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INTRODUCTION

The mathematical study of macroscopic limits of many-body quantum mechanics has made sizeable progress in recent years [START_REF] Ammari | Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique[END_REF][START_REF] Benedikter | Effective Evolution Equations from Quantum Dynamics[END_REF][START_REF] Golse | On the Dynamics of Large Particle Systems in the Mean Field Limit[END_REF][START_REF] Lieb | The mathematics of the Bose gas and its condensation[END_REF][START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF][START_REF] Rougerie | De Finetti theorems, mean-field limits and Bose-Einstein condensation[END_REF][START_REF] Rougerie | Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein[END_REF][START_REF] Schlein | Derivation of effective evolution equations from microscopic quantum dynamics[END_REF][START_REF] Spohn | Large scale dynamics of interacting particles[END_REF]. The situation that is most understood is the mean-field limit of many weak inter-particle interactions. Following Boltzmann's original picture of molecular chaos [START_REF] Golse | On the Dynamics of Large Particle Systems in the Mean Field Limit[END_REF][START_REF] Spohn | Large scale dynamics of interacting particles[END_REF][START_REF] Gallagher | From Newton to Boltzmann : hard spheres and short-range potentials[END_REF][START_REF] Mischler | Estimation quantitative et uniforme en temps de la propagation du chaos et introduction aux limites de champ moyen pour des systèmes de particules[END_REF][START_REF] Pulvirenti | Propagation of chaos and effective equations in kinetic theory: a brief survey[END_REF][START_REF] Jabin | A review of the mean field limits for vlasov[END_REF][START_REF] Spohn | Kinetic equations from Hamiltonian dynamics: Markovian limits[END_REF], an independent particles picture emerges, wherein statistical properties of the system are computed from a nonlinear PDE. This is based on inter-particle correlations being negligible at leading order, which, for bosonic systems, comes about through the macroscopic occupancy of a single one-body state (orbital, mode).

In this paper we consider a particular example where, by contrast, correlations play a leading role, through the occupation of two one-body states. Namely, we consider the mean-field limit of a large bosonic system in a symmetric double-well potential. In the joint limit → ∞, → ∞ (large particle number, large inter-well separation) there is one macroscopically occupied one-body state (orbital) for each well. In a previous work [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF], two of us have shown that, when the tunneling energy across the potential barrier is ( -1 ), the ground state of the -body Hamiltonian exhibits strong inter-particle correlations, in the sense that the variance of the particle number in each well is much smaller than √ (the central limit theorem does not hold).

Here we extend this result to cases where the tunneling energy goes like -with any > 0. This in particular includes the much more intricated case where < 1 and the tunneling energy thus cannot be neglected as in [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF]. We also prove that the ground state energy of is close to the ground state energy of a simpler effective Bose-Hubbard Hamiltonian. Our energy estimates include the contributions of order (1) described by a generalized Bogoliubov Hamiltonian, which we show to be given by the sum of the Bogoliubov energies associated to each well, up to errors [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF].

The main feature of the symmetric double well situation is the fact that the -body state of particles that macroscopically occupy the two main orbitals is in general non trivial. This is to be compared with the case of complete Bose-Enstein condensation in a single orbital, in which the energy of the condensate is a purely one-body quantity, obtained from the ground state of a suitable non-linear Schrödinger (NLS) equation. We note that our system, although two modes are occupied to the leading order, is physically very different from a two-component Bose-Einstein condensate [START_REF] Michelangeli | Mean-field quantum dynamics for a mixture of Bose-Einstein condensates[END_REF]3,[START_REF] Michelangeli | Ground state energy of mixture of Bose gases[END_REF], in which two distinct bosonic species macroscopically occupy one mode each. Rather, it is closer to the case of a single-species fragmented condensate [START_REF] Dimonte | On some rigorous aspects of fragmented condensation[END_REF].

The effective theory for our double-well system is obtained by projecting the full Hamiltonian on the subspace spanned by the two appropriate modes (one for each well, identified via NLS theory). Such a projection is known in the physics literature as the two-mode approximation. After some further simplifications this leads to the two-mode Bose-Hubbard Hamiltonian with † , the standard bosonic creation/annihilation operators associated with the two modes. The first term describes hopping of particles through the double-well's energy barrier, with < 0 the tunneling energy. The second term (with > 0 an effective coupling constant) is the pair interaction energy of particles in each well.

We aim at deriving the above from the full many-body Schrödinger Hamiltonian for bosons in mean-field scaling ( → ∞, fixed)

∶= ∑ =1 -Δ + DW ( ) + -1 ∑ 1⩽ < ⩽ ( -) (1.2)
acting on the Hilbert space ( = 1, 2, 3 is the spatial dimension)

ℌ ∶= ⨂ sym 2 (ℝ ) ≃ 2 sym (ℝ ). (1.3) 
Here DW and are, respectively, the double-well external potential and the repulsive pair-interaction potential (precise assumptions will be stated below). We study the ground-state problem: lowest eigenvalue and associated eigenfunction of . The main new feature that we tackle is that DW is chosen to depend on a large parameter in the manner

DW ( ) ∶= min | -| , | + | , ⩾ 2, | | = 2 . ( 1.4) 
This is a simple model for a symmetric trap with two global minima at = ± . In the limit → ∞ both the distance between the minima and the height of the in-between energy barrier diverge. As a consequence, the mean-field Hartree energy functional obtained in the standard way by testing with an iid ansatz (pure Bose-Einstein condensate)

 H [ ] ∶= 1 ⟨ ⊗ | | ⊗ ⟩ (1.5)
has two orthogonal low-lying energy states, denoted + , -( + being the ground state). Their energies are separated by a tunneling term = ( ) → →∞ 0.

All other energy modes are separated from + , -by an energy gap independent of . This picture is mathematically vindicated by semi-classical methods [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF]. For the model at hand we refer to [START_REF] Olgiati | The hartree functional in a double-well[END_REF], whose estimates we use as an input in the sequel. One can show that

1 ∶= + + - √ 2 
, 2 ∶= + -- √ 2 
(1. [START_REF] Bhatia | Matrix Analysis[END_REF] are well localized in one potential well each. These are the modes entering the Bose-Hubbard Hamiltonian (1.1). If we denote the orthogonal projection onto the subspace spanned by + , -(or equivalently 1 , 2 ), the Bose-Hubbard description basically amounts to restricting all available one-body states to 2 (ℝ ) BH ≃ ( ) ⊗ ( ) ⊗ -0 (1.7) acting on ⨂ sym 2 (ℝ ) . Here 0 is a mean-field energy reference, and the appropriate choice of in (1.1) is

= 2( -1) ∬ ℝ ×ℝ | 1 ( )| 2 ( -)| 1 ( )| 2 .
The tunneling energy is essentially the gap between the Hartree energies of + and -, which goes to 0 super-exponentially fast when → ∞ (see below).

A salient feature of the Bose-Hubbard ground state is that it satisfies 1

⟨ † - 2 2 ⟩ BH ≪ , = 1, 2 (1.8) 
in the limit → ∞, → ∞, where † is the operator counting the number of particles occupying the mode = 1, 2. This is number squeezing, a signature of strong correlations. Actually, the problem being invariant under the exchange of the modes 2 we certainly have

⟨ † ⟩ BH = 2 , = 1, 2.
Thus what (1.8) says is that the standard deviation from this mean does not satisfy the central limit theorem. Hence the events "particle lives in the -th well", = 1 … are measurably not independent. Such an estimate is governed by energy estimates precise to order (1) in the limit → ∞, → ∞. In the usual mean-field limit with a single well ( fixed), an energy correction of order (1) arises, due to quantum fluctuations [START_REF] Seiringer | The excitation spectrum for weakly interacting bosons[END_REF][START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF][START_REF] Dereziński | Excitation spectrum of interacting bosons in the mean-field infinite-volume limit[END_REF][START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF][START_REF] Nam | Collective excitations of Bose gases in the mean-field regime[END_REF][START_REF] Boccato | The excitation spectrum of Bose gases interacting through singular potentials[END_REF][START_REF] Boccato | Bogoliubov Theory in the Gross-Pitaevskii limit[END_REF]. This also occurs in our setting, due to the (small) occupancy of modes othogonal to 1 , 2 . This is conveniently described by a Bogoliubov Hamiltonian, which is quadratic in creation/annihilation operators. The latter has a ground-state energy Bog , which is of order (1) in the joint limit (we will give more precise definitions below). Denoting ( ) ∶= inf ( ), BH ∶= inf ( BH ) (1.9)

the lowest eigenvalues of the full Hamiltonian and its two-mode approximation respectively, our main energy estimate takes the form

| | ( ) -0 -BH -Bog | | → 0 (1.10)
in the limit → ∞, → 0, provided 0 < is small enough (independently of and ). This implies number squeezing

⟨ † - 2 2 ⟩ Ψ gs ≪ , = 1, 2 (1.11) 
in the true ground state Ψ gs of (1.2) (⟨ . ⟩ Ψ gs denotes expectation in this state). To avoid some technicalities we assume that is fixed and = -with some arbitrary > 0. In essence the above results however only require → ∞, ≪ . They are thus optimal in the sense that the opposite regime → ∞, ≳ (for fixed this implies ≲ 1, see (2.13)) corresponds to the usual mean-field situation for a fixed potential, where a central limit theorem holds [START_REF] Rademacher | Central Limit Theorem for Bose-Einstein condensates[END_REF]. This is called "Rabi regime" in the 1 ⟨ . ⟩ BH denotes expectation in the Bose-Hubbard ground state. [START_REF] Ammari | Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique[END_REF] Equivalent to a reflection around the double-well's peak. physics literature (see [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF]Section 1.3] for more details). The ground state of the system is expected to be approximated by a Bose-Einstein condensate

Ψ gs ≈ ⊗ + ≈ 1 + 2 √ 2 ⊗ , (1.12) 
with a variance of order for the number of particles in the modes 1 and 2 . The aforementioned techniques dealing with the single-well problem allow to prove the (appropriately rigorous version of the) first approximation in (1.12), with + the Hartree ground state. When , are fixed however, there does not seem to be a sharp mathematical way to define the privileged modes 1 , 2 and actually prove the second approximation in (1.12) in a well-defined scaling regime.

In [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF], Estimates (1.10)- (1.11) have been proved (essentially) in the restricted regime ≪ -1 . When ≳ -1 the tunneling contribution to the energy becomes relevant for the order of precision we aim at, and we cannot just separate the contributions of each well as in [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF]. Instead we prove that the two wells are coupled only via the dynamics in the two-modes subspace, that we isolate from quantum fluctuations. We need to monitor both the number of excited particles and the variance of the occupation numbers of the low-lying modes. Roughly speaking the former is controled by the Bogoliubov Hamiltonian and the latter by the Bose-Hubbard one. The main difficulty is however that these quantities are a priori coupled at the relevant order of the energy expansion because of the non-trivial dynamics in the two-mode subspace. More specifically we have to control processes where an exchange of particles between the modes + and -mediates the excitation of particles out of the two-modes subspace.

In the next section we state our main results precisely and provide a more extended sketch of the proof, before proceeding to the details in the rest of the paper. As a final comment before that, we hope that future investigations will allow to prove something about the low-lying excitation spectrum of the system at hand. We expect two types of excited eigenvalues, yielding essentially independent contributions: those coming from the excited states of the Bose-Hubbard Hamiltonian (1.1) and those coming from the generalized Bogoliubov Hamiltonian defined in Section 3.2. The latter actually commutes with a shift operator, so that one might expect to have some 'almost continuous' spectrum in the sense of very close eigenvalues in the limit → ∞ (with spacing (1)). 
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∑ 1⩽ < ⩽ ( -),
already introduced in (1.2), on the space ℌ = 2 sym (ℝ ), = 1, 2, 3. The coupling constant proportional to ( -1) -1 in (1.2) formally makes the contributions from the two sums in of the same order in . We introduced a further fixed coupling constant > 0. For simplicity we make liberal assumptions on the data of the problem, that we do not claim to be optimal for the results we will prove.

Assumption 2.1 (The interaction potential).

is a radial bounded function with compact support. We also suppose that it is positive and of positive type, that is, with ̂ the Fourier transform, ( ) ⩾ 0, a.e. and ̂ ( ) ⩾ 0 a.e.

(2.1)

Assumption 2.2 (The double-well potential).

Let > 0 and ∶= 2 , 0, … , 0 ∈ ℝ , -= - 2 , 0, … , 0 ∈ ℝ
represent the centers of the wells. We define

DW ( ) = min - , + , (2.2) with ( ) = | | , ⩾ 2 . (2.3)
Note that, since is radial, the choice of two wells with centers on the 1 -axis is without loss of generality. To model two deep and well-separated wells, we shall let the inter-well distance diverge

= 2| | → →∞ ∞.
Low-lying energy modes (see [START_REF] Olgiati | The hartree functional in a double-well[END_REF] for more details). Given a one-body function ∈ 2 (ℝ ), its Hartree energy (1.5) reads

 H [ ] ∶= ∫ ℝ |∇ ( )| 2 + ∫ ℝ DW ( )| ( )| 2 + 2 ∬ ℝ ×ℝ ( -)| ( )| 2 | ( )| 2 .
(2.4)

We define + to be the minimizer of  H at unit mass, i.e.,

 H [ + ] = inf  H [ ] | ∈ 1 (ℝ ) ∩ 2 ℝ , DW ( ) , ∫ ℝ | | 2 = 1 . (2.5)
Its existence follows from standard arguments. By a convexity argument such a minimizer must be unique up to a constant phase, that can be fixed so as to ensure + > 0, which we henceforth do (see, e.g., [22,Theorem 11.8]).

The mean-field Hamiltonian

ℎ MF ∶= -Δ + DW + * | + | 2 , (2.6)
is the functional derivative of  H at + , seen as a self-adjoint operator on 2 (ℝ ). Since DW grows at infinity, ℎ MF has compact resolvent, and therefore a complete basis of eigenvectors. The Euler-Lagrange equation for the energy minimization problem reads

ℎ MF + = + + , ( 2.7) 
with the chemical potential/Lagrange multiplier

+ =  H [ + ] + 2 ∬ ℝ ×ℝ ( -)| + ( )| 2 | + ( )| 2 . ( 2.8) 
By standard arguments, + is the lowest eigenvalue of ℎ MF , corresponding to the non-degenerate eigenfunction + . We next define -to be the first excited normalized eigenvector of ℎ MF , i.e.,

ℎ MF -= -- (2.9) 
where -> + satisfies

-= inf ⟨ , ℎ DW ⟩ | ∈ (ℎ MF ), ∫ ℝ + = 0, ∫ ℝ | | 2 = 1 . (2.10)
It follows from the arguments of [START_REF] Olgiati | The hartree functional in a double-well[END_REF] that -is non-degenerate. Since ℎ DW is a double-well Hamiltonian, all its eigenvectors are mainly localized [START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] around the two centers ± . As a consequence, the two linear combinations

1 = + + - √ 2 2 = + -- √ 2 (2.11)
are mainly localized, respectively, in the left and right wells. These are the low-energy modes whose role was anticipated above.

Tunneling parameter. The gap --+ of ℎ MF is closely related to the magnitude of the tunneling effect between wells. Indeed,

--+ = ⟨ --+ , ℎ MF -+ + ⟩ = 2 ⟨ 2 , ℎ MF 1 ⟩ ,
and, as said, 1 and 2 are mainly localized, respectively, in the right and left wells. To quantify this we define the semi-classical Agmon distance [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Helffer | Semi-Classical Analysis for the Schrödinger Operator and Applications[END_REF]] associated to the one-well potential

( ) = ∫ | | 0 √ ( ′ ) ′ = | | 1+ ∕2 1 + ∕2 . (2.12)
We then set

∶= -2 2 .
(2.13) As we will recall in Theorem A.1 below, we essentially have --+ ≃ .

(2.14)

We will work in the regime

→ ∞, fixed, ≪ 1 or, equivalently, ≫ 1. (2.15)
2.2. Second quantization and effective Hamiltonians. The many-body Hilbert space ℌ is the -th sector of the bosonic Fock space

∶= ∞ ⨁ =0 2 (ℝ ) ⊗ sym (2.16)
on which we define the usual algebra of bosonic creation and annihilation operators (see Section 3 for the precise definition) whose commutation relations are

[ , † ] = ⟨ , ⟩ 2 , [ , ] = [ † , † ] = 0, , ∈ 2 (ℝ ).
(2.17)

Given a generic one-body orbital ∈ 2 (ℝ ) we introduce the particle number operator

 ∶= † whose action on ℌ is  = ∑ =1 | ⟩⟨ | . (2.18)
Here | ⟩⟨ | acts as the orthogonal projection | ⟩⟨ | on the -th variable and as the identity on all other variables.

One can extend the Hamiltonian to as

= ∑ , ⩾1 ℎ † + 2( -1) ∑ , , , ⩾1 † † , ( 2.19) 
whose restriction on the -th sector coincides with (1.2). The notation above is

ℎ ∶= ⟨ , -Δ + DW ⟩ ∶= ⟨ ⊗ , ⊗ ⟩ , ( 2.20) 
for an orthonormal basis ( ) ∈ℕ of 2 (ℝ ), with † , the associated creation and annihilation operators.

Two-modes energy in the low-energy subspace. Let be the orthogonal projector onto the linear span of ( + , -) (or, equivalently, ( 1 , 2 )). We define the two-modes Hamiltonian

2-mode ∶= ⊗ ⊗ (2.21)
and the associated ground state energy

2-mode ∶= inf ⟨Ψ | 2-mode |Ψ ⟩ , Ψ ∈ ⨂ sym 2 (ℝ ) , ∫ ℝ |Ψ | 2 = 1 . (2.22)
Later we will discuss the relationship between the above and

BH ∶= inf ( BH ), (2.23) 
the bottom of the spectrum of the Bose-Hubbard Hamiltonian

BH ∶= + -- 2 † 1 2 + † 2 1 + 2( -1) 1111 † 1 † 1 1 1 + † 2 † 2 2 2
(2.24) on the space ⨂ sym 2 (ℝ ) . As discussed in Section 4, BH is obtained from by retaining only terms corresponding to the subspace spanned by + , -(equivalently 1 , 2 ) in (2.19) and making a few further simplifications.

Bogoliubov energy of excitations. We will adopt the following notation for a spectral decomposition of ℎ MF :

ℎ MF = + | + ⟩⟨ + | + -| -⟩⟨ -| + ∑ ⩾3 | ⟩⟨ |. (2.25)
As stated in Theorem A.1 ( ) (proved in [START_REF] Olgiati | The hartree functional in a double-well[END_REF]) an appropriate choice of the 's with ⩾ 3, ensures that the modes (compare with (2.11))

, ∶= 2 +1 + 2 +2 √ 2 and , ∶= 2 +1 -2 +2 √ 2 (2.26)
with ⩾ 1 are (mostly) localized, respectively, in the right and left half-space. They pairwise generate the spectral subspaces of ℎ MF corresponding to 2 +1 and 2 +2 . We will always use either the basis of 2 (ℝ ) from (2.25) or that from (2.26) (with the addition of + , -or , ). Since all these functions solve, or are linear combinations of functions that solve, an elliptic equation with real coefficients, we can (and will) always assume that they are real-valued functions. We also define

∶= ∑ ⩾1 | , ⟩⟨ , | ∶= ∑ ⩾1 | , ⟩⟨ , |, (2.27) 
and

Tr ⟂ ( ) ∶= ∑ ⩾3 ⟨ , ⟩ , Tr ⟂, ( ) ∶= ∑ ⩾1 ⟨ , , , ⟩ , Tr ⟂, ( ) ∶= ∑ ⩾1 ⟨ , , , ⟩ . (2.28)
Then the Bogoliubov energy is given as

Bog ∶= - 1 2 Tr ⟂, + 11 - √ 2 + 2 1∕2 11 1∕2 - 1 2 Tr ⟂, + 22 - √ 2 + 2 1∕2 22
1∕2 .

