Tristan Cazenave 
email: tristan.cazenave@dauphine.fr
  
Benjamin Negrevergne 
email: benjamin.negrevergne@dauphine.fr
  
Florian Monte Sikora 
email: florian.sikora@dauphine.fr
  
Carlo 
  
  
  
Monte Carlo Graph Coloring

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Given a graph G, a proper coloration of G consists in assigning a color to each vertex of the graph such that no adjacent vertices receive the same color. The chromatic number χ(G) of G is the minimum number of colors required to have a proper coloration for G. Determining the chromatic number of a graph is probably one of the most studied topics in graph algorithms and discrete mathematics. It has many applications, including scheduling, timetabling, or communication networks (see references in [START_REF] Malaguti | A survey on vertex coloring problems[END_REF]). Unfortunately, identifying the chromatic number is notoriously hard to solve: it is already NP-hard even if the question is to decide if the graph can be colored with 3 colors, and it is essentially completely not-approximable [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

To cope with this difficulty, the research community has tried a variety of different approaches: mathematical programming [START_REF] Malaguti | A survey on vertex coloring problems[END_REF], exact moderately exponential algorithms [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF], approximation algorithms on special graph classes [START_REF] Demaine | Algorithmic graph minor theory: Decomposition, approximation, and coloring[END_REF], algorithms of parameterized complexity for structural parameters and data reduction [START_REF] Jansen | Data reduction for graph coloring problems[END_REF][START_REF] Cai | Parameterized complexity of vertex colouring[END_REF][START_REF] Marx | Parameterized coloring problems on chordal graphs[END_REF][START_REF] Lampis | Finer tight bounds for coloring on clique-width[END_REF], heuristics, meta-heuristics, etc. In practice exact methods generally fail to color graphs with more than few hundred vertices [START_REF] Malaguti | A survey on vertex coloring problems[END_REF], so a large number of publications on graph coloring algorithms focus on the design and improvement of heuristics approaches.

Early heuristics for graph coloring were often based on pure local search strategies such as TabuSearch [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF]. Nowadays, most efficient modern algorithms are still based a local search strategy, but they combine it with sophisticated exploration techniques to escape local minima (e.g. Variable Neighborhood Search [START_REF] Mladenović | Variable neighborhood search[END_REF] and Variable Space Search [START_REF] Hertz | Variable space search for graph coloring[END_REF]). Building on a the idea of combining local search with more exploratory search procedures, Fleurent and Ferland have proposed to use the framework of hybrid algorithms which combine a local search operator with a population based algorithm [START_REF] Fleurent | Genetic and hybrid algorithms for graph coloring[END_REF]. This idea has inspired a lot of research in the field (see for example [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]), and ultimately led to the state-of-the-art algorithm HEAD [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF] (Hybrid Evolutionary Algorithm in Duet).

In comparison with hybrid algorithms based on local search, very little work has been dedicated to evaluating the performance of Monte-Carlo for graph coloring problem (except [START_REF] Edelkamp | Solving graph optimization problems in a framework for Monte-Carlo search[END_REF]). This is probably because the idea of discovering highly constrained solutions through random sampling seems counter-intuitive at first. However, modern Monte-Carlo based algorithm naturally combine random search (which provides exploration) with a tree search driven by a stochastic policy learned during the search, (which help improving good local solutions). These two features make modern Monte-Carlo based algorithms good candidates for the graph coloring problem.

In this paper, we evaluate the performance of two Monte-Carlo based algorithm, Nested Monte Carlo Search (NMCS) [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF] and Nested Rollout Policy Adaptation (NRPA) [START_REF] Rosin | Nested rollout policy adaptation Monte Carlo Tree Search[END_REF], for the graph coloring problem. As we will show, our modeling of the coloring problem as a Monte-Carlo search algorithm provides good performance and can compete with state-of-the-art hybrid algorithms which have been studied and improved over the past 30 years.

