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Abstract
We consider the quantum version of the bandit problem known as best arm identification (BAI).

We first propose a quantum modeling of the BAI problem, which assumes that both the learning
agent and the environment are quantum; we then propose an algorithm based on quantum amplitude
amplification to solve BAI. We formally analyze the behavior of the algorithm on all instances of
the problem and we show, in particular, that it is able to get the optimal solution quadratically faster
than what is known to hold in the classical case.
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1. Introduction

Many decision-making problems involve learning by interacting with the environment and observing
what rewards result from these interactions. In the field of machine learning, this line of research
falls into what is referred as reinforcement learning (RL), and algorithms to train artificial agents
that interact with an environment have been studied extensively (Sutton and Barto, 2018; Kaelbling
et al., 1996; Bertsekas and Tsitsiklis, 1996). We are here interested in the best arm identification
(BAI) problem from the family of bandit problems, which pertains the set of RL problems where the
interactions with the environment give rise to immediate rewards and where long-term planning is
unnecessary (see the survey of Lattimore and Szepesvári, 2020). More precisely, we are interested in
a quantum version of the BAI problem, for which we design a quantum algorithm capable to solve it.

Quantum machine learning is a research field at the interface of quantum computing and machine
learning where the goal is to use quantum computing paradigms and technologies to improve the
speed and performance of learning algorithms (Wittek, 2014; Biamonte et al., 2017; Ciliberto et al.,
2018; Schuld and Petruccione, 2018). A fundamental concept in quantum computing is quantum
superposition, which is the means by which quantum algorithms like that of Grover (1996) —one
of the most popular quantum algorithm— succeeds in solving the problem of finding one item
from an unstructured database of N items in time O(

√
N), so beating the classical O(N) time

requirement. Recent works have investigated the use of Grover’s quantum search algorithm to
enhance machine learning and have proved its ability of providing non-trivial improvements not only
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in the computational complexity but also in the statistical performance of these models (Aïmeur et al.,
2013; Wittek, 2014; Kapoor et al., 2016). Beyond Grover’s algorithm, quantum algorithms for linear
algebra, such as quantum matrix inversion and quantum singular value decomposition, were recently
proposed and used in the context of machine learning (Rebentrost et al., 2014; Kerenidis and Prakash,
2017). Works on quantum reinforcement learning are emerging (Dong et al., 2008; Naruse et al.,
2015; Dunjko et al., 2016; Lamata, 2017), and our paper aims at providing a new piece of knowledge
in that area, by bringing two contributions: i) a formalization of the best arm identification problem
in a quantum setting, and ii) a quantum algorithm to solve this problem that is quadratically faster
than classical ones.

Quantum machine learning research can be classified into four categories depending on whether
the data, the learner, both, or none are quantum (Aïmeur et al., 2006; Dunjko and Briegel, 2018). Our
work deals with the BAI problem when both the agent and the environment are quantum systems,
and so falls into the Quantum-Quantum (QQ) setting. Although less studied, the QQ approach
is particularly attractive because it would allow the exploitation of the full potential of quantum
technologies in machine learning. In this setting, the interaction can be fully quantum, and the agent
and the environment may become entangled (Dunjko et al., 2016). Recent progress in reinforcement
learning has achieved very impressive results in games (Mnih et al., 2015) and robotics (Levine et al.,
2016). The training process of these models is often done in a computer simulated environment,
as it would require too much agent-environment interactions to be done with a physical system in
a reasonable amount of time. Performing such simulations on a quantum computer or simulator
should give rise to environment’s internal states that are naturally quantum. The internal state of
the environment may be hidden from the agent, and considering quantum interactions between the
agent and the environment would lead to more efficient learning. This motivates the setting we are
interested in: quantum agents and quantum environments.

The paper is organized as follows. In Section 2, we formulate the best arm identification (BAI)
problem, briefly review the upper confidence bound, and illustrate how it can be used to solve
the BAI problem. In Section 3, we describe the quantum amplitude amplification, at the core of
Grover’s algorithm, which forms the basis of our approach. Our main results are in Section 4: we
provide our quantum modeling of the BAI problem, which assumes that both the learning agent
and the environment are quantum; and then we proposes an algorithm based on quantum amplitude
amplification to solve BAI, that it is able to get the optimal solution quadratically faster than what is
known to hold in the classical case. Section 5 concludes the paper.