(2.29)

where

∶= ℎ MF -+ , ∶= ℎ MF -+ (2.30)
and 11 and 22 are the two operators on 2 (ℝ ) defined by

⟨ , 11 ⟩ = 1 2 ⟨ ⊗ 1 , 1 ⊗ ⟩ ⟨ , 22 ⟩ = 1 2 ⟨ ⊗ 2 , 2 ⊗ ⟩.
The quantity Bog is essentially the sum of the lowest eigenvalues of two independent bosonic quadratic Hamiltonians acting on the left and right modes respectively (compare with the explicit formulae in [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF] and see [START_REF] Bach | Diagonalizing quadratic bosonic operators by non-autonomous flow equation[END_REF][START_REF] Dereziński | Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations[END_REF][START_REF] Dereziński | Bosonic quadratic hamiltonians[END_REF] and references therein for further literature). It will turn out to (asymptotically) coincide with the bottom of the spectrum of the full Bogoliubov Hamiltonian (3.18), i.e., the part of that contains exactly two creators/annihilators for excited modes with ⩾ 3. That the traces in (2.29) are finite is not a priori obvious, and will be part of the proof. The two summands in the right hand side of (2.29) coincide thanks to the symmetry of the system under reflections around the 1 = 0 axis. Each summand also coincides, as → 0, with the bottom of the spectrum of the Bogoliubov Hamiltonian for particles occupying one-well excited modes above a one-well Hartree minimizer, centered either in or -, used in [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF]. Assume that, as → ∞, ∼ -for some fixed > 0. Let Ψ gs be the unique (up to a phase) ground state of . There exists 0 > 0 such that, for all 0 < ⩽ 0 ,

lim →∞ 1 ⟨  1 - 2 2 ⟩ Ψ gs = 0 (2.31)
and

lim →∞ | | | ( ) -2-mode -Bog | | | = 0.
(2.32)

A few comments:

1. We believe the result holds without the smallness condition on . The precise condition we need is that the left-hand side of (8.26) be bounded below by a constant, which we could so far prove only for small .

2.

As part of the proof we find

⟨  1 +  2 ⟩ Ψ gs = ⟨  + +  - ⟩ Ψ gs = + (1).
Since 1 and 2 are obtained one from the other by reflecting across { 1 = 0} and the full problem is invariant under such a reflection, this implies

⟨ 1 ⟩ Ψ gs = ⟨ 2 ⟩ Ψ gs ≃ 2 + (1), (2.33) 
so that we can reformulate (2.31) as

⟨  1 - ⟨  1 ⟩ 2 ⟩ Ψ gs ≪ .

3.

Central limit theorems are known to hold for mean-field bosonic systems in one-well-like situations [START_REF] Buchholz | Multivariate Central Limit Theorem in Quantum Dynamics[END_REF][START_REF] Rademacher | Central Limit Theorem for Bose-Einstein condensates[END_REF]. For ≳ 1 we recover such a situation: a single Bose-Einstein condensate in the state + with Bogoliubov corrections on top, captured by a quasi-free (gaussian) state. This would essentially lead to

⟨  1 -∕2 2 ⟩ ⊗ + ≃ ⟨ 2 1 ⟩ ⊗ + -⟨ 1 ⟩ ⊗ + 2 ≃ 4 .
The estimate (2.31) is a significant departure from this situation: correlations within the two-modes subspace are strong enough to reduce the variance significantly.

We also have estimates clarifying the nature of the main terms captured by our energy asymptotics in Theorem 2.3: where 2-mode and BH are defined respectively in (2.22) and (2.23). Moreover

| | | | | BH - 2 4( -1) 1111 - 2( -1) 1111 + + --2 | | | | | ⩽ max 1∕2-, -1+ . (2.35)
A few comments:

1. We expect the remainders in the right-hand sides of (2.34) and (2.35) to be essentially sharp and to be part of the expansion of the full many-body energy ( ). They lead to a variance bounded as (essentially)

1 ⟨  1 - 2 2 ⟩ BH ⩽ max( 1∕2 , -1 )
in the Bose-Hubbard ground state. Deriving such estimates at the level of the full many-body ground state would require to improve our method of proof.

2.

The reference energy ℎ 11 , times the minimal one-well energy with no interactions, is usually subtracted from the Bose-Hubbard Hamiltonian as a basic energy reference and we follow this convention. The other terms appearing in the left hand side of (2.34), which produce an energy shift between 2-mode and BH , are interaction energies due to particles tunneling through the double well's peak (not included in the Bose-Hubbard model). Depending on the parameter regime and possible improvements of some of our bounds, they may or may not be smaller than the other relevant terms. Since we can isolate them exactly in our energy expansions, we keep track of them as exact expressions, but they are not very relevant to the main thrust of the argument.

3.

The three main terms we isolate in the Bose-Hubbard energy are more interesting. The first one, 2 4( -1) 1111 is a one-well mean-field interaction energy. This is the leading order for any reasonable two-modes state, independently of its details. The second term -2( -1) 1111 however is a reduction of the interaction energy due to the suppressed variance of the true ground state. We had captured it before [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF] in a reduced parameter regime. It is in any case larger than our biggest error term, which we show is [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF]. The last term + --2 is the tunneling contribution, not captured in [START_REF] Rougerie | Localized regime for mean-field bosons in a double-well potential[END_REF]. When < 1, i.e., ≫ -1 , it is larger than our main error term.

2.4. Sketch of proof. The general strategy is to group the various contributions to in the second quantized formulation (2.19), much as in the derivation of Bogoliubov's theory in [START_REF] Seiringer | The excitation spectrum for weakly interacting bosons[END_REF][START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF][START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF][START_REF] Dereziński | Excitation spectrum of interacting bosons in the mean-field infinite-volume limit[END_REF]. We use a basis of 2 (ℝ ) as discussed around (2.25) and distinguish between

• Terms that contain only creators/annihilators corresponding to the two-mode subspace span( + , -). After some simplifications they yield the two-mode energy 2-mode , which we prove controls the variance (2.31), see Section 4.

• Linear terms that contain exactly one creator/annihilator corresponding to the excited subspace span( + , -) ⟂ . These should be negligible in the final estimate.

• Quadratic terms that contain exactly two creators/annihilators corresponding to the excited subspace. In those we replace the creators/annihilators of the two-mode subspace by numbers, which leads to a Bogoliubov-like Hamiltonian acting on 2 ( ⟂ ) where ⟂ is the bosonic Fock space generated by the excited modes.

• Cubic and quartic terms that contain at least three creators/annihilators corresponding to the excited subspace. These can be neglected due to the low occupancy of said subspace.

To bring these heuristics to fruition we need a priori bounds (see Section 6) on

• The number of excited particles and their kinetic energy.

• A joint moment of the number and kinetic energy of the excited particles.

• The variance of particle numbers in the low-lying subspace.

The first bounds follow from Onsager's lemma (see [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF]Section 2.1] and references therein) supplemented by our estimates on the Hartree problem in [START_REF] Olgiati | The hartree functional in a double-well[END_REF]. We also obtain

⟨  - ⟩ ⩽ min( , -1 ) (2.36)
at this stage, which we use later in the proof. For the second estimate, we start with the strategy of [START_REF] Seiringer | The excitation spectrum for weakly interacting bosons[END_REF][START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF] but in our case the variance in the low-lying subspace enters the bound. Combining with a first rough energy estimate proves that the left side of (2.31) is bounded independently of and , which can then be used to close the second estimate.

With these estimates at hand we can deal efficiently with the quadratic, cubic and quartic terms mentioned above. The Bogoliubov Hamiltonian acting only on the excited space is introduced via a partial isometry  ∶ ℌ ↦ 2 ( ⟂ ) that we conjugate the difference -2-mode with, see Section 3. This generalizes the excitation map introduced in [START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF]. That the Bogoliubov Hamiltonian acts on 2 ( ⟂ ) and not just ⟂ keeps memory of the population imbalance in the two-modes subspace. Relying on estimates from [START_REF] Olgiati | The hartree functional in a double-well[END_REF] we can then split all the excited modes into a left and right part as in (2.26) and neglect couplings between left and right modes. After some further manipulations this reduces the full Bogoliubov Hamiltonian to two indendependent ones acting on 2 (ℝ ) and 2 (ℝ ) , the bosonic Fock spaces generated by the left and right modes respectively (see (2.27)). Their ground energies yield the Bog energy entering the statement.

The part of the proof we find the most difficult is the treatment of linear terms. In the one-well case they are negligible [START_REF] Seiringer | The excitation spectrum for weakly interacting bosons[END_REF][START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF][START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF][START_REF] Dereziński | Excitation spectrum of interacting bosons in the mean-field infinite-volume limit[END_REF] as a consequence of the optimality of the low-energy subspace 3 . Cancellations of this form also occur in our setting, (see (5.23) 

below) using that ℎ MF ± = ± ± ⟂ if ⩾ 3 and that | | | + | -| -| | | ⪅ 1∕2
as shown in [START_REF] Olgiati | The hartree functional in a double-well[END_REF]. More complicated linear terms appear however, an example being proportional to (with an annihilator on the excited subspace, ⩾ 3)

2( -1) † + ( † + -+ † -+ )
Using our a priori bounds (think of as being (1)), the above would be (1) if the result (2.31) was known a priori, for † + -+ † -+ =  1 - 2 . That terms of this type finally turn out to be negligible is a signature not of the optimal choice of the low-lying two-modes subspace, that we used already, but of the particular Bose-Hubbard ground state within it, witnessed by its small expectation of -1 ( 1 - 2 ) 2 .

To eliminate these extra linear terms, we will "complete a square" by defining (see Section 7) shifted creation and annihilation operators for the excited modes. In terms of those the combination of quadratic 3 They are the second quantization of the functional derivative of the Hartree energy at the minimizer. and linear terms is a new quadratic Hamiltonian corrected by a remainder term ∝ 2 -1 ( 1 - 2 ) 2 , depending on the variance operator. The latter we can absorb in 2-mode for small enough coupling constant . Another remainder comes from the fact that the shifted operators satisfy the canonical commutation relations only approximately, so that the diagonalization of the new quadratic Hamiltonian is more involved. After we have decoupled the contributions of the two wells by estimating cross-terms in the resulting expressions, we can rely on ideas from [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF] to handle that aspect, for we have a precise control on the commutators of the shifted operators.

MAPPING TO THE SPACE OF EXCITATIONS

We will use the second quantization formalism, calling the Fock space associated to 2 (ℝ ), and † ( ), ( ) the creation and annihilation operators associated to ∈ 2 (ℝ ). We refer the reader to, e.g., [START_REF] Gustafson | Mathematical Concepts of Quantum Mechanics[END_REF]Section 18] for precise definitions. We will adopt the notation

♯ + ∶= ♯ ( + ), ♯ -∶= ♯ ( -), ♯ ∶= ♯ ( ) ♯ , ∶= ♯ ( , ) = ♯ 2 +1 + ♯ 2 +2 √ 2 , ♯ , ∶= ♯ ( , ) = ♯ 2 +1 -♯ 2 +2
√ 2 for ♯ ∈ {⋅, †}, where + , -, , , , and , with , ∈ ℕ ⧵ {0} are the modes introduced in Section 2. We will denote by dΓ( ) the second quantization of a -body operator, and by  = † the number operator for the -th mode. We furthermore define the number operator for modes beyond + and - (or 1 and 2 )

 ⟂ ∶= ∑ ⩾3  . (3.1)
As anticipated in Section 2, the Hamiltonian (1.2) reads, in the notation we introduced 4 ,

= dΓ -Δ + DW + ( -1) dΓ( ) = ∑ , ⩾1 ℎ † + 2( -1) ∑ , , , ⩾1 † † . (3.2)
Two-mode Hamiltonian. The part of in which summations are restricted to the first two indices will play a major role. Definition 3.1 (Two-mode Hamiltonian). We define

2-mode ∶= ∑ , ∈{1,2} ℎ † + 2( -1) ∑ , , , ∈{1,2} † † (3.3)
as an operator on the -body space ℌ .

There are a few differences between 2-mode and the Bose-Hubbard Hamiltonian BH from (2.24):

• BH is defined on the -body space generated by the modes 1 and 2 only, that is, ⨂ sym 2 (ℝ ) . This is equivalent to identify  1 +  2 = when working with 2-mode . [START_REF] Bach | Diagonalizing quadratic bosonic operators by non-autonomous flow equation[END_REF] We are considering as the two-body observable corresponding to the multiplication by the function ( -)

• All quartic terms of (3.3) that contain both ♯ 1 and ♯ 2 are neglected in BH . • 2-mode contains the one-well non-interacting terms proportional to ℎ 11 and ℎ 22 . They will give the energy ℎ 11 appearing in (2.34). • The coefficient of † 1 2 + † 2 1 in (3.3) will turn out to be a perturbation of the ( + --)∕2 of BH . The same for the coefficient of the quartic terms. The difference between 2-mode and BH is not a priori small. We will often work with 2-mode , and discuss in Section 4 its relation with BH .

3.1. Excitation space. The energy of the fraction of particles that occupy { } ⩾3 needs to be separately monitored. To this end, it will be useful to consider the second quantization of operators restricted to the orthogonal complement of 1 and 2 . We define the projections

∶= | + ⟩⟨ + | + | -⟩⟨ -| = | 1 ⟩⟨ 1 | + | 2 ⟩⟨ 2 | ⟂ ∶= 1 -= ∑ ⩾3 | ⟩⟨ |. (3.4)
For self-adjoint operators on ℌ and on ℌ ⊗ ℌ we define

dΓ ⟂ ( ) ∶= dΓ( ⟂ ⟂ ) = ∑ , ⩾3 ⟨ , ⟩ † (3.5) 
and

dΓ ⟂ ( ) ∶= dΓ ⟂ ⊗ ⟂ ⟂ ⊗ ⟂ = ∑ , , , ⩾3 ⟨ ⊗ , ⊗ ⟩ † † . ( 3.6) 
In this notation,  ⟂ = dΓ ⟂ (1). Let us introduce the Hilbert space decomposition induced by and

⟂ ℌ = span{ + } ⊕ span{ -} ⊕ ∞ ⨁ ⩾3 span{ } ⊗ sym = span{ 1 } ⊕ span{ 2 } ⊕ ∞ ⨁ ⩾3 span{ } ⊗ sym , (3.7)
Accordingly, any ∈ ℌ can be uniquely expanded in the form

= ∑ =0 …, --2, - ∑ =-+ , -+ +2, … ⊗( -+ )∕2 1 ⊗ sym ⊗( --)∕2 2 ⊗ sym Φ , . (3.8) 
for suitable

Φ , ∈ { 1 , 2 } ⟂ ⊗ sym .
The index represents the number of excited particles, i.e., those living in the orthogonal of span( 1 , 2 ). The index is the difference 5 between the number of particles in 1 and the number of particles in 2 . Notice that (3.8) defines Φ , only for those pairs of integers ( , ) such that ( -+ )∕2 is an integer.

5

It will be clear from the context when stands for this difference or the physical space dimension.

For each fixed , the collection of functions {Φ , } 0⩽ ⩽ identifies a vector in the truncated Fock space

⩽ ⟂ ∶= ⨁ =0 { 1 , 2 } ⟂ ⊗ sym ⊂ ⟂ ⊂ , ( 3.9) 
Replicating the construction for all we naturally arrive at the following definition.

Definition 3.2 (Excitation space).

We define the full space of excitations as

2 ( ⟂ ) ∶= ⨁ ∈ℕ, ∈ℤ { 1 , 2 } ⟂ ⊗ sym = ⨁ ∈ℤ ⟂ .
(3.10)

A generic Φ ∈ 2 ( ⟂ ) is of the form Φ = ⨁ ∈ℕ, ∈ℤ Φ , such that ⎧ ⎪ ⎨ ⎪ ⎩ Φ , ∈ { 1 , 2 } ⟂ ⊗ sym ∑ , ‖ ‖ Φ , ‖ ‖ 2 2 < +∞.
We will adopt capital letters (as in Φ) to indicate excitation vectors in 2 ( ⟂ ), while reserving small letters (as in ) for -body wave-functions in ℌ . There is a natural operator mapping a -body wave-function to its excitation content as in (3.8). We define it by generalizing ideas from [START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF] (see [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF]Definition 5.10] and subsequent discussion for review):

Definition 3.3 (Excitation map).

Given any

∈ ℌ , consider its expansion (3.8). We call excitation map the operator

 ∶ ℌ → 2 ( ⟂ ), acting as  = ⨁ 0⩽ ⩽ , | |⩽ -, ( -+ )∕2∈ℕ Φ , . (3.11) 
It is easy to check that  is a partial isometry from ℌ into 2 ( ⟂ ), i.e. it acts unitarily if  * is restricted to Ran  . In order to isolate the contributions to the energy that come from excited particles, we will conjugate the Hamiltonian (or rather -2-mode ) with the unitary  . This boils down to having formulae describing the action of  on creation and annihilation operators. We keep the same notation for the operators ♯ with ⩾ 3 after conjugation with  , that is,

 †  * = † , , ⩾ 3.
The same we do for the operator representing the number of excitations which, on 2 ( ⟂ ), acts according to

 ⟂ Φ = ⨁ ∈ℕ, ∈ℤ Φ , . (3.12) 
The difference  1 - 2 on the other hand corresponds to the operator that has the indices as eigenvalues:

Definition 3.4 (Difference operator).

The difference operator on 2 ( ⟂ ) is defined as

∶=   1 - 2  † , with action Φ = ⨁ ∈ℕ, ∈ℤ Φ , . (3.13) 
We will refer to 2 (or ( 1 - 2 ) 2 on ℌ ) as the variance operator.

We also need the unitary operator that shifts the index by one unit.

Definition 3.5 (Shift operator).

We define the unitary operator

Θ ∶ 2 ( ⟂ ) → 2 ( ⟂ ) with action ΘΦ , = Φ , -1 . (3.14)
As an immediate consequence of the above definitions we have, for any ⩾ 3, For any , ⩾ 3 we have

, Θ = Θ , Θ = † , Θ = 0 , = , † = 0.
 † 1 1  * = - ⟂ + 2  † 1 2  * = Θ √ - ⟂ + + 1 2 √ - ⟂ -+ 1 2 Θ  † 2 2  * = - ⟂ - 2  † 1  * = Θ √ - ⟂ + + 1 2  † 2  * = Θ -1 √ - ⟂ -+ 1 2  ♯ 1 ♯ 2  = ♯ 1 ♯ 2 (3.17)
as identities on Ran  , with ♯ 1 , ♯ 2 ∈ {⋅, †}.

Proof. The derivation of the first three identities is similar. We focus on the second one. We have, for

Φ ∈ Ran  , † 1 2  * Φ = ∑ =0 …, --2, - ∑ =-+ , -+ +2, … √ -+ + 2 2 √ -- 2 × ⊗( -+ +2)∕2 1 ⊗ sym ⊗( ---2)∕2 2 ⊗ sym Φ , = ∑ =0 …, -, -+2 ∑ ′ =-+ +2, -+ +4, … √ -+ ′ 2 √ --′ + 2 2 × ⊗( -+ ′ )∕2 1 ⊗ sym ⊗( --′ )∕2 2 ⊗ sym Φ , ′ -2 .
Thus, acting with  we find

 † 1 2  * Φ , ′ = √ -+ ′ 2 √ --′ + 2 2 Φ , ′ -2 = ⎛ ⎜ ⎜ ⎝ √ - ⟂ + 2 √ - ⟂ -+ 2 2 Θ 2 Φ ⎞ ⎟ ⎟ ⎠ , ′ .
Using the unitarity of Θ, the commutation of Θ with  ⟂ and the identity (3.16), one finds

√ - ⟂ + 2 √ - ⟂ -+ 2 2 Θ = Θ √ - ⟂ + + 1 2 √ - ⟂ -+ 1 2
and the second identity in (3.17) follows.

The proofs of the last three identities are basically identical. We focus on the first one. We have † 1

 * Φ = ∑ =1 …, --2, - ∑ =-+ , -+ +2, … √ -+ + 2 2 × ⊗( -+ +2)∕2 1 ⊗ sym ⊗( --)∕2 2 ⊗ sym Φ -1, = -1 ∑ ′ =0 …, --1, -+1 ∑ =-+ +1, -+ +3, … √ -′ + ′ 2 × ⊗( -′ + ′ )∕2 1 ⊗ sym ⊗( -′ -′ )∕2 2 ⊗ sym Φ ′ , ′ -1 .
Acting with  we find

 † 1  * Φ ′ , ′ = √ -′ + ′ 2 Φ ′ , ′ -1 = ⎛ ⎜ ⎜ ⎝ √ - ⟂ + 2 Θ Φ ⎞ ⎟ ⎟ ⎠ ′ , ′
and the result is again obtained by commuting Θ all the way to the left using (3.15).

With the above we will be able to conjugate with  each summand in the Hamiltonian (3.2). For example

 † 1 † 1 1  * =  † 1  *  † 1 1  * = Θ √ - ⟂ + 2 - ⟂ + -1 2 for any ⩾ 3.

Bogoliubov Hamiltonian.

