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Artificial Intelligence for Games

Bruno Bouzy, Tristan Cazenave, Vincent Corruble, and Olivier Teytaud

Abstract This chapter presents the classical alpha-beta algorithm and several vari-
ants, Monte Carlo Tree Search which is at the origin of recent progresses in many
games, techniques used in video games and puzzles, and retrograde analysis which
performs perfect play in endgames.

1 Introduction

As widely repeated, games are the drosophilia of Al - an excellent testbed for tech-
niques. Section 2, based on alpha-beta methods, presents powerful techniques for
the fully observable case when situations can be approximately evaluated efficiently
- e.g. in Chess, for which counting 10 points for a queen, 5 for a rook and so on pro-
vides a simple but effective approximation. Section 3 presents Monte Carlo meth-
ods, powerful in partially observable cases, and also, with the Tree Search adap-
tation, when situations are hard to evaluate. Section 4presents methods used for
puzzles - these methods, including Monte Carlo variants and applications of A*,
are also quite effective for industrial applications. Section 5 presents retrograde-
analysis, which solves exactly various problems (and is also widely used in supply
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chain management), and Section 6 presents tools for video games and is also appli-
cable in military applications.

2 Minimax, Alpha-Beta and enhancements

This section presents Minimax, Alpha-Beta and its enhancements. Alpha-Beta is
a tree search algorithm used in two-player games [Schaeffer and van den Herik,
2002], [Allis, 1994]. Its development is strongly associated to computer Chess be-
tween 1950 [Shannon, 1950] and 1997 when Deep Blue beat the world Chess cham-
pion Gary Kasparov [Anantharaman et al., 1989], [Campbell et al., 2002]. Its origin
is hard to determine exactly, because it is described by numerous papers [Campbell
and Marsland, 1983], [Knuth and Moore, 1975], [Marsland, 1986]. Alpha-Beta is
an enhancement of Minimax [von Neumann and Morgenstern, 1944] described in
Section 2.1. Regarding Minimax, the specificity of Alpha-Beta is pruning impor-
tant parts of the search tree without losing correctness (section 2.2). Practically, the
efficiency of Alpha-Beta is dependent of various enhancements explained in the fol-
lowing sections: transposition tables (section 2.3), Iterative Deepening (ID) (section
2.4), MTD(f) (section 2.5), and many others (section 2.6). All these enhancements
assume the search is performed with a fixed depth or horizon. Other algorithms
descending from Minimax are worth mentioning (section 2.7).

2.1 Minimax

Minimax is a tree search algorithm for two-player zero-sum games with alternating
moves [von Neumann and Morgenstern, 1944]. It assumes that a position can be
evaluated by an evaluation function at a fixed depth. The friendly player intends to
reach positions which maximize the evaluation, and the opponent intends to reach
positions which minimize the evaluation. On friendly nodes (respectively adver-
sarial nodes), the minimax value is the maximum (respectively minimum) of the
minimax values of the child nodes. For a tree with branching factor » and depth d,
Minimax visits 5% nodes.

2.2 Alpha-Beta

Alpha-Beta (AB) computes the minimax value of the root node by visiting less
nodes than Minimax does. For this and for each node, AB computes an AB value,
called v here, and uses two values, o and 3, bounding the interval in which v is
situated. The friendly player (respectively the opponent) aims at maximizing (re-
spectively minimizing) v. & (respectively ) is the minimal (respectively maximal)
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AB value that the friendly player (respectively the opponent) is sure to obtain, given
the search performed so far. At any node, we have oo <v < 8 and o < 3. At the
beginning, the current node is the root node and we have o = —oo and § = +o.
The root node is a friendly node. On a friendly node, AB recursively calls AB on
each child node with the two parameters @ and f3. The order in which the calls are
performed is important and can be given by domain knowledge. Let r be the value
returned by AB on a child node. If » > 3, AB stops and returns 3 (by definition of
B, r cannot be superior to 3, and the maximal value AB is looking for is greater
than 7). This case is called a § cut because the following childs are not visited. If
B > r> a, AB improves its maximal value so far, and « is updated with r. If r < «,
AB continues by calling AB on the next child node. When all child nodes have been
visited or cut, AB returns &@. On an adversarial node, AB proceeds analogeously: if
r < o, AB stops and returns ¢. This is called an o cut. If o0 < r < 3, the opponent
improves what he could get so far and 8 is updated with r. If r > 3, AB continues.
When all the child nodes have been visited, AB returns 3.

If Alpha-Beta, launched with initial values o and f3, returns value r, then the
following results are garanteed. If & < r < 3 then r is the minimax value. If & = r
then the minimax value is smaller than . If r = 3 then the minimax value is greater
than . The size of the memory used by Alpha-Beta is linear in d.

Alpha-Beta efficiency depends a lot on the order in which AB explores the child
nodes of a given node. This order is often given by domain knowledge or search
heuristics. Exploring the best node in first brings about many cuts and shortens the
search. So as to know the minimax value of the root node of a tree with depth d and
branching factor b, [Knuth and Moore, 1975] shows that AB explores a number of
nodes greater than 2b%/2 approximately, and this number can be reached when the
order of exploration is sufficiently good. T being the number of nodes explored by
Minimax, this means that AB explores approximately 2+/T nodes in good cases.

Practically, Alpha-Beta is used in its NegaMax version. Negamax does not
explicitly distinguish friendly nodes and opponent nodes, but recursively calls -
NegaMax with —f8 and —a as parameters.

2.3 Transposition Table

In practice, AB can be enhanced with a transposition table (TT) which stores all the
results of the searches starting from a given position. Its interest lies in the fact that
two different nodes in the search tree could correspond to the same position. This
situation happens very often. The simplest case is when two sequences of moves A,
B, C and C, B, A lead to the the same position. With a TT, searching twice on the
same position is avoided. After each search starting on a given node, AB stores the
result in the TT, and each time a node is visited, AB looks into the TT whether there
is an existing result corresponding to the position of the node.