In Section 2, we review related work concerning Monte Carlo Search methods and describe in Section 3 the two we will use in this paper. In Section 4, we discuss various modeling choices for our approach. In Section 5 we describe the other algorithms for graph coloring that we will compare to ours. Finally, in Section 6, we conduct thorough experiments to demonstrate the performance of NRPA.

Monte Carlo Search methods and Combinatorial Problems

Monte Carlo Tree Search algorithms (MCTS) have been most successful in the area of game artificial intelligence [START_REF] Browne | A survey of Monte Carlo tree search methods[END_REF], and have obtained state-of-the-art in this field. They have also been applied to a variety of other problems in combinatorial optimization problems, but they remain marginally used in this area. For example, NRPA has been applied to the Traveling Salesman with Time Windows problem [START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF][START_REF] Edelkamp | Algorithm and knowledge engineering for the TSPTW problem[END_REF], and other applications also deal with 3D Packing with Object Orientation [START_REF] Edelkamp | Monte-Carlo tree search for 3d packing with object orientation[END_REF], the physical traveling salesman problem [START_REF] Edelkamp | Solving physical traveling salesman problems with policy adaptation[END_REF], the Multiple Sequence Alignment problem [START_REF] Edelkamp | Monte-Carlo tree search for the multiple sequence alignment problem[END_REF] or Logistics [START_REF] Edelkamp | Monte-Carlo tree search for logistics[END_REF].

In 2017, Edelkamp and co-workers have applied Monte Carlo Search to graph coloring [START_REF] Edelkamp | Solving graph optimization problems in a framework for Monte-Carlo search[END_REF]. They compare various Monte-Carlo search algorithms such as NMCS, NRPA as well as a SAT-based approach. In their experiments they report that the best results were obtained with NMCS which contrast with our results in this paper. We propose to optimize further the modelling of the problem using node ordering, refined scoring and a different Adapt function. Our optimizations improve much the search time compare to the alternative modellings.

Nested Monte Carlo Search

In this section we describe the two Monte Carlo search algorithms that we have considered in the rest of this paper: Nested Monte Carlo Search (NMCS) and Nested Rollout Policy Adaptation (NRPA).

As most Monte-Carlo based algorithms, NMCS and NRPA produce a good solution by generating a large number of random sequences of branching decisions (a.k.a moves). The best sequence according to some objective function is then returned as a final solution to the problem. Since the quality of final sequence directly depends on the quality of the random sequences generated during the search, NMCS and NRPA combine a variety of techniques to improve the quality of the random sequence generator such as tree search, policy adaptation or nested algorithms.

At the lowest recursive level, the generation of random sequences is driven by a stochastic policy (a probability distribution over the moves). Random sequences are generated based on this policy by sampling moves from the policy using Gibbs sampling, as described in Algorithm 1. If we have access to background knowledge, it can be encoded as a non-uniform distribution over the moves in the policy. Otherwise, the initial stochastic policy assigns equal probability to each move. In NMCS, the policy remains the same throughout the execution of the algorithm. However, the policy is combined with a tree search to improve the quality over a simple random sequence generator. At each step, each possible move is evaluated by completing the partial solution into a complete one using moves sampled from the policy. Whichever intermediate move has led to the best completed sequence, is selected and added to the current sequence. (See Algorithm 2.) The same procedure is repeated to choose the following move, until the sequence has reached a terminal state.