The Bogoliubov Hamiltonian is a quadratic operator on 2 ( ⟂ ) that represents the main contribution to the energy inside  ( -2-mode ) * , i.e., after the contribution from the modes 1 and 2 has been subtracted. We first define operators 11 , 22 , 12 ∶ 2 (ℝ ) → 2 (ℝ ) through their matrix elements Since is bounded and 1 , 2 ∈ 2 (ℝ ), Young's inequality immediately shows that these are bounded operators.

⟨ , 11 ⟩ = 1 2 ⟨ ⊗ 1 , 1 ⊗ ⟩ ⟨ , 22 ⟩ = 1 2 ⟨ ⊗ 2 , 2 ⊗ ⟩ ⟨ , 12 ⟩ = ⟨ ⊗ 1 , 2 ⊗ ⟩.

Definition 3.7 (Bogoliubov Hamiltonian).

We call Bogoliubov Hamiltonian the operator on 2 ( ⟂ )

ℍ = ∑ , ⩾3 -Δ + DW + 2 * | 1 | 2 + 2 * | 2 | 2 + 11 + 22 -+ † + 2 ∑ , ⩾3 11 
Θ -2 † † + Θ 2 + 2 ∑ , ⩾3 22 
Θ 2 † † + Θ -2 + 2 ∑ , ⩾3 12 † † + 2 ∑ , ⩾3 * 12 + 2 ∑ , ⩾3 12 + * ( 1 2 ) Θ 2 † + 2 ∑ , ⩾3 * 12 + * ( 1 2 ) Θ -2 † (3.18)
The above is formally obtained from by: 1. considering the parts of in (3.2) that contain exactly two ♯ with ⩾ 3; 2. acting with (3.17) to pass to the space 2 ( ⟂ ); 3. replacing all fractions coming from the right hand sides of (3.17) by ( -1)∕2. This procedure will be made rigorous in Proposition 5.1 below.

A crucial feature of ℍ is that, if we could ignore the terms coupling modes (mostly) supported in different wells (for example the last two lines of (3.18)), then ℍ would coincide with the sum of two commuting quadratic Hamiltonians, each depending on one-well modes, as we now explain. We start with the following definition (recall the definition of left and right modes in (2.26)): Definition 3.8 (Θ-translated right and left creators/annihilators). For any , ⩾ 1 we define

∶= Θ , ∶= Θ , , ∶= Θ , ∶= Θ -1 , ∶= Θ -1 , , ∶= Θ -1 , ( 3.19 
)

together with their adjoints † , † , , † , , † , † , , † , (recall that Θ * = Θ -1
). It is straightforward to check the commutation relations

, † = , † = , , , † , = , , † , = , , † , = , , † , = , = , = 0 , , , , = , , , = , , , = , , , = 0. (3.20)
The ♯ , operators will be used to construct the excitation energy of the right well, while the ♯ , will be associated with the left well. No other combination contributes to the energy at the order of precision we aim at. This leads to the Definition 3.9 (Right and left Bogoliubov Hamiltonians).

The quadratic Hamiltonians for right and left modes are

ℍ right ∶= ∑ , ⩾1 ⟨ , , ℎ MF -+ + 11 , ⟩ † , , + 2 
∑ , ⩾1 ⟨ , , 11 , ⟩ † , † , + , , (3.21) 
ℍ lef t ∶= ∑ , ⩾1 ⟨ , , ℎ MF -+ + 22 , ⟩ † , , + 2 
∑ , ⩾1 ⟨ , , 22 , ⟩ † , † , + , , . (3.22) 
Since ⟨ , , , ⟩ = 0 for all , , every creator or annihilator of a right mode ♯ , commutes with every creator or annihilator of a left mode ♯ , . The two Hamiltonians above hence correspond (after conjugation with Bogoliubov transformations) to independent harmonic oscillators. One should view ℍ right (resp. ℍ lef t ) as obtained from ℍ by retaining only those summands in which the 2 (ℝ ) scalar products are between , modes (resp. , modes). A further difference is the appearance of ℎ MF in (3.21) and (3.22) instead of the operator

-Δ + DW + * | 1 | 2 ∕2 + * | 2 | 2 ∕2
that appears in (3.18). This is due to the fact that their difference, proportional to dΓ ⟂ ( * ( 1 2 )), will turn out to be negligible. The † -part of ℍ right is the second quantization of the self-adjoint operator ℎ MF (and a similar property for the † of ℍ lef t ).

It follows from the above definitions and the discussion in [17, Sections 4 and 5], that our previous definition (2.29) coincides with

Bog = inf 2 ( ⟂ ) ℍ right + inf 2 ( ⟂ ) ℍ lef t (3.23)
that we can obtain by acting on the vacuum with two commuting Bogoliubov transformations and taking the expectation value of ℍ right + ℍ lef t in the quasi-free state thus obtained. More details will be provided in Section 8.1 below.

BOUNDS ON THE 2-MODE HAMILTONIAN

The aim of this Section is to prove lower and upper bounds for the Hamiltonian 2-mode defined in (3.3). We will also show a bound on the Bose-Hubbard energy and prove Proposition 2.4. We define the operator

 ∶= + -- 2 - -1 1112  ⟂ - -1 1122 ( ⟂ -1) (4.1)
and the energy constants 

0 = ℎ 11 + 2 4( -
The next Lemma gives precise estimates on the magnitude of these quantities.

Lemma 4.1 ( -coefficients and chemical potential).

There exist strictly positive constants and independent on and, for any > 0, a -independent constant > 0 such that

⩽ 1111 ⩽ (4.4) | 1112 | ⩽ 1- (4.5) 0 ⩽ 1122 ⩽ 2- (4.6) 0 ⩽ 1212 ⩽ 1-, (4.7)
where is given by (2.13). As a consequence, we have

| -+ | ⩽ 1-, (4.8)
where was defined in (4.3) and + is the ground state energy of ℎ MF .

We postpone the proof of this lemma to Appendix B. As a consequence of Lemma 4.1, the reader should keep in mind the rule-of-thumb estimates

 ≃ + -- 2
on the states that will be of interest We have the exact expression

≃ + ≃ 1111 4 ⩾ > 0.
2-mode = 0 + +  † 1 2 + † 2 1 - ⟂ + -1  1 - 2 2 + 2 -1 1122  2 -+ 4( -1) ( 1111 -2 1122 + 1212 ) 2 ⟂ (4.9)
and the lower bound

2-mode ⩾ 0 + -+  ⟂ + + -- 2 + -1  1 - 2 2 - 1- ⟂ . (4.10)
To prove Proposition 4.2 we will use the trivial identities

† 1  1 +  2 2 + † 2  1 +  2 1 = ( 1 +  2 -1) † 1 2 + † 2 1 (4.11)  2 1 +  2 2 =  1 +  2 2 2 +  1 - 2 2 2 ,  1  2 =  1 +  2 2 4 -  1 - 2 2 4 , ( 4.12) 
as well as the following Lemma.

Lemma 4.3 (An identity in the two-modes subspace).

( † 1 2 ) 2 + ( † 2 1 ) 2 + 2 1  2 = 2  1 +  2 † 1 2 + † 2 1 - 1 +  2 2 + 4 2 --( 1 +  2 ) . (4.13)
The proof, a simple computation based on the CCR, is in Appendix B.

Proof of Proposition 4.2. We start by proving (4.9), which is actually just another way of writing (3.3). First, notice that, due to the fact that

1 (-1 , 2 , … , ) = 2 ( 1 , 2 , … , ),
and since ℎ = -Δ + DW involves a symmetric potential DW with respect to reflexion about the 1 -axis and since ( , ) = (| -|), we have the relations

ℎ 11 = ℎ 22 , 1111 = 2222 , 1112 = 2221 .
Moreover, since we work with a basis of real-valued functions and ( -) = ( -), we have

ℎ 12 = ℎ 21 , = = = .
Using these relations in (3.3) and collecting all terms, we first rewrite (3.3) as

2-mode = ℎ 11  1 +  2 + ℎ 12 † 1 2 + † 2 1 + 2( -1) 1111  2 1 +  2 2 - 1 - 2 + -1 1112 † 1  1 2 + † 2  1 1 + † 2  2 1 + † 1  2 2 + 2( -1) 1122 ( † 1 2 ) 2 + ( † 2 1 ) 2 + 2 1  2 + -1 1212  1  2 .
Moreover, using the identities (4.11), (4.12), Lemma 4.3, and the definition of from (4.3), we find

2-mode = ℎ 11 - 2( -1) ( 1111 + 1122 )  1 +  2 + 4( -1) ( 1111 -2 1122 + 1212 )  1 +  2 2 + ℎ 12 + -1 1112 ( 1 +  2 -1) + -1 1122  1 +  2 † 1 2 + † 2 1 + ( -1)  1 - 2 2 + 2 -1 1122  2 -. (4.14) 
The identity

 1 +  2 = - ⟂ now yields 2-mode = 0 + - ⟂ + 4( -1) ( 1111 -2 1122 + 1212 ) 2 ⟂ + ℎ 12 + 1112 + 1122 - -1 1112  ⟂ - -1 1122 ( ⟂ -1) × † 1 2 + † 2 1 + ( -1)  1 - 2 2 + 2 -1 1122  2 -,
where 0 and are defined by (4.2) and (4.3), respectively. The constant term 0 + comes from the substitution  1 +  2 ⇝ in the first two lines of (4.14). The third term - ⟂ is the contribution coming from substituting

 1 +  2 ⇝ - ⟂ and ( 1 +  2 ) 2 ⇝ -2  ⟂ in
the same lines. The proof of (4.9) is completed by recognizing that the main part of the coefficient of † 1 2 + † 2 1 is

ℎ 12 + 1112 + 1122 = ⟨ 1 , -Δ + DW + 1 2 * 2 1 + 2 2 + * ( 1 2 ) 2 ⟩ = ⟨ 1 , ℎ MF 2 ⟩ = + -- 2 ,
having used (2.11) to reconstruct * | + | 2 . This shows that the operator multiplying † 1 2 + † 2 1 is the operator  defined in (4.1), thus proving (4.9).

Let us now prove the lower bound (4.10). We will do so by considering all terms in (4.9) and estimating them from below. The main observation is that since + --< 0, we can use the operator inequalities

-⩽ † 1 2 + † 2 1 ⩽  1 +  2 = - ⟂ ⩽ . Thus the term  † 1 2 + † 2 1 satisfies  † 1 2 + † 2 1 = + -- 2 - 1112 -1  ⟂ - 1122 -1 ( ⟂ -1) † 1 2 + † 2 1 ⩾ - | | | | + -- 2 + 1122 -1 | | | | - - 1 
| | | 1112 + 1122 | | |  ⟂ (4.15)
where we used that if two operators and commute, ∈ ℂ, and -⩽ ⩽ then ⩾ -| | . The first absolute value in the right hand side is smaller than ( --+ )∕2 because --+ ⩾ 1+ > 0 by Theorem A.1, 0 < 1122 ⩽ 2-by (4.5), and ≪ 1. Furthermore, due to (4.6) the second absolute value is bounded by 1-. Thus

 † 1 2 + † 2 1 ⩾ + -- 2 - 1- ⟂ . ( 4.16) 
In order to bound the other terms in (4.9) from below, we first notice that, since 1122 ⩾ 0,

2 -1 1122  2 -⩾ 0. (4.17) 
For the term - ⟂ we use (4.8) to write

- ⟂ ⩾ -+  ⟂ - 1- ⟂ . (4.18)
The only term left is that proportional to  2 ⟂ . Thanks to the positivity of 1111 and 1212 , using (4.6) and  ⟂ ⩽ , we have 

4( -1) ( 1111 -2 1122 + 1212 ) 2 ⟂ ⩾ - 2( -1) 1122  2 ⟂ ⩾ - 2- ⟂ . ( 4 
⊗( + )∕2 1 ⊗ sym ⊗( -)∕2 2 , ( 4.20) 
where the symmetrized tensor products are normalized in the above and are gaussian coefficients,

∶= 1 -2 ∕4 2 , | | ⩽ 2 , ( 4.21) 
with a variance parameter to be fixed later, such that 1 ⩽ ≪ 1∕2 , and a normalization factor ensuring ‖ gauss ‖ = 1. We will prove Proposition 4.4 (Upper bound for 2-mode ). Assume that ∼ -for some > 0. Then, with the choice

2 = √ --+ if < 2 otherwise (4.22)
with ⩾ 1 a fixed constant, the trial state gauss defined in (4.20) satisfies 

⟨ 2-mode ⟩ gauss ⩽ 0 + + + -- 2 + max 1∕2-, -1+ . ( 4 
∑ | |⩽ 2 | | 2 = 1. Then • Moments. For any ∈ ℕ we have ∑ -2 ⩽ ⩽ 2 2 | | 2 ⩽ 2 , ∑ -2 ⩽ ⩽ 2 2 +1 | | 2 = 0 . (4.24)
• Tunneling term. For any ∈ ℤ,

| | | | ∑ -2 ⩽ ⩽ 2 - + -1 | | | | ⩽ 2 . (4.25)
Proof. The equality in (4.24) is trivial because of the odd symmetry ↦ -. To prove the inequality in (4.24), we note that if ( ) is a differentiable function in 1 ([0, ∞[) having a single relative extremum at m , which is a maximum, then

∑ 0⩽ ⩽ 2 ( ) ⩽ ∫ ∞ 0 ( ) + (⌊ m ⌋) + (⌊ m ⌋ + 1)
where ⌊ ⌋ denotes the integer part of . Taking ( ) = 2 -2 ∕2 2 , which is maximum at m = √ 2 , we deduce that

∑ 0⩽ ⩽ 2 ( ) ⩽ 2 +1 ∫ ∞ 0 2 -2 ∕2 + 2 . (4.26)
The desired result then follows from the even symmetry ↦ -and from the following lower bound on

2 = ∑ | |⩽ 2 + is even - 2 2 2 ⩾ ∑ | |⩽ + is even - 2 2 2 ⩾ -1 2 . (4.27)
Let us prove (4.25). We have

+ = 2 -2 + 2 4 2
.

Using the inequality 0 ⩽ --1 + ⩽ 2 valid for any ∈ [-log(2 ), log(2 )] and extending for convenience the definition (4.21) of for = 2 + 1, … , 2 + , we get

0 ⩽ ∑ | |⩽ 2 + -2 + 2 + 2 4 2 2 ⩽ ∑ | |⩽ 2 2 + 2 2 16 4 2 ⩽ 2 ,
where the last step follows from the estimates in (4.24) proven above. Recalling that

∑ | |⩽ 2 2 = 1, this gives | | | | | ∑ | |⩽ 2 + -1 | | | | | ⩽ 2 from which we obtain | | | | | ∑ -2 ⩽ ⩽ 2 - + -1 | | | | | ⩽ | | | | | ∑ | |⩽ 2 + -1 | | | | | + 2 - 2 2 ⩽ 2 .
This proves (4.25).

We are now ready to provide the Proof of Proposition 4.4. We take the trial state gauss from (4.20) with 1 ⩽ ≪ 1∕2 to be suitably optimized at the end. We will compute the expectation value of all terms in (4.9) on gauss . First of all, notice that  ⟂ gauss = 0, which allows to neglect all  ⟂ and  ⟂ 2 -terms in (4.9). Hence,

⟨ 2-mode ⟩ gauss = 0 + + + -- 2 + -1 1122 ⟨ † 1 2 + † 2 1 ⟩ gauss + -1 ⟨  1 - 2 2 ⟩ gauss + 2 -1 1122 ⟨  2 - ⟩ gauss . (4.28)
Let us evaluate the three expectation values on the right hand side. We have

⟨ † 1 2 + † 2 1 ⟩ gauss = 2 ∑ -2 ⩽ ⩽ 2 -2 +2 √ + + 2 2 - 2 .
Since | | ⩽ 2 ≪ , we can expand the square root around = 0. We get

| | | | ⟨ † 1 2 + † 2 1 ⟩ gauss - ∑ -2 ⩽ ⩽ 2 -2 +2 | | | | ⩽ ∑ -2 ⩽ ⩽ 2 -2 +2 | | | | √ 1 + 2 - 2 2 - 2 2 -1 | | | | ⩽ ∑ -2 ⩽ ⩽ 2 -2 +2 | | | | 2 - 2 2 - 2 2 | | | | . (4.29)
We distinguish between two cases:

• if 1 ⩽ 2 ⩽ 2 √
the second line of (4.29) is bounded by a constant. Indeed

| | | | 2 - 2 2 - 2 2 | | | | ⩽ 3 for | | ⩽ 2 √ and +2 ⩽ 2 for | | ⩽ 2
, and we recall that

∑ | |⩽ 2 2 = 1. • if 2 > 2 √
, we split the sum in the second line of (4.29) into a sum runing from -2 √ to 2 √ and a remaining sum. Taking advantage of the last two bounds, the expression in this second line is less than

∑ | |⩽2 √ 2 + ∑ 2 √ <| |⩽ 2 2 .
The first sum in the right hand side is bounded by one. The second sum can be bounded as follows. Setting

= ⌊ 2 √ ⌋ , we have ∑ 2 √ <| |⩽ 2 2 = 2 2 ∑ 2 √ < ⩽ 2 exp - ( -) 2 2 2 - 2 + 2 2 2 ⩽ 2 2 exp - 2 2 2 ∑ 0⩽ ′ ⩽ 2 exp - ( ′ ) 2 2 2 ⩽ 2 -2 .
Hence, in all cases one has

| | | | ⟨ † 1 2 + † 2 1 ⟩ gauss - ∑ -2 ⩽ ⩽ 2 -2 +2 | | | | ⩽ + -2 . (4.30)
Combining this result with (4.25), we get

| | | ⟨ † 1 2 + † 2 1 ⟩ gauss - | | | ⩽ + 2 + -2 . (4.31)
For the variance term in (4.28) we immediately have, using (4.24), 

⟨  1 - 2 2 ⟩ gauss = ∑ | |⩽ 2 2 | | 2 ⩽ 2 . (4.32) Finally, since  2 -⩽  -on ℌ and  -= ( 1 +  2 - † 1 2 - † 2 
+ -1 ∼ -( -1)+ + -1 if ⩾ 2.
The claimed bounds then follow from Proof. Since BH is defined on ⨂ sym 2 (ℝ ) only, we can plug  1 +  2 = (i.e.,  ⟂ = 0) into (2.24). This gives

max 1∕2-, -1+ = 1∕2- if 0 < < 2 -1+ if ⩾ 2.
BH = 2( -1) 2 2 - 1111 + + -- 2 † 1 2 + † 2 1 + 1111 4( -1)  1 - 2 2 .
We then repeat the proof of (4. Since the ground state of 2-mode entirely lives in the two-modes subspace, for a matching lower bound we may set  ⟂ = 0 in (4.10). Thus, recalling that ⩾ 0, we deduce from Proposition 4.2 that

2-mode ⩾ 0 + + + -- 2 .
Let us set

̃ 0 = 0 - 2 4( -1) (4 1122 -2 1212 ) = ℎ 11 - 2 4( -1) (2 1122 -1212 ) .
It follows from the two preceding bounds, Proposition 4.6 and the definition (4.3) of that

| | | 2-mode -̃ 0 -BH | | | ⩽ | | | 2-mode -0 - - + -- 2 | | | + | | | -BH + + -- 2 + + 0 -̃ 0 | | | ⩽ max 1∕2-, -1+ + | | | | - 2 4( -1) 1111 + 2( -1) 1111 + + 2 4( -1) (4 1122 -2 1212 ) | | | | ⩽ max 1∕2-, -1+ + 2( -1) 1122 .
Proposition 2.4 follows by using Lemma 4.1 again.

DERIVATION OF THE BOGOLIUBOV HAMILTONIAN AND REDUCTION TO RIGHT AND LEFT MODES

The aim of this Section is two-fold: we will prove that the Bogoliubov Hamiltonian ℍ from (3.18) is the leading contribution to -2-mode , and we will show that ℍ can be decomposed into the two quadratic Hamiltonians ℍ right and ℍ lef t from (3.21) and (3.22). The most delicate part of this program is the fact that there are terms in that contain exactly one ♯ with ⩾ 3, but that are not a priori negligible. We keep track of them in Proposition 5.1, and we will show that they are negligible at a later stage.

Let us state the two main results.

Proposition 5.1 (Derivation of the Bogoliubov Hamiltonian).