To represent a game position with an index, the first idea is to map the position
with a non negative integer inferior to |E|, the size of the game state space. |E| can
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be huge. For 9 x 9 Go, |E| ~ 33! ~ 100 ~ 2133 and this first idea is not realistic
on current computers. The position must be mapped to a smaller number, risking
to observe collisions: two different positions with the same index (type 1 collision).
Zobrist designed a coding scheme enabling a program to use index of positions on
current computers (a 32-bit or a 64-bit number) with an arbitrary small probability
of collision.

For each couple (property, value) of the position, a random number (a 32-bit or
a 64-bit number) is set up offline, once for all and beforehand. Online, the position
which can be defined by the set of all its couples has a Zobrist value which equals the
XOR of all its couple random numbers. When a move is played, the Zobrist value is
incrementally updated by xoring the Zobrist value of the position with the random
numbers of the couple (property, value) of the position that have been changed.
Zobrist has shown that, for a search with a fixed number of nodes, a type 1 collision
has a probability of happening that can be arbitrarily small provided that the number
of bits of the random numbers is sufficient [Zobrist, 1990]. This mechanism is called
Zobrist hashing.

In practice, the size of the TT is fixed, say 2L (with L = 20 or L = 30). The
index of the position is made up with the first L bits of the Zobrist value of the
position. Collisions happen in the TT when two positions have the same index (type
2 collision), which is frequent. To avoid type 2 collision, the Zobrist value of the
position is stored with its search result. When reading an entry in the TT, the tree
search checks that the Zobrist value of the position equals the Zobrist value of the
entry, and the search result contained in the entry is used. The first Chess programs
used TT [Greenblatt et al., 1967]. Nowadays, Zobrist hashing is currently used for
many games.

2.4 lIterative Deepening

AB is a depth-first search algorithm. If the optimal solution is short and situated
below the second node of the root node, AB explores all the nodes situated before
the first node before entering the second node. It may spend a useless time below
the first node before finding the optimal solution below the second node. To prevent
this problem, Iterative Deepening (ID) calls AB with a fixed depth 1, then 2, and so
on and so forth, iteratively while computing time is available [Korf, 1985a]. ID is
anytime. ID finds the shortest solution. ID can be used with a TT. A subsequent and
deeper search can use the results of a previous and shallower search. Particularly,
if the best move of a shallow search is stored in the TT, a subsequent and deeper
search can search this move first to produce cuts [Slate and Atkin, 1977].
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2.5 MTD{)

Rather than launching AB with o = —co and 8 = 40, AB can be launched with any
values provided that @ < 3. Let v be the AB value of the root. It can be shown that iff
v < a, then AB returns . Similarly, iff v > f3, then AB returns . Iff @ < v < f3, then
AB returns v. The minimal-window idea is to set up 3 = o + 1. The corresponding
search produces many cuts and its computing time is significantly smaller than the
computing time of the search launched with o = —oo and 8 = +oo. If AB returns
o+ 1, then o+ 1 is a lower bound of v: v > a + 1. If AB returns o, then o is an
upper bound of v: v < «.

Memory Test Driver (MTD) names a class of algorithms [Plaat et al., 1996] using
the minimal-window principle. MTD({) is the simplest and the most efficient one.
MTD(f) iteratively calls AB with o = y and 8 = y+ 1. The initial value of ¥ can
be a random value or the result of a previous MTD(f) search. At each iteration,
if AB returns 7, then v < y and 7 is decremented. Otherwise, v > Y+ 1 and v is
incremented. After a finite number of iterations v is known and the best move read
in the TT. At the expense of using a TT and ID, MTD(f) is a significant enhancement
of AB, used in current Chess programs.

2.6 Other Alpha-Beta Enhancements

Other AB enhancements exist. First, Principal Variation Search (PVS) assumes that
the nodes are already well ordered by the knowledge-based move generator. Con-
sequently, PVS is designed to check this order [Pearl, 1980b], [Pearl, 1980a]. PVS
calls PVS on the first child node with a minimal window so as to check that o can-
not be surpassed. If this is the case, the computing time is low. Otherwise, a normal
AB search is launched on this node, which costs a second search. Secondly, the
null move heuristic [Donninger, 1993] launches a shallow search assuming the first
move is a null move, which gives a first value to « at a low cost. Thirdly, the history
heuristic [Schaeffer, 1989] assesses the moves in term of number of cuts, and stores
the results in a table. The moves with a good assessment in the table are tried first
later on. This heuristic assumes that the moves can be the same from one position
to another. In Chess, a move can be identified by its kind of piece, its origin and its
destination. Fourthly, Quiescence search [Beal, 1990] searches while the position
is not quiet, i.e. at least one urgent move exists (for instance capturing a piece in
Chess). [Rivest, 1988] studies the back-up formula. Finally, [Junghanns, 1998] is an
overview of Alpha-Beta.



6 Bruno Bouzy, Tristan Cazenave, Vincent Corruble, and Olivier Teytaud

2.7 Best First Search

Other algorithms improve Minimax by exploring the best moves in first, the depth
of the search not being fixed beforehand. Proof Number Search (PNS) [Allis et al.,
1994] is useful in a AND-OR tree. PNS computes the proof number of a node:
the number of nodes to explore under this node so as to prove its value. PNS ex-
plores in first the node with the lowest proof number. Best-First Search [Korf and
Chickering, 1994] calls the evaluation function for all child nodes and explores the
best node first. SSS* [Stockman, 1979] explores all nodes in parallel as A* would
do it with a specific heuristic. B* [Berliner, 1979] uses an optimistic evaluation
and a pessimistic one. B* searches so as to prove that the pessimistic value of the
best node is better than the optimistic value of the second best node. [McAllester,
1988], [Schaeffer, 1990] define conspiracy nodes. A conspiracy node is a leaf node
whose evaluation influences the Minimax value of the root. The conspiracy nodes
are searched first.

