Tristan Cazenave
email: tristan.cazenave@dauphine.psl.eu

Jean-Baptiste Sevestre

Matthieu Toulemont
email: matthieu.toulemont@ponts.org

Matthieu Toulemont Stabilized Nested

Stabilized Nested Rollout Policy Adaptation

come L'archive ouverte pluridisciplinaire

Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and problems [START_REF] Browne | A survey of Monte Carlo tree search methods[END_REF].

Nested Monte Carlo Search (NMCS) [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF] is an algorithm that works well for puzzles and optimization problems. It biases its playouts using lower level playouts. At level zero NMCS adopts a uniform random playout policy. Online learning of playout strategies combined with NMCS has given good results on optimization problems [START_REF] Rimmel | Optimization of the Nested Monte-Carlo algorithm on the traveling salesman problem with time windows[END_REF]. Other applications of NMCS include Single Player General Game Playing [START_REF] Méhat | Combining UCT and Nested Monte Carlo Search for single-player general game playing[END_REF], Cooperative Pathfinding [START_REF] Bouzy | Monte-carlo fork search for cooperative path-finding[END_REF], Software testing [START_REF] Poulding | Generating structured test data with specific properties using nested monte-carlo search[END_REF], heuristic Model-Checking [START_REF] Poulding | Heuristic model checking using a monte-carlo tree search algorithm[END_REF], the Pancake problem [START_REF] Bouzy | Burnt pancake problem: New lower bounds on the diameter and new experimental optimality ratios[END_REF], Games [START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF] and the RNA inverse folding problem [START_REF] Portela | An unexpectedly effective monte carlo technique for the rna inverse folding problem[END_REF].

Online learning of a playout policy in the context of nested searches has been further developed for puzzles and optimization with Nested Rollout Policy Adaptation (NRPA) [START_REF] Rosin | Nested rollout policy adaptation for Monte Carlo Tree Search[END_REF]. NRPA has found new world records in Morpion Solitaire and crosswords puzzles. Stefan Edelkamp and co-workers have applied the NRPA algorithm to multiple problems. They have optimized the algorithm for the Traveling Salesman with Time Windows (TSPTW) problem [START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF][START_REF] Edelkamp | Algorithm and knowledge engineering for the tsptw problem[END_REF]. Other applications deal with 3D Packing with Object Orientation [START_REF] Edelkamp | Monte-carlo tree search for 3d packing with object orientation[END_REF], the physical traveling salesman problem [START_REF] Edelkamp | Solving physical traveling salesman problems with policy adaptation[END_REF], the Multiple Sequence Alignment problem [START_REF] Edelkamp | Monte-carlo tree search for the multiple sequence alignment problem[END_REF] or Logistics [START_REF] Edelkamp | Monte-carlo tree search for logistics[END_REF]. The principle of NRPA is to adapt the playout policy so as to learn the best sequence of moves found so far at each level. Unfortunately, this mechanism only samples each policy once at the lowest level which may lead to a misclassification of a good policy (one that improves the best score) as a bad one. To solve this issue, we propose a simple, yet effective modification of the NRPA Algorithm, which we name Stabilized NRPA.By sampling each policy multiple times at the lowest level we show that this new NRPA is stabilized and converges faster.

We now give the outline of the paper. The second section describes NRPA. The third section explains Stabilized NRPA. The fourth section describes the problems used for the experiments. The fifth section gives experimental results for these problems. The sixth section outlines further work and the last section concludes.

NRPA

Nested Policy Rollout Adaptation is an algorithm introduced by Chris Rosin [START_REF] Rosin | Nested rollout policy adaptation for Monte Carlo Tree Search[END_REF] that achieves state-of-the-art performance on problems such as Morpion Solitaire.

This algorithm has two major components : An adaptive rollout policy, and a nested structure, shown in Figure 1.

The adaptive rollout policy is a policy parameterized by weights on each action. During the playout phase, action is sampled according to this weights. The Playout Algorithm is given in algorithm 1. It uses Gibbs sampling, each move is associated to a weight. A move is coded as an integer that gives the index of its weight in the policy array of floats. The algorithm starts with initializing the sequence of moves that it will play (line 2). Then it performs a loop until it reaches a terminal states (lines 3-6). At each step of the playout it calculates the sum of all the exponentials of the weights of the possible moves (lines 7-10) and chooses a move proportionally to its probability given by the softmax function (line 11). Then it plays the chosen move and adds it to the sequence of moves (lines 12-13).