For any excitation vector Φ ∈ 2 ( ⟂ ) of the form Φ =  for some ∈ ℌ , we have

| | | ⟨ ( -2-mode ) * ⟩ Φ -⟨ℍ⟩ Φ -+ ⟨ ⟂ ⟩ Φ - √ 2( -1) ⟨ ∑ ⩾3 +1-Θ + h.c. ⟩ Φ - √ 2( -1) ⟨ ∑ ⩾3 +2-Θ -1 + h.c. ⟩ Φ | | | ⩽ 1∕4 ⟨  2 ⟂ + 1 ⟩ Φ + ⟨ 2 ⟩ Φ + 1- 1∕4 ⟨  - ⟩ 3∕4  * Φ ⟨  2 ⟂ ⟩ 1∕4 Φ (5.1)
While proving the decomposition of ℍ into right and left modes, we will need to project the problem on the eigenmodes of ℎ MF with index smaller than some ∈ ℕ. To this end, we define the spectral projections

⩽ ∶= ∑ 1⩽ ⩽ | 2 +1 ⟩⟨ 2 +1 | + | 2 +2 ⟩⟨ 2 +2 | = ∑ 1⩽ ⩽ | , ⟩⟨ , | + | , ⟩⟨ , | . (5.2)
and

> ∶= ∑ > | 2 +1 ⟩⟨ 2 +1 | + | 2 +2 ⟩⟨ 2 +2 | = 1 -⩽ -| + ⟩⟨ + | -| -⟩⟨ -|.
Let us introduce the versions of the Bogoliubov Hamiltonians ℍ right and ℍ lef t in the right and left wells with an energy cutoff, obtained by restricting all sums in (3.21) and (3.22) to indices , smaller than ,

ℍ ( ) right ∶= dΓ( ⩽ )ℍ right dΓ( ⩽ ) = ∑ 1⩽ , ⩽ ⟨ , , ℎ MF -+ + 11 , ⟩ † , , + 2 ∑ 1⩽ , ⩽ ⟨ , , 11 , ⟩ † , † , + , , (5.3) 
ℍ ( ) lef t ∶= dΓ( ⩽ )ℍ lef t dΓ( ⩽ ) = ∑ 1⩽ , ⩽ ⟨ , , ℎ MF -+ + 22 , ⟩ † , , + 2 
∑ 1⩽ , ⩽ ⟨ , , 22 , ⟩ † , † , + , , , (5.4) 
where we recall that the operators 11 , 22 and 12 are defined as

⟨ , ⟩ = 1 2 ⟨ ⊗ , ⊗ ⟩ , = 1, 2, ⟨ , 12 ⟩ = ⟨ ⊗ 1 , 2 ⊗ ⟩.
Proposition 5.2 (Reduction to right-and left-mode Hamiltonians).

Consider Φ ∈ 2 ( ⟂ ) such that ⟨ dΓ(ℎ MF -+ ) +  2 ⟂ + dΓ(ℎ MF -+ ) ⟂ ⟩ Φ ⩽ (5.5)
for a constant that does not depend on . For every energy cutoff Λ, let Λ be the largest integer such that 2 Λ +2 ⩽ Λ, where { } are the eigenvalues of ℎ MF in increasing order. Then,

| | | | ⟨ ℍ -ℍ ( Λ ) right -ℍ ( Λ ) lef t -dΓ ⟂ ⩾ Λ ℎ MF -+ ⩾ Λ ⟩ Φ | | | | ⩽ Λ (1) + 2 Λ +2 -+ 1∕2 (5.6)
where the constant Λ does not depend on .

The results of Propositions 5.1 and 5.2 will enable us to show in the next sections that the expectation value of -2-mode in the ground state gs of the -body Hamiltonian is equal to

⟨ℍ + +  ⟂ ⟩  *
gs up to error terms (1) and, furthermore, that the Bogoliubov Hamiltonian in the last expression can be decomposed as a sum of a "right" and "left" Bogoliubov Hamiltonians up to small errors. Indeed, let us anticipate the following a priori estimates to be proven in Section 6:

⟨ 2 ⟂ ⟩ gs ⩽ , ⟨dΓ(ℎ MF -+ ) ⟂ ⟩ gs ⩽ , ⟨ -⟩ gs ⩽ min{ , -1-}
where the constants and are independent of . In particular, taking Φ =  gs , the second term in the right hand side of (5.1) is of order 1∕2-.

To prove Proposition 5.1 we will, in the next three subsections, group the terms in -2-mode depending on the number of creation and annihilation operators ♯ with ⩾ 3 they contain.The proof of Proposition 5.2 is provided in Subsection 5.4.

We first collect a few properties that we will use throughout the section.

Lemma 5.3 (General estimates).

( ) For any functions , , ℎ ∈ 2 (ℝ ) we have

∑ ⩾3 | | | ⟨ ⊗ , ℎ ⊗ ⟩ | | | 2 ⩽ ⟨ , | | | * ( ℎ) | | | 2 ⟩ ⩽ ‖ ‖ 2 2 ‖ ‖ 2 2 ‖ℎ‖ 2 2
(5.7)

( ) For any two function , ∈ 2 (ℝ ) we have ∑ , ⩾3 | | | ⟨ ⊗ , ⊗ ⟩ | | | 2 ⩽ ⟨ ⊗ , 2 ⊗ ⟩ ⩽ ‖ ‖ 2 2 ‖ ‖ 2 2
(5.8)

( )
We have the following bound

‖ ‖ ‖ * ( 1 2 ) ‖ ‖ ‖ ∞ = sup ∈ℝ | * ( 1 2 )( )| ⩽ 1-.
(5.9)

( ) The operators 11 and 22 are positive and trace-class. Moreover

‖ ‖ ‖ 12 ‖ ‖ ‖op ⩽ 1∕2-.
(5.10)

Proof. Let us start by proving (5.7). We have

∑ ⩾3 | | | ⟨ ⊗ , ℎ ⊗ ⟩ | | | 2 = ∑ ⩾3 ⟨ , * ℎ | ⟩⟨ | * ℎ ⟩ .
The first inequality in (5.7) then follows thanks to the operator bound

∑ ⩾3 | ⟩⟨ | ⩽ 1.
To pass to the second inequality of (5.7) one uses Young's inequality, recalling that ∈ ∞ . A similar argument proves (5.8) as well, using instead the operator bound

∑ , ⩾3 | ⊗ ⟩⟨ ⊗ | ⩽ 1.
To prove (5.9) we write, recalling that

2 1 2 = 2 + -2 -and ⩾ 0, sup ∈ℝ | | | | ∫ ℝ ( -) 1 ( ) 2 ( ) | | | | ⩽ 1 2 sup ∈ℝ ∫ ℝ ( -) | | | | + ( )| 2 -| -( )| 2 | | | ⩽ ‖ ‖ ‖ | + | 2 -| -| 2 ‖ ‖ ‖ 1 ⩽ 1-,
where the second inequality follows from Young's inequality, while the third one follows from (A.1). The operators 11 and 22 are trace-class since they are integral operators with kernels ( , ) = 1 2 ( ) ( -) ( ) and their trace is equal to

∫ ℝ ( , ) = 1 2 ∫ ℝ (0) | | ( ) | | 2 = 1 2 (0) < ∞, for , ∈ {1, 2}.
They are positive because of our assumption that is of positive type, see (2.1). To prove (5.10) we use the Cauchy-Schwarz inequality to obtain

‖ ‖ ‖ 12 ‖ ‖ ‖op = sup , ∈ 2 (ℝ ), ‖ ‖=‖ ‖=1 | | | ⟨ , 12 ⟩ | | | ⩽ sup ‖ ‖=‖ ‖=1 ∬ ℝ 2 | ( )| 1 ( ) ( -) 2 ( )| ( )| ⩽ sup ‖ ‖=‖ ‖=1 ∬ ℝ 2 | ( )| 2 ( -)| ( )| 2 1∕2 1∕2
1212 and the result then follows from ∈ ∞ and (4.7). 

+ ∑ ⩾3 -Δ + DW - † - + h.c.
(5.12)

+ - 1 
∑ ⩾3 +++ † + † + + + h.c.
(5.13)

+ -1 ∑ ⩾3 ++- † + † + - + h.c.
(5.14)

+ - 1 
∑ ⩾3 +-+ † + † -+ + h.c.
(5.15)

+ -1 ∑ ⩾3 +-+ † + † - + + h.c. (5.16) 
+ -1 ∑ ⩾3 +-- † + † -- + h.c. (5.17) 
+ -1 ∑ ⩾3 +-- † + † - -+ h.c.
(5.18)

+ -1 ∑ ⩾3 --+ † - † -+ + h.c. (5.19) + -1 ∑ ⩾3 --- † - † -- + h.c.. (5.20) 
The main result of this Subsection is the following Proposition.

Proposition 5.4 (Linear terms).

Let Φ ∈ 2 ( ⟂ ) be such that Φ =  for some ∈ ℌ . We have:

• Elimination of sub-leading terms.

| | | ⟨ 1 ⟩ - -1 ⟨ ∑ ⩾3 ( ++- † + + +-- † -)  1 - 2 + h.c. ⟩ | | | ⩽ √ ⟨ 2 ⟂ + 1⟩ + 1- 1∕4 ⟨ -⟩ 3∕4 ⟨ 2 ⟂ ⟩ 1∕4 .
(5.21)

• Conjugation with  .

| | | ⟨ 1  * ⟩ Φ - √ 2( -1) ⟨ ∑ ⩾3 +1-Θ + h.c. ⟩ Φ - √ 2( -1) ⟨ ∑ ⩾3 +2-Θ -1 + h.c. ⟩ Φ | | | ⩽ 1∕4 ⟨ 2 ⟂ + 1⟩ Φ + ⟨ 2 ⟩ Φ + 1- 1∕4 ⟨ -⟩ 3∕4  * Φ ⟨ 2 ⟂ ⟩ 1∕4 Φ .
(5.22) Some linear terms still appear explicitly in (5.22), of the form

1 † ± ( 1 - 2 ) ⩾ 3.
According to the standard prescriptions of Bogoliubov theory ( ♯ ± ≃ √ and ♯ ≃ 1 for ⩾ 3), and using the a priori estimate (6.6), for the variance, this term would not result to be negligible. We will prove that it actually is at a later stage of the proof.

Proof. Let us start with (5.21). The terms (5.11), (5.13), and (5.18) will be considered together (and analogous arguments will hold for (5.12)+(5.15)+(5.20)). Their sum gives (5.11) + (5.13) + (5.18)

= ∑ ⩾3 -Δ + DW + † + + -1 +++ † +  + +  - + h.c. + -1 ∑ ⩾3 ( +---+++ † +  - + h.c. =∶ 1 + 2 .
(5.23)

In order to estimate 1 we write, using

 + +  -= - ⟂ and +++ = ( * 2 + ) + , 1 = ∑ ⩾3 ℎ MF + † + - -1 +++ † + ( ⟂ -1) + h.c.
But (ℎ MF ) + = + ⟨ + , ⟩ = 0 if ⩾ 3 and thus

⟨ 1 ⟩ = - -1 ∑ ⩾3 +++ ⟨ , † + ( ⟂ -1) ⟩ + h.c.
Using the Cauchy-Schwarz inequality twice, inserting (5.7), recalling that  + ⩽ and 2 ⟂ ⩽  2 ⟂ +1, we have

|⟨ 1 ⟩ | ⩽ ∑ ⩾3 | +++ | 2 1∕2 ∑ ⩾3 ‖ 1∕2 ⟂ + ‖ 2 ‖ 1∕2 ⟂ ‖ 2 + ‖ + ‖ 2 ‖ ‖ 2 1∕2 ⩽ ∑ ⩾3 ⟨ +  ⟂ ⟩ ⟨ ⟂  ⟩ + ⟨ + ⟩ ⟨ ⟩ 1∕2 ⩽ √ ⟨ 2 ⟂ + 1⟩ .
(5.24)

The term 2 in (5.23) can be rewritten as

2 = -1 ∑ ⩾3 ⟨ + , * | -| 2 -| + | 2 ⟩ † +  -+ h.c.. Hence |⟨ 2 ⟩ | ⩽ ∑ ⩾3 | | | ⟨ + , * (| -| 2 -| + | 2 ) ⟩ | | | 2 1∕2 ∑ ⩾3 ‖ 1∕2 - + ‖ 2 ‖ 1∕2 - ‖ 2 1∕2 ⩽ ⟨ + , * (| + | 2 -| -| 2 ) 2 + ⟩ 1∕2 ⟨ +  -⟩ 1∕2 ⟨ ⟂  -⟩ 1∕2 ⩽ 1- 1∕2 ⟨ -⟩ 1∕2 ⟨ 2 ⟂ ⟩ 1∕4 ⟨ 2 -⟩ 1∕4 ⩽ 1- 1∕4 ⟨ -⟩ 3∕4 ⟨ 2 ⟂ ⟩ 1∕4 .
In the first step we used the Cauchy-Schwarz inequality for the -sum and for the scalar product. In the second step we used (5.7). In the third one we used Young's inequality, ∈ ∞ and the 2 -bound (A.1), as well as  + ⩽ and the Cauchy Schwarz inequality ⟨ ⟂  -⟩ 2 ⩽ ⟨ 2 ⟂ ⟩ ⟨ 2 -⟩ . In the last step we used  2 -⩽  -. Having estimated both 1 and 2 , we deduce |⟨ , (5.11) + (5.13)

+ (5.18) ⟩| ⩽ √ ⟨ 2 ⟂ + 1⟩ + 1- 1∕4 ⟨ -⟩ 3∕4 ⟨ 2 ⟂ ⟩ 1∕4 .
(5.25)

Analogous arguments lead to a similar bound for |⟨ , (5.12) + (5.15) + (5.20) ⟩|.

The remaining terms in 1 yield the linear terms in the left hand side of (5.21). In fact, noticing that ++-= -++ = +-+ , and using the identity † + -+ † -+ =  1 - 2 , we find (5.14) + (5.16) + (5.17)

+ (5.19) = -1 ∑ ⩾3 ++- † + + +-- † -  1 - 2 + h.c.. (5.26)
The estimate (5.21) is then deduced by merging (5.25) and (5.26). We now turn to (5.22). Using the definition of 1 and 2 in terms of + and -(see (2.11)) we can replace ♯ + and ♯ -with linear combinations of ♯ 1 and ♯ 2 . The action of  on † is then obtained using (3.17). For example, recalling that [ 1 , ] = [ 2 , ] = 0 for ⩾ 3, and recalling the definition of from (3.13),

 † 1 ( 1 - 2 )  * =  † 1  *  ( 1 - 2 ) * = Θ √ - ⟂ + + 1 2 .
The action of  on the term of (5.22) containing † 2 is computed analogously, and the same holds for the adjoint operators. Thus, acting with  on the linear terms in the right hand side of (5.21) and recalling the definition of 1 and 2 to re-express the matrix elements of gives

-1  ∑ ⩾3 ( ++- † + + +-- † -)  1 - 2  * + h.c. = √ 2( -1) ∑ ⩾3 +1-Θ √ - ⟂ + + 1 + h.c. + +2-Θ -1 √ - ⟂ -+ 1 + h.c.. (5.27) 
The linear terms in (5.22) are obtained by replacing all square roots in the above right hand side by √ -1. We now bound the remainders this operation produces. Consider for example the second line of (5.27), and denote

1 ∶= √ 2( -1) ∑ ⩾3 +1- ⟨ Θ √ - ⟂ + + 1 - √ -1 ⟩ Φ + h. .
Proceeding as when estimating ⟨ 1 ⟩ and ⟨ 2 ⟩ above, recalling that [ , ] = 0, one obtains

| 1 | ⩽ √ ∑ ⩾3 | +1-| 2 1∕2 ⟨ ⟂ 2 ⟩ 1∕2 Φ × ⟨ Θ √ 1 -  ⟂ -1 + -1 + 2 -1 -1 2 Θ -1 ⟩ 1∕2 Φ .
We now use the inequality

√ √ √ √ 1 + ∑ =1 -1 2 ⩽ 1 2 ∑ =1 2 ⩽ ∑ =1 2 , ( 5.28) 
for a collection 1 , … , of mutually commuting self-adjoint operators. Inserting (5.7) and using the Cauchy-Schwarz inequality to get

⟨ ⟂ 2 ⟩ 2 Φ ⩽ ⟨ 2 ⟂ 2 ⟩ Φ ⟨ 2 ⟩ Φ we find | 1 | ⩽ 3∕4 ⟨ 2 ⟂ 2 ⟩ 1∕4 Φ ⟨ 2 ⟩ 1∕4 Φ 1 ⟨ 2 ⟂ + 1⟩ Φ + ⟨ 2 ⟩ Θ -1 Φ 1∕2 .
Since Φ =  , we know that

⟨ 2 ⟂ 2 ⟩ Φ = ∑ , 2 2 
‖Φ , ‖ 2 ⩽ 2 ⟨ 2 ⟂ ⟩ Φ .
Moreover, the commutation relation

[ , Θ] = Θ implies ⟨ 2 ⟩ Θ -1 Φ = ⟨(Θ Θ -1 ) 2 ⟩ Φ = ⟨( -1) 2 ⟩ Φ ⩽ 2⟨ 2 + 1⟩ Φ and we deduce | 1 | ⩽ 1∕4 ⟨ 2 ⟂ ⟩ 1∕4 Φ ⟨ 2 ⟩ 1∕4 Φ 1 ⟨ 2 ⟂ + 1⟩ Φ + ⟨ 2 ⟩ Φ 1∕2 ⩽ 1∕4 ⟨ 2 ⟂ + 1⟩ Φ + ⟨ 2 ⟩ Φ .
The remainder for the term in the third line of (5.27) can be treated in the same way, completing the proof of (5.22). For any Φ ∈ 2 ( ⟂ ) we have

| | ⟨ 3  * ⟩ Φ | | ⩽ √ ⟨ 2 ⟂ + 1⟩ Φ . (5.29) and | | ⟨ 4  * ⟩ Φ | | ⩽ ⟨ 2 ⟂ ⟩ Φ . ( 5 

.30)

Proof. To prove (5.30) notice that with the notation (3.6) we have

 4  * = 2( -1) dΓ ⟂ ( ),
where is the operator of multiplication by ( -) on 2 (ℝ ) ⊗2 . Since ∈ ∞ we have

 4  * ⩽ dΓ ⟂ (1 ⊗ 1) =  ⟂ ( ⟂ -1) ⩽  2 ⟂
because second quantization preserves operator inequalities. Since 4 ⩾ 0, (5.30) follows.

Let us now prove (5.29). Taking the second quantization of the operator inequality (recall that ⩾ 0)

⟂ ⊗ ( ⟂ -+ ) ⟂ ⊗ ( ⟂ -+ ) + ( ⟂ -+ ) ⊗ ⟂ ( ⟂ -+ ) ⊗ ⟂ ⩾ 0,
for some > 0, we deduce

∑ , , ⩾3 + † + † + h.c. ⩽ dΓ ⟂ * | + | 2  + + 1 ∑ , , , ⩾3 † † ⩽  ⟂  + + 1 ∑ , , , ⩾3 † † .
In the last step we used the inequality

dΓ ⟂ * | + | 2 ⩽  ⟂ , which holds by boundedness of * | + | 2 .
We can use the same arguments for the part of 3 that contains -. Adding the two results and multiplying by ∕( -1) we thus obtain

3 ⩽ -1  ⟂ ( + +  -) + 4 4
Using the fact that  + +  -⩽ on ℌ , and then conjugating by  , this implies

 3  * ⩽  ⟂ + -1  4  *
and plugging (5.30) in the last term gives

 3  * ⩽  ⟂ + -1  2 ⟂ .
We optimize this bound by choosing = -1∕2 . Repeating the same proof with replaced byand with reversed inequalities, this yields

- √  ⟂ +  2 ⟂ ⩽  3  * ⩽ √  ⟂ +  2 ⟂ .
Using also 2 ⟂ ⩽  2 ⟂ + 1, this concludes the proof.

Quadratic terms.