3 Monte Carlo Search

A major change occurred recently in the game of Go. In 1998, Martin Mueller (am-
ateur 6 Dan) could win against Many Faces of Go, the best program at that time,
with an astronomic handicap of 29 stones[Miiller, 2002]. In 2008, MoGo, from
the French Monte Carlo Go school, won with a decent 9 stones handicap against
Kim Myungwang, 8 Dan pro. Later on, programs won with reduced handicap, and
then AlphaGolSilver et al., 2017b], from Google Deepmind, won without handicap
against the very best professional players. In [Silver et al., 2017a] this was repro-
duced for several games without using any human knowledge; and [Tian et al., 2018]
releases an open source version also beating the best professional players.

These successes came from algorithmic improvements. The same Monte Carlo
techniques were used in active learning[Rolet et al., 2009], in optimization of gram-
mars[De Mesmay et al., 2009], in non-linear optimization[Rolet et al., 2009]. Simul-
taneously, related algorithmes were used in planning. In the case of AlphaGo, the
Monte Carlo method was combined with deep networks (Chapter 12 of the present
volume).

3.1 Monte Carlo Evaluation

The first use of simulated annealing for ranking a list of moves goes back to [Brueg-
mann, 1993]. The state of the art was the alpha-beta pruning; it works quite well for
checkers of chess but it needs a decent and fast evaluation function. An evaluation
function is a mapping from a board position to an evaluation of the value of this
position for each of the players.
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Typically, a human expert can write a good evaluation function for checkers or
chess; whereas this does not exist in Go. [Bruegmann, 1993] proposed a work-
around: randomly simulate many games, for approximating a winning probability
(see Alg. 1); Monte Carlo Go was born.

Algorithm 1 Evaluation of a position p by the Monte Carlo method via n simula-

tions.
Input: a position p, a number n of simulations.
fori=c {1,...,n} do
Let p’' = p.
while p’ is not a final state do
¢ =random move among legal moves at p’
p' = transition(p’,c)

end while
if p’ is a win for black then
ri = 1
else
ri = 0
end if
end for
Return ,]—1 i1 i (estimated probability of gain for black).

While the Monte Carlo method is old (we usually trace it back to the Manhattan
project, i.e. the project for the construction of the nuclear bomb in united stated
during world war 2, but it has also been pointed out much early as an original method
for approximating 7), its use in games was then new.

3.2 Monte Carlo Tree Search

The technique was producing convincing results; it was further developed in [Bouzy
and Cazenave, 2001; Bouzy and Helmstetter, 2003] and improved by combination
with search and with knowledge [Bouzy, 2005; Cazenave and Helmstetter, 2005].

Nonetheless, the real “take off” of the performance will be the combinatiojn with
an incremental tree building. The resulting algorithm, termed Monte Carlo Tree
Search [Coulom, 2006; Chaslot et al., 2006] is presented in Alg. 2 The structure T
is a set of situations, progressively augmented by adding, at each random simulation,
the first situation in this simulation which had not yet been stored in it; this structure
stores, for each node, a number of wins for black and a number of wins for white.

The default policy part does not have to be a pure default random - the early
successes of MoGo were due to the use of a sophisticated default policy [Gelly
et al., 2006]. Combinations with tactical solvers (solving local situations) have been
tried without clear success.

This technique is currently applied in all strong programs in the game of Go, and
in many games:
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Algorithm 2 Evaluation of a position p by the Monte Carlo Tree Search technique
with n simulations. Notations: —white = black, —black = white; transition(p,c) is
the situation in which we move when the player to play chooses move ¢ in position

Input: p a position, n a number of simulations.
T <+ empty structure.
fori=c{1,...,n} do

Let p' = p, g =0, game = 0.

while p’ is not a final state / /Do a complete game do
ifpisinT // If p is in memory then
J = player to play in p’ // Algorithm called "bandit”

for each ¢ legal move in p’ do
//Compute the score for each move as follows
p" = transition(p’,c)
Score(c) = banditFormula(T (~j,p"),T(j,p"),T(j,p") + T(=j,p"))
end for
¢ = legal move in p’ maximizing Score(c)
else
ifg=0 // We have not yet found the state to be added
then
game<— game + p’
end if
¢ =random move among legal moves in p’ // default policy
end if
p' = transition(p’,c)
end while
AddginT //ifqg#0
if p’ is a win for black then
ri = 1
else
ri = 0
end if
for p in game do
T(ri,p))=T(ri,p')+1 // Increase T (r;, p')
end for
end for
Output: % T

Monte Carlo (not MCTS): Scrabble world champion beaten by MC [Sheppard,
2002]

General Game Playing (Cadiaplayer world champion [Finnsson and Bjornsson,
2008a])

Hex (MCTS world champion [Arneson et al., 2010])

Havannah [Teytaud and Teytaud, 2009]

Arimaa (game built specifically built for being hard for computers [Kozelek,
2009])

Nogo [Chou et al., 2011]

Fortress positions in chess (folklore claim)

Hide and seek “Scotland Yard” [Nijssen and Winands, 2012]
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e Chinese Checkers, Focus, Rolit, Blokus [Nijssen and Winands, 2013]

e Amazons, Breakthrough, M. Jack, Chinese Military Chess, real-time video games
(Ms Pac-Man), Total war:Rome, Poker, Skat, Magic: The Gathering, Settlers of
Catan, 7 wonders...