Then, the policy is adapted on the best current sequence found, by increasing the weight of the best actions. The Adapt Algorithm is given in algorithm 2.For all the states of the sequence passed as a parameter it adds α to the weight of the move of the sequence (lines 3-5). Then it reduces all the moves proportionally to α times the probability of playing the move so as to keep a sum of all probabilities equal to one (lines [START_REF] Cazenave | Monte-carlo expression discovery[END_REF][START_REF] Cazenave | Nested rollout policy adaptation with selective policies[END_REF][START_REF] Cazenave | Forecasting financial volatility using nested monte carlo expression discovery[END_REF][START_REF] Cazenave | Parallel nested monte-carlo search[END_REF][START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF][START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF][START_REF] Edelkamp | Algorithm and knowledge engineering for the tsptw problem[END_REF].

The nested structure was introduced by Tristan Cazenave [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF]. This method helps the algorithm to converge towards better and better sequences. In NRPA, each nested level takes as input a policy, and returns a sequence. Inside the level, the algorithm makes many recursive calls to lower levels, providing weights, getting sequences and adapting the weights on those sequences. In the end, the algorithm returns the best sequence found in that level. At the lowest level, the algorithm simply makes a rollout.

The NRPA algorithm is given in algorithm 3. At level zero it simply performs a playout (lines 2-3). At greater levels it performs N iterations and for each iteration it calls itself recursively to get a score and a sequence (lines 4-7). If it finds a new best sequence for the level it keeps it as the best sequence (lines [START_REF] Cazenave | Forecasting financial volatility using nested monte carlo expression discovery[END_REF][START_REF] Cazenave | Parallel nested monte-carlo search[END_REF][START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF][START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF]. Then it adapts the policy using the best sequence found so far at the current level (line 12).

NRPA balances exploitation by adapting the probabilities of playing moves toward the best sequence of the level, and exploration by using Gibbs sampling at the lowest level. It is a general algorithm that has proven to work well for many optimization problems.

Stabilized NRPA

In this section we explain Stabilized NRPA and its potential for being parallelized.

Better Convergence of NRPA

In NRPA algorithm, an evaluation problem may occur. for move in sequence do 5:

polp [code(move)] ← polp [code(move)] + α 6: z ← 0.0 7:
for m in possible moves for state do 8:

z ← z + exp (policy [code(m)]) 9:
end for 10:

for m in possible moves for state do 11:

polp [code(m)] ← polp [code(m)] -α * exp(policy[code(m)]) z 12:
end for 13:

state ← play (state, move) 14:

end for 15:

policy ← polp 16:

return policy Algorithm 3 The NRPA algorithm.

1: NRPA (level, policy) 2:

if level == 0 then 3:

return playout (root, policy) 4: else 5:

bestScore ← -∞ 6:

for N iterations do 7:

(result,new) ← NRPA(level -1, policy) 8:

if result ≥ bestScore then 9:

bestScore ← result 10:

seq ← new 11:

end if 12:

policy ← Adapt (policy, seq) 13:

end for 14:

return (bestScore, seq) 15:

end if Fig. 1. NRPA scheme

Imagine that we have a policy that has good performance, but unfortunately the sequence generated by this policy at level 0 is bad (i.e. the sequence has a bad score comparing to the usual policy performance). This sequence is up to level 1 and is ignored since it is worse than the best sequence of level 1. The policy is adapted on the best sequence of level 1, pushing slightly the next rollouts toward the best sequence of level 1, making the policy more deterministic, making it less exploratory and less likely to find a new best sequence. This bad behavior could be propagated to the upper level, for the same reasons.

The problem is even worse when this situation occurs at the beginning of a nested level since there is not yet a best sequence. In this case the policy is adapted directly on this bad sequence, pushing the rollouts towards bad sequences, which perturbs the rollouts of the entire nested level.

To prevent this problem, an idea is simply to generate not only 1 sequence according to a given policy, but P sequences, in order to get a better evaluation of the performance of this policy. The algorithm does not adapt to the best sequence until P sequence We note that doing so stabilizes the convergence of NRPA. Rollouts are less often pushed to bad sequences, making entire nested level less perturbed, and so making each nested level useful for the search efficiency, leading also to faster convergence.

In our experiments, we have replaced classic level 1 by an evaluation level leading to Figure 2, that aims to better evaluate the policy, and to return the best sequence found by this policy. We can see in figure 2 that multiple level zero calls are performed before doing the adapt in green whereas in figure 1 the green adapt function is called after every level zero call.

The number of evaluation is parameterized by the P parameter and the number of playouts at the lowest level of SNRPA is P times greater than the number of playout at the lowest level of NRPA.