2. Best Arm Identification

2.1. Stochastic Multi-Armed Bandits and the BAI Problem

Bandit problems are RL problems where it is assumed an agent evolves in an environment with
which it can interact by choosing at each time step an action (or arm), each action taken providing
the agent with a reward, which values the quality of the chosen action (see function f below, and
more generally, Lattimore and Szepesvári, 2020).

The bandit problem we want to study from a quantum point of view is that of best arm iden-
tification from stochastic multi-armed bandits (Audibert and Bubeck, 2010). It comes with the
following assumptions: the set X of actions is finite and discrete, with |X| = N , and when action xt
is chosen at time t then the reward rt depends upon the independent realisation (called yt afterwards)
of a random variable distributed according to some unknown (but fixed) law νxt . The BAI problem

2



QUANTUM BANDITS

Data: A number of rounds T
Result: x̃T a recommended action
for t← 1 to T do

the agent chooses the action xt
the environment picks an internal state yt following νxt
the agent perceives the reward rt = f(xt, yt)

end
the agent return x̃T the recommended action

Algorithm 1: The best arm identification problem

is to devise a strategy of action selection for the agent such that, after a predefined number T of
interactions, the agent is able to identify the best action with the best possible guarantees.

We may go one step further in the formal statement of the problem and, in the way, use a
modelling that is both in line with the classical BAI problem and suitable for its quantum extension.
In particular, in order to take the unknown distributions νx, x ∈ X , we will explicitly introduce
Y , the set of all possible internal states yt of the environment —this notion of internal state of the
environment is uncommon in the classical bandit literature. The agent’s action xt sets the internal
state of the environment to yt, which is a random draw from distribution νxt , unknown to the agent.
The agent then receives a reward rt = f(xt, yt), indicating the fit of action xt with the state of the
environment; we here assume that f can only take values in {0, 1}—this corresponds to the classical
case where the reward rt is drawn according to a Bernoulli distribution of unknown parameter
θxt ∈ [0, 1]. With these assumptions, the average reward associated with action x is

ax =
∑
y∈Y

νx(y)f(x, y), (1)

and we may define the optimal action x∗ as

x∗ = arg max
x∈X

ax, (2)

and a∗ = ax∗ the mean reward of the optimal action. After T interactions with the environment, the
agent will choose an action x̃T as its recommendation (see Algorithm 1). The quality of the agent’s
decision x̃T is then evaluated as the regret a∗ − ax̃T , i.e. the difference between a∗ the mean reward
of optimal action a∗ and ax̃T the mean reward of the recommended action.

Let us elaborate further on the regret; let

∆x = a∗ − ax (3)

be the difference between the value of the optimal action and the value of action x. If the agent
recommends the action x with probability PT (x) after T rounds, then the average difference between
the value of its recommendation and the value of the optimal action is

RT =
∑
x∈X

PT (x)∆x, (4)

which is the average regret after T iterations of the agent’s strategy. Our goal is to find an action
selection strategy for which the value of RT decreases quickly as the value of T increases.

If eT = 1− PT (x∗) is the probability that the agent does not recommend the best action after T
iterations, then, as ∀x ∈ X,∆x ≤ 1, the (average) regret is so that RT < eT . In the following, we
recall how a tight upper bound for eT can be derived.
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Data: a number of trials T
an exploration parameter p

Result: x̃n a recommended action
let Bx,t = ãx(t) +

√
p
t−1

for t← 1 to T do
the agent chooses the action xt ∈ arg maxx∈X Bx,t
the environment picks an internal state yt according to νxt
the agent perceives the reward rt = f(xt, yt)
the agent updates the values of Bx,t to take rt into account

end
the agent return x̃T = arg maxx∈X ãx(T )

Algorithm 2: UCB-E algorithm

2.2. Upper Confidence Bound Exploration-based strategy

Part of the difficulty in the BAI problem comes from the fact that the value of each action is the mean
of random variable that depends on an unknown probability distribution. The only way for an agent
to estimate the value ax of action x is to repeatedly interact with the environment to obtain a sample
of rewards associated to x. Thus, a good strategy needs to find a balance between sampling the most
promising actions, and sampling the actions for which we lack information. The Upper Confidence
Bound Exploration (UCB-E) depicted in Algorithm 2, first described in Audibert and Bubeck (2010),
is an efficient strategy to solve the best arm identification problem. It is based on a very well known
and used family of UCB strategies (Lai and Robbins, 1985; Auer et al., 2002), which were proven to
be optimal for solving the multi-armed bandit problem (Thompson, 1933).