A major difference between NMCS and NRPA, is the fact that NRPA uses a stochastic policy that is learned during the search. At the beginning of the algorithm, the policy is initialized uniformly and later improved using gradient descent steps based the best sequence discovered so far (See. Algorithm 3). The procedure used to update the policy from a given sequence is given in Algorithm 4. Note that this difference is crucial because unlike NMCS, NRPA is able to acquire background knowledge about the problem being solved, and does not require the user to specify it. Ultimately, this knowledge will contribute to speed up the discovery of a good solution. Finally, both algorithms are nested, meaning that at the lowest recursive level, weak random policies are used to sample a large number of low quality sequences, and produce a search policy of intermediate quality. At the recursive level above, this policy is used to produce sequence of high quality. This procedure is applied recursively, in general 4 or 5 times. In both algorithm the recursive level (denoted l) is a crucial parameter. Increasing l increases the quality of the final solution at the cost of more CPU time. In practice it is generally set to 4 or 5 recursive levels depending on the time budget and the computational resources available. 

Graph Coloring as a Monte Carlo Search Problem

In this section we discuss several alternative models to capture the Graph Coloring problem as a Monte Carlo Search problem. Remark that we focus decision problem (i.e. deciding if a graph can be colored with a given number of colors).

We start by defining the possible moves, and then present the node ordering heuristic, and deal with the question of generating valid moves. Finally, we discuss the objective function and as well as an optimization of the adapt function for the graph coloring problem.

Legal Moves

In the context of the graph coloring problem, a move consists in assigning a particular color to an uncolored vertex of the graph. Thus, given a graph G = (V, E) and a set of colors C, a move is a pair (v, c) where v is an uncolored vertex in V , and c is any color in c.

NMCS and NRPA only consider legal moves at each step, and lowering the number of legal moves is a key performance issue for both algorithms. In NMCS, a large number of legal moves leads to a very large branching factor which slows down the algorithm at each recursive level. For NRPA a large number of legal moves results in a large policy vector, which makes it more difficult to train with comparatively less training examples.

A first naive approach consists in considering every possible move at every step, leading to a number of possible moves that can be as big as |V | × |C| in the initial condition. This solution results in poor efficiency and low quality solution which we do not report here. To lower the number of possible moves down, we adopt a different model in which each move vertex is considered in a particular order (e.g. random order). At each step, only one node and all its legal coloration are considered. This reduces the maximum number of moves from |V | × |C| to |C|. As we will see, it leads to good results in practice. However, imposing an order over the vertices induces a strong bias over the exploration of the search space, which we study in the next section.

Node order

The naive approach to node ordering is to fix a predefined or random order of the nodes and to color them in this order. A better heuristic is DSatur [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF]. It chooses as the next node to color the node that has the less possible colors. In case multiple nodes have the same minimal number of possible colors it break ties by choosing the node that has the most neighbors. DSatur is a good heuristic to order nodes for NRPA since it propagates the constraints in the graph and avoids choosing colors for a node that would reveal inconsistent later due to more constrained neighbors. For example if a node has only one possible color it will always be chosen first by DSatur. By doing so the neighboring nodes have one less possible color and it avoids taking this impossible colors for neighboring nodes which would not have been the case if the one color node had been chosen later.

Selective Search

When trying possible colors for a node it is not wise to choose a color that is already assigned to a neighboring node. In order to avoid as much as possible bad branching decisions we use forward checking. When selecting the color for a node, all the colors of the neighboring nodes are removed from the set of possible colors for the node. This is related to selective NRPA [START_REF] Cazenave | Nested rollout policy adaptation with selective policies[END_REF] where heuristics are used to avoid bad moves. However in our case of Graph Coloring the moves that are discarded are moves that can never be part of a valid solution. So it is safe to remove them. Inconsistent colors are never considered as possible moves except if there a no possible color for a node since neighboring nodes already contains all the available colors. In this case all colors are considered possible and the algorithm chooses a color for the node even if it is inconsistent.

Scoring function

Another design choice is the way to score a playout. In [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF] the depth of the playout was used for Sudoku and the playouts were stopped when reaching an inconsistent state, i.e. a state where a variable has no more possible values. For Graph Coloring we use a more informed score. We count the number of inconsistent edges, i.e. monochromatic edges. If there are two adjacent vertices with the same color, the score decrease by one. A score equal to the number of edges of the graph means that we have found a solution. Note that we also tried a scoring function mixing both the number of colors and the number of inconsistent edges (trying to decrease both), which would allow the algorithm to solve the optimization problem directly, but it didn't work well.

We also experimented with NMCS. For the sake of completeness NMCS is given in algorithm 2. The score of the playouts, the selection of edges, and the selectivity of colors in NMCS are the same as in NRPA.

Coding the moves

In NRPA it is important to design how moves are coded. There is a bijection between moves and integer such that moves are associated to weights. We choose to use a simple coding for our moves: the index of a node multiplied by the number of colors plus the index of the color in the move.

Adapt all the colors

When modifying the weights with the adapt function, there are two options. The first one is to modify the weights of the possible moves and to adapt using only the probabilities of the moves that can be played in the current state. The second one is to modify the weights for all the colors, including the colors that were discarded as possible moves since they were inconsistent with neighboring nodes.

The standard Adapt function is given in algorithm 4. The modified function that modifies the probabilities for all the colors is given in algorithm 5. 

Compared approaches for graph coloring

In this section we present the other Graph Coloring algorithms that we used to compare with our approach.

SAT

We used the following SAT encoding to decide if one can color a graph G = (V, E) with k colors (this formulation is for example used in [START_REF] Ignatiev | Cardinality encodings for graph optimization problems[END_REF]). We add a variable x v,i for each v ∈ V and each i ∈ [k]. Then, for each v ∈ V , we add a clause ( i x v,i ), ensuring that each vertex receives a color, and for each edge uv ∈ E and each color i ∈ [k], we add a clause (¬x u,i ∨ ¬x v,i ) such that adjacent vertices receives different colors. This formula is true iff there is a k-coloration of G. Note that if there is no truth assignment for the formula, it tells that the graph is not k-colorable. However, we will not use this in our experiments.

As a solver, we used MiniSat to solve the built formula [START_REF] Eén | An Extensible SAT-solver[END_REF].

HEAD

HEAD [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF] is an hybrid meta-heuristic, more precisely a memetic algorithm, mixing a local search procedure (Tabu-Search) with an evolutionary algorithm. It is based on the Hybrid Evolutionary Algorithm (HEA) by Galinier and Hao [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF].

The general principle of HEA and HEAD is to start with a population of individuals, which are first improved using a local search procedure. Then, a crossover operator is applied to the best individuals in order to generate new diverse individuals and the procedure is repeated for a fixed number of steps which are called generations.

However general crossover operators do not work well for the graph coloring problem, so the main contribution of HEA is a specialized crossover operator. In HEA each individual is a partition of vertices into color classes, and the crossover operator is required to preserve color classes or subset of color classes.

HEAD builds on HEA by introducing various improvements including an original method to maintain diversity inside the population: individuals from earlier generations are re-introduced as candidate individuals in later generations. Using these technique, HEAD has been able to rediscover known coloring at much lower computational cost that earlier approaches [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF].

The source-code of HEAD is available online 1 . Authors provided experiments showing good performances on the classical benchmarks and is probably the faster heuristic to date.

Greedy Coloring

For greedy coloring we use the same generation of possible moves as NRPA except that we only play one playout and that the maximum numbers of colors is not fixed. The order in which vertices are visited during this greedy coloring is the one given by DSatur [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF]. Greedy Coloring is used to establish initial upper bounds for NRPA, NMCS, SAT and HEAD that are lowered down using search to establish better upper bounds.

Experiments

In this section, we compare the performance of two Monte-Carlo based approaches described in Section 3 and 4 with the other approaches described in Section 5.