Note that for a fixed number of playouts, the Stabilized NRPA makes less updates comparing to NRPA, making it faster. Note further that Stabilized NRPA is a generalization of NRPA, since SNRPA(1) is NRPA.

Stabilized NRPA is given in algorithm 4. It follows the same pattern as NRPA. Lines 2-3 and lines 14-25 are the same as in NRPA. They correspond to level zero and to levels strictly greater than one. The difference lies in level one (lines 4-13). At level one there is an additional loop from 1 to P that gets the best sequence out of P playouts.

Parallelization

Parallelizing NMCS was done in [START_REF] Cazenave | Parallel nested monte-carlo search[END_REF]. Parallelizing NRPA on a cluster is easily done using root parallelization when distributing among the different computers and using leaf parallelization on each multiple cores computer [START_REF] Négrevergne | Distributed nested rollout policy for samegame[END_REF]. More recently Andrzej Nagorko efficiently parallelized NRPA while not changing its global behavior [START_REF] Nagorko | Parallel nested rollout policy adaptation[END_REF].

Stabilized NRPA is well fitted for leaf parallelization as the P playouts can be done in parallel.

Algorithm 4

The Stabilized NRPA algorithm. In this section we present the three problems used for the experiments. The Maximum problem where the goal is to find a mathematical expression that evaluates as great as possible. The TSPTW problem that finds short paths to visit as set of cities with time constraints. The SameGame problem, a popular puzzle.

The Maximum Problem

Nested Monte Carlo Search can be used for the optimization of mathematical expressions [START_REF] Cazenave | Nested monte-carlo expression discovery[END_REF][START_REF] Cazenave | Monte-carlo expression discovery[END_REF][START_REF] Cazenave | Forecasting financial volatility using nested monte carlo expression discovery[END_REF]. For some problems it gives better results than alternative algorithms such as UCT [START_REF] Kocsis | Bandit based Monte-Carlo planning[END_REF] or Genetic Programming [START_REF] Koza | Genetic programming II[END_REF]. The Maximum problem [START_REF] Langdon | An analysis of the max problem in genetic programming[END_REF] consists in finding an expression that results in the maximum possible number given some limit on the size of the expression. In the experiment limit was on the depth of the corresponding tree and the available atoms were +, * and 0.5. In our experiments we fixed a limit on the number of atoms of the generated expression, not on the depth of the tree and the available atoms are +, * and 1.0.

We applied NRPA to the Maximum Problem. It is the first time NRPA is applied to Expression Discovery. Figure 3 gives an example of how an expression is built using a playout. The left tree corresponds to the stack of atoms below the tree. The stack defines a tree and in order to fill the tree new atoms are pushed on top of the stack. For example pushing the '+' atom on the stack gives the tree on the right. When the maximum number of nodes + leaves is reached for a stack only terminal atoms (atoms that do not have children) are pushed onto the stack enforcing the number of nodes of the generated expression to be below the defined maximum.

TSPTW

In the Traveling Salesman Problem with Time Windows (TSPTW) an agent has to visit N cities at predefined periods of times while minimizing the total tour cost. NRPA has been successfully applied to TSPTW [START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF][START_REF] Edelkamp | Algorithm and knowledge engineering for the tsptw problem[END_REF].

The Hamiltonian Path problem is a subproblem of the TSP, so TSPTW and most other TSP variants are computationally hard. No algorithm polynomial in the number of cities is expected.

The TSPTW is much harder than the TSP, different algorithms have to be used for solving this problem and NRPA had state of the art results on standard benchmarks.

Following the formulation of [START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF], the TSPTW can be defined as follow. Let G be an undirected complete graph. G = (N, A), where N = 0, 1, . . . , n corresponds to a set of nodes and A = N × N corresponds to the set of edges between the nodes. The node 0 corresponds to the depot. Each city is represented by the n other nodes. A cost function c : A → R is given and represents the distance between two cities. A solution to this problem is a sequence of nodes P = (p 0 , p 1 , . . . , p n) where p 0 = 0 and (p 1 , . . . , p n) is a permutation of [1, N]. Set p n+1 = 0 (the path must finish at the depot), then the goal is to minimize the function defined in Equation 1.

cost(P) = n k=0 c(a p k , a p k+1) (1)
As said previously, the TSPTW version is more difficult because each city i has to be visited in a time interval [e i , l i]. This means that a city i has to be visited before l i . It is possible to visit a cite before e i , but in that case, the new departure time becomes e i . Consequently, this case may be dangerous as it generates a penalty. Formally, if r p k is the real arrival time at node p k , then the departure time d p k from this node is

d p k = max(r p k , e p k).
In the TSPTW, the function to minimize is the same as for the TSP (Equation 1), but a set of constraint is added and must be satisfied. Let us define Ω(P) as the number of violated windows constraints by tour (P). Two constraints are defined. The first constraint is to check that the arrival time is lower than the fixed time. Formally,

∀p k , r p k < l p k .
The second constraint is the minimization of the time lost by waiting at a city. Formally, r p k+1 = max(r p k , e p k) + c(a p k ,p k+1).