Monte Carlo is used in various puzzles: SameGame [Schadd et al., 2008]; Mor-
pion Solitaire (state of the art by Nested-rollout MCTS [Rosin, 2011; Cazenave
et al., 2016]); Samurai Sudoku [Finley, 2016]; and in applications far from games:
operations research [Chang et al., 2005]; sometimes claimed to be an early variant
of MCTS); Linear Temporal Logic problems, including car driving [Paxton et al.,
2017]; traveling salesman problem with time windows (Nested Rollout method;
[Cazenave and Teytaud, 2012]); unit commitment (an early combination of neu-
ral nets and MCTS, [Couetoux, 2013]); continuous uncertain industrial problems
[Couetoux, 2013]; sailing [Kocsis and Szepesvari, 2006].

A particularly interesting point is the so-called “general game playing” (GGP[Pitrat,
1968]); in these competitions, the program has to read the rules (in a given format,
usually “game description language”), and then play. The best GGP programs use
MCTS [Finnsson and Bjornsson, 2008b].

Algorithm 2 does not specify what is the “bandit” formula. A classical variant,
though not the most widely used in the case of Go, is UCT (Upper Confidence Tree
[Kocsis and Szepesvari, 2006]) as follows:

banditFormula(w,l,n) =w/(w+1)++/Klog(n)/(w+1) (1)

(where K is an empirically chosen constant, n is the number of simulations at
the considered situation, w the number of wins for the considered move, and [ the
number of losses; n = w+1 for games without draw). The first term v/(v+d), called
exploitation, is in favor of moves which have a high success rate; the second term
is in favor of moves which are not much explored (w + [ is small) and is therefore
called exploration term. The formula 1 is not properly defined for v+d = 0; it is
frequent to specify

banditFormula(w,l,n) = F when w41 = 0, for a given constant F [Gelly et al.,
2006].

Different modifications of this formula have been proposed. The RAVE formula
(Rapid Action Value Estimates), based on so-called AMAF (All Moves As First)
values, is as follows:

banditFormula(w,[,w',I") = o(w+Dw/l+ (1 —a(w+Dw' /I’

We use the same w and [ as in UCT, and we also use for the bandit formula for a
given situation:

e ' the number of wins in which the considered move ¢ has been played by the
player to play in the considered situation before being played by the other player,
even if this was not played in the considered situation.
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e [’ the number of losses in which the considered move ¢ has been played by the
player to play in the considered situation before being played by the other player,
even if this was not played in the considered situation.

o(.) is a function converging to 1, for example o/(n) = n/(n+ 50):

e if w41/ is much larger than 1, we use these values and their ratio; whereas when
w and [ are too small for the ratio w/(w+1) to have a meaning;

e then, as the number of simulations increases, we move to w/(w -+ [) which is
asymptotically better (less biased) than w'/(w +1').

A second important modification [Coulom, 2007; Lee et al., 2009; Chaslot et al.,
2008] consists in using heuristics tuned on databases; a simple method for using a
heuristic h(p’,c) (typically estimating the frequency at which a move c is played in
situation p’, given the configuration p’ around move c, is:

bandit Formula(w,1,p',c) =w/(w+1)+Kh(p',c)/(w+1)

for some empirically tuned constant K.

Strong results can be obtained by combining these different approaches [Lee
et al., 2009].

After the wide success of deep neural networks for various tasks, in particular
pattern recognition tasks, neural networks have been used for estimating h(p’,c)
(such a network is called a critic network), with p’ the entire board[Silver et al.,
2016]. Deep neural networks were also used for generating the so-called default
policy in Alg. 2 (such a network, actually playing moves, is called an actor network).
The training can be done in different manners; a possibility is as follows:

e learn the actor network move = random(board) by the reinforce method[Williams,
1992], i.e. by self-play (the network plays against itself and applies gradient up-
dates to its weights);

e learn the critic network h(p’, c) by classical supervised learning on the situations
met in self-play games;

Using this method, combined with MCTS, AlphaGo won a long uninterrupted se-
ries of games against the best professional players in the world [Silver et al., 2017b].
MCTS has the following advantages:

e scaling: the program becomes stronger if the computational power increases;

e very low need for human expertise; the algorithm presented in section 2 is inde-
pendent of the game; even the heuristic A(.,.) might be tuned automatically on
databases, though human expertise can help.

Due to the nice scaling properties of MCTS, parallelization has been applied[Cazenave

and Jouandeau, 2007; Gelly et al., 2008]; however, results, if numerically good in
the sense that MCTS running on dozens of CPU does outperform the single CPU
version, keep the same limitations; it looks like the performance against humans
does not increase as much as suggested by the performance against the non-parallel
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version of the code. The parallel code remains, at least when no special trick and
no deep network is applied, unable to evaluate so-called “capturing races” (also
known as ‘“semeais”); the program tends to always believe that semeais are won
with probability 50% whenever humans know clearly that it’s a win for e.g. black
with probability 100%.

An improved version of AlphaGo Zero named AlphaZero has been proposed
[Silver et al., 2017a]. Apart from the game of Go it has been applied to Chess and
Shogi. After a few hours of training it has been able to defeat the best computer
Chess and Shogi players, Stockfish and Elmo. For the game of Go it has surpassed
AlphaGo Zero [Silver et al., 2017b] and it is considered as a more generic version
of AlphaGo Zero.

4 Puzzles

Puzzles are one player problems where we search for a sequence of moves that gives
the solution of the problem. Algorithms can either optimize the number of moves or
the score of the solution.

4.1 A%

The A* algorithm (cf. chapter ??) [Hart et al., 1968] enables to find solution with a
minimal number of moves to various puzzles. Examples of such puzzles are the Ru-
bik’s Cube [Korf, 1997], the 9-puzzle or Sokoban [Junghanns and Schaeffer, 2001].
A* is also used in video games [Cazenave, 2006a; Bulitko et al., 2008; Sturtevant
et al., 2009].