Experimental Protocol

Execution strategy: In practice we observe a high variance in runtimes and best results throughout the different runs of the same algorithm. To reduce the variance in the results, and allow a fair comparison, we proceed as follows: each algorithm is executed 5 times for a given number of color k with a timeout of 30 minutes. If the algorithm discovers at least one valid k-coloring for the graph instance, we decrease k by one, and repeat this procedure until the algorithm is unable to discover a k-coloring within the timeout limit. Then, we report the lowest k for which the algorithm was able to discover a coloring (denoted UB in the result tables), as well as the success rate for this lowest k (denoted Reached). The initial value of k to start with is determined with the simple greedy algorithm with nodes ordered according to DSatur (denoted UBI). Sometimes the algorithm is unable to improve over the simple greedy algorithm, which we signal with a '-' in the result table (unless the greedy algorithm has already discovered the minimum number χ).

Test instances: We used standard benchmark instances available on the website maintained by Gualandi and Chiarandini [START_REF] Gualandi | Graph coloring benchmarks[END_REF], collected from DIMACS benchmark. This benchmark has been used extensively to evaluate graph coloring algorithms and is now considered to be the standard set for experimentation [START_REF] Malaguti | A survey on vertex coloring problems[END_REF] in this field. Moreover, because these instances have been extensively studied, the optimal chromatic number χ is known for most of them.

These instances are sorted by difficulty. Instances marked NP-m (resp. NP-d) should be solved in less than a hour (resp. than a day). For the harder instances marked NP-?, either the chromatic number is unknown or the time needed to solve them is unknown to [START_REF] Gualandi | Graph coloring benchmarks[END_REF].

Hardware and implementations details: Every execution reported in this experimental section has been conducted on a Intel Xeon E5-2630 v3 (Haswell, 2.40GHz). Although some algorithm support parallel execution, (e.g. NRPA and HEAD), we on report execution times on sequential execution (using one thread) to reduce the variance in execution times, and to allow meaningful comparison with other purely sequential algorithms.

The peak memory usage is limited to 4GB which is not a limitation for any of the algorithm except for the SAT model which runs out of memory sometimes.

We implemented algorithms using SAT, NRPA and NMCS in C++, using the Boost Graph Library. For NRPA, we use our implementation described in [START_REF] Negrevergne | Distributed nested rollout policy for samegame[END_REF] and available online 2 . In our experiments we use l = 7, N = 100 for NRPA 3 . For NMCS, we use increasing nesting levels. This mean that we start the search with a level of 1, and if no solution is found, we increment the level and repeat. 

Results

We give results of Monte Carlo approaches (NMCS and NRPA) compared to other approaches in tables 1,2,3 and 4.

Table 3. Results for the difficult instances marked NP-? by [START_REF] Gualandi | Graph coloring benchmarks[END_REF] with a timeout of 30 minutes. First, we observe that the simple greedy algorithm is generally able to discover the χ value for a number of instances in Table 1. When it is not the case, all the approaches we discuss in this paper have been able to tackle these instances, and discover the χ. However, NMCS does not reach 100% success rate on two of these instances.

NMCS

When we look at the other results, we can see that NMCS is generally the weakest algorithm, and obtains the worst (higher) ratio to χ for the very difficult instances in Table 3 and4, often significantly worse than the ratio for NRPA. Note that with a different representation of the problem, authors of [START_REF] Edelkamp | Solving graph optimization problems in a framework for Monte-Carlo search[END_REF] reported better results with NMCS, contrary to our results. We also observe that the performance gap between the two approaches is small on the medium NP-m instances (Table 1), but large on the most difficult instances (Table 3). This suggests that with our modeling, NRPA is able to acquire better policies along the execution of the algorithm. The benefit of the learned policies over the tree search becomes more visible in long runs on difficult instances. This motivates the general idea of introducing learning into Monte-Carlo search in order to improve the quality of the search.

We can also see that NRPA is generally better than the SAT model, but SAT is surprisingly good for the difficult wap instances in Table 4, unfortunately, we are unable to explain this result and further experiments are needed.

However, a pair-wise comparison between the upper bounds discovered by NRPA and the ones discovered by HEAD demonstrates that HEAD is better in general. It is worth mentioning that algorithms such as HEAD include specialized graph coloring operators which have been extensively studied over the past decades. In contrast our algorithm is based on a general purpose implementation of NRPA, and only includes the specializations we have described in Section 4. Nevertheless, NRPA is the second best in all the datasets, and is often as good, or even better than HEAD.

In Figure 1 we further analyze the behaviour of the two algorithms by comparing the execution times. We selected the best of 5 runs for each tested number of colors and for each algorithm. The time is the accumulated time, starting with the number of colors computed by the greedy algorithm. The y-axis represents the number of improvement by an algorithm for this instance starting from the greedy coloring (i.e. a value of 3 means that the algorithm gave a coloration with 3 less colors than the greedy algorithm did). For readability, we didn't include instances like C4000.5, where HEAD is very good. It seems that HEAD improves quite fast the number of colors but struggles to improve more over time (this is not always true however), while NRPA seems to benefit of longer running time. Indeed, there is not much improvement after 2000s for HEAD while NRPA continues to find colorations after 3000s. This could be because HEAD is stuck in local optimum and cannot find new solutions, while NRPA continues to improve policies while exploring the search space. This demonstrate that Monte Carlo based algorithms have the ability to compete with state-of-the-art hybrid algorithms on the graph coloring problem, and deserve further investigation with more optimizations (more specific strategies, restarts...). From a broader perspective, this also shows that a continuous optimization algorithms can be used to solve discrete problems such as the graph coloring problem. Comparison of computation times (log scale) between NRPA (solid lines) and HEAD (dotted lines) for some instances.

Conclusion

In this paper, we deepen our understanding of Monte Carlo Search algorithms applied to Graph Coloring. Our method is significantly different from most other methods from the literature, and yet, it is able to compete with state-of-the-art algorithms which have been intensively optimized during the past decades. These results suggest that Monte Carlo search combined with policy adaptation are able to explore the search to discover good, yet diverse solutions. And that this technique should be investigated further alongside with more standard approaches.

It would be also interesting to see if NMCS could combine with a good heuristic like HEAD, by either using the local search to improves the solution or by using the genetic algorithm as playouts.

Future works includes the use of Graph Convolution Networks to model more complex policies that can make branching decisions based on the structure of graph at hand, and generalize knowledge from one graph to another.

Finally, we could apply Monte Carlo methods to other variants of graph coloring, like for example Weighted Vertex Coloring or Minimum Sum Coloring, since only the evaluation function would change.

Algorithm 5

 5 The AdaptAll algorithm AdaptAll (policy, sequence) polp ← policy state ← root for move in sequence do polp [code(move)] ← polp [code(move)] + α z ← 0.0 for m in all possible colors even the illegal ones do z ← z + exp (policy [code(m)]) end for for m in all possible colors even the illegal ones do polp [code(m)] ← polp [code(m)] -α * exp(policy[code(m)]) z end for state ← play (state, move) end for policy ← polp

  Fig. 1.Comparison of computation times (log scale) between NRPA (solid lines) and HEAD (dotted lines) for some instances.

  Algorithm 3The NRPA algorithm.

	Algorithm 4 The Adapt algorithm
	Adapt (policy, sequence)
	polp ← policy
	state ← root
	for move in sequence do
	polp [move] ← polp [move] + α
	z ← 0.0
	for m in possible moves for state do
	z ← z + exp (policy [m])
	end for
	for m in possible moves for state do
	polp [m] ← polp [m] -α * exp(policy[m]) z
	end for
	state ← play (state, move)
	end for
	policy ← polp
	bestScore ← result
	seq ← new
	end if
	policy ← Adapt (policy, seq)
	end for
	return (bestScore, seq)

NRPA (level, policy) if level == 0 then return playout (root, policy)

end if bestScore ← -∞ for N iterations do (result,new) ← NRPA(level -1, policy) if result ≥ bestScore then

Table 1 .

 1 Results for the easy instances (marked NP-m) with a timeout of 30 minutes.

			NMCS		NRPA	SAT	HEAD
	Instance |V | |E| χ UBI UB Reached UB Reached UB Reached UB Reached
	1-FullIns 4 93 593 5 5 5	100% 5 100% 5 100% 5 100%
	2-FullIns 4 212 1621 6 6 6	100% 6	100% 6	100% 6	100%
	3-FullIns 3 80 346 6 6 6	100% 6	100% 6	100% 6	100%
	4-FullIns 3 114 541 7 7 7	100% 7	100% 7	100% 7	100%
	5-FullIns 3 154 792 8 8 8	100% 8	100% 8	100% 8	100%
	ash608GPIA 1216 7844 4 6 4	100% 4	100% 4	100% 4	100%
	ash958GPIA 1916 12506 4 6 4	60%	4	100% 4	100% 4	100%
	le450 15a 450 8168 15 17 15 60% 15 100% 15 100% 15 100%
	mug100 1 100 166 4 4 4	100% 4	100% 4	100% 4	100%
	mug100 25 100 166 4 4 4	100% 4	100% 4	100% 4	100%
	qg.order40 1600 62400 40 42 40 100% 40 100% 40 100% 40 100%
	wap05a	905 43081 50 50 50 100% 50 100% 50 100% 50 100%
	myciel6	95 755 7 7 7	100% 7	100% 7	100% 7	100%
	school1 nsh 352 14612 14 26 14 100% 14 100% 14 100% 14 100%
	Avg. ratio to χ	1.0000		1.0000	1.0000	1.0000

Table 2 .

 2 Results for the instances marked NP-h by[START_REF] Gualandi | Graph coloring benchmarks[END_REF] with a timeout of 30 minutes.

				NMCS	NRPA	SAT	HEAD
	Instance |V | |E|	χ UBI UB Reached UB Reached UB Reached UB Reached
	flat300 28 0 300 21695 28 41 38 20% 35 20% 39 100% 31 100%
	r1000.5 1000 238267 234 248 243 20% 240 40% 247 100% 248	-
	r250.5	250 14849 65 67 65 100% 65 100% 65 100% 66 40%
	DSJR500.5 500 58862 122 132 125 60% 122 40% 126 100% 124 60%
	DSJR500.1c 500 121275 85 88 88	-	87 60% 86 100% 86 80%
	DSJC125.5 125 3891 17 23 19 100% 18 100% 19 100% 17 100%
	DSJC125.9 125 6961 44 50 45 40% 44 100% 46 100% 44 100%
	DSJC250.9 250 27897 72 90 84 20% 76 20% 86 100% 72 100%
	queen10 10 100 2940 11 14 11 60% 11 40% 12 100% 11 100%
	queen11 11 121 3960 11 14 13 100% 13 100% 13 100% 12 100%
	queen12 12 144 5192 12 16 14 100% 14 100% 14 100% 13 100%
	queen13 13 169 6656 13 17 15 100% 15 100% 15 100% 14 100%
	queen14 14 196 4186 14 19 16 100% 16 100% 16 100% 15 100%
	queen15 15 225 5180 15 20 17 40% 17 100% 18 100% 16 100%
	Avg. ratio to χ		1.1101	1.0851	1.1276	1.0428

Table 4 .

 4 Results for the very difficult problems (NP-?) with a timeout of 30 minutes. The chromatic number of these graphs seems unknown and we only know a lower bound via[START_REF] Gualandi | Graph coloring benchmarks[END_REF].

	NRPA	SAT	HEAD

https://github.com/graphcoloring/HEAD/

https://github.com/bnegreve/nrpa

Note that level 7 will probably never be reached in a reasonable amount of time, this is to allow NRPA to continue to search until a solution is found ; this value of N gave often better results than smaller or bigger values

Acknowledgment

This work was supported in part by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).