The part 2 of that contains exactly two ♯ with ⩾ 3 is composed of 24 terms which can be combined together by using the equalities = = = and the identities

∑ . ⩾3 ( + ) † = dΓ ⟂ * | | 2 + 2 , = 1, 2 ∑ . ⩾3 ( 1 2 + 1 2 ) † = dΓ ⟂ * ( 1 2 ) + 12 to obtain 2 ∶= ∑ , ⩾3 -Δ + DW † + 2( -1) ∑ , ⩾3 11 † 1 † 1 + 2 12 † 1 † 2 + 22 † 2 † 2 + h.c. + -1 † 1 1 dΓ ⟂ * | 1 | 2 + 2 11 + † 2 2 dΓ ⟂ * | 2 | 2 + 2 22 + -1 † 1 2 dΓ ⟂ * ( 1 2 ) + 12 + h.c. .
The action of  on quadratic terms of the type † was given in Lemma 3.6. To deduce the action of  on terms of the type † † as the ones in 2 , we can always reduce ourselves to terms of type † by commuting operators, as in

 † 1 † 2  * =  † 1  *  † 2  * for , ⩾ 3.
This is allowed because for , ⩾ 3 the operators ♯ ♯ commute with ♯ 1 and ♯ 2 . The same argument holds for terms of the type

 † 1 † 2  * =  † 1 2  *  †  * .
Arguing in this way to commute operators, one easily deduces the expression

 2  * ∶= ∑ , ⩾3
-Δ + DW †

(5.31)

+ 2( -1) ∑ , ⩾3 11 Θ 2 √ - ⟂ + + 2 2 √ - ⟂ + + 1 2 + h.c. (5.32) + 2 ∑ , ⩾3 12 
√ - ⟂ + 2 √ - ⟂ -+ 1 2 + h.c. + h.c. (5.33) + ∑ , ⩾3 22 Θ -2 √ - ⟂ -+ 2 2 √ - ⟂ -+ 1 2 + h.c.
(5.34)

+ ( - ⟂ + ) dΓ ⟂ * | 1 | 2 + 2 11 (5.35) + ( - ⟂ -) dΓ ⟂ * | 2 | 2 + 2 22
(5.36)

+ 2Θ 2 √ - ⟂ + + 2 2 √ - ⟂ - 2 dΓ ⟂ * ( 1 2 ) + 12 + h.c. (5.37) 
If we could replace all square roots by √ ( -1)∕2 and ( - ⟂ ± ) by -1, then the expression on the right hand side would coincide with

ℍ + +  ⟂ ∶= dΓ ⟂ -Δ + DW + 2 * | 1 | 2 + 2 * | 2 | 2 + 11 + 22 + 2 ∑ , ⩾3
12 + * ( 1 2 ) Θ 2 † + h.c.

(5.38) ). The +  ⟂ term is there to compensate a term which we included in the definition of ℍ but that does not come from  2  * . We will prove the following result, showing that such a replacement can be done at the expense of negligible remainders.

+ 2 ∑ , ⩾3 ( 11 ) 

Proposition 5.6 (Quadratic terms).

Let Φ ∈ 2 ( ⟂ ) be such that Φ =  for some ∈ ℌ . Then

| | | ⟨ 2  * ⟩ Φ -⟨ℍ⟩ Φ -+ ⟨ ⟂ ⟩ Φ | | | ⩽ √ ⟨  2 ⟂ + 2 + 1 ⟩ Φ , ( 5.39) 
where ℍ was defined in (3.18).

Proof. The result is proven if we show the following three general estimates:

• Controlling terms (5.32)-(5.34): For every , ∈ {1, 2}, 1 , 2 ∈ ℤ, ∈ {-2, 0, 2}, and

1 , 2 ∈ {-1, 1}, | | | | 2( -1) ⟨ ∑ , ⩾3 Θ × √ - ⟂ + 1 + 1 2 √ - ⟂ + 2 + 2 2 - -1 2 ⟩ Φ + h.c. | | | | ⩽ ⟨ 2 ⟂ ⟩ 1∕2 Φ ⟨  4 ⟂ 3 + 4 3 +  2 ⟂ + 2 + 1 ⟩ 1∕2 Φ .
(5.40)

• Controlling terms (5.35)-(5.36): For every ∈ {1, 2},

| | | | -1 ⟨ ( - ⟂ ± ) -( -1) dΓ ⟂ * | | 2 + 2 ⟩ Φ | | | | ⩽ ⟨  2 ⟂ + 2 + 1 ⟩ 1∕2 Φ ⟨ 2 ⟂ ⟩ 1∕2 Φ .
(5.41)

• Controlling the last term (5.37): Finally,

| | | | -1 ⟨ Θ 2 √ - ⟂ + + 2 2 √ - ⟂ - 2 - -1 2 × dΓ ⟂ * ( 1 2 ) + 12 ⟩ Φ + h.c. | | | | ⩽ ⟨ 2 ⟂ ⟩ 1∕2 Φ ⟨  4 ⟂ 3 + 4 3 +  2 ⟂ + 2 + 1 ⟩ 1∕2 Φ .
(5.42)

Let us prove (5.40). We have

| | | | | 2( -1) ⟨ ∑ , ⩾3 Θ × √ - ⟂ + 1 + 1 2 √ - ⟂ + 2 + 2 2 - -1 2 ⟩ Φ + h.c. | | | | | ⩽ 2( -1) ∑ , ⩾3 | | 2 1∕2 ∑ , ⩾3 ‖ Φ‖ 2 1∕2 × ⟨ Θ √ 1 -  ⟂ + 1 + 1 √ 1 -  ⟂ + 2 + 2 -1 + 1 2 Θ - ⟩ 1∕2 Φ ⩽ ⟨  ⟂ ( ⟂ -1) ⟩ 1∕2 Φ ⟨ Θ  4 ⟂ 4 +  2 ⟂ 2 + 1 2 + 2 2 + 4 4 Θ - ⟩ Φ
where in the first step we used the Cauchy-Schwarz inequality for the sum over , and for the 2 ( ⟂ ) scalar product, and in the second step we used (5.8), the inequality (5.28), the commutation of  ⟂ and , and the bound  2 ⟂ 2 ⩽ 2 2 . The proof of (5.40) is complete if we show how to get rid of Θ. For the terms containing  ⟂ we simply use the fact that [Θ,  ⟂ ] = 0 and that Θ is unitary. For the -terms we use the identity Θ Θ -1 = -1, which implies Θ Θ -1 = ( -1) for each ∈ ℕ, and therefore

Θ 2 2 Θ -2 = ( -2) 2 ⩽ 2 + Θ 2 4 Θ -2 ⩽ ( -2) 4 ⩽ ( 4 + 2 + 1) .
This completes the proof of (5.40).

Let us now prove (5.41). We have

| | | | -1 ⟨ ( - ⟂ ± ) -( -1) dΓ ⟂ * | | 2 + ⟩ ⟨  2 ⟂ + 2 + 1 ⟩ 1∕2 Φ ⟨ 2 ⟂ ⟩ 1∕2 Φ ,
where we used the Cauchy-Schwarz inequality for the Proof of Proposition 5.2. We have the decomposition

ℍ -ℍ ( Λ ) right -ℍ ( Λ ) lef t -dΓ ⟂ > Λ ℎ MF -+ > Λ = ℍ 12 + > Λ + 3 ∑ =1 Ξ (5.43)
where

ℍ 12 ∶= 2 ∑ , ⩾3 * ( 1 2 ) -2 + Θ 2 + Θ -2 † + 2 ∑ , ⩾3 12 
Θ 2 † + 2 ∑ , ⩾3 * 12 Θ -2 † (5.44) + 2 ∑ , ⩾3 12 † † + 2 ∑ , ⩾3 * 12 
> Λ ∶= ∑ , >2 Λ +2 11 + 22 † + ∑ 3⩽ ⩽2 Λ +2 >2 Λ +2 11 + 22 † + h.c. + 2 ∑ , >2 Λ +2 11 Θ -2 + 22 Θ 2 † † + h.c.
(5.45)

+ ∑ 3⩽ ⩽2 Λ +2 >2 Λ +2 11 Θ -2 + 22 Θ 2 † † + h.c. Ξ 1 ∶= ∑ 1⩽ , ⩽ Λ ⟨ , , ℎ MF -+ , ⟩ † , , + h.c. (5.46) Ξ 2 ∶= ∑ 1⩽ , ⩽ Λ ⟨ , , 11 + 22 , ⟩ † , , + h.c.
(5.47)

+ ∑ 1⩽ , ⩽ Λ ⟨ , , 11 , ⟩ Θ -2 + ⟨ , , 22 , ⟩ Θ 2 † , † , + h.c. Ξ 3 ∶= ∑ 1⩽ , ⩽ Λ ⟨ , , 22 , ⟩ † , , + ⟨ , , 11 , ⟩ † , ,
(5.48)

+ 2 ∑ 1⩽ , ⩽ Λ ⟨ , , 22 , ⟩ Θ 2 † , † , + ⟨ , , 11 , ⟩ Θ -2 † , † , + h.c. .
Let us briefly explain the rationale behind the above decomposition. First, in view of the definitions of ℎ MF and of the right and left modes , and , , see (2.6) and (2.26), one has

dΓ ⟂ -Δ + DW + 2 * | 1 | 2 + 2 * | 2 | 2 -+ = ∑ 1⩽ , ⩽ Λ ⟨ , , (ℎ MF -+ ) , ⟩ † , , + ⟨ , , (ℎ MF -+ ) , ⟩ † , , + Ξ 1 + dΓ ⟂ > Λ (ℎ MF -+ ) > Λ -dΓ ⟂ * ( 1 2 ) , (5.49)
where the sum in the first line contains the terms involving ℎ MF -+ in ℍ

( Λ )
right and ℍ ( Λ ) lef t , see (5.3) and (5.4). One can proceed similarly for the terms involving 11 and 22 in the Bogoliubov Hamiltonian (5.38). Now, we gather in ℍ 12 all those terms that involve the operators * ( 1 2 ) and 12 (including the last term in (5.49)) For ℍ 12 we will prove a cutoff-independent quantitative bound. We then gathered in dΓ ⟂ > Λ ℎ MF -+ > Λ and > Λ those terms of ℍ -ℍ 12 for which one or two indices and are larger than the cutoff Λ . We will show that the contribution of > Λ is negligible, while dΓ ⟂ > Λ ℎ MF -+ > Λ , being non-negative, can be dropped for a lower bound. For the part of ℍ -ℍ 12 in which sums run over modes below the energy cutoff Λ , we want to control those terms that contain matrix elements that couple 'right' modes with 'left' modes. They are of different types, and we collected them in Ξ 1 , Ξ 2 , and Ξ 3 . The remaining terms precisely give ℍ

( Λ ) right + ℍ ( Λ )
lef t . We will show that (expectations of) all terms in the right hand side of (5.43) are controllable in the limit → ∞ followed by → ∞. We first prove that

| | | ⟨ ℍ 12 ⟩ Φ | | | ⩽ 1∕2- ⟨ 2 ⟂ + 1⟩ Φ .
(5.50)

For the first two lines of ℍ 12 we write

1 =∶ | | | | ⟨ 2 ∑ , ⩾3 * ( 1 2 ) -2 + Θ 2 + Θ -2 + 12 Θ 2 + * 12 Θ -2 † ⟩ Φ | | | | = 2 | | | | ⟨ dΓ ⟂ * ( 1 2 ) (-2 + Θ 2 + Θ -2 ) + dΓ ⟂ 12 Θ 2 + h.c. ⟩ Φ | | | | ⩽ 2 ‖ ‖ ‖ (-2 + Θ 2 + Θ -2 )Φ ‖ ‖ ‖ ‖ ‖ ‖ dΓ ⟂ * ( 1 2 ) Φ ‖ ‖ ‖ + ‖ ‖ ‖ Θ 2 Φ ‖ ‖ ‖ ‖ ‖ ‖ dΓ ⟂ * 12 Φ ‖ ‖ ‖ .
Recalling that the norms of * ( 1 2 ) and 12 were estimated in (5.9) and (5.10), arguing as in Subsection 5.3 we find

1 ⩽ 1∕2- ⟨ 2 ⟂ ⟩ Φ .
For the other terms of ℍ 12 we write

2 =∶ | | | | ⟨ 2 ∑ , ⩾3 12 † † + h.c. ⟩ Φ | | | | ⩽ ‖Φ‖ ‖ ‖ ‖ ‖ ∑ , ⩾3 12 Φ ‖ ‖ ‖ ‖ .
Since we assumed that all elements of the basis { } are real-valued functions, we have

⟨ , 12 ⟩ ≡ ⟨ ⊗ 1 , 2 ⊗ ⟩ = ⟨ ⊗ , 2 ⊗ 1 ⟩
and this gives

‖ ‖ ‖ ‖ ∑ , ⩾3 ⟨ , 12 ⟩ Φ ‖ ‖ ‖ ‖ 2 = ∑ , , , ⩾3 ⟨ , 12 ⟩ ⟨ , * 12 ⟩ ⟨ † † ⟩ Φ = ∑ , , , ⩾3 ⟨ ⊗ , 2 ⊗ 1 ⟩ ⟨ 2 ⊗ 1 , ⊗ ⟩ ⟨ † † ⟩ Φ = ⟨ dΓ ⟂ | 2 ⊗ 1 ⟩⟨ 2 ⊗ 1 | ⟩ Φ . However, ‖ ‖ ‖ | 1 ⊗ 2 ⟩⟨ 1 ⊗ 2 | ‖ ‖ ‖ 2 op = sup ∈ 2 (ℝ 2 ), ‖ ‖=1 |⟨ , 1 ⊗ 2 ⟩| 2 ⟨ 1 ⊗ 2 , 2 1 ⊗ 2 ⟩ ⩽ ∫ ( -) 2 | 1 ( )| 2 | 2 ( )| 2 2 ⩽ 2-,
where the last step is due to (4.7). Since the second quantization preserves operator inequalities, we conclude

‖ ‖ ‖ ‖ ∑ , ⩾3 ⟨ , 12 ⟩ Φ ‖ ‖ ‖ ‖ 2 ⩽ 1- ⟨ 2 ⟂ ⟩ Φ , from which 2 ⩽ 1∕2- ⟨ 2 ⟂ ⟩ Φ .
This completes the proof of (5.50), since the expectation in the right hand side is uniformly bounded by our assumption (5.5).

We now explain how to bound > Λ , focusing, as an example, on the term

(1) > Λ ∶= ∑ 3⩽ ⩽2 Λ +2 >2 Λ +2 11 Θ -2 † † + h.c. . We have | | | | ⟨ (1) > Λ ⟩ Φ | | | | ⩽ 2 ∑ , ⩾1 | | ⟨ , 11 ⟩ | | 2 1∕2 ∑ ⩾3, >2 Λ +2 ‖ ‖ Φ ‖ ‖ 2 1∕2 ‖ ‖ ‖ Θ -2 Φ ‖ ‖ ‖ ⩽ 2 Tr( 2 11 ) 1∕2 ‖Φ‖ ⟨  ⟂ ∑ >2 Λ +2 † ⟩ 1∕2 Φ .
The first bound follows from the Cauchy-Schwarz inequality both for the sum over , and for the 2 ( ⟂ )-scalar product. The second one follows from the fact that 11 and thus 2 11 are trace-class, as proven in Lemma 5.3, and by commuting † with and ignoring a negative term coming from the commutator. For the last square root we write

⟨  ⟂ ∑ >2 Λ +2 † ⟩ Φ ⩽ 1 2 Λ +2 -+ ⟨  ⟂ ∑ >2 Λ +2 -+ † ⟩ Φ .
and both terms in the right hand side converge to zero as → ∞ by (A.8) and (A.9). The expectations of 22 in Ξ 2 coincide with those of 11 by reflection symmetry, so the same argument applies. For Ξ 3 we argue similarly by noticing that

| | | ⟨ , , 22 , ⟩ | | | ⩽ ⟨ | , |, | 2 | ⟩⟨ | , |, | 2 | ⟩ ⟨ | , |, | 2 | ⟩ ⩽ ∫ 1 ⩽0 | , ( )| 2 1∕2 + ∫ 1 ⩾0 | 2 ( )| 2 1∕2
and the right hand side of the second bound converges to zero as → ∞, once again by (A.8) and (A.9). These arguments prove that, for = 1, 2, 3,

| | | ⟨ Ξ ⟩ Φ | | | ⩽ Λ (1) as → ∞ (5.54)
for some constant Λ that does not depend on . Comparing this, (5.50), and (5.51), with (5.43), proves (5.6).

5.5. Reduction to right and left modes: linear terms. We now prove that the main contribution to the linear terms surviving in the left hand side of (5.22) actually comes from terms that couple 1 with the modes , and 2 with the modes , . As previously we also show show that we can neglect the contribution of modes beyond the energy cutoff Λ . First, we remark that using the definition of ♯ 's and ♯ 's from (3.19) we can rewrite the linear terms of Proposition 5.1 as

√ 2( -1) ∑ ⩾3 +1- + h.c. + √ 2( -1) ∑ ⩾3 +2- + h.c.

Proposition 5.7 (Reduction of linear terms to right and left modes).

Assume Φ ∈ 2 ( ⟂ ) satisfies

⟨  ⟂ + 2 + dΓ ⟂ ℎ MF -+ ⟩ Φ ⩽ uniformly in . ( 5 

.55)

For every energy cutoff Λ large, let Λ be the largest integer such that 2 Λ +2 ⩽ Λ, where { } are the eigenvalues of ℎ MF . We have

• Large cutoff limit. | | | | | | √ 2( -1) ∑ >2 Λ +2 +1- ⟨ ⟩ Φ + +2- ⟨ ⟩ Φ + h.c. | | | | | | ⩽ 2 Λ +2 -+ 1∕2 (5.56) 2( -1) ∑ >2 Λ +2 +1- ⟨ + h.c. ⟩ Φ | | | | | | ⩽ 2 Λ +2 -+ 1∕2 ,
which is the desired bound.

Let us now prove (5.57), again by focusing on the first bound only. By a change of basis we have

∑ 3⩽ ⩽2 Λ +2 +1- ⟨ + h.c.⟩ Φ √ 2( -1) = ∑ 1⩽ ⩽ Λ ⟨ 1 , * ( + -) , ⟩ ⟨ , + h.c. ⟩ Φ √ 2( -1) + ∑ 1⩽ ⩽ Λ ⟨ 1 , * ( + -) , ⟩ ⟨ , + h.c. ⟩ Φ √ 2( -1)
.

(5.59)

The second sum in the right hand converges to zero in the limit → ∞ because each summand does, and the sum is finite. Indeed, for instance

| | | ⟨ 1 , * ( + -) , ⟩ | | | ⩽ ⟨ | 1 |, | , |⟩ and 
the right hand side tends to zero as → ∞ by (5.53). The expectations on the state Φ in the sum are well defined thanks to the assumption (5.55). We thus have

| | | | | | ∑ 1⩽ ⩽ Λ ⟨ 1 , * ( + -) , ⟩ ⟨ , + h.c. ⟩ Φ √ 2( -1) | | | | | | ⩽ Λ (1) 
, which proves (5.57).

A PRIORI ESTIMATES ON THE GROUND STATE OF

Based on the previous results we can now deduce non-trivial information on the ground state gs of , in particular that ⟨( 1 - 2 ) 2 ⟩ gs ⩽ and ⟨ 2 ⟂ ⟩ gs ⩽ with a constant independent of . Proposition 6.1 (Number and energy of excitations).

⟨ ⟂ ⟩ gs ⩽ (6.1) 
⟨dΓ ⟂ (ℎ MF -+ )⟩ gs ⩽ (6.2) 
⟨ -⟩ gs ⩽ min , -1-. ( 6.3) 
Proposition 6.2 (Second moment of excitations).

⟨  2 ⟂ ⟩ gs ⩽ ⟨  1 - 2 2 ⟩ gs + (6.4) ⟨  ⟂ dΓ ⟂ ℎ MF -+ ⟩ gs ⩽ ⟨  1 - 2 2 ⟩ gs + . ( 6.5) 
Proposition 6.3 (Variance in the two-mode subspace).

⟨  1 - 2 2 ⟩ gs ⩽ . ( 6.6) 
Inserting (6.6) in (6.4) and (6.5) yields

⟨  2 ⟂ ⟩ gs ⩽ ⟨  ⟂ dΓ ⟂ ℎ MF -+ ⟩ gs ⩽ (6.7) 
As a consequence of (6.3), (6.6), and (6.7), if one applies Proposition 5.1 to the vector Φ =  gs , the error terms in the right hand side of (5.1) are small, being bounded by

1∕4 + -2 1∕2 (6.8)
The rest of this section is devoted to the proofs of Propositions 6.1-6.3. The general strategy for the first two results is similar to the single-well case (that is, the case of fixed ) and some arguments are accordingly borrowed from [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF]. The two-mode nature of our low energy space however calls for additional ingredients, in particular as regards the proof of Proposition 6.2. Proposition 6.3 uses as input our results of Sections 4 and 5.

We will use several times Onsager's inequality (see e.g. [START_REF] Rougerie | Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger[END_REF]Lemma 2.6].)

1 ∑ ≠ ( -) ⩾ -∬ ( -)| + ( )| 2 | + ( )| 2 + 2 ∑ =1 ∫ ( -)| + ( )| 2 -(0). (6.9) 
Proof of Proposition 6.1. Using (6.9) and then the definition of + from (2.8) we get (since the interaction term in the -body Hamiltonian (1.2) is non-negative, we may replace the prefactor ∕( -1) by ∕ )

⟨ ⟩ gs ⩾ ⟨ dΓ(ℎ MF ) ⟩ gs - 2 ∬ ( -)| + ( )| 2 | + ( )| 2 - ⩾ ⟨ dΓ(ℎ MF -+ ) ⟩ gs +  H [ + ] - > ⟨ dΓ ⟂ (ℎ MF -+ ) ⟩ gs +  H [ + ] -. (6.10)
The last step is due to the identity

dΓ(ℎ MF -+ ) = ( --+ ) -+ dΓ ⟂ (ℎ MF -+ ) (6.11) 
and to the fact that -> + . On the other hand, the factorized trial function ⊗ + yields the energy upper bound

⟨ ⟩ gs ⩽  H [ + ], (6.12) 
and putting together (6.10) and (6.12) we find

⟨ dΓ ⟂ (ℎ MF -+ ) ⟩ gs ⩽ , (6.13) 
which is precisely (6.2). Recalling the spectral decomposition (2.25), and the fact that -+ ⩾ for ⩾ 3 (by Theorem A.1), we deduce

⟨ dΓ ⟂ (ℎ MF -+ ) ⟩ gs ⩾ ⟨ ⟂ ⟩
gs , which, together with (6.2), proves (6.1).

To prove (6.3) we use (6.11) again and notice that, by the spectral properties of

ℎ MF from Theorem A.1, ⟨ dΓ(ℎ MF -+ ) ⟩ gs ⩾ ( --+ )⟨ -⟩ gs ⩾ 1+ ⟨ -⟩
gs . This, compared with (6.10) and (6.12), yields (6.3) after recalling that ⟨ -⟩ gs ⩽ also trivially holds.

Proof of Proposition 6.2. We claim that

⟨  ⟂ dΓ(ℎ MF -+ ) ⟩ gs ⩽ ⟨ 2 ⟂ ⟩ gs + ⟨  1 - 2 2 ⟩ gs + (6.14) 
for > 0 arbitary and for some constants , > 0. This implies the bound (6.4) because dΓ(ℎ MF -+ ) ⩾  ⟂ on 2 (ℝ ) with > 0, and because ℎ MF commutes with  ⟂ .

To prove (6.14) we define the operators

∶= ∑ =1 * | + | 2 ( ) - -1 ∑ < ( -) + ( ) - + and = | + ⟩⟨ + | + | -⟩⟨ -| , ⟂ = 1 - with = 1, … , .
The latter project a single particle in (or out) the two-modes subspace. We also denote by ℎ MF, the operator that acts as ℎ MF on the -th variable and as the identity on all the others. We then have

⟨  ⟂ dΓ ⟂ ℎ MF -+ ⟩ gs = ⟨  ⟂ ∑ =1 ℎ MF, -+ ⟩ gs = ⟨ ⟂ ⟩ gs = ⟨ ⟂ 1 ⟩ gs (6.15) 
where we have used gs = ( ) gs in the second equality and the fact that gs is symmetric under permutations of variables in the last one. We split the operator into the part which commutes with ⟂ 1 and the part which does not, according to = +

where

∶= ∑ =2 * | + | 2 ( ) - -1 ∑ 2⩽ < ⩽ ( -) + - + and ∶= * | + | 2 ( 1 ) - -1 ∑ =2 ( 1 -).
We will estimate separately the contributions of the terms containing and inside (6.15). For the contribution of the term containing we use (6.9) for -1 variables, that is,

-1 ∑ 2⩽ < ⩽ ( -) ⩾ - -1 2 ++++ + ∑ =2 * | + | 2 ( ) -.
We also take advantage of the upper bound

⟨ ⟩ gs ⩽ + - 2 ++++
, which follows immediately from (6.12) if we recall the expression (2.8) of + . The two last formulae yield ⩽ . Since commutes with ⟂ 1 we have, using also (6.1),

⟨ ⟂ 1 ⟩ gs ⩽ ⟨ ⟂ ⟩ gs ⩽ . (6.16)
To estimate the contribution of , we decompose

⟨ ⟂ 1 ⟩ gs = ⟨ ⟂ 1 * | + | 2 ( 1 ) -( 1 -2 ) ⟩ gs = ⟨ ⟂ 1 ⟂ 2 * | + | 2 ( 1 ) -( 1 -2 ) ⟩ gs + ⟨ ⟂ 1 2 * | + | 2 ( 1 ) -( 1 -2 ) ⟂ 2 ⟩ gs + ⟨ ⟂ 1 2 * | + | 2 ( 1 ) -( 1 -2 ) 2 ⟩ gs =∶ Term 1 + Term 2 + Term 3 .
(6.17)

We estimate the last three terms separately. For the first one we use the Cauchy-Schwarz inequality and the fact that and * | + | 2 are bounded to get

| | | Term 1 | | | ⩽ ⟨ ⟂ 1 ⟂ 2 ⟩ 1∕2 gs = ⟨ ⟂ 1 1 -1 ∑ =2 ⟂ ⟩ 1∕2 gs ⩽ ⟨ 2 ⟂ ⟩ 1∕2 gs ⩽ ⟨ 2 ⟂ ⟩
gs + with > 0 arbitary, where the last bound follows from √ ⩽ + 1∕(4 ) for any > 0. For the second term in (6.17) we argue similarly to get

| | | Term 2 | | | ⩽ ⟨ ⟂ 1 ⟩ 1∕2 gs ⟨ ⟂ 2 ⟩ 1∕2 gs = ⟨ ⟂ ⟩ gs ⩽
, where the last bound follows from (6.1).

The third term in (6.17) is more delicate, since it contains only one ⟂ . We write

Term 3 = ⟨ ⟂ 1 | -⟩⟨ -| 2 * | + | 2 -| -| 2 ( 1 ) ⟩ gs - ⟨ ⟂ 1 | + ⟩⟨ -| 2 + | -⟩⟨ + | 2 * ( + -)( 1 ) ⟩ gs =∶ Term 3,1 + Term 3,2 , (6.18) 
where we have used several times the operator identity

| ⟩⟨ | 2 ( 1 -2 ) | ⟩⟨ | 2 = | ⟩⟨ | 2 * ( )( 1 )
. Use the Cauchy-Schwarz and Young inequalities, then the 1 -estimate (A.1), and then the a priori estimate (6.3), we find

| | Term 3,1 | | ⩽ ⟨ ⟂ 1 ⟩ 1∕2 gs ⟨ | -⟩⟨ -| 2 ⟩ 1∕2 gs ‖ ‖ ‖ | + | 2 -| -| 2 ‖ ‖ ‖ 1 ⩽ 1-∕2 ⟨ -⟩ 1∕2 gs ⟨ ⟂ ⟩ 1∕2 gs ⩽ 1-∕2 min , 1 1+ 1∕2 ⟨ ⟂ ⟩ 1∕2 gs ⩽ 1∕2- ⟨ ⟂ ⟩ 1∕2 gs ⩽ 1∕2-.
Recalling that

∑ =1 | + ⟩⟨ -| + | -⟩⟨ + | = † + -+ † -+ =  1 - 2
one may write

-Term 3,2 = -1 ⟨ ⟂ 1 * ( + -)( 1 )  1 - 2 ⟩ gs - - 1 
⟨ ⟂ 1 * ( + -)( 1 ) | + ⟩⟨ -| 1 + | -⟩⟨ + | 1 ⟩ gs .
The second summand is clearly bounded by a constant and thus we include it into the error. For the first one we write, using the Cauchy-Schwarz inequality and the boundedness of * ( + -), -1

| | | ⟨ ⟂ 1 * ( + -)( 1 )  1 - 2 ⟩ gs | | | ⩽ ⟨ ⟂ 1 ⟩ 1∕2 gs ⟨  1 - 2 2 ⟩ 1∕2 gs .
We finally get

| | Term 3,2 | | ⩽ ⟨ ⟂ ⟩ 1∕2 gs ⟨( 1 - 2 ) 2 ⟩ gs 1∕2 ⩽ -1∕2 ⟨  1 - 2 2 ⟩ 1∕2 gs ,
where we have used (6.1) in the last bound. All in all we proved

| | | Term 3 | | | ⩽ -1∕2 ⟨  1 - 2 2 ⟩ 1∕2 gs + ,
and therefore

⟨ ⟂ 1 ⟩ gs ⩽ ⟨ 2 ⟂ ⟩ gs + ⟨  1 - 2 2 ⟩ gs + . ( 6.19) 
The annouced bound (6.14) then follows from (6.16) and (6.19). We deduce (6.4) by choosing small enough. Plugging (6.4) inside (6.14) yields (6.5) as well.

Proof of Proposition 6.3. We combine Proposition 5.1 with a computation similar to Proposition 4.4 to obtain an energy upper bound. For a corresponding lower bound we use Propositions 4.2 and 4.4 to control the two-mode energy, and argue that the excitation energy must be uniformly bounded with respect to . Recall the trial state gauss from (4.20). We apply (5.1) with Φ =  gauss . Since gauss has no excitation in the subspace ⟂ ± ℌ ( gauss = 0 for any ⩾ 3), we get

 ⟂  gauss = ℍ  gauss = 0.
The expectation of the linear terms in in the left hand side of (5.1) also vanish for = gauss . Furthermore, we will use

1 ⟨ 2 ⟩  gauss = 1 ⟨  1 - 2 2 ⟩ gauss ⩽ 1 2 = √ --+ ⩽ 1∕2-,
where the first bound was proven in (4.32). By the variational principle for the ground state problem of we find

( ) ⩽ ⟨ ⟩ gauss ⩽ ⟨ 2-mode ⟩ gauss + 1∕4 ⩽ 0 + + + -- 2 + 1∕2-+ 1∕4 ⩽ 0 + + + -- 2 + (6.20) 
applying successively (5.1) and (4.23).

For a lower bound we apply (5.1) with Φ = Φ gs =∶  gs , obtaining

| | | ( ) -⟨ 2-mode + +  ⟂ ⟩ gs -⟨ℍ⟩ Φ gs -⟨linear terms⟩ Φ gs | | | ⩽ error terms.
In this inequality, (i) The error terms are bounded by using (6.3), the identity

⟨ 2 ⟩ Φ gs = ⟨( 1 - 2 ) 2 ⟩
gs , and the inequality ⟨ -⟩ gs ⩽ , yielding

error terms ⩽ 1∕4 + 1- ⟨( 1 - 2 ) 2 ⟩ gs + 1 .
(ii) The expectation of 2-mode + +  ⟂ is bounded from below by using the lower bound of Proposition (4.2),

⟨ 2-mode + +  ⟂ ⟩ gs ⩾ 0 + + + -- 2 + -1 ⟨ ( 1 - 2 ) 2 ⟩ gs - 1-⟨  ⟂ ⟩ gs .
Thanks to (6.1), the term in the second line can be replaced by -. (iii) The expectation of ℍ is bounded from below using the fact that ℍ is bounded below independently of (this can easily seen as in [START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF]Equation (A.6)], keeping in mind that ℎ MF -+ has a finite gap on the excited subspace). (iv) The expectation of linear terms can be bounded by using the Cauchy-Schwarz inequality as follows

| | | | | √ 2( -1) ∑ ⩾3 +1- ⟨ Θ + h.c. ⟩ Φ gs + +2- ⟨ Θ -1 + h.c. ⟩ Φ gs | | | | | ⩽ 2 √ 2( -1) ∑ ⩾3 | +1-| 2 1∕2 ∑ ⩾3 ‖ ‖ ‖ Φ gs ‖ ‖ ‖ 2 1∕2 ‖ ‖ ‖ Θ -1 Φ gs ‖ ‖ ‖ + 2 √ 2( -1) ∑ ⩾3 | +2-| 2 1∕2 ∑ ⩾3 ‖ ‖ ‖ Φ gs ‖ ‖ ‖ 2 1∕2 ‖ ‖ ‖ ΘΦ gs ‖ ‖ ‖
.

The sums of | + -| 2 are bounded by constants thanks to (5.7). The other sums equal ⟨ ⟂ ⟩ gs , for which we use (6.1). Finally, thanks to the commutation relation (3.15) one has

‖ Θ ±1 Φ gs ‖ 2 = ⟨( 1 - 2 ± 1) 2 ⟩ gs ⩽ 2⟨( 1 - 2 ) 2 ⟩ gs + 2 and thus | | | ⟨ Linear terms ⟩ Φ gs | | | ⩽ ⟨  1 - 2 2 ⟩ gs +
for any > 0 arbitrarily small. Overall we find

⩾ 0 + + + -- 2 + -1 ⟨  1 - 2 2 ⟩ gs -,
for a suitable small enough positive constant . Notice that we used the fact that the constant in (4.3) satisfies ⩾ > 0 independently of thanks to the estimates of Lemma 4.1, Comparing this with (6.20) gives the desired (6.6).

SHIFTED HAMILTONIANS AND LOWER BOUND

Shifted CCR. Let us introduce the notation

ℍ ( ) right,shif t ∶= ℍ ( ) right + √ 2( -1) ∑ 1⩽ ⩽ ⟨ 1 , * ( + -) , ⟩ , + h.c. ℍ ( ) lef t,shif t ∶= ℍ ( ) lef t + √ 2( -1) ∑ 1⩽ ⩽ ⟨ 2 , * ( + -) , ⟩ , + h.c. . (7.1)
The linear terms are those appearing in (5.1) up to a change of basis from { } ⩾3 to the right and left mode basis { , , , } ⩾1 ), where we have ignored the modes beyond the cutoff and small error terms, as justified in Proposition 5.7.

The estimates of Propositions 5. , and ̃ ♯ , , up to a constant term. We will do this for each fixed , not necessarily the Λ from Proposition 5.2.

From now on we will use the notation { , } or { , } to indicate that the mode , or , intervene in an expectation value. For example, for any operator on 2 (ℝ ),

{ , }{ , } = ⟨ , , , ⟩ . 
Similarly,

{ , } { , } = ⟨ ⊗ , , ⊗ , ⟩
, and so on.

Definition 7.1 (Shifted creators and annihilators).

For any ⩾ 1 we define

̃ , ∶= , + ̃ † , ∶= † , + (7.3) 
where , , = 1, … , , are real numbers whose values will be given below.

A simple calculation using the commutation relations (3.15), (3.20) yields Lemma 7.2 (Commutations relations for shifted operators).

One has

[ ̃ , , ̃ † , ] = - , - † , [ ̃ , , ̃ , ] = - , + , ( 7.4) 
Similar commutation relations, with straightforward adaptations, hold for the ̃ ♯ , . We define the following quadratic Hamiltonians, obtained from (3.21) and (3.22) by replacing the creation and annihilation operators ♯ and ♯ by the shifted creators and annihilators (7.3),

H( ) right ∶= 1 2 ∑ 1⩽ , ⩽ ℎ MF -+ + 11 { , }{ , } ̃ † , ̃ , + ̃ , ̃ † , + 2 
∑ 1⩽ , ⩽ 11 { , }{ , } ̃ † , ̃ † , + ̃ , ̃ , (7.5) H( ) lef t ∶= 1 2 ∑ 1⩽ , ⩽ ℎ MF -+ + 22 { , }{ , } ̃ † , ̃ , + ̃ , ̃ † , + 2 
∑ 1⩽ , ⩽ 22 { , }{ , } ̃ † , ̃ † , + ̃ , ̃ , , (7.6) 
where we have ignored the modes beyond the cutoff and symmetrized the terms involving one creator and one annihilator.

Let us introduce the orthogonal projections

,⩽ ∶= ⩽ = ⩽ = ∑ 1⩽ ⩽ | , ⟩⟨ , | (7.7) 
,⩽

∶= ⩽ = ⩽ = ∑ 1⩽ ⩽ | , ⟩⟨ , |. (7.8) 
We will show the following result.

Proposition 7.3 (Shifted Hamiltonians).

For any Φ ∈ 2 ( ⟂ ) we have

| | | | ⟨ ℍ ( ) right,shif t ⟩ Φ - ⟨ H( ) right ⟩ Φ + 1 2 Tr ,⩽ (ℎ MF -+ + 11 ) + 2 2( -1) ⟨ 1 , 11 ,⩽ 11 1 ⟩ ⟨ 2 ⟩ Φ | | | | ⩽ √ ⟨ ⟂ ⟩ Φ + 1∕2- ⟨ 2 ⟩ Φ (7.9)
where ,⩽ is defined by ( ) right together with the linear terms coincides, up to remainders, with H( ) right minus a constant term given by the trace in (7.9) and minus a term proportional to 2 2 . The latter term will be absorbed using the variance term from 2-mode which is proportional to , and H( ) right minus the constant term will give the correct Bogoliubov energy in the lower bound. Note that the trace in the constant term is finite because we are restricting ourself to modes ⩽ .

Proof. Using the commutation relations (7.4) and [ ̃ , , ] = [Θ, ] , = -, one finds that ℍ ( ) right,shif t is given in terms of the shifted creators and annihilators ̃ ♯ by

ℍ ( ) right,shif t = 1 2 ∑ 1⩽ , ⩽ ℎ MF -+ + 11 { , }{ , } ̃ † , ̃ , + ̃ , ̃ † , + 2 
∑ 1⩽ , ⩽ 11 { , }{ , } ̃ † , ̃ † , + ̃ , ̃ , - 1 2 Tr ,⩽ (ℎ MF -+ + 11 ) - ∑ 1⩽ ⩽ ∑ 1⩽ ⩽ ℎ MF -+ + 2 11 { , }{ , } - √ 2( -1) +1-{ , } ̃ † , + ̃ , + ∑ 1⩽ ⩽ ∑ 1⩽ ⩽ ℎ MF -+ + 2 11 { , }{ , } - 2 √ 2( -1) +1-{ , } 2 + 1 2 ∑ 1⩽ ⩽ ∑ 1⩽ ℎ MF -+ + 2 11 { , }{ , } - 2 √ 2( -1) +1-{ , } + † . (7.
12)

The first and second lines in the right hand side precisely coincide with H( ) right defined in (7.5) minus the constant term -Tr ,⩽ (ℎ MF -+ + 11 ) ∕2. The condition for the vanishing of the linear terms in the third line is

∑ 1⩽ ⩽ ℎ MF -+ + 2 11 { , }{ , } = √ 2( -1) +1-{ , } , (7.13) 
which leads to (7.11), using the projection ,⩽ defined in (2.27) and (7.10). With this choice, the expectation in Φ of the last line in (7.12) becomes

Φ = - √ 2( -1) ∑ 1⩽ ⩽ +1-{ , } ⟨ , + , † ⟩ Φ .
This can be bounded with the help of the Cauchy-Schwarz inequality and the boundness of * ( + -) as in the proofs of Sec. 5, that is,

| Φ | ⩽ √ ∑ ⩾1 | +1-{ , } | 2 1 2 ∑ ⩾1 ‖ , Φ‖ 2 1 2 ⩽ √ ⟨ ⟂ ⟩ 1∕2 Φ ,
The lower bound (7.15) is one of the main points in which our proofs significantly deviate from the standard techniques of derivation of Bogoliubov theory. Indeed, the Hamiltonian Hright (with or without cutoff) is defined in terms of operators which do not satisfy an exact CCR (see Lemma 7.2 above). For this reason, the techniques that are normally used to diagonalize quadratic Hamiltonians (see e.g. [21, Appendix A]) are not directly applicable here, and we thus need slightly different methods in order to recover the correct energy Bog in (7.15). We will adopt a method already used in [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF], whose main point is to perform a suitable linear symplectic transformation mixing creators and annihilators (Bogoliubov transformation). After such a transformation the original Hamiltonian is brought into a diagonal part in the new creation and annihilation opertors ♯ , and a part containing commutators of these operators. If the ̃ ♯ , 's were satisfying the CCR, then the same would be true for the ♯ , 's and after the transformation the Hamiltonian would have the form ∑ † , , + Bog . In our case, however, this is not true, and the commutators will be corrected by terms that need to be controlled. Since we work here with a finite number of modes (due to the energy cutoff), we can simplify the analysis by considering the symmetrized versions of the quadratic Hamiltonians defined in (7.5)- (7.6) are the ground state energies of the quadratic Hamiltonians (7.18) and (7.19). They are reached (see previous references again) by unique (up to a phase) ground states. Let Φ ( ),Θ= be the ground state of ℍ ( ),Θ=1 right . We have that

⟨ ℍ Θ=1 right ⟩ Φ ( ),Θ=1 = Bog ,⩽
because all terms with , ⩾ vanish, Φ ( ),Θ=1 having no components in the sectors of the Fock space corresponding to those modes. The claimed result thus immediately follows from the variational principle.

We now prove that H( ) right can be bounded from below by Bog ,⩽ , up to • a correcting term originating from the symmetrization in the creators and annihilators in the definitions (7.5) and (7.6).