Let Ωx(T ) be the set of rounds for which the agent picked action x until time T , and

ãx(T ) =
1

|Ωx(T )|
∑

t∈Ωx(T )

rt (5)

be the empirical average of the reward for action x. We know from Hoeffding (1963) that ax and
ãx(T ) are tied by the relation

P(|ãx(T )− ax| > ε) < 2 exp
(
−2ε2|Ωx(T )|

)
.

This means that, for all δ ∈ [0, 1], there is a range of value centered around ãx(T ) in which ax lies
with probability at least 1− δ. The more the agent interacts with the environment with action x, the
smaller this range of values is. The principle behind UCB is to choose, at each iteration, the action x
for which the upper bound of this range is the highest.

Audibert and Bubeck (2010) showed that UCB-E admits the following upper bound on eT , when
the exploration parameter p is well tuned :

eT < 2TN exp

(
−T −N

18H1

)
, where H1 =

∑
x∈X\{x∗}

1

∆2
x

.

From this inequality, we can deduce a lower bound of the number of iterations to recommend the
optimal arm with probability at least 1− δ, for any δ ∈ (0, 1):

eT < δ ⇒ T > 18H1 ln

(
2N

δ

)
+N.
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The quantum modelling and accompanying algorithm proposed in this paper come with a theoretical
result that quadratically improves this bounds.

3. Quantum Amplitude Amplification

If we dispose of an unstructured, discrete set X of N elements and we are interested in finding one
marked element x0, a simple probability argument shows that it takes an average of N/2 (exhaustive)
queries to find the marked element. While it is well known that O(N) is optimal with classical
means, Grover (1996) proved that a simple quantum search algorithm speeds up any brute forceO(N)
problem into a O(

√
N) problem. This algorithm comes in many variants and has been rephrased

in many ways, including in terms of resonance effects (Grover, 1996) and quantum walks (Childs
and Goldstone, 2004; Roget et al., 2020). The principle behind the original Grover search algorithm
is the amplitude amplification (Brassard et al., 2000; Grover, 1998) in contrast with the techniques
called probability amplification used in classical randomized algorithms.

In the classical case it is known that, if we know the procedure which verifies the output, then
we can amplify the success probability n times, and the probability to recover the good result is
approximately np where p is the probability to return the searched value. Thus in order to amplify
the probability to 1 we need to multiply the runtime by a factor 1/p. In the quantum case, the basic
principle is the same and we amplify amplitudes instead of probabilities. Grover’s algorithms and all
its generalisations have shown that in order to achieve a maximum probability close to 1, we amplify
for a number of rounds which is O(

√
1/p), then quadratically faster than the classical case. Before

we show how to apply this result to the best arm identification problem, let us briefly recall how the
amplitude-amplification algorithms works. First, we need to introduce a N -dimensional state space
H , which can be supplied by n = log2N qubits, spanned by the orthonormal set of states |x〉, with
x ∈ X . In general, we say that, after the application of an arbitrary quantum operator, the probability
to find the marked element x0 is p, where this element is a point in the domain of a generic Boolean
function f : {0, 1}n → {0, 1} such that f(x0) = 1. This function induces a partition ofH into two
subspaces, H1 and H0, and each of them can be seen respectively as the good subspace spanned
by the set of basis states for which f(x) = 1 and the bad subspace, which is its orthogonal. Any
arbitrary state |Ψ〉 belonging toH can be decomposed on the basis {|Ψ1〉 , |Ψ0〉} as follows

|Ψ〉 = sin θ |Ψ1〉+ cos θ |Ψ0〉 ,

where {|Ψ1〉 , |Ψ0〉} are the normalised projections of |Ψ〉 in the two subspacesH1 andH0:

|Ψ1〉 =
1
√
p

∑
f(x)=1

αx |x〉 , |Ψ0〉 =
1√

1− p
∑

f(x)=0

αx |x〉 ,

where αx is a complex number and sin θ =
√
p denotes the probability that measuring |Ψ〉 produces

a marked state (for which f(x) = 1). In general terms, one step of the algorithm is composed by two
operators: (i) the oracle, as in the original Grover results; (ii) and the generalised Grover diffusion
operator. The oracle Of is built using f and reads:

Of |x〉 = (−1)f(x) |x〉 ,

which essentially marks the searched state with minus sign. The diffusion operator is defined as:

RΨ = AS0A
−1 = 2 |Ψ〉 〈Ψ| − I,
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where S0 = 2 |0〉 〈0|−I is the usual reflection operator around |0〉 and |Ψ〉 = A |0〉. The composition
of both operators leads to one evolution step of the amplitude-amplification algorithm:

Q = RΨOf .

Notice that when A = H⊗n, the Walsh-Hadamard transform, the above algorithm reduces to the
original Grover algorithm, where the initial state is an uniform superposition of states. The repetitive
application of Q after n iterations leads to:

Qn |Ψ〉 = sin((2n+ 1)θ) |Ψ1〉+ cos((2n+ 1)θ) |Ψ0〉 . (6)

As in the Grover algorithm for n ≈ π
4θ and θ � 1, the number of call to Q needed to find the desired

element is in O( 1√
p), leading to a quadratic speedup over classical algorithms.

4. Quantum Best Arm Identification

Efficiently Solving the best arm identification problem is generally limited by the amount of infor-
mation the agent needs to recover from a single interaction with the environment. This is also the
case in the unstructured classical search problem, as a single call to the indication function f , the
oracle, gives us information on a single element of the set. In general terms, the idea is to apply the
same basic principle of the amplitude-amplification quantum algorithm to the best arm identification
problem, where the reward function introduced in Section 2 now plays the role of the oracle. Indeed,
in the same way that the boolean function f in a searching problem recognises whether x is the
marked element we are looking for, the reward rt = f(xt, yt), indicates whether {xt, yt} corresponds
to a desirable outcome (in that case, f(xt, yt) = 1) or not (then f(xt, yt) = 0), where xt is the action
of the agent and yt the state of the environment. Thus, our strategy in the following is to apply the
amplitude-amplification quantum algorithm to recover the desirable outcome, i.e., the optimal action
of the agent.

In order to properly apply the above quantum strategy, we define a composite Hilbert space
H = HX ⊗ HY , where HX is the space of the quantum actions of the agent, spanned by the
orthonormal basis {|x〉}x∈X andHY is the space of the quantum environment states, spanned by the
orthonormal basis {|y〉}y∈Y . All vector |Ψ〉, representing the whole composite system, decomposes
on the basis {|xy〉}x∈X,y∈Y . Notice that in the classical context, the agent’s action sets the internal
state of the environment to yt, according to a random distribution νxt , which is unknown to the agent.
A straightforward way to recover the same condition, is to prepare the state of the environment in a
superposition |ψx〉 =

∑
y∈Y

√
νx(y) |y〉, where νx(y) depends on the action x chosen by the agent.

This is achieved preparing the initial state of the environment as follows:

∀x ∈ X, Oe |x0〉 = |xψx〉 : |〈y|ψx〉|2 = νx(y),

where Oe is a unitary operator acting on the composite Hilbert spaceH. Moreover, the initial state of
the agent is prepared in an arbitrary superposition state, applying an unitary operator A on the state
space of the agentHX :

A |0〉 = |φ〉 =
∑
x∈X

αx |x〉.

6
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Data: a unitary operator A acting onHX
a unitary operator Oe acting on the composite system agent-environment
n number of rounds

Result: the recommended action x̃n
prepare a quantum register to the state |00〉
apply Oe(A⊗ Ie) to the state of the register
for t← 1 to n do

apply G = (Oe(A⊗ I))(S(X)
0 ⊗ S(Y )

0 )(Oe(A⊗ I))−1Of to the state of the register
end
return x̃n

Algorithm 3: Quantum Best Arm Identification (QBAI)

Once the initial state is prepared, we build the oracle Of on the composite Hilbert space of the agent
and the environment, the action of which is:

∀x ∈ X, y ∈ Y, Of |xy〉 =

{
− |xy〉 if f(x, y) = 1,
|xy〉 otherwise.

As for a search problem, we propose a quantum procedure that allows us to a find the optimal action
(for which rt = f(xt, yt) = 1) using O(1/

√
p) application of Of , with probability approaching 1.

The quantum amplitude amplification algorithm and its analysis is then reminiscent of what was
presented in Section 3. One round of the algorithm is defined by the composition of the above
three operators and the resulting algorithm QBAI (Quantum Best Arm Identification) is depicted
in Algorithm 3. As shown in Algorithm 3, our strategy is based on applying, at each iteration, the
operator G, computed from Oe, Of and A. It is worth noting that although G does not vary as a
function of time/iteration, our strategy is able to take into account the reward at each time step. This
is achieved by means of the environment’s internal state which can be in a quantum superposition
that evolves with time according to the reward obtained after performing an action.

Defining |Ψ〉 = Oe(A⊗ I) |00〉, iterating n times the above algorithm operator G we recover

Gn |Ψ〉 = sin((2n+ 1)θ) |Ψ1〉+ cos((2n+ 1)θ) |Ψ0〉 ,

which is of the same form of Equation 6, where now {|Ψ1〉 , |Ψ0〉} are the normalised projections of
|Ψ〉 in the two subspacesH1 andH0, respectively the good subspace spanned by the set of basis states
for which rt = f(x, y) = 1 and the bad subspace, which is its orthogonal. We know from Section 3,
that to recover the optimal action we need to maximise the sinus. Let us choose an alternative, but
equivalent, path. Let us compute the recommendation probability Pn(x) =

∑
y∈Y | 〈xy|Gn |Ψ〉 |2.

After a straightforward computation and few simplifications, it results:

Pn(x) = |〈x|A |0〉|2(1 + (ax − p)C(p, n)),

where C(p, n) = sin((2n+1)θ)2−p
p(1−p) , p = sin(θ)2 and ax =

∑
y:f(x,y)=1 |〈y|ψx〉|

2. The recommenda-

tion probability Pn(x̃) for the optimal action x̃ is then recovered when sin((2n+ 1)θ)2 = 1, i.e.
when n ≈ π

4

√
1/p− 1

2 .
Summarizing the results so far:
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Theorem 1 The probability Pn(x̃) that QBAI will recommend the optimal action x̃ is maximized
when n ≈ π

4

√
1/p− 1

2 . It follows that Pn(x̃) = |〈x̃|A |0〉|2 a∗p .

In order to compare this result with the classical bounds, we need to define A. For sake of
simplicity, let consider A so that ∀x ∈ X, |〈x|A |0〉|2 = 1

N , which translates in p = EX [ax]. From
Theorem 1, we need

n =
π

4

√
EX [ax]−1 − 1

2

rounds to recommend the optimal action with probability 1 − (1 − a∗

NEX [ax]). Let us recall

that UCB-E needs at least 18H1 ln (2N
δ ) + N rounds to recommend the optimal action with

the same probability. The ratio between both probabilities both number of rounds is of order
O(
√
EX [ax]H1 ln

(
2N2EX [ax]
NEX [ax]−a∗

)
+
√
EX [ax]N). In the case EX [ax] > 1

N , then
√
EX [ax]N >

√
N and the complexity gain for the quantum algorithm results quadratic in respect of the number

of actions. Otherwise, since H1 > (N − 1)a∗−2, we get that
√

EX [ax]H1 > a∗−
3
2

√
N , and the

speedup is once again quadratic in respect of the number of actions. This result is sufficient to prove
that QBAI is quadratically faster than a classical algorithm to recommend the optimal arm with
probability at least a∗

NEX [ax] = (N −
∑

x 6=x∗ ∆x/a
∗)−1.

We know from Theorem 1 that QBAI cannot identify the best arm with better probability without
modifying the operator A during the learning process. As such, QBAI does not allow one to identify
the best action with arbitrary small margin of error, as can be done in the classical approach. However,
because it is able to attain the same level of confidence in fewer interactions with the environment
than classical strategies, it is reasonable to think that an algorithm based on QBAI could identify the
best action with arbitrarily small margin of error while keeping a quantum advantage. Devising such
an algorithm is out of the scope of this paper and we leave this possibility for future research.

5. Conclusion

We studied the problem of Best Arm Identification (BAI) in a quantum setting. We proposed a
quantum modeling of this problem when both the learning agent and the environment are quantum.
We introduced a quantum bandit algorithm based on quantum amplitude amplification to solve the
quantum BAI problem and showed that is able to get the optimal solution quadratically faster than
what is known to hold in the classical case. Our results confirm that quantum algorithms can have a
significant impact on reinforcement learning and open up new opportunities for more efficient bandit
algorithms.

Our aim with this paper has been to provide a direct application of amplitude amplification to
the best arm identification problem, and to show that it exhibits the same behavior it did in other
problems of the same nature in term of efficiency. It has been proposed a direct quantum analogue of
the multi-armed bandit problem, and an analytical proof that amplitude amplification can find the
best action quadratically faster than the best known classical algorithm with respect to the number of
actions. Future extensions of this work might include the following topics: (i) Could this algorithm
be adapted to recommend the optimal action with arbitrarily small margin of error? (ii) Can it be
possible to treat the case where the reward function have value in N? (iii) Can this algorithm be
adapted to solve more complex decision making problems? (iv) Can it be proven or disproven that
amplitude amplification is optimal for this problem, as it is for other unstructured search problems?
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