vector of the ST POD and the high-fidelity FEM solutions, respectively, at the time incre-
ments during the deformation. Figure 10 presents the local error eL2(x̃(t)) superimposed at
the final loading state t = 0.35 s obtained from the high-fidelity FEM solution. Different
patterns of the spatial error distribution can be observed concerning the number of POD
modes p. It is interesting to observe that in both cases, the maximum error is located near
the upper-right location of the deforming workpiece.

The evolution of the deformation process can be also represented using the time-displacement
histories of some selected nodes of the workpiece (Figure 11). The ST POD predictions are
compared against the high-fidelity FEM counterpart solution using p = 2 POD modes.
Again, it can be observed that the interpolated ST POD solution is accurate and reliable to
predict the evolution of the displacement field for the investigated target point during the
forming process.

For the preceding numerical investigations, the ST POD efficiency is demonstrated using

a single target point, i.e., λ̃ = 0.3. To further assess the interpolation performance, a

new target point is now considered, λ̃ = 0.8. Interpolation is performed using the same
set of training points λ ∈ Λt = {0.1, 0.5, 0.9}, with reference parameter value λi0 = 0.5.
The relative L2-error norm eL2

(s̃i) for various POD modes p corresponding to target point

λ̃ = 0.8 is shown in Figure 12. Again, one can observe that the relative error lies within a
narrow range of the values, i.e., 0.014 up to 0.026.

5.2. Temperature field. To further investigate the performance of the proposed ST POD
interpolation, the temperature field obtained from the coupled thermomechanical simulation
of the forming process is considered. Again, for the temperature field, we consider the shear
friction factor m as the investigated system parameter. The training points selected for
the mechanical field analysis are also used in this study, i.e., λ ∈ Λt = {0.1, 0.5, 0.9}. The
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target point is set to λ̃ = 0.3. For each parametric problem, snapshots are uniformly
distributed over time using an increment step size ∆t = 0.5 s. The final deformation state
is reached at t = 0.35 s. The space-time snapshot matrices S(i) ∈ MatNs,Nt

(R) of size
121× 7, corresponding to λi, are associated with nodal temperatures. We will now compare
the Space-Time interpolation (see Algorithm 3.8) against the high-fidelity FEM solution.

Again, for the target Algorithm 2.10 applied to the spatial Φ
(1)
p , . . . ,Φ

(N)
p and temporal

parts Ψ
(1)
p , . . . ,Ψ

(N)
p , the reference parameter value λi0 = 0.5 is used.

Figure 13 presents the temperature profiles at the final compression state obtained using
different values of the shear friction factor m (represented by parameter λ). The temperature
rises due to plastic work conversion to heat assuming a constant value for the Taylor-Quinney
coefficient ξ = 0.9. In all cases, the maximum temperature is located at the center of the
workpiece with values ranging from T = 89.5 ◦C up to T = 98 ◦C.

The eigenvalue spectrum of snapshot matrices S(i) corresponding to training points λi ∈
Λt is shown in a semi-log scale in Figure 14. We can observe that the distance between the
first and the last eigenvalue of the curves is of the order of 5 up to 6 orders of magnitude.

Moreover, the system energy E(k) =
∑k

i=1 σ
2
i /
∑Nt

i=1 σ
2
i captured from the POD modes is

shown in Figure 15. Most of the 99.9% of the total energy is contained by the first two POD
modes.

The relative L2-error norm eL2(s̃i) (41) between the interpolated and the HF-FEM snap-

shot matrices S̃ and SFEM, respectively, for various modes p is shown in Figure 16. Addi-
tionally, the Frobenius relative error norm (42) for the POD modes is presented in Figure 17.
In general, the obtained results are found to have less than 1% relative error for POD modes
p > 1 and therefore are acceptable as fast near real-time numerical predictions.

Finally, Figure 18 shows the ST POD time-temperature histories for some selected nodes
of the workpiece using p = 7 modes. The predictions are compared against the high-fidelity
counterpart solution, and it is difficult to distinguish differences among these plots. It
is revealed that the interpolated ST POD solution delivers good accuracy for all selected
nodes.

5.3. Computational complexity. The computational cost of the ST POD interpolation
scales with the computational complexity of SVD and the matrix operations in the target ST
Algorithm 3.8. It is evident, that the cost of ST POD interpolation will be lower compared
to the standard POD Galerkin nonlinear approaches and even lower than the full order FEM
solution. The coupled thermomechanical FEM simulation for the target point takes 35.123
seconds in wall-clock time. On the other hand, the ST interpolation for the mechanical
problem using a ROM POD basis of mode p = 4 results in 0.147 seconds in wall-clock time.
The ST interpolation for the thermal problem using a ROM POD basis of mode p = 4
results in 0.153 seconds in wall-clock time. Therefore, the total ST interpolation takes 0.3
seconds in wall-clock time corresponding to a time speed-up of 116.96. All experiments in
this section were implemented in Matlab and run on a 4th Generation Intel(R) Core(TM)
i7-4600U CPU @ 2.10GHz, 8GB RAM, 250 GB SSD, Debian 9 x64.
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6. Conclusions

A novel non-intrusive Space-Time POD basis interpolation scheme on compact Stiefel
manifolds is developed and applied to parametric high nonlinear metal forming problems.
Apart from the separate interpolation of POD spatial and temporal basis on associated
Grassmannian manifolds, an interpolation function is defined on a set of parametric snapshot
matrices. This function results from curves, which are defined on compact Stiefel manifolds
both for space and the temporal part, and also the use of some mixed part encoded by
a square matrix. This latter matrix provides a link between the interpolated space and
temporal basis for the construction of the target ROM snapshot matrix. To prove the
efficiency of the method it has been used a coupled thermomechanical rigid-viscoplastic FEM
formulation which is integrated into the manufacturing industry in a variety of applications.
The performed numerical investigations have considered the reconstruction of the ROM
snapshot matrices both of the velocity and the temperature fields. Moreover, the error
norms of the Space-Time POD interpolated ROM models concerning the associated high-
fidelity FEM counterpart solutions are validating the accuracy of the proposed interpolation
scheme. In conclusion, the overall results demonstrate the potential use of the proposed ST
POD interpolation scheme for near real-time parametric simulations using off-line computed
ROM POD databases, supporting thus manufacturing industries to accelerate design-to-
production timespans, and thereby reducing costs while ensuring the design of superior
processes.
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Figure 1. Points on Stiefel manifold. The linearly independent vec-
tors in R3 spanning the red and blue planes correspond to points in
Stc(2, 3).
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Figure 2. Points on Stiefel St(2, 3) and Grassmann manifold
G(2, 3).
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Figure 3. There is a natural projection π : Stc(p, n) −→ G(p, n)
from the compact Stiefel manifold Stc(p, n) to the Grassmannian
G(p, n) of p-dimensional subspaces in Rn which sends a p-frame to
the subspace spanned by that frame. The fiber over a given point m
on G(p, n) is the set of all orthonormal p-frames spanning the sub-
space m. Computations on Stc(p, n) using the target Algorithm 2.10
for λ := λk, lead to some matrix Y(λk) generally different from Yk

(except for the reference point), and thus do not produce an interpo-
lation on the points Y1, . . . ,YN .
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Figure 4. The exponential Expm and the logarithm Logm map on
the Grassmann manifold G(p, n).
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Figure 5. The Space-Time Algorithm.
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(a) For λ = 0.1 (b) For λ = 0.3

(c) For λ = 0.5 (d) For λ = 0.9

Figure 6. Deformation patterns of the benchmark metal forming
example using different values for the shear friction factor m repre-
sented by the parameter λ.
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Figure 7. The eigenvalue spectrum of snapshot matrices S(i) corre-
sponding to training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Figure 8. Energy captured by the singular values of snapshot ma-
trices S(i) corresponding to training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Figure 9. Performance of ST POD interpolation using the relative
L2-error norm eL2(s̃i) for various modes p; training points λ ∈ Λt =

{0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5; target point λ̃ =
0.3.
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Figure 10. The position vector error eL2(x̃(t)) = ‖x̃(t)−xFEM(t)‖L2

of the nodal points at the final deformation state t = 0.35 s superim-
posed on the high-fidelity FEM solution; POD modes p = {2, 3, 5, 7};
training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter value

λi0 = 0.5; target point λ̃ = 0.3.
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Figure 11. Comparison of the total displacement of selected nodes
against the high-fidelity FEM solution; training points λ ∈ Λt =

{0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5; target point λ̃ =
0.3; POD modes p = 2.
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Figure 12. Performance of ST POD interpolation using the relative
L2-error norm eL2(s̃i) for various POD modes p; training points λ ∈
Λt = {0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5; target point

λ̃ = 0.8.
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(d) For m = 0.9

Figure 13. Temperature profiles at the final compression state t =
0.35 s obtained using different values of the shear friction factor m
represented by parameter λ.
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Figure 14. The eigenvalue spectrum of snapshot matrices S(i) cor-
responding to training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Figure 15. Energy captured by the singular values of snapshot ma-
trices S(i) corresponding to training points λ ∈ Λt = {0.1, 0.5, 0.9}.
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Figure 16. Performance of ST POD interpolation using the relative
L2-error norm eL2(s̃i) for various POD modes p; training points λ ∈
Λt = {0.1, 0.5, 0.9}; reference parameter value λi0 = 0.5; target point

λ̃ = 0.3.
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Figure 17. Performance of the POD interpolation using the relative

Frobenius error norm eF (S̃) against the number of POD modes p;
training points λ ∈ Λt = {0.1, 0.5, 0.9}; reference parameter value

λi0 = 0.5; target point λ̃ = 0.3.
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Figure 18. Temperature evolution of selected nodal points validated
against the high-fidelity FEM solution; ST POD and HF-FEM solu-
tions virtually coincide; training points λ ∈ Λt = {0.1, 0.5, 0.9}; ref-

erence parameter value λi0 = 0.5; target point λ̃ = 0.3; POD modes
p = 7.
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G. Winiarski, J. Zasadziński, and S. Zió lkiewicz. Recent development trends in metal forming.
Archives of Civil and Mechanical Engineering, 19(3):898–941, may 2019.
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(Marc Olive) Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMT - Laboratoire
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