For each puzzle adressed by A*, an admissible heuristic has to de defined. This
heuristic will be computed for every state of the search. An heuristic is admissible
when it always gives a value smaller than the true number of moves required to
reach the solution from the evaluated state.

4.1.1 The Manhattan Heuristic

The most widely used heuristic is the Manhattan heuristic. The principle of the Man-
hattan heuristic is to compute very rapidly the solution of a simplified problem and
to use the cost of this solution as a lower bound of the real cost. It calculates for each
piece the cost of moving it to its goal without taking into account the interactions
with the other pieces. The heuristic is the sum of all these calculations for all the
pieces. For example in the 9-puzzle the heuristic counts for each tile the number of
moves to move it to its goal location as if there were no other tile. For the Rubik’s
cube, the same calculation if done for every cube, however each move at the Ru-



12 Bruno Bouzy, Tristan Cazenave, Vincent Corruble, and Olivier Teytaud

bik’s cube moves eight cubes, so the sume has to be divided by eight in order to be
admissible. For finding the optimal moves on maps of video games, the Manhattan
heuristic calculates the distance as if there were no obstacle.

4.1.2 Tree Search

A* developes at each search step the state that has the lowest estimated cost. The
cost of a path is the cost already used to reach the state plus the lower bound on
the remaining cost to reach the goal. It ensures that when a solution is found it has
a minimal cost (all other states that could be developed have a greater associated
cost). In games, the cost of a state is often the number of moves required to reach
the goal.

Algorithm 3 Search of a minimal cost solution with A*
Input: a position p.
Open + {p}.
Closed < {}.
glp]=0
h[p] = estimated cost from p
flp] = glp]+h[p]
while Open # {} do
pos = position in Open with the smallest f
if pos is the goal then
return the path to pos
end if
remove pos from Open
add pos to Closed
for ¢ =legal move of pos do
pos’ = transition(pos,c)
g = g[pos]+cost of ¢
if pos’ is not in Closed then
if pos’ is not already on Open with g[pos’] < g’ then
glpos'| = ¢
h[pos'] =estimated cost from pos’
flpos'] = glpos’] + h|pos’]
add pos’ to Open
end if
end if
end for
end while
return fail
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4.2 Monte Carlo

The recent success of Monte Carlo methods for games has brought them as interest-
ing candidates for solving puzzles. Monte Carlo are suited to puzzles lacking a good
heuristic to guide the search. It is the case for puzzles such as Morpion Solitaire or
SameGame. For these two games as well as for Sudoku and Kakuro, a nested Monte
Carlo search has good results [Cazenave, 2009]. The principle of this algorithm is
to play random games at the lowest level and to choose for upper levels the move
that resulted in the best score of a playout of the underlying level (for example each
move of a playout of level one is chosen after the score of a random game start-
ing with the move). Moreover the methods described in the previous section Monte
Carlo Search are general and can be applied to puzzles.

4.3 Further Reading

It is possible for some puzzles to us a depth-first version of A* named Iterative
Deepening A* (IDA*) [Korf, 1985b] that enable to use A* with very few memory.
[Kendall et al., 2008] is a nice survey of NP-complete puzzles.

5 Retrograde Analysis

Retrograde analysis enable to precompute a solution for each element of a subset of
the states of a game. It has enabled to optimally solve a few games. We first present
its application to endgames of two player games, then to puzzles.

5.1 Endgame Tablebases

The principle underlying an endgame tablebase is to calculate the exact value of
some endgame states. For example in Chess it is possible to calculate for every state
containing five pieces or less its exact value. Ken Thompson calculated all values
for six pieces endgames [Thompson, 1996].

Retrograde Analysis is the algorithm used to calculate the score of endgame
states. The principle is to start enumerating all won states. Then for each won state,
it undoes a White move and a Black move and verifies with a depth two search the
status of the new state. It then finds new won states. It continues this process of
finding new won states as long as it finds new won states.

Endgame Tablebases are used by Chess programs as they can play some endgames
instantly and better than any human. They have changed Chess theory for certain
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won states that human players thought to be draw (notably the King-Bishop-Bishop-
King-Knight).

Retrograde analysis can also be used in other games. Chinook solved Checkers
using some endgames tablebases and search algorithms [Schaeffer et al., 2007].
Another popular game completely solved by retrograde analysis is Awari, there exist
a program that can play perfectly and instantly all the Awari states [Romein and Bal,
2003].

5.2 Pattern Databases

In order to improve A* or IDA* on a given problem, it is natural to try improving
the admissible heuristic. Improving the admissible heuristic reduces to make it find
greater values for an equivalent computing time.If the heuristic finds greater values,
A* will develope less states in order to find the solution as it will cut some paths
earlier.

A nice way to improve the admissible heuristic is to precompute the solution of
numerous configurations of a problem more simple than the original one and to use
the precomputed values as admissible heuristics. For example in the 16-puzzle the
Manhattan heuristic consider each tile as independent of the other. If some interac-
tions between tiles are taken into acount, the heuristic will be improved. All states
containing some predefined tiles are solved taking into account the interactions be-
tween tiles. All configurations for the first eight tiles can be calculated, removing the
other tiles and replaceing them with empty tiles [Culberson and Schaeffer, 1998]. A
retrograde analysis algorithm close to the one used in Chess compute the minimal
number of moves required to solve each configuration of the first eight tiles. Using
this pattern database is fast as it consist in finding a precomputed number in a table
with the index corresponding to the configuration of the first eight tiles of the state
to evaluate.

Pattern databases can be used for other problems than the 16-puzzle. It is possible
for example to precompute all the combinations of the eight corner cubes of the
Rubik’s cube. It is then possible to use it as an admissible heuristic [Korf, 1997].
The 16-puzzle and the Rubik’s cube are examples among many problems that can
be speeded up with pattern databases, enabling much faster solving than with the
Manhattan heuristic alone (a thousand times faster for the 16-puzzle and required to
solve the Rubik’s cube)

In order to solve the Rubik’s cube faster it is possible to combine pattern
databases, for example by computing a database for the eight corner cubes and an-
other one for six out of the twelve border cubes. The evaluation of a position is then
the maximum of the two values found by the patterns databases. Moves at Rubik’s
cube move both corner and boarde cubes, so it is no possible to add the two heuris-
tics. For other problems such as the 16-puzzle it is not the case: if two databases
containing disjoint sets of tiles are available, the two values can be added and still



Artificial Intelligence for Games 15

give an admissible result since no move of the first database is also a move in the
other database (tile of a database are not in the other database) [Felner et al., 2004].

For some problems such as the four-peg Towers of Hanoi it is valuable to com-
press pattern databases so that they fit in memory. Compression stores only one
value for a set of patterns (the minimum number of moves over all the patterns of
the set) [Felner et al., 2007].

Precomputing to improve the admissible heuristic and accelerate search is not
limited to puzzles. For the shortest path problem on a game map, it is possible
to precompute the distance from a given point to all other points. The triangular
inequality can then be used to compute an admissible heuristic between any two
points [Cazenave, 2006a].

It is also possible to compute pattern databases for two-player games. For the
game of Go, all living shapes that fit within a given rectangle can be precomputed
and used to accelerate life and death search [Cazenave, 2003].

5.3 Further topics

This section has been devoted to fully observable games; there exist extension to
non-observable applications[Cazenave, 2006b; Rolet et al., 2009]. In some games,
the modeling of the opponent is critical (for example Poker[Maitrepierre et al.,
2008]).

6 Al in Video Games

Besides major Al contributions to the area of classical games, new types of games
have emerged over the last three decades that have called for new developments in
the field of Al Video games first distinguished themselves from classical games by
relying heavily on graphics and reflex action (instead of analysis and reasoning). Yet
these new video games have given more and more importance to Al, not only to pro-
vide artificial opponents to human players, but also to animate the virtual characters
that inhabit the complex virtual worlds of some of the more recent games, so as to
make them credible and entertaining. A strong and active community has therefore
developed in this area over the last years, involving both industry and academia,
with specialized books, conferences supported by major academic societies (e.g.,
IEEE with Computational Intelligence in Games, AAAI with Artificial Intelligence
and Interactive Digital Entertainment), and journals such as IEEE Transactions on
Computational Intelligence and Al in Games (TCIAIG).

Many Al researchers have turned to the area of video games as a rich problem
area [Laird, 2002]. Indeed video games constitute excellent plateforms for experi-
mental work in Al, and that is true of a wide range of game types, including his-
torically FPS (first-person shooters), RTS (Real-Time Strategy), RPG (role-playing
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games) or even adventure games, each one bringing its own research problems [Cor-
ruble and Ramalho, 2009]. One limitation for research oriented work in this area was
for a long time the limited accessibility of open plateforms, commercial games be-
ing typically closed to open investigation by outside researchers. The situation has
improved recently, with open plateforms becoming more available, often as a result
of partnerships between academia and industry. Alternatively, a few projects have
recently tackled Al game-playing with commercial version of games, e.g. simulat-
ing mouse clicks to communicate Al moves [Madeira and Corruble, 2009], up to
the point where the game state is acquired by a video camera monitoring the screen
as human players would (e.g. [?]). In parallel, more and more game platforms are
being released in the framework of competitions or challenges to the research com-
munity. Lastly, we see in this section how the video game AI domain, beyond its
role of experimental platform for testing and challenging Al techniques, also con-
tributes its own research questions, which brings about the enrichment and renewal
of the field of Al as a whole.

6.1 Transitioning from Classical Games to Video Games

Itis possible for some game genres to consider, from an Al perspective, video games
as extensions of classical games, while other game genres introduce fundamentally
new problems. In the first category, one can place modern strategy games which,
similarly to classical games, stage a conflict or competition between two or more
sides, each representing an army, civilization or faction, in a context that can be
historical, or imaginary. Typical examples are Age of Empires (Microsoft), the Total
War series (Creative Assembly), that combines strategy and tactical combat at var-
ious historical periods, Sid Meier’s Civilisation, or Paradox Interactive grand strat-
egy games such as Europa Universalis, or Victoria. Innovations in this group are
significant and go beyond visual immersion. Besides moving units on a map in a 2D
or 3D environment as one can find in classical games and many wargames, players
are challenged to manage an econmy (ressource collection, production, budget,...),
diplomacy (alliances,...) or even research and innovation policies. These multiple
levels of simulation, from the most tactical (involving moving units on a map) to the
more strategic (with long term policies) and their complex interactions, bring about
new levels of complexity, where the middle or long term impact of decisions is ex-
tremely difficult to predict. While these strategy games can be played in a turn-based
fashion or real-time, from a complexity perspective, there main innovation in com-
parison with classical games is their high degree of parallelism: be it for a wargame
or a grand strategy game, all units can potentially receive independent orders at any
moment or game turn. As a result, the combined set of possible decisions or actions
at a given point in time becomes hard to enumerate and even more to evaluate, as its
size grows exponentially with the number of units. Thus, the traditional Al approach
to games based on tree search usually becomes non practical.
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This initial remark related to the complexity of modern games might go some
way toward explaining a phenomenon that could seem surprising at first: Al in video
games has until recently used relatively few results or techniques coming from Al
research on classical games and more generally from academic Al. Yet the video
game industry has been one of the first areas to adopt the notion of Al to the point of
making it a commercial argument. The game industry, and players, refer to game Al
mainly as the part of the game that manages the automated behavior of the player’s
opponents or of the non-player characters that populate the game environment. The
issue of whether this game Al actually uses techniques coming from Al research is
often, maybe justifiably, seen as secondary.

As we are about to see in the next section, a large proportion of video games use
techniques that can seem rather basic from an Al research perspective, but that show
real strengths from the point of view of game designers and still allowing for some
degree of refinement. We will see also how more recent work coming both from
academia and industry have initiated a move from what is described as traditional,
scripted game Al toward one that is more advanced. Furthermore, this overview of
game Al must go beyond these basic questions and address other important ones. A
key topic for game Al is the notion of non-player characters (NPCs), these creatures
that populate the game world, especially in adventure and role-playing games, but
can be relevant also in other popular genres such as simulation, sports games, or
first-person shooters (FPS). NPCs extend the notion of opponent (they can indeed
represent allies or be neutral to the player character), and are related to the notion of
actor, that must follow the instructions of a director) or of an autonomous agent that
must act, react, or interact in a credible manner with the story and the player.With
this area, much of the recent research on autonomous intelligent agents finds an
application and a field of experimentation that is particularly exciting [Corruble and
Ramalho, 2009], but we will see in the following that one has to enrich, redefine,
and sometime even strengthen some of the goals of classical research on rational
agents.

6.2 Al in the Game Industry - Scripting and Evolution

Modern video games should be seen as interactive media which borrow much from
a movie culture where an author imagine a story and directs actors. They add to this
the key dimension of interactivity : the evolution of the story is strongly impacted
by the player’s actions, who might as a result guide it towards a direction or an-
other. This complex intertwining between the levels of story and individual actions
is studied in a new research domain known as interactive narrative [Perlin, 2005;
Natkin, 2004]. The roots of video games in a movie culture goes some way towards
explaining the reservations held by some (now rare) game designers towards the
notion of an Artificial Intelligence leading to autonomous agents : in their minds,
NPCs are seen mainly as actors, they must behave by following indications from the
game designer, and help in steering the story towards one of the paths they antici-
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pated. In that vein, some of most scripted games are referred to as roller-coasters,
they are designed precisely to make the player live a planned sequence of emotions
where intense moments are followed by relaxing episodes and so on. Roller-coaster
games are often opposed to sandbox games, where the player is the one building the
story that emerges from its interactions with a rich game environment. In the first
category, Roller-coaster games have most often what is called a scripted approach
to AL. Some behaviors or action sequences are triggered when specific conditions
on the game state (e.g. the position of the player character, or a specific point in the
story) are met. NPCs designed this way lead to behaviors expected by the designer
at the time they expect it and therefore are a suitable solution to many needs of the
video game industry. Nonetheless, it has its own shortcomings; Development costs
can be significant as all relevant game situations must be taken into account at the
time of design, which in turns implies some level of constraint on the behaviors of
the player... which has generate some level of player frustration which is not con-
ducive to immersion and enjoyment. Furthermore, it tends to lead to a rather closed
or less dynamic game environment. The same situation leads to the same behaviors.
It can lead to some form of player boredom, and also decrease the replay value of the
game. Another consequence is that the player can exploit this tendency to repeat the
same actions and game the game: when predicting easily the game Al reaction to its
own moves, the player acquires an advantage that quickly ruins the game challenge.
At a more technical level, several approaches have been used to model the behav-
iors of NPCs. Finite state machines (FSM) have for long been the basic tool for the
scripted Al approach. The limitation of FSM in terms of representation have lead
to some improvements by using hierarchical finite state machines (HFSM) [Harel,
1987] that allow the modeling of generalized states and state transitions, hence fac-
toring some aspects of similar states. Further, behaviour trees [Flérez-Puga et al.,
2008] aim at maximizing the level of factoring between states and make more ex-
plicit the logic of transitions between behaviors - they have thus become the leading
Al technique in the video game industry over the last decade. In order to implement
scripted behavior, powerful script languages have been developed over the years,
several of them motivated by the game industry. One of them is LUA [Ierusalim-
schy et al., 2007], used in successful games such as World of Warcraft). They have
been well received by offering a good balance between speed of execution and a de-
velopment that remains outside of the game engine (the computation intensive part
that deals with graphics, etc.), which lets studios work on the game Al in the last
months of game development, or to refine it after game release, or in some cases to
let players contribute to its improvements via modding.

6.3 Research Directions : Adaptive Al and Planning

In order to overcome the limitations of scripted approaches to game Al listed above,
some attempts have been made to combine the strong points of scripted Al, well
regarded in the video game industry, and adaptive abilities as studied by Al re-
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searchers, especially in the area of Machine Learning. AN important example is
Dynamic Scripting [Spronck et al., 2006]. In its initial version, this approach aims
at computing, based on experience, to associate a score to each script defined by
hand. This learning stage allows then afterwards the selection of the script that is
the most relevant to the current situation and player. The later versions of Dynamic
Scripting introduced a reinforcement learning stage that modifies the scripts them-
selves. It is therefore a rel machine learning approach to game Al, though it leaves
open the possibility of using a base of pre-defined scripts as input.

Mostly in academic circles, some researchers have proposed for some years to
design a game AI with a more radically different approach, placing learning tech-
niques at its heart, with a triple objective: avoid the somewhat frozen behaviors of
scripted approaches, offer the possibility of an adaptive game Al (it adapts naturally
to the player and its play style as its by playing that it develops or adapts its strat-
egy), and from a practical, development points of view, offer an alternative to the
classical approach that implies the programming and debugging of numerous scripts
by several programmers (some game studios hire dozens of Al script programmers
in their final production phase). Resistance against this type of learning approach in
the game industry has several explanations: current learning techniques on complex
problems tend to converge slowly, induced behaviors are difficult to predict and it
is therefore difficult to offer a guarantee a priori about the acceptability of results
by the designer and ultimately by the player. On the other hand, the game industry
recognizes that adaptive methods based on learning are certainly promising, as ex-
pressed plainly in the enthusiastic preface of [Rabin, 2002] qualifying learning as
the Next Big Thing for game Al, before addressing various aspects and projects of
learning game Al in ten chapters of the book.

By nature, most video games can be modeled as an agent or a system of agents
interacting with their environment. They often receive an evaluation of their actions,
for example, through the evolution of a game score. They therefore appear open to
Al approaches based on machine learning. They are however domains where state
and action spaces can be much larger than more classical games, and constitute
a good motivation to improve these methods, for example, using approaches for
factoring underlying Markov Decision Processes [Degris et al., 2009], or using a
hierarchical decomposition for learning on adapted representations [Madeira and
Corruble, 2009], which lead to viable solutions respectively for FPS games or strat-
egy games such as historical wargames. In this last case in particular, hierarchical
decomposition of the decision and learning processes, and the automated adaptation
of representations by abstraction mechanisms proved necessary due to the high-level
of parallelism that makes most wargames analogous to actual multi-agent simula-
tions [Corruble and Ramalho, 2009].

Besides these approaches using learning intensively, one should not neglect ap-
proaches using some form of planning. Research presented in [Degris et al., 2009]
is an interesting example of work combining reinforcement learning with a model
itself learned from experience. Other approaches using sophisticated planning tech-
niques such as Hierarchical Task Networks (HTN) become an important research
direction [Hoang et al., 2005] that inspire the game AI of several commercial
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games such as Total War (Creative Assembly), Airborne Assault (Panther Games),
or Armed Assault (Bohemia Interactive),

6.4 New Research Directions for Video Game Al

We have introduced in the previous pages the state of the art and some research di-
rections for video game Al seen as an extension of Al research on classical games.
The underlying hypothesis was that the aim is to design a game Al that plays better,
that is to say whose performance level approaches, reaches, or even takes over the
one of a human player. This objective, so obvious that it is often not stated, is seri-
ously challenged by the video game domain.Indeed, though until recently for some
game types, either classical (chess, go,...) or "modernes” (strategy games), the main
challenge for the Al researcher is to develop a challenging opponent for the human
player, it is not the case anymore for many games where machines can now easily
beat the human players. The challenge for Al research is then somewhat different:
the goal is not to reach human level anymore, it is to propose an opponent, or a game
companion, with whom the human player will enjoy the confrontation. This touches
on some complex issues related to the notion of enjoyment and entertainment, at the
heart of gaming, but that science and technology has ignored until recently .

A significant amount of work, at the intersection of Al, psychology and social
sciences, addresses the definition and measure of satisfaction and entertainment of
players. Theories, coming from the area of aesthetics, literature and cinema on one
hand, and experimental work, looking at player activity and physiological param-
eters (heart rate, etc.) to evaluate the level of interest, are two approaches that are
sometimes combined. In turn, this can guide the design of the game Al so that the
behavior produced lead to the satisfaction or enjoyment of the player. One specific
example of such work is the issue of game balancing or more accurately of dynamic
difficulty adjustment. How to proceed so that the game Al plays at the right level
whatever its human opponent and at anytime along the player’s personal evolution?
An important component in that area is the flow theory from psychology [Csikszent-
mihalyi, 1975, 1990] that relates well-being and satisfaction with a good balance
between competence level and task difficulty. In particular, [Andrade et al., 2006]
has proposed an approach to dynamic difficulty adjustment using a method derived
from traditional reinforcement learning so that the selected action is not necessarily
the one with the highest utility, depending on the estimated difficulty perceived by
the player. All while learning to play well, agents learn also to adapt their level of
play (their performance) by selecting sub-optimal actions, because they are seen as
better adapted to the level of their opponent, the human player.

Work on difficulty adjustment are made easier by the availability of objective
measures, such as the game score. Other game dimensions are however more dif-
ficult to evaluate but have a strong impact on player perceptions and his/her im-
mersion in a story. Character believability is a good example of this, especially for
adventure and role-playing games as they usually assume complex interactions in-
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cluding dialogues, negotiation, etc. between NPCs and PCs. AN entire research do-
main has developed around this question, which attracts interest beyond the game
domain, including all areas of virtual characters. In this domain, one has to go be-
yond the goal of having NPCs behaving rationally with high level of performance.
To be credible or believable, what is important is that they have a recognizable per-
sonality influencing their actions in the long term, and that they react emotionally
in a credible manner to events in their environment and to interactions with other
characters. Game NPCs have therefore become an important application area for
affective computing [Rickel et al., 2002]. [Ochs et al., 2009] for example propose
a computational model allowing the simulation of the dynamics of emotions and
social relations taking into account the personality of NPCs.

The few research directions outlined above give an idea of the rich scene that
game Al research has become over the last decade or so. This list is far from ex-
haustive. By moving from the simple role of opponent to the one of NPC, game Al
has extended its domain, but it is now invoked for other areas of game development.
Can it contribute more centrally to game design (by crafting stories for example)?
What about stage direction, camera placement and so on? And a game music that is
dependant on game state and player tastes? All these questions currently constitutes
new frontiers both for Al research and for the game industry.

7 Conclusion

In this chapter we have presented somme classical algorithms for programming
games: alpha-beta and its improvements for zero-sum two-player games, A* for
puzzles. We have also presented more recent approaches such as Monte-Carlo al-
gorithms and applications of Al to video games. As we have seen, Al in games
includes many algorithms and raises many research questions which are relevant
beyond the game domain. The most active research areas of the last years include
Monte-Carlo methods and video-game Al.
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