In NRPA paths with violated constraints can be generated. As presented in [START_REF] Rimmel | Optimization of the Nested Monte-Carlo algorithm on the traveling salesman problem with time windows[END_REF] , a new score T cost(p) of a path p can be defined as follow:

T cost(p) = cost(p) + 10 6 * Ω(p),
with, as defined previously, cost(p) the cost of the path p and Ω(p) the number of violated constraints. 10 6 is a constant chosen high enough so that the algorithm first optimizes the constraints.

The problem we use to experiment with the TSPTW problem is the most difficult problem from the set of [START_REF] Potvin | The vehicle routing problem with time windows part ii: genetic search[END_REF].

SameGame

In SameGame the goal is to score as much as possible removing connected components of the same color. An example of a SameGame board is given in figure 4. The score for removing n tiles is (n -2) 2 . If the board is completely cleared there is a bonus of 1000.

When applying Monte Carlo Search to SameGame it is beneficial to use selective search [START_REF] Cazenave | Nested rollout policy adaptation with selective policies[END_REF] in order to eliminate moves that are often bad. For example it is important to remove the tiles of the dominant color all at once in order to score a lot with this move. The Tabu color playout strategy achieves this by forbidding moves of the dominant color when they do not clear all the tiles of the dominant color in one move. We sometimes allow moves of size two for the dominant color beside the Tabu color strategy as advised in [START_REF] Cazenave | Nested rollout policy adaptation with selective policies[END_REF].

The best published results for SameGame come from a parallel implementation of NRPA [START_REF] Négrevergne | Distributed nested rollout policy for samegame[END_REF].

Figure 4 gives the first problem of the standard SameGame suite. This is the one we used in our experiments. but NRPA does not has the time to finish level 3, especially when running SNRPA(P). SNRPA(P) advances approximately P times less steps than NRPA at level 3 since it spends approximately P times more at level 1. All the experiments use sequential versions of NRPA and Stabilized NRPA.

Table 1 gives the evolution for the Maximum problem. The score is the evaluation of the mathematical expression. The first column gives the average scores of standard NRPA. The second column gives the average scores of Stabilized NRPA with P = 2. The third column gives the average scores of Stabilized NRPA with P = 3 and so on. We can observe that SNRPA [START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF] gives the best results. To save place the numbers generated by the expressions have been divided by 1 000 000.

Table 3 gives the results for the rc204.1 TSPTW problem. This is the most difficult problem of the Solomon-Potwin-Bengio TSPTW benchmark. The score is one million times the number of violated constraints plus the tour cost. SNRPA [START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF] gives again the best results.

Table 4 gives the results for the first problem of SameGame. Evaluation improves the performance until a certain limit. Indeed, P = 4 provides the best results with P = 5 and P = 6 yielding close scores.

For the three problems, Stabilized NRPA gives better results than NRPA. Among the different version of SNRPA, the conclusion differs depending of the problem we consider :

For the Maximum Problem, we note that values as great as 10 for P give the best results. For the TSPTW Problem, we note that for the longest time (163.84s), we go from -980946 for NRPA, to -385937 for SNRPA [START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF] the best result for the greatest value we have tried for P . On the contrary smaller values for P seem appropriate for SameGame with P = 4 being the best. Table2 gives the scores reached by different algorithms on the standard test set of 20 SameGame problems. We see that SNRPA(4) improves on NRPA at level 4. However SNRPA(4) takes more time when run sequentially since it does four times more playouts as NRPA. Still is does the same number of calls to the adapt function as NRPA. SP-MCTS is a variant of the UCT algorithm applied to single player games, and NMCS is Nested Monte Carlo Search. They both reach smaller overall scores than SNRPA(4). the last column contains the records from the website js-games.de. They were obtained by specialized algorithms and little is known about these algorithms except that some of them use a kind of beam search with specialized evaluation functions.