• where we have used the matrix notation ̃ = ( ̃ , ) =1 and ̃ † = ( ̃ † , ) =1 for the creation and annihilation operators and denote the transpose.

Let us introduce new creators and annihilators ♯ , obtained by means of the Bogoliubov transformation

† = 1 2 -1 0 + -1 0 -1 0 --1 0 -1 0 --1 0 -1 0 + -1 0 ̃ ̃ † (7.25) 
where 0 and 0 are the real × matrices defined by 0 ∶= 1∕2 -1∕2 0 , 0 ∶= ( -1 0 ) = -1∕2 1∕2 0 with 0 the orthogonal × matrix diagonalizing ,

0 0 = Λ = diag( ) . The inverse transformation is ̃ ̃ † = † ∶= 1 2 0 + 0 0 -0 0 -0 0 + 0 † . ( 7.26) 
The matrix is symplectic and diagonalizes the 2 × 2 symmetric matrix in (7.24),

+ + = Λ 0 0 Λ , ( this 
can be checked by an explicit calculation, noting that 0 ( + 2 ) 0 = 0 0 = Λ). Thus

H( ) right = 1 2 ( † ) , Λ 0 0 Λ † = ∑ =1 † , , + 1 2 ∑ =1 [ , , † , ] .
If the operators ̃ ♯ , would satisfy the CCR, the same would be true for the that we already used in Section 4. The -dependence, in turn, will be chosen so that the expectation of ℍ on  trial will coincide (up to remainders) with Bog defined in (2.29). To evaluate this part of the energy, we need a well-known lemma. Its claims follow e.g. from arguments 6 in [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF]. for suitable coefficients and . Moreover, the ground state energy of ℍ quad is

inf (ℍ quad ) = - 1 2 Tr ℎ + - √ ℎ 2 + 2ℎ 1∕2 ℎ 1∕2 . ( 8.2) 
We refer to [START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF][START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF][START_REF] Nam | Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations[END_REF][START_REF] Bach | Diagonalizing quadratic bosonic operators by non-autonomous flow equation[END_REF][START_REF] Dereziński | Bogoliubov Hamiltonians and one-parameter groups of Bogoliubov transformations[END_REF][START_REF] Dereziński | Bosonic quadratic hamiltonians[END_REF] for more details. It folllows from (8.1) that we have

⟨ Ω  | † Ω  ⟩ = 0, (8.3) 
i.e. particles appear only in pairs in the Bogoliubov ground state. Moreover, by using the fact that Ω  is a quasi-free state, one can show that all moments of the number operator  ⟂ = ∑ † in this state are finite, i.e., ⟨ ⟂ ⟩ Ω  < ∞ for all positive integer .

Recall the Bogoliubov Hamiltonian ℍ right for right modes, defined in (3.21). Let us consider its version in which the -translation operator Θ is formally set to the identity. This amounts to replacing [START_REF] Bhatia | Matrix Analysis[END_REF] In particular, notice that the transformation in [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF]Equation (26)] is implemented in Fock space by , where is defined before [START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF]Lemma 3]. the ♯ 's with the ♯ 's, i.e.,

ℍ Θ=1 right ∶= ∑ , ⩾1 ⟨ , , ℎ MF -+ + 11 , ⟩ † , , + 2 
∑ , ⩾1 ⟨ , , 11 , ⟩ † , † , + , , .
This operator acts on the right Fock space

⟂ = ⟂, 2 (ℝ ) , ⟂, ∶= ∑ ⩾1 | , ⟩⟨ , |. (8.4) 
Similarly, we consider the Bogoliubov Hamiltonian ℍ Θ=1 lef t for the left modes and the left Fock space ⟂ , defined by the same formulas with replaced by and 11 by 22 . We extend both operators to the full excited Fock space ⟂ by using the unitary equivalence

⟂ = ⟂, 2 (ℝ ) ⊕ ⟂, 2 (ℝ ) ≃ ⟂ ⊕ ⟂
and having ℍ Θ=1 right acting as the identity on the left Fock space (respectively ℍ Θ=1 lef t acting as the identity on the right Fock space). Applying Lemma 8. We denote by ( lef t right Ω) the component of lef t right Ω in the -particle sector of ⟂ .

We are now ready to define our trial state. To control some terms arising from Bogoliubov excitations, our choice of variance differs slightly from that of Section 4.

Definition 8.2 (Trial state with fluctuations).

We define

trial ∶= ∑ =0 ∑ | |⩽ 2 , ⊗( -+ )∕2 1 ⊗ sym ⊗( --)∕2 2 ⊗ sym Φ trial, , (8.6) 
where the coeficients , are defined by 

, = 1 -2 ∕4 2 if -+ is even and | | ⩽ 2 0 otherwise, ( 8 
Φ trial, ∶= lef t right Ω √ ∑ =0 ‖ ‖ ‖ lef t right Ω ‖ ‖ ‖ 2 . ( 8.9) 
The excitation content of trial is

 trial , = , Φ trial,
for 0 ⩽ ⩽ and | | ⩽ 2 , and zero otherwise. Note that the function of the variables Φ trial, does not depend on , and that , = , ′ for all if and ′ have the same parity. Note also that trial is normalized to one. In the rest of this subsection we prove Proposition 8.3 (Energy upper bound). Pick a sequence ( ) ∼ -with 0 < . Then, along this sequence, We first determine the expectations in the trial state of the 2-mode Hamiltonian 2-mode (Step 1), then that of the Bogoliubov Hamiltonian ℍ (Steps 2 and 3), before showing that the expectation of the linear terms and the error terms converge to zero as → ∞.

lim sup →∞ ⟨ ⟩ trial -2-mode -Bog ⩽ 0. ( 8 
Step 1: 2-mode energy of the trial state. The 2-mode Hamiltonian (4.9) does not contain operators that change the number of excitations (i.e., the index ). The only terms in 2-mode that involve the variable are those containing  ⟂ or  2 ⟂ . For example, we compute

⟨ 2 ⟂ ⟩ trial = ∑ =0 ∑ | |⩽ 2 | , | 2 2 ‖ ‖ Φ trial, ‖ ‖ 2 = ∑ =0 2 ‖ ‖ Φ trial, ‖ ‖ 2 = ⟨  2 ⟂  ⟂ ⩽ ⟩ lef t right Ω | | | | | |  ⟂ ⩽ lef t right Ω | | | | | | 2 .
The denominator in the last line tends to 1 when → ∞ and it easily follows from the previous definitions that

⟨  2 ⟂ ⟩ lef t right Ω = ⟨  2 ⟂ ⟩ lef t Ω + ⟨  2 ⟂ ⟩
right Ω . Since both moments in the right hand side are finite, it follows that ⟨ 2 ⟂ ⟩ trial ⩽ (8.12)

for a constant > 0 independent of . By the Cauchy-Schwarz inequality, this implies that ⟨ ⟂ ⟩ trial ⩽ √ . For all other terms of 2-mode in (4.9), i.e. those that only contain ♯ 1 and ♯ 2 , we will use a general formula of the type

⟨ ( ♯ 1 , ♯ 2 )⟩ trial = ∑ =0 ∑ | |⩽ 2 ∑ | ′ |⩽ 2 , ′ , ‖ ‖ Φ trial, ‖ ‖ 2 × ⟨ ⊗( -+ ′ )∕2 1 ⊗ sym ⊗( --′ )∕2 2 , ( ♯ 1 , ♯ 2 ) ⊗( -+ )∕2 1 ⊗ sym ⊗( --)∕2 2 
⟩ .

To compute the expectations in the second line, we can repeat the calculations performed in the proof of the upper bound (4.23) for the 2-mode Hamiltonian, keeping track of the fact that the total number of particles is now -, for a generic 0 ⩽ ⩽ . Let ⊗ sym Φ trial, be the component of trial with exactly excitations. One finds

⟨  1 +  2 ⟩ trial, = ( -) ‖ ‖ Φ trial, ‖ ‖ 2 ⟨  - ⟩ trial, = 1 2 ⟨  1 +  2 - † 1 2 - † 2 1 ⟩ trial, ⩽ 1 + - 2 + ( -) -- 2 ‖ ‖ Φ trial, ‖ ‖ 2 ⟨  1 - 2 2 ⟩ trial, ⩽ ( -) 1∕2- ‖ ‖ Φ trial, ‖ ‖ 2 .
Using ∑ =0 trial, = trial and splitting the sum into two parts for 0 ⩽ < ∕2 and for ∕2 ⩽ ⩽ , one has for example ( is a generic constant which may change from line to line) (8.13) where in the second line we have used ∑ =0 ‖ ‖ Φ trial, ‖ ‖ 2 = 1 and the bound

⟨  - ⟩ trial ⩽ ∑ 0⩽ < ∕2 1 + - 2 + ( -) -- 2 ‖ ‖ Φ trial, ‖ ‖ 2 + ∑ ∕2⩽ ⩽ ‖ ‖ Φ trial, ‖ ‖ 2 ⩽ 1 + 2 + - 2 2 + ⩽ 1 + 2 ⩽ 1 + max -1 2 -, 1∕2 , 
2 4 ∑ ∕2⩽ ⩽ ‖ ‖ Φ trial, ‖ ‖ 2 ⩽ ∑ ∕2⩽ ⩽ 2 ‖ ‖ Φ trial, ‖ ‖ 2 ⩽ ⟨  2 ⟂ ⟩ trial ⩽ ,
and in the third line we have used (A.4), the assumption ∼ -, and the fact that -2 2 can be bounded by a constant times ( 2 ∕ ) 2 -1 (1-) -1 . Similarly, we find Step 4: error and linear terms. Note that, with the choice (8.8),

⟨  1 +  2 ⟩ trial = ⟨ ( - ⟂ ) ⟩ trial ⩽ 0 ⩽ ⟨ - ⟂ - † 1 2 - † 2 1 ⟩ trial = 2 ⟨  - ⟩ trial ⩽ 1 + max -1 2 -, 1∕2 ⟨  1 - 2 2 ⟩ trial ⩽ max 1 2 -, 1∕2 ⟨  2 - ⟩ trial ⩽ ⟨  - ⟩ trial ⩽ 1 + max
⟨ 2 ⟩  trial = 1 ∑ =0 ∑ | |⩽ 2 2 2 , ‖ ‖ Φ trial, ‖ ‖ 2 ⩽ 2 ⩽ (1)
where the second bound follows from Lemma 4.5. In view also of (8.12), the first error term in (5.1) when Φ =  trial is bounded by -1∕4 . The second error terms, in turn, can be bounded by a (1), relying on (8.12) and (8. where is a positive constant.

We first need to prove that the (negative) coefficients multiplying the variance ⟨ 2 ⟩ Φ in (7.9), and its analog for ℍ ( ) lef t,shif t , can be absorbed by the variance term of the 2-mode Hamiltonian. Recall that for some > 0.

Proof. Using the positivity of 11 and the finite energy gap (A.5), one has

,⩽ Λ ℎ MF -+ + 2 11 ,⩽ Λ ⩾ ,⩽ Λ ℎ MF -+ ,⩽ Λ > -1
,⩽ Λ for some > 0. Hence

,⩽ Λ ⩽ ,⩽ Λ
because the inverse power is operator monotone [START_REF] Bhatia | Matrix Analysis[END_REF] and we are restricting everything to the range of ,⩽ Λ . Since 11 is also bounded, the first inequality in (8.25) follows, and the second one is proven in the same way. The estimate (8.26) is a consequence of (8.25). Actually, the right hand side in this estimate is bounded from below by ( -) and -> 0 for smaller than some 0 that depends on , because > 0 by (4.4).

The rest of the subsection is devoted to the proof of Proposition 8.4. We use the a priori estimates of Section 6 systematically, without further mention. We also use the fact that  4 ⟂ ⩽ 2  2 ⟂ when evaluated on gs , and similarly for 4 .

Proof of Proposition 8.4. We first use Proposition 5.1 with Φ =  gs . For such Φ, the error terms are bounded as in (6.8) .

By relying on Proposition 7.4, we bound the difference of the expectation of H( Λ ) right + H( Λ ) lef t and the terms in the second line by Bog , up to remainders Λ [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations[END_REF]. Finally, the terms in the square brackets can be bounded from below by using the lemma 8.5 above, see (8.26). This yields the desired result (8.24 Thus we may let first → ∞ and then Λ → ∞ to conclude the proof of (2.32).
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(3. 15 )Lemma 3 . 6 (

 1536 which will be useful in the sequel. It follows from the first commutation relation and the unitarity of Θ that Θ * ( )Θ = (Θ * Θ) = ( + 1)(3.16)for any smooth real function (by functional calculus). We record the action of  on operators of the type † , needed to conjugate the full Hamiltonian, in the following Operators on the excited Fock space).

Since 1 and 2

 2 are real, we have 11 = * 11 and 22 = * 22 .

4. 1 .Proposition 4 . 2 (

 142 Lower bound for 2-mode . We shall prove the following: Expression and lower bound for 2-mode ).

4. 3 . 4 .Proposition 4 . 6 (⩽

 3446 Bose-Hubbard energy and proof of Proposition 2.The next result of this Section will allow us to recover the Bose-Hubbard energy, which is the lowest energy of the Bose-Hubbard Hamiltonian (2.24), in terms of quantities appearing in the bounds for 2-mode . Bose-Hubbard energy). Let BH be the bottom of the spectrum of the Bose Hubbard Hamiltonian BH defined in (2.24) on the -body two-mode space ⨂ max 1∕2-, -1+ .(4.35) 

5. 1 .

 1 Linear terms. The part of the Hamiltonian containing only one ♯ is, recalling the identities =

5. 2 .Proposition 5 . 5 (

 255 Cubic and quartic terms. The part of containing three ♯ with ⩾ 3 is Cubic and quartic terms).

2 ( 5 . 4 .

 254 ⟂ ) scalar product, the boundedness of * | | 2 and , and the fact that | | dΓ ⟂ ( ) | | ⩽ || ||  ⟂ for a bounded one-body operator . Finally, one may prove (5.42) in a similar way, using the boundedness of * ( 1 2 ) and 12 , Inequality (5.28), and commuting Θ with  ⟂ and as done above for (5.40). Proposition 5.1 now follows by merging (5.22), (5.29), (5.30), and (5.39), with a rearrangement of the remainder terms. Reduction to left and right modes: proof of Proposition 5.2.

Lemma 8 . 1 (,

 81 Minimization of quadratic Hamiltonians). Let be a locally bounded external potential such that lim | |→∞ ( ) = +∞, and define ℎ ∶= -Δ + . Let be the integral operator on 2 (ℝ ) whose kernel is ( ) ( -) ( ), for a real-valued ∈ 2 (ℝ ) and as in Assumption 2.1. Given an orthonormal basis { } of 2 (ℝ ) such that all are real-valued, denote by ℎ = ⟨ , ℎ ⟩ and = ⟨ , ⟩ the matrix elements of ℎ and in this basis. Consider the quadratic Hamiltonian ℍ quad = ∑ are creation and annihilation operators on the Fock space  with base 2 (ℝ ) satisfying the Canonical Commutation Relations. Then the unique (up to a phase) ground state of ℍ quad is Ω  , where Ω  is the vacuum vector of  and a Bogoliubov transformation, acting on creation/annihilation operators as

  [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]. Let us now show that the expectation in trial of the linear terms in (5.1) are also negligible. Using the Cauchy-Schwarz inequality we find inequality follows from (5.7) and(8.14

  .23) We start by computing expectation values with respect to the distribution | | 2 .

Lemma 4.5 (Expectation values for the gaussian trial state).

Let be defined by (4.21) if + is even and ∶= 0 if + is odd, where 1 ⩽ ⩽ 1∕2 and is fixed so that

  showing that the exponential term in (4.34) is much smaller than ∕ 2 . Using again (4.22) and (A.4), the two last terms in (4.34) are bounded by 1∕2-if 0 < < 2 and by

	Plugging (4.31), (4.32), and (4.33) inside (4.28), and recalling the estimates (4.4), (4.6), and (4.7) for
	the	coefficients and our assumption 1 ⩽	≪ 1∕2 , we find	
	⟨ 2-mode ⟩	gauss ⩽ 0 +	+	+ --2	+	--+ +	2-	2 +	-2	+	2	. (4.34)
	We now optimize the remainder terms by choosing 2 as in (4.22). Since we assume ∼ -for some
	> 0 we have from (A.4)								
								-2 ⩽		-		
	for any > 0, 1-									
			⟨ 2 -⟩	gauss ⩽	2	-⟨ † 1 2 + † 2 1 ⟩	gauss	⩽	1 +	2 +	-2	.	(4.33)

1 )∕2, we have by

(4.31) 

  10) and (4.23) on this simplified Hamiltonian. This gives Proof of Proposition 2.4. Recall Definition (2.22). We deduce from Proposition 4.4 that

		2-mode ⩽ 0 +	+	+ --2	+ max 1∕2-, -1+ .	(4.36)
		gauss			
	⩽	2 4( -1) 1111 -	2( -1) 1111 + + --2	+ max 1∕2-, -1+
	and				
				2	
		BH ⩾	4( -1) 1111 -	2( -1) 1111 + + --2	,
	which completes the proof.			
	We may now conclude the			

BH ⩽ ⟨ BH ⟩

energies with and without cutoff).

  , instead of the Hamiltonians obtained from (3.21) and(3.22) by replacing the creators and annihilators ♯ are canonical creation and annihilation operators on a Fock space ⟂, whose base space is the span of the right modes , , ⩾ 1, that is, the ♯ 's are operators on ⟂, satisfying the CCR (the notation Θ = 1 is there to recall that this Hamiltonian can be formally obtained from ℍ right by setting is part of the proof, cf[START_REF] Grech | The excitation spectrum for weakly interacting bosons in a trap[END_REF] Equation (53) and below]. The adaptation to our case is immediate because the method does not depend on the details of .It follows from the variational principle that Bog is bounded from above by the ground state energy of the left Bogoliubov Hamiltonians without and with energy cutoff are given by a similar expressions as in(7.18) and(7.19), with replaced by and 11 replaced by 22 .

	is trace-class on the space 2 (ℝ ) Bog ,⩽ of a quadratic Hamiltonian obtained from (7.18) by ignoring the modes , , > , i.e.
			ℍ ( ),Θ=1 right	∶=	∑	⟨		, ,		,⩽ +	,⩽	11 ,⩽	,	⟩ †
						1⩽ , ⩽	+	2	1⩽ , ⩽ ∑	⟨	, , ,⩽	11 ,⩽	,	⟩ † † + h.c. .	(7.19)
	The aforementioned arguments adapted to the finite dimensional setting ensure that
	Bog ,⩽	∶= -	1 2	Tr ⟂,	,⩽ +			,⩽		11 ,⩽ -	√	2 ,⩽ + 2	1∕2 ,⩽	,⩽	11 ,⩽	1∕2 ,⩽	.
	Notice that by ̃ ♯ , and ̃ ♯ state energies , . Bog is formally obtained from Bog Bog and ,⩽	Bog ,⩽	by replacing ,⩽ by (i.e.,	= ∞). The ground , and ♯ ,
	The proof of Proposition 7.4 will occupy the rest of the present section. Define the operators ∶= ℎ MF -+ , ,⩽ ∶= ,⩽ ℎ MF -+ ,⩽ . Lemma 7.5 (Bogoliubov One has The operators and ,⩽ are defined similarly. Bog ⩽ Bog ,⩽ , Bog ⩽ Bog ⩽ .	(7.16) (7.20)
	Recall from (2.29) that Bog = Proof. As we already mentioned,	Bog + Bog and	Bog with Bog ,⩽
					Bog ∶= -	1 2	Tr ⟂,				+		11	-	√	2 + 2	1∕2	11	1∕2 .
	The quantity	Bog is the ground state energy
														Bog = inf spec(ℍ Θ=1 right )	(7.17)
	of the quadratic Hamiltonian							
					ℍ Θ=1 right ∶=	∑	⟨	, ,	+	11	,	⟩ †
									, ⩾1	+	2	, ⩾1 ∑	⟨	, ,	11	,	⟩ † † + h.c. ,	(7.18)
	where ♯ Θ equal to the identity inside the ♯ 's). Equation (7.17) can be deduced by replicating the arguments of
	[17, Section 4-5] or [21, Appendix A]. The fact that the operator
									+				11		-	√	2 + 2	1∕2	11	1∕2

  a controllable error due to operators entering H( ) right do not exactly satisfy the CCR.

	The bound of Proposition 7.4 immediately follows from (7.21), (7.22), Lemma 7.5, and Bog =
	Bog +	Bog . There thus only remains to provide the
	Proof of Lemma 7.6. We discuss (7.21) only, since (7.22) can be obtained by completely analogous
	arguments. Let us define the	×		real symmetric matrices
				∶= ⟨ , , ,⩽	, ⟩ , =1
				∶= ⟨ , , ,⩽	11 ,⩽	, ⟩ , =1	(7.23)
				∶=	√	2 + 2 1∕2	1∕2 .
	The notation is chosen to allow direct comparison with the arguments in [17, sections 4-5]. In terms of
	these matrices, the Hamiltonian H( ) right reads		
			H( ) right =	1 2	( ̃ † ) , ̃	+	+	̃ ̃ †	(7.24)
	Lemma 7.6 (Lower bounds for the shifted Hamiltonians).
	We have								
		H( ) right ⩾	1 2	Tr[ ,⩽ +	,⩽	11 ] +	Bog ,⩽ -	√	 ⟂ + 1	(7.21)
		H( ) lef t ⩾	1 2	Tr[ ,⩽ +	,⩽	22 ] +	Bog ,⩽ -	√	 ⟂ + 1 .	(7.22)

  Energy upper bound. We obtain an upper bound on the ground state energy ( ) corresponding to (2.32) by constructing a trial state trial as follows. Recall that by the decomposition (3.8), any wavefunction is uniquely identified by the components Φ , of  . The -dependence of the components of  trial will be encoded in the gaussian coefficients = -2 ∕4 2 ∕

	8.1.							
							♯ , 's and the last sum would
	be equal to							
	Tr( ) = Tr	√	2 ,⩽ + 2	1∕2 ,⩽	,⩽	11 ,⩽	1∕2 ,⩽	,

  1, there exist unitary Bogoliubov transformations right and lef t such that The latter quantities are those given by adapting (8.2) to our case. Their sum coincides with Bog defined in (2.29). By construction, ℍ Θ=1 right commutes with lef t , because the latter is defined in terms of left modes only. Similarly, ℍ Θ=1 lef t commutes with right . Thus

					ℍ Θ=1 right right Ω =	Bog right right Ω,
					ℍ Θ=1 lef t	lef t Ω =	Bog lef t lef t Ω	
	with Ω the vacuum vector of ⟂ and							
		Bog right = -	1 2	Tr ⟂,	+		11	-	√	2 + 2	1∕2	11	1∕2
		Bog lef t = -	1 2	Tr ⟂,	+		22	-	√	2 + 2	1∕2	22	1∕2	,
	where ,	are defined in (7.16).								
		ℍ Θ=1 right + ℍ Θ=1 lef t	lef t right Ω =	Bog right +	Bog lef t	lef t right Ω
									= Bog	lef t right Ω.

  .10) ⟨ℍ⟩  trial + + ⟨ ⟂ ⟩  trial + ⟨ linear terms ⟩  trial -error terms.(8.11) 

	Proof. By using Proposition 5.1 with Φ =  trial to estimate ⟨	⟩	trial , one obtains the upper bound
	⟨	⟩	trial ⩽ ⟨ 2-mode ⟩	trial +

  Plugging (8.12) and(8.14) into this identity, bounding the expectation in the third line by (| 1112 | + , and recalling the estimates for the various -coefficients and for -+ from Lemma 4.1, we deduce that

	proves									
							> Λ 3	⩽		2 Λ +2 -+	1∕2 .	(8.22)
	Plugging (8.19), (8.20), (8.21) and (8.22) inside (8.16) gives the final bound
		| | |	⟨ℍ⟩  trial -Bog | | |	⩽	2 Λ +2 -+	1∕2 + Λ (1).	(8.23)
											(8.14)
											-1 2 -, 1∕2 .
	According to the identity (4.9) of Proposition 4.2, one has
	⟨ 2-mode ⟩	trial = 0 +		+	+ --2	+	--+ 2	⟨	- † 1 2 - † 2 1	⟩	trial
		-	-1		( 1112 + 1122 )⟨ ⟂ ⟩	trial -1122
		+	-1	⟨	( 1112 + 1122 ) ⟂ -1122	- † 1 2 - † 2 1	⟩	trial
		-⟨ ⟂ ⟩	trial +	-1	⟨ ( 1 - 2 ) 2 ⟩	trial
		+	2 -1 1122 ⟨ 2 -⟩	trial +	4( -1) 1111 -2 1122 + 1212 ⟨ 2 ⟂ ⟩	trial .
	1122 ) ⟨ - † 1 2 - † 2 1 ⟩							
		⟨ 2-mode ⟩	trial ⩽ 0 +		+	+ --2	-+ ⟨ ⟂ ⟩	trial + (1)

trial

  ). Hence we deduce from(8.11) that⟨ ⟩ trial ⩽ ⟨ 2-mode ⟩ trial + ⟨ℍ⟩  trial + + ⟨ ⟂ ⟩ trial + (1). Plugging(8.15) and(8.23) into this inequality gives precisely (8.10) by passing to the limit → ∞ and then Λ → ∞.8.2. Energy lower bound.We now prove the following: For every large enough energy cutoff Λ, let Λ be the largest integer such that 2 Λ +2 ⩽ Λ, where { } are the eigenvalues of ℎ MF in increasing order (this implies that Λ → ∞ as Λ → ∞). Then there exists 0 > 0 such that, for all 0 ⩽ ⩽ 0 ,

	Proposition 8.4 (Energy lower bound).							
	Assume	≪ 1. ⟨	⟩	gs ⩾ 0 +	+	+ --2	+ Bog +	-1	⟨	 1 - 2	2 ⟩	gs
				-Λ (1) -	-1∕2 -	1∕2--				

  Λ = ,⩽ Λ ,⩽ Λ ℎ MF -+ + 211 ,⩽ Λ Λ (replacing 11 by 22 ). Lemma 8.5 (Variance coefficients). Let be the coefficient from (4.3). We have ⟨ 1 , 11 ,⩽ Λ 11 1for some constant that does not depend on and Λ. Consequently, if 0 < ⩽ 0 with 0 small enough, then

										-1		
												,⩽ Λ ,
	with a similar formula for		,⩽ ⟩	⩽		,	⟨	2 , 22 ,⩽ Λ 22 2	⟩	⩽	(8.25)
	-	2 2	⟨	1 , 11 ,⩽ Λ 11 1	⟩	-	2 2	⟨	2 , 22 ,⩽ Λ 22 2	⟩	⩾	(8.26)

,⩽

  Next we use Proposition 5.2 to separate the full excitation energy into the excitation energy of right and left modes, at the expense of the appearance of the cutoff Λ. For a lower bound, we ignore the positive dΓ ⟂ ⩾ Λ ℎ MF -+ ⩾ Λ . We also use Proposition 5.7 to reduce the linear terms to modes below the cutoff without coupling between right and left modes. We thus obtain for any Λ > 0 large enough Let us now plug into the above estimate the lower bound on 2-mode from Proposition 4.2, see(4.10). This produces, among other terms, a term -+ ⟨ ⟂ ⟩ gs that cancels the one above. The expectation in the ground state of the last term in (4.10) is bounded from below by -1-due to (6.1). We also recognize that ℍ We now use Proposition 7.3 to bound the term containing the shift Bogoliubov Hamiltonians, which enable to absorb the linear terms at the expense of passing to ̃ ♯ and ̃ ♯ operators and of the appearance of a negative variance term. According to the apriori bound (6.6) on ⟨ 2 ⟩  gs = ⟨( 1 - 2 ) 2

		⟨	⟩	gs ⩾ ⟨ 2-mode ⟩	gs + + ⟨ ⟂ ⟩	gs +	⟨ ℍ	( Λ ) right + ℍ	( Λ ) lef t	⟩  gs
					+	√ 2( -1)	⟨	∑ 1⩽ ⩽ Λ		+1-{ , } ,	+ +2-{ , } ,	+ h.c.	⟩	 gs
												-				
					-Λ (1) -			1∕2 -		2 Λ +2 -+	1∕2 .
				( Λ ) right +ℍ ( Λ ) lef t together with the linear terms coincide with ℍ	( Λ ) right,shif t +ℍ	( Λ ) lef t,shif t from (7.1).
	Thus															
	⟨	⟩	gs ⩾ 0 +			+	+ --2	+	-1	⟨	 1 - 2	2 ⟩	gs	+	⟨	ℍ ( Λ ) right,shif t + ℍ	( Λ ) lef t,shif t	⟩  gs
				-Λ (1) -			-1∕2 -	1∕2--	2 Λ +2 -+	1∕2 .
																	⟩	gs , the
	error terms in Proposition 7.3 are bounded by ∕ √	+	1∕2-. The new lower bound looks like
		⟨	⟩	gs ⩾ 0 +	+			+ --2	+	⟨	H( Λ ) right +	H( Λ ) lef t	⟩	 gs
					-	1 2	Tr	,⩽ Λ (ℎ MF -+ +		11 ) -	1 2	Tr	,⩽ Λ (ℎ MF -+ +	22 )
					+		1 -1	⟨	 1 - 2	2 ⟩	gs		-	2 2	⟨	1 , 11 ,⩾ Λ 11 1	⟩
					-	and one gets 2 2 ⟨ 2 , 22 ,⩾ Λ 22 2	⟩
				⟨	⟩ -Λ (1) -gs ⩾ ⟨ 2-mode ⟩ + √ 2( -1) gs + + ⟨ ⟂ ⟩ ⟨ ∑ ⩾3 -1∕2 -1∕2--gs + ⟨ℍ⟩  gs +1-+ +2-2 Λ +2 -+	+ h.c. 1∕2	⟩	gs	(8.27)
												-			
							-		1∕4 -	1∕2 .		

  ).On the other hand, combining (8.10) and the estimate (4.36) on 2-mode , which follows from Proposition 2.4, we have lim supAs argued below Proposition 5.2, the limit of the eigenvalue 2 Λ +2 as → ∞ is the Λ -th eigenvalue of a fixed one-well Hamiltonian with compact resolvent. Hence, letting Λ → ∞,

	lim inf →∞	⟨	⟩		gs -0 -			-	+ --2	-Bog
	⩾ lim sup →∞	⎛ ⎜ ⎜ ⎝	⟨	 1 - 2	2 ⟩	gs	-	2 Λ +2 -+	1∕2	⎞ ⎟ ⎠ ⎟	.
	→∞	⟨			⟩	gs -0 -			-	+ --2	-Bog ⩽ 0 .
	This gives										
	lim sup →∞	⟨	 1 - 2	2 ⟩	gs	⩽ lim sup →∞	2 Λ +2 -+	1∕2 .
			lim sup →∞	⟨	 1 - 2	2 ⟩	gs	= 0,	(8.28)
	thus proving (2.31). Inserting (8.28) in the energy upper and lower bounds (8.10) and (8.24), we find
	by using (4.36) again										
	(1) -										

We now notice that the sum in the right hand side satisfies ∑

and since all the operators commute with  ⟂ we can plug this into the expectation value above. We thus find

.

Since, by the assumptions (5.5) on Φ, the expectation value is bounded uniformly in , we deduce

All the terms in the second and third lines of (5.45) can be estimated in this way. For the terms in the first line the argument is slightly simpler since, arguing as above,

This proves

(5.51)

We next turn to estimating the Ξ terms in (5.43). Since all sums are finite, it is enough to show that the 2 (ℝ )-expectation values multiplying ♯ , ♯ , in the sums converge to zero as → ∞ (notice that our assumption (5.5) on Φ ensures that all expectation values in 2 ( ⟂ ) are well-defined). For Ξ 1 we notice that ⟨ , , ℎ MF -+ ,

and therefore, by (A.7), for any , ∈ {1, … , Λ },

The fact that ⟨Ξ 2 ⟩ Φ and ⟨Ξ 3 ⟩ Φ converge to zero as → ∞ is a consequence of the localization of , and , in the right and left wells, respectively. More precisely, for Ξ 2 we notice that, by definition of

• Reduction to right and left modes.

(5.57)

Proof. Let us discuss how to prove (5.56), by focusing on the first limit (the second one is treated similarly). We have

where we have used the Cauchy-Schwarz inequality both for the sum and for the 2 ( ⟂ ) scalar product and the identities = ( -1) and † = † . The first sum in the right hand side is bounded by a fixed constant thanks to (5.7). We now multiply and divide by 2 Λ +2 -+ to get, arguing as in the previous subsection,

Plugging this inside (5.58), and using the assumption (5.55), we get | with independent of and . Plugging (7.13) inside (7.12) we only have to compute the contribution of the term proportional to 2 in the fifth line, which is given by

To bring this contribution to the form appearing in (7.9) we have to show that one can replace the multiplication operator * ( + -) by the integral operator 11 up to a small error. To this end we notice that, using (1.6), for any ∈ 2 (ℝ ),

where we have bounded one of the * | 2 | 2 in the square by a constant. Using (4.7) this implies

Noting that the operators ,⩽ is bounded (recall that ℎ MF -+ has a finite gap by (A.5) and 11 ⩾ 0), this yields

This means that we can replace * ( + -) by 11 in (7.14), thus obtaining the term proportional to 2 in (7.9), at the expense of a remainder term of the form

This completes the proof.

Lower bound on the shifted Hamitonian. We now discuss how to minimize H( ) right + H( ) lef t . Proposition 7.4 (Lower bound for the full shifted Hamiltonian). Let Bog be defined in (2.29). Then

which is precisely the sum of the two first terms in the right hand side of (7.21).

In our case, the sum involving the commutators can be obtained from the following identity: if is a real × symmetric matrix, then

where = ( ) =1 is given by (7.13). The identity (7.27) follows by noting that the commutation relations of the ̃ ♯ , 's given in Lemma 7.2 can be rewritten as

for any × matrix . One deduces from (7.25) and from -1 0 = 0 , -1 0 = 0 that

from which (7.27) is obtained by relying on (7.28). Applying (7.27) with = Λ yields

where +1-stands for the vector ( +1-{ , } ) =1 . To deduce the above equation we used

, which follows thanks to the identities 0 Λ 0 = -1∕2 1∕2 and -1∕2 2 -1∕2 = ( + 2 ). The expectation of the last term in (7.29) on the vector Φ ∈ 2 ( ⟂ ) can be bounded using the Cauchy-Schwarz inequality, the boundedness of * ( + -), and the fact that -1 ⩽ -1 by operator monotonicity of the inverse and square root (recall that 2 = 1∕2 ( + 2 ) 1∕2 ⩾ 2 since ⩾ 0), to write

The lower bound in the lemma then follows from the fact that the first term in (7.29) is non-negative (since ⩾ 0 and thus ⩾ 0 for all ).

PROOF OF THE MAIN RESULTS

Recall that Proposition 2.4 follows from the considerations of Section 4.

in both cases of (8.8). Arguing as in Section 4.3, we conclude

Step 2: Bogoliubov energy of the trial state. We want to compute ⟨ℍ⟩  trial . We decompose analogously to (5.43):

with ℍ right , ℍ lef t given by 3.21-(3.22), ℍ 12 given by (5.44), and

We will show below (see Step 3) that the main part of the energy in the trial state comes from the expectation of ℍ right + ℍ lef t . We now prove that the latter expectation is equal to Bog up to errors of order -1 -1∕2-. Each term of ℍ right + ℍ lef t contains Θ elevated to a certain power, either -2, 0, or +2 (this power is zero for the † and † part). We know that the excitation content of trial is

thus the operator Θ acts on  trial by simply translating the , coefficient as , → -1, . Taking one term of ℍ right as an example, we have

where we have used that , only depends of the parity of . For the sum over , we know that, by (4.25), for all ∈ 2ℤ,

having used the lower bound (A.4) on the gap for the second inequality and recalled the choice (8.8). This proves that

, We used the Cauchy-Schwarz inequality, (8.18) and the fact that, 11 being trace-class, ̃ is controled by  2 ⟂ , whose expectation in Φ trial is uniformly bounded. All terms in ℍ right and ℍ lef t that contain Θ ±2 can be treated similarly. This shows that, up to a remainder, ℍ right + ℍ lef t acts on  trial as if Θ were set to the identity, and therefore

On the other hand, recalling the definition of  trial , the normalization of , and (8.5), we see that

where the error is due to sum reaching only to < ∞. Hence

.19)

Step 3: remainder terms in ℍ. We now have to compute the contributions of ℍ 12 and of the 's in (8.17). For ℍ 12 we have the a priori estimate (5.50), which implies,

The terms inside 1 and 2 each contain exactly one operator ♯ , and one ♯ , . Using (8.3) and the fact that all the ♯ , 's commute with ♯ , and with lef t , we obtain

We now consider 3 , focusing on its second line. As in Proposition 5.2, we introduce an energy cutoff Λ and an integer Λ which is the largest integer such that 2 Λ +2 ⩽ Λ, where { } are the eigenvalues of ℎ MF . We have

.

For each fixed and , the matrix element ⟨ , , 22 , ⟩ tends to zero as → ∞ by the argument presented in the proof of Proposition 5.2, see Sec. 5.4. Consequently,

we argue as in the estimate of > Λ in the proof of Proposition 5.2. By repeated use of the Cauchy Schwarz inequality, we have

The square root that contains 22 in the right hand side is equal to Tr 22 , recalling that 22 is trace-class as proven in Lemma 5.3. For the other square root we notice that

having passed to the basis (2.25) in the second step. Since all operators commute with  ⟂ , we deduce using the same arguments as in the proof of Proposition 5.2 that

The operators † commute with  ⟂ and we can bound the sum in the right hand side by dΓ ⟂ ℎ MF -+ . Hence

The matrix element in the right hand side is bounded by a -independent constant. Indeed,  trial being a quasi-free state, Wick's theorem gives the expectation of a quartic operator such as  ⟂ dΓ ⟂ ℎ MF -+ in terms of the expectations of  ⟂ and dΓ ⟂ ℎ MF -+ , which are uniformly bounded in . This

APPENDIX A. THE ONE-BODY HARTREE PROBLEM

We recall here a number of results that were proved in our companion paper [START_REF] Olgiati | The hartree functional in a double-well[END_REF], i.e. properties of the eigenvectors and eigenfunctions of the one-body Hamiltonian ℎ MF .

In Section 1 we defined + and -as the first and second eigenfunctions of ℎ MF , corresponding to the eigenvalues + and -, and the the full spectral decomposition of ℎ MF is

Moreover, we defined right and left modes as

for any ⩾ 1.

We have the following result.

Theorem A.1 (One-body Hartree problem).

( ) Lower eigenvectors convergence.

( ) Bounds on the fist spectral gap. and, for an appropriate phase choice of the 's

Items ( ), ( ), and ( ) follow from [START_REF] Olgiati | The hartree functional in a double-well[END_REF]Theorem 2.1]. The fact that + can be chosen as positive is a standard fact already recalled in Section 2. Since the ℎ MF commutes with reflection across { 1 = 0} we can choose its eigenvectors to be either odd or even under such a permutation. Since + is positive, it must be even. The fact that -is odd and its sign follow from [START_REF] Olgiati | The hartree functional in a double-well[END_REF]Lemma 4.2]. Notice that, for 1 defined in (2.11), as a consequence of ( ) and ( ) we have

Hence, by (A.2),

which is the analogous of (A.8) for the low energy modes.

APPENDIX B. ESTIMATES AND IDENTITIES IN THE TWO-MODE SPACE

We prove here some results that were stated in Section 4. 

Proof of Lemma

0, and is the Agmon distance (2.12). Let us notice that, using the definition (2.11) of 1 and 2 ,

having used in the second inequality the fact that + ( ) > 0 and -( ) ⩾ 0 for 1 ⩾ 0, as granted by Theorem A.1. Using the lower bound (B.1) we deduce

where all the steps are justified since the functions in the integral are manifestly positive and summable.

To prove (4.5) we use the definition of 1 and 2 in terms of + and -from (2.11), then Young's inequality and (A.1), to get

Similarly, for (4.6) we write

On the other hand, the positivity of 1122 is deduced by noticing that

since ̂ ( ) ⩾ 0 by assumption.

To estimate 1212 we use the fact that has compact support and it is bounded by a constant to write

In the first integral we recognize that √ 2 1 ( ) = + ( ) + -( ) = | + ( )| -| -( )| for 1 ⩽ 0 (recall that Theorem A.1 ensures that -is negative for negative 1 's), and, using (A.2)

In the second integral we can ignore the region in which -⩽ 1 ⩽ 0, since both 1 and 2 are exponentially small there, because + and -are (see [START_REF] Olgiati | The hartree functional in a double-well[END_REF]Proposition 3.1]). For the region in which To prove (4.8) we only have to notice that where the last equality follows from the commutation relations of 1 , † 1 , 2 and † 2 .