Conclusion

Stabilized NRPA is a simple modification of the NRPA algorithm. It consists in periodically playing P playouts at the lowest level before performing the adaptation. It is a generalization of NRPA since Stabilized NRPA with P = 1 is NRPA. It improves the average scores of NRPA given the same computation time for three different problems: Expression Discovery, TSPTW and SameGame.

Fig. 2 .

 2 Fig. 2. Stabilized NRPA scheme. Level 1 is replaced by an evaluation level

Fig. 3 .

 3 Fig.3. A partial tree and the corresponding stack.

Fig. 4 .

 4 Fig. 4. First problem of the SameGame standard suite

Table 1 .

 1 Results for the Maximum problem (scale × 1 000 000).

	Time	NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(10)
	0.01	1	1	2	2	1
	0.02	3	24	68	138	25
	0.04	16	108	326	934	5086
	0.08	150	1341	2092	5971	21745
	0.16	3475	15844	19874	52041	88547
	0.32	170265	534672	487983	1147083	789547
	0.64 13803062 28885199 22863271 36529536 12000748
	1.28 40077774 216376610 270326701 379573875 212668695
	2.56 89668935 314740908 408327339 495249021 708820733
	5.12 151647343 472960557 557957691 704240083 904642720
	10.24 345707890 712902227 856149587 938008979 1296603114
	20.48 852761999 1151948749 1284225823 1359946097 1661398711
	40.96 1975250628 2168737831 2221426342 2232301333 2128244879
	81.92 2973605038 3276850130 3381032884 3321287204 3057041220
	163.84 3336604131 3531572024 3627351674 3621195107 3928494648

Table 2 .

 2 Best scores for SameGame

	Problem NMCS SP-MCTS	NRPA SRNPA(4) js-games.de
	1 3,121	2,919	3,179	3,203	3,413
	2 3,813	3,797	3,985	3,987	4,023
	3 3,085	3,243	3,635	3,757	4,019
	4 3,697	3,687	3,913	4,001	4,215
	5 4,055	4,067	4,309	4,287	4,379
	6 4,459	4,269	4,809	4,799	4,869
	7 2,949	2,949	2,651	2,151	3,435
	8 3,999	4,043	3,879	4,079	4,771
	9 4,695	4,769	4,807	4,821	5,041
	10 3,223	3,245	2,831	3,333	3,937
	11 3,147	3,259	3,317	3,531	3,783
	12 3,201	3,245	3,315	3,355	3,921
	13 3,197	3,211	3,399	3,379	3,821
	14 2,799	2,937	3,097	3,121	3,263
	15 3,677	3,343	3,559	3,783	4,161
	16 4,979	5,117	5,025	5,377	5,517
	17 4,919	4,959	5,043	5,049	5,227
	18 5,201	5,151	5,407	5,491	5,503
	19 4,883	4,803	5,065	5,325	5,343
	20 4,835	4,999	4,805	5,203	5,217
	Total 77,934	78,012 80,030	82,032	87,858

Table 3 .

 3 Results for the TSPTW rc204.1 problem

	Time	NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(10)
	0.01 -29037026 -28762022 -29107010 -29222032 -29337060
	0.02 -26501832 -26121858 -26226870 -26181904 -27096936
	0.04 -25276756 -24221694 -24056722 -23596696 -24031802
	0.08 -23821720 -22621656 -22556632 -22176624 -21706624
	0.16 -22006640 -21436606 -21216568 -20806566 -20261500
	0.32 -19521526 -19441520 -19481502 -19086484 -18821438
	0.64 -16416390 -16536396 -16536403 -16536387 -17166394
	1.28 -13966259 -13636262 -13466266 -13316265 -14691306
	2.56 -12781221 -11881189 -11111173 -10856164 -11696195
	5.12 -11301179 -10556154 -9866131 -9406120 -8831112
	10.24 -9351129 -8816107 -8166091 -7866081 -7241065
	20.48 -6591049 -6631047 -6166038 -6031033 -6076040
	40.96 -3695987 -3890987 -3975989 -4045989 -4085994
	81.92 -1825960 -1560955 -1505955 -1540954 -2100962
	163.84 -980946 -780941 -580938 -500938	-385937

Table 4 .

 4 Results for the first problem of SameGame

	Time NRPA SNRPA(2) SNRPA(3) SNRPA(4) SNRPA(5) SNRPA(6) SNRPA(7) SNRPA(10)
	0.01 448	499	483	494	504	479	485	464
	0.02 654	685	678	701	676	672	660	637
	0.04 809	871	863	896	904	867	836	823
	0.08 927	989	1010	1062	1062	1045	1032	1026
	0.16 1044							

Acknowledgment

This work was supported in part by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute).