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BOSONS IN A DOUBLE WELL: TWO-MODE APPROXIMATION AND FLUCTUATIONS

ALESSANDRO OLGIATI, NICOLAS ROUGERIE, AND DOMINIQUE SPEHNER

ABSTRACT. We study the ground state for many interacting bosons in a double-well potential, in a joint
limit where the particle number and the distance between the potential wells both go to infinity. Two single-
particle orbitals (one for each well) are macroscopically occupied, and we are concerned with deriving the
corresponding effective Bose-Hubbard Hamiltonian. We prove (i) an energy expansion, including the two-
modes Bose-Hubbard energy and two independent Bogoliubov corrections (one for each potential well),
(ii) a variance bound for the number of particles falling inside each potential well. The latter is a signature
of a correlated ground state in that it violates the central limit theorem.
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1. INTRODUCTION

The mathematical study of macroscopic limits of many-body quantum mechanics has made sizeable
progress in recent years [2, 5, 16, 23, 34, 32, 33, 36, 39]. The situation that is most understood is
the mean-field limit of many weak inter-particle interactions. Following Boltzmann’s original picture
of molecular chaos [16, 39, 15, 26, 30, 20, 38], an independent particles picture emerges, wherein
statistical properties of the system are computed from a nonlinear PDE. This is based on inter-particle
correlations being negligible at leading order, which, for bosonic systems, comes about through the
macroscopic occupancy of a single one-body state (orbital, mode).

In this paper we consider a particular example where, by contrast, correlations play a leading role,
through the occupation of two one-body states. Namely, we consider the mean-field limit of a large
bosonic system in a symmetric double-well potential. In the joint limitN →∞, L→∞ (large particle
number, large inter-well separation) there is one macroscopically occupied one-body state (orbital) for
each well. In a previous work [35], two of us have shown that, when the tunneling energy across the
potential barrier is o(N−1), the ground state of theN-bodyHamiltonianHN exhibits strong inter-particle
correlations, in the sense that the variance of the particle number in each well is much smaller than

√

N
(the central limit theorem does not hold).

Here we extend this result to cases where the tunneling energy goes likeN−� with any � > 0. This in
particular includes the much more intricated case where � < 1 and the tunneling energy thus cannot be
neglected as in [35]. We also prove that the ground state energy ofHN is close to the ground state energy
of a simpler effective Bose-Hubbard Hamiltonian. Our energy estimates include the contributions of
order O(1) described by a generalized Bogoliubov Hamiltonian, which we show to be given by the sum
of the Bogoliubov energies associated to each well, up to errors o(1).

The main feature of the symmetric double well situation is the fact that theN-body state of particles
that macroscopically occupy the two main orbitals is in general non trivial. This is to be compared with
the case of complete Bose-Enstein condensation in a single orbital, in which the energy of the condensate
is a purely one-body quantity, obtained from the ground state of a suitable non-linear Schrödinger (NLS)
equation. We note that our system, although two modes are occupied to the leading order, is physically
very different from a two-component Bose-Einstein condensate [25, 3, 24], in which two distinct bosonic
species macroscopically occupy one mode each. Rather, it is closer to the case of a single-species
fragmented condensate [14].

The effective theory for our double-well system is obtained by projecting the full Hamiltonian on
the subspace spanned by the two appropriate modes (one for each well, identified via NLS theory).
Such a projection is known in the physics literature as the two-mode approximation. After some further
simplifications this leads to the two-mode Bose-Hubbard Hamiltonian

HBH =
T
2
(

a†1a2 + a
†
2a1

)

+ g
(

a†1a
†
1a1a1 + a

†
2a
†
2a2a2

)

(1.1)
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with a†j , aj the standard bosonic creation/annihilation operators associated with the two modes. The first
term describes hopping of particles through the double-well’s energy barrier, with T < 0 the tunneling
energy. The second term (with g > 0 an effective coupling constant) is the pair interaction energy of
particles in each well.

We aim at deriving the above from the full many-body Schrödinger Hamiltonian for N bosons in
mean-field scaling (N → ∞, � fixed)

HN ∶=
N
∑

j=1

(

−Δj + VDW(xj)
)

+ �
N − 1

∑

1⩽i<j⩽N
w(xi − xj) (1.2)

acting on the Hilbert space (d = 1, 2, 3 is the spatial dimension)

ℌN ∶=
N
⨂

sym
L2(ℝd) ≃ L2sym(ℝ

dN ). (1.3)

Here VDW and w are, respectively, the double-well external potential and the repulsive pair-interaction
potential (precise assumptions will be stated below). We study the ground-state problem: lowest eigen-
value and associated eigenfunction ofHN .
The main new feature that we tackle is that VDW is chosen to depend on a large parameter L in the

manner
VDW(x) ∶= min

(

|x − xL|s, |x + xL|s
)

, s ⩾ 2, |xL| =
L
2
. (1.4)

This is a simple model for a symmetric trap with two global minima at x = ±xL. In the limit L → ∞
both the distance between the minima and the height of the in-between energy barrier diverge. As a
consequence, the mean-field Hartree energy functional obtained in the standard way by testing with an
iid ansatz (pure Bose-Einstein condensate)

H[u] ∶= 1
N

⟨

u⊗N |HN |u
⊗N⟩ (1.5)

has two orthogonal low-lying energy states, denoted u+, u− (u+ being the ground state). Their energies
are separated by a tunneling term

T = T (L) →
L→∞

0.

All other energy modes are separated from u+, u− by an energy gap independent of L. This picture is
mathematically vindicated by semi-classical methods [13, 19]. For the model at hand we refer to [29],
whose estimates we use as an input in the sequel. One can show that

u1 ∶=
u+ + u−
√

2
, u2 ∶=

u+ − u−
√

2
(1.6)

are well localized in one potential well each. These are the modes entering the Bose-Hubbard Hamilton-
ian (1.1). If we denote P the orthogonal projection onto the subspace spanned by u+, u− (or equivalently
u1, u2), the Bose-Hubbard description basically amounts to restricting all available one-body states to
PL2(ℝd)

HBH ≃ (P )
⊗N HN (P )

⊗N − E0 (1.7)
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acting on
⨂N

sym

(

PL2(ℝd)
)

. Here E0 is a mean-field energy reference, and the appropriate choice of g
in (1.1) is

g = �
2(N − 1)∬ℝd×ℝd

|u1(x)|2w(x − y)|u1(y)|2dxdy.

The tunneling energy T is essentially the gap between the Hartree energies of u+ and u−, which goes to
0 super-exponentially fast when L→ ∞ (see below).

A salient feature of the Bose-Hubbard ground state is that it satisfies1
⟨

(

a†jaj −
N
2

)2⟩

BH
≪ N, j = 1, 2 (1.8)

in the limit N → ∞, L → ∞, where a†jaj is the operator counting the number of particles occupying
the mode j = 1, 2. This is number squeezing, a signature of strong correlations. Actually, the problem
being invariant under the exchange of the modes2 we certainly have

⟨

a†jaj
⟩

BH
= N
2
, j = 1, 2.

Thus what (1.8) says is that the standard deviation from this mean does not satisfy the central limit the-
orem. Hence the events “particle n lives in the j-th well”, n = 1…N are measurably not independent.
Such an estimate is governed by energy estimates precise to order o(1) in the limit N → ∞, L → ∞.
In the usual mean-field limit with a single well (L fixed), an energy correction of order O(1) arises, due
to quantum fluctuations [37, 17, 12, 21, 28, 7, 8]. This also occurs in our setting, due to the (small)
occupancy of modes othogonal to u1, u2. This is conveniently described by a Bogoliubov Hamiltonian,
which is quadratic in creation/annihilation operators. The latter has a ground-state energy EBog, which
is of order O(1) in the joint limit (we will give more precise definitions below). Denoting

E(N) ∶= inf �(HN ), EBH ∶= inf �(HBH) (1.9)

the lowest eigenvalues of the full Hamiltonian and its two-mode approximation respectively, our main
energy estimate takes the form

|

|

E(N) − E0 − EBH − EBog
|

|

→ 0 (1.10)

in the limitN →∞, T → 0, provided 0 < � is small enough (independently ofN and T ). This implies
number squeezing

⟨

(

a†jaj −
N
2

)2⟩

Ψgs

≪ N, j = 1, 2 (1.11)

in the true ground state Ψgs of (1.2) (⟨ . ⟩Ψgs denotes expectation in this state). To avoid some technical-
ities we assume that � is fixed and T = N−� with some arbitrary � > 0. In essence the above results
however only require N → ∞, T ≪ �. They are thus optimal in the sense that the opposite regime
N → ∞, T ≳ � (for fixed � this implies L ≲ 1, see (2.13)) corresponds to the usual mean-field situa-
tion for a fixed potential, where a central limit theorem holds [31]. This is called “Rabi regime” in the

1
⟨ . ⟩BH denotes expectation in the Bose-Hubbard ground state.
2Equivalent to a reflection around the double-well’s peak.
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physics literature (see [35, Section 1.3] for more details). The ground state of the system is expected to
be approximated by a Bose-Einstein condensate

Ψgs ≈ u⊗N+ ≈

(

u1 + u2
√

2

)⊗N

, (1.12)

with a variance of order N for the number of particles in the modes u1 and u2. The aforementioned
techniques dealing with the single-well problem allow to prove the (appropriately rigorous version of
the) first approximation in (1.12), with u+ the Hartree ground state. When T , L are fixed however, there
does not seem to be a sharp mathematical way to define the privileged modes u1, u2 and actually prove
the second approximation in (1.12) in a well-defined scaling regime.

In [35], Estimates (1.10)-(1.11) have been proved (essentially) in the restricted regime T ≪ N−1.
When T ≳ N−1 the tunneling contribution to the energy becomes relevant for the order of precision we
aim at, and we cannot just separate the contributions of each well as in [35]. Instead we prove that the
two wells are coupled only via the dynamics in the two-modes subspace, that we isolate from quantum
fluctuations. We need to monitor both the number of excited particles and the variance of the occupation
numbers of the low-lying modes. Roughly speaking the former is controled by the Bogoliubov Hamil-
tonian and the latter by the Bose-Hubbard one. The main difficulty is however that these quantities are
a priori coupled at the relevant order of the energy expansion because of the non-trivial dynamics in
the two-mode subspace. More specifically we have to control processes where an exchange of particles
between the modes u+ and u− mediates the excitation of particles out of the two-modes subspace.
In the next section we state our main results precisely and provide amore extended sketch of the proof,

before proceeding to the details in the rest of the paper. As a final comment before that, we hope that
future investigations will allow to prove something about the low-lying excitation spectrum of the system
at hand. We expect two types of excited eigenvalues, yielding essentially independent contributions:
those coming from the excited states of the Bose-Hubbard Hamiltonian (1.1) and those coming from
the generalized Bogoliubov Hamiltonian defined in Section 3.2. The latter actually commutes with a
shift operator, so that one might expectHN to have some ’almost continuous’ spectrum in the sense of
very close eigenvalues in the limitN →∞ (with spacing oN (1)).

Acknowledgments: Funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 Research and Innovation Programme (Grant agreement CORFRONMAT No 758620) is
gratefully acknowledged. D.S. acknowledges support from the Fondecyt project N◦ 1190134.

2. MAIN STATEMENTS

2.1. The double well Hamiltonian. We consider the action of the Hamiltonian

HN =
N
∑

j=1

(

−Δj + VDW(xj)
)

+ �
N − 1

∑

1⩽i<j⩽N
w(xi − xj),

already introduced in (1.2), on the space ℌN = L2sym(ℝ
dN ), d = 1, 2, 3. The coupling constant propor-

tional to (N − 1)−1 in (1.2) formally makes the contributions from the two sums in HN of the same
order in N . We introduced a further fixed coupling constant � > 0. For simplicity we make liberal
assumptions on the data of the problem, that we do not claim to be optimal for the results we will prove.
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Assumption 2.1 (The interaction potential).
w is a radial bounded function with compact support. We also suppose that it is positive and of positive
type, that is, with ŵ the Fourier transform,

w(x) ⩾ 0, a.e. and ŵ(k) ⩾ 0 a.e. (2.1)

Assumption 2.2 (The double-well potential).
Let L > 0 and

xL ∶=
(L
2
, 0,… , 0

)

∈ ℝd , −xL =
(

−L
2
, 0,… , 0

)

∈ ℝd

represent the centers of the wells. We define
VDW(x) = min

{

V
(

x − xL
)

, V
(

x + xL
)}

, (2.2)
with

V (x) = |x|s, s ⩾ 2 . (2.3)

Note that, since w is radial, the choice of two wells with centers on the x1-axis is without loss of
generality. To model two deep and well-separated wells, we shall let the inter-well distance diverge

L = 2|xL| →
N→∞

∞.

Low-lying energymodes (see [29] formore details). Given a one-body function u ∈ L2(ℝd), its Hartree
energy (1.5) reads

H[u] ∶= ∫ℝd
|∇u(x)|2dx + ∫ℝd

VDW(x)|u(x)|2dx

+ �
2 ∬ℝd×ℝd

w(x − y)|u(x)|2|u(y)|2dxdy.
(2.4)

We define u+ to be the minimizer of H at unit mass, i.e.,

H[u+] = inf
{

H[u] | u ∈ H1(ℝd) ∩ L2
(

ℝd , VDW(x)dx
)

, ∫ℝd
|u|2 = 1

}

. (2.5)

Its existence follows from standard arguments. By a convexity argument such a minimizer must be
unique up to a constant phase, that can be fixed so as to ensure u+ > 0, which we henceforth do (see,
e.g., [22, Theorem 11.8]).

The mean-field Hamiltonian
ℎMF ∶= −Δ + VDW + �w ∗ |u+|2, (2.6)

is the functional derivative of H at u+, seen as a self-adjoint operator on L2(ℝd). Since VDW grows at
infinity, ℎMF has compact resolvent, and therefore a complete basis of eigenvectors. The Euler-Lagrange
equation for the energy minimization problem reads

ℎMFu+ = �+u+, (2.7)
with the chemical potential/Lagrange multiplier

�+ = H[u+] +
�
2 ∬ℝd×ℝd

w(x − y)|u+(x)|2|u+(y)|2dxdy. (2.8)
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By standard arguments, �+ is the lowest eigenvalue of ℎMF, corresponding to the non-degenerate eigen-
function u+.

We next define u− to be the first excited normalized eigenvector of ℎMF, i.e.,
ℎMFu− = �−u− (2.9)

where �− > �+ satisfies

�− = inf
{

⟨u, ℎDWu⟩ | u ∈ (ℎMF), ∫ℝd
uu+ = 0, ∫ℝd

|u|2 = 1
}

. (2.10)

It follows from the arguments of [29] that u− is non-degenerate.
Since ℎDW is a double-well Hamiltonian, all its eigenvectors are mainly localized [19, 13] around the

two centers ±xL. As a consequence, the two linear combinations

u1 =
u+ + u−
√

2
u2 =

u+ − u−
√

2
(2.11)

are mainly localized, respectively, in the left and right wells. These are the low-energy modes whose
role was anticipated above.

Tunneling parameter. The gap �− − �+ of ℎMF is closely related to the magnitude of the tunneling
effect between wells. Indeed,

�− − �+ =
⟨(

u− − u+
)

, ℎMF
(

u− + u+
)⟩

= 2 ⟨u2, ℎMFu1⟩ ,

and, as said, u1 and u2 are mainly localized, respectively, in the right and left wells. To quantify this we
define the semi-classical Agmon distance [1, 13, 19] associated to the one-well potential V

A(x) = ∫

|x|

0

√

V (r′)dr′ =
|x|1+s∕2

1 + s∕2
. (2.12)

We then set
T ∶= e−2A

(

L
2

)

. (2.13)
As we will recall in Theorem A.1 below, we essentially have

�− − �+ ≃ T . (2.14)
We will work in the regime

N → ∞, � fixed, T ≪ 1 or, equivalently, L ≫ 1. (2.15)

2.2. Second quantization and effective Hamiltonians. The many-body Hilbert spaceℌN is theN-th
sector of the bosonic Fock space

F ∶=
∞
⨁

n=0
L2(ℝd)⊗symn (2.16)

on which we define the usual algebra of bosonic creation and annihilation operators (see Section 3 for
the precise definition) whose commutation relations are

[au, a†v] = ⟨u, v⟩L2 , [au, av] = [a†u, a
†
v] = 0, u, v ∈ L2(ℝd). (2.17)
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Given a generic one-body orbital u ∈ L2(ℝd) we introduce the particle number operator
u ∶= a†uau

whose action on ℌN is

u =
N
∑

j=1
|u⟩⟨u|j . (2.18)

Here |u⟩⟨u|j acts as the orthogonal projection |u⟩⟨u| on the j-th variable and as the identity on all other
variables.

One can extend the HamiltonianHN to F as

HN =
∑

m,n⩾1
ℎmn a

†
man +

�
2(N − 1)

∑

m,n,p,q⩾1
wmnpq a

†
ma

†
napaq, (2.19)

whose restriction on theN-th sector coincides with (1.2). The notation above is
ℎmn ∶=

⟨

um,
(

− Δ + VDW
)

un
⟩

wmnpq ∶=
⟨

um ⊗ un, w up ⊗ uq
⟩

,
(2.20)

for an orthonormal basis (un)n∈ℕ of L2(ℝd), with a†n, an the associated creation and annihilation opera-
tors.

Two-modes energy in the low-energy subspace. Let P be the orthogonal projector onto the linear
span of (u+, u−) (or, equivalently, (u1, u2)). We define the two-modes Hamiltonian

H2−mode ∶= P⊗NHNP
⊗N (2.21)

and the associated ground state energy

E2−mode ∶= inf

{

⟨ΨN |H2−mode|ΨN⟩ , ΨN ∈
N
⨂

sym

(

PL2(ℝd)
)

, ∫ℝdN
|ΨN |

2 = 1

}

. (2.22)

Later we will discuss the relationship between the above and
EBH ∶= inf �(HBH), (2.23)

the bottom of the spectrum of the Bose-Hubbard Hamiltonian

HBH ∶=
�+ − �−

2
(

a†1a2 + a
†
2a1

)

+ �
2(N − 1)

w1111
(

a†1a
†
1a1a1 + a

†
2a
†
2a2a2

)

(2.24)

on the space
⨂N

sym

(

PL2(ℝd)
)

. As discussed in Section 4,HBH is obtained fromHN by retaining only
terms corresponding to the subspace spanned by u+, u− (equivalently u1, u2) in (2.19) and making a few
further simplifications.

Bogoliubov energy of excitations. We will adopt the following notation for a spectral decomposition
of ℎMF:

ℎMF = �+|u+⟩⟨u+| + �−|u−⟩⟨u−| +
∑

m⩾3
�m|um⟩⟨um|. (2.25)
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As stated in Theorem A.1 (vi) (proved in [29]) an appropriate choice of the um’s with m ⩾ 3, ensures
that the modes (compare with (2.11))

ur,� ∶=
u2�+1 + u2�+2

√

2
and ul,� ∶=

u2�+1 − u2�+2
√

2
(2.26)

with � ⩾ 1 are (mostly) localized, respectively, in the right and left half-space. They pairwise generate
the spectral subspaces of ℎMF corresponding to �2�+1 and �2�+2. We will always use either the basis of
L2(ℝd) from (2.25) or that from (2.26) (with the addition of u+, u− or ur, ul). Since all these functions
solve, or are linear combinations of functions that solve, an elliptic equation with real coefficients, we
can (and will) always assume that they are real-valued functions. We also define

Pr ∶=
∑

�⩾1
|ur,�⟩⟨ur,�| Pl ∶=

∑

�⩾1
|ul,�⟩⟨ul,�|, (2.27)

and

Tr⟂(A) ∶=
∑

m⩾3
⟨um, Aum⟩ , Tr⟂,r(A) ∶=

∑

�⩾1

⟨

ur,�, Aur,�
⟩

, Tr⟂,l(A) ∶=
∑

�⩾1

⟨

ul,�, Aul,�
⟩

. (2.28)

Then the Bogoliubov energy is given as

EBog ∶= − 1
2
Tr⟂,r

[

Dr + �PrK11Pr −
√

D2
r + 2�D

1∕2
r PrK11PrD

1∕2
r

]

− 1
2
Tr⟂,l

[

Dl + �PlK22Pl −
√

D2
l + 2�D

1∕2
l PlK22PlD

1∕2
l

]

.
(2.29)

where
Dr ∶= Pr

(

ℎMF − �+
)

Pr, Dl ∶= Pl
(

ℎMF − �+
)

Pl (2.30)

and K11 and K22 are the two operators on L2(ℝd) defined by

⟨v,K11u⟩ =
1
2
⟨v ⊗ u1, w u1 ⊗ u⟩

⟨v,K22u⟩ =
1
2
⟨v ⊗ u2, w u2 ⊗ v⟩.

The quantityEBog is essentially the sum of the lowest eigenvalues of two independent bosonic quadratic
Hamiltonians acting on the left and right modes respectively (compare with the explicit formulae in
[17] and see [4, 10, 11] and references therein for further literature). It will turn out to (asymptotically)
coincide with the bottom of the spectrum of the full Bogoliubov Hamiltonian (3.18), i.e., the part ofHN
that contains exactly two creators/annihilators for excited modes um withm ⩾ 3. That the traces in (2.29)
are finite is not a priori obvious, and will be part of the proof. The two summands in the right hand side
of (2.29) coincide thanks to the symmetry of the system under reflections around the x1 = 0 axis. Each
summand also coincides, as T → 0, with the bottom of the spectrum of the Bogoliubov Hamiltonian
for particles occupying one-well excited modes above a one-well Hartree minimizer, centered either in
xL or −xL, used in [35].
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2.3. Main theorems. We can now state the

Theorem 2.3 (Variance and energy of the ground state).
Assume that, asN → ∞, T ∼ N−� for some fixed � > 0. Let Ψgs be the unique (up to a phase) ground
state ofHN . There exists �0 > 0 such that, for all 0 < � ⩽ �0,

lim
N→∞

1
N

⟨

(

1 −2
)2
⟩

Ψgs
= 0 (2.31)

and

lim
N→∞

|

|

|

E(N) − E2−mode − EBog|
|

|

= 0. (2.32)

A few comments:

1. We believe the result holds without the smallness condition on �. The precise condition we need is
that the left-hand side of (8.26) be bounded below by a constant, which we could so far prove only for
small �.

2. As part of the proof we find
⟨

1 +2
⟩

Ψgs
=
⟨

u+ +u−

⟩

Ψgs
= N + O(1).

Since u1 and u2 are obtained one from the other by reflecting across {x1 = 0} and the full problem is
invariant under such a reflection, this implies

⟨1⟩Ψgs = ⟨2⟩Ψgs ≃
N
2
+ O(1), (2.33)

so that we can reformulate (2.31) as
⟨

(

1 −
⟨

1
⟩)2

⟩

Ψgs
≪ N.

3. Central limit theorems are known to hold for mean-field bosonic systems in one-well-like situa-
tions [9, 31]. For T ≳ 1 we recover such a situation: a single Bose-Einstein condensate in the state u+
with Bogoliubov corrections on top, captured by a quasi-free (gaussian) state. This would essentially
lead to

⟨(

1 −N∕2
)2⟩

u⊗N+
≃ ⟨ 2

u1
⟩u⊗N+

−
(

⟨u1⟩u
⊗N
+

)2 ≃ N
4
.

The estimate (2.31) is a significant departure from this situation: correlations within the two-modes
subspace are strong enough to reduce the variance significantly.

We also have estimates clarifying the nature of the main terms captured by our energy asymptotics
in Theorem 2.3:

Proposition 2.4 (Main terms in the two-modes energy).
Assume that, asN →∞, T ∼ N−� for some fixed � > 0. Then we have that, for any fixed " > 0

|

|

|

|

E2−mode −Nℎ11 +
�N2

4(N − 1)
(2w1122 −w1212) − EBH

|

|

|

|

⩽ C"max
(

T 1∕2−", N−1+"�) (2.34)
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where E2−mode and EBH are defined respectively in (2.22) and (2.23). Moreover
|

|

|

|

|

EBH −
(

�N2

4(N − 1)
w1111 −

�N
2(N − 1)

w1111 +
(

�+ − �−
) N
2

)

|

|

|

|

|

⩽ C"max
(

T 1∕2−", N−1+"�) . (2.35)

A few comments:
1. We expect the remainders in the right-hand sides of (2.34) and (2.35) to be essentially sharp and
to be part of the expansion of the full many-body energy E(N). They lead to a variance bounded as
(essentially)

1
N

⟨

(

1 −2
)2
⟩

BH
⩽ C max(T 1∕2, N−1)

in the Bose-Hubbard ground state. Deriving such estimates at the level of the full many-body ground
state would require to improve our method of proof.
2. The reference energy Nℎ11, N times the minimal one-well energy with no interactions, is usually
subtracted from the Bose-Hubbard Hamiltonian as a basic energy reference and we follow this conven-
tion. The other terms appearing in the left hand side of (2.34), which produce an energy shift between
E2−mode and EBH, are interaction energies due to particles tunneling through the double well’s peak (not
included in the Bose-Hubbard model). Depending on the parameter regime and possible improvements
of some of our bounds, they may or may not be smaller than the other relevant terms. Since we can
isolate them exactly in our energy expansions, we keep track of them as exact expressions, but they are
not very relevant to the main thrust of the argument.
3. The three main terms we isolate in the Bose-Hubbard energy are more interesting. The first one,
�N2

4(N−1)
w1111 is a one-well mean-field interaction energy. This is the leading order for any reasonable

two-modes state, independently of its details. The second term − �N
2(N−1)

w1111 however is a reduction
of the interaction energy due to the suppressed variance of the true ground state. We had captured it
before [35] in a reduced parameter regime. It is in any case larger than our biggest error term, which
we show is o(1). The last term

(

�+ − �−
) N
2
is the tunneling contribution, not captured in [35]. When

� < 1, i.e., T ≫ N−1, it is larger than our main error term.

2.4. Sketch of proof. The general strategy is to group the various contributions to HN in the second
quantized formulation (2.19), much as in the derivation of Bogoliubov’s theory in [37, 17, 21, 12]. We
use a basis of L2(ℝd) as discussed around (2.25) and distinguish between
∙ Terms that contain only creators/annihilators corresponding to the two-mode subspace span(u+, u−).
After some simplifications they yield the two-mode energy E2−mode, which we prove controls the vari-
ance (2.31), see Section 4.
∙Linear terms that contain exactly one creator/annihilator corresponding to the excited subspace span(u+, u−)⟂.
These should be negligible in the final estimate.
∙ Quadratic terms that contain exactly two creators/annihilators corresponding to the excited subspace.
In those we replace the creators/annihilators of the two-mode subspace by numbers, which leads to a
Bogoliubov-like Hamiltonian acting on l2(F⟂) where F⟂ is the bosonic Fock space generated by the
excited modes.
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∙ Cubic and quartic terms that contain at least three creators/annihilators corresponding to the excited
subspace. These can be neglected due to the low occupancy of said subspace.
To bring these heuristics to fruition we need a priori bounds (see Section 6) on

∙ The number of excited particles and their kinetic energy.
∙ A joint moment of the number and kinetic energy of the excited particles.
∙ The variance of particle numbers in the low-lying subspace.
The first bounds follow from Onsager’s lemma (see [34, Section 2.1] and references therein) supple-

mented by our estimates on the Hartree problem in [29]. We also obtain
⟨

u−

⟩

⩽ C min(N, T −1) (2.36)
at this stage, which we use later in the proof. For the second estimate, we start with the strategy of
[37, 17] but in our case the variance in the low-lying subspace enters the bound. Combining with a first
rough energy estimate proves that the left side of (2.31) is bounded independently of N and T , which
can then be used to close the second estimate.

With these estimates at hand we can deal efficiently with the quadratic, cubic and quartic terms men-
tioned above. The Bogoliubov Hamiltonian acting only on the excited space is introduced via a partial
isometryN ∶ ℌN ↦ l2(F⟂) that we conjugate the differenceHN −H2−mode with, see Section 3. This
generalizes the excitation map introduced in [21]. That the Bogoliubov Hamiltonian acts on l2(F⟂) and
not just F⟂ keeps memory of the population imbalance in the two-modes subspace. Relying on esti-
mates from [29] we can then split all the excited modes into a left and right part as in (2.26) and neglect
couplings between left and right modes. After some further manipulations this reduces the full Bogoli-
ubov Hamiltonian to two indendependent ones acting onF

(

PlL2(ℝd)
)

andF
(

PrL2(ℝd)
)

, the bosonic
Fock spaces generated by the left and right modes respectively (see (2.27)). Their ground energies yield
the EBog energy entering the statement.

The part of the proof we find the most difficult is the treatment of linear terms. In the one-well case
they are negligible [37, 17, 21, 12] as a consequence of the optimality of the low-energy subspace3.
Cancellations of this form also occur in our setting, (see (5.23) below) using that ℎMFu± = �±u± ⟂ um if
m ⩾ 3 and that |

|

|u+| − |u−||| ⪅ T 1∕2 as shown in [29]. More complicated linear terms appear however,
an example being proportional to (with am an annihilator on the excited subspace, m ⩾ 3)

�
2(N − 1)

a†+(a
†
+a− + a

†
−a+)am

Using our a priori bounds (think of am as being O(1)), the above would be o(1) if the result (2.31) was
known a priori, for

a†+a− + a
†
−a+ =1 −2.

That terms of this type finally turn out to be negligible is a signature not of the optimal choice of the
low-lying two-modes subspace, that we used already, but of the particular Bose-Hubbard ground state
within it, witnessed by its small expectation ofN−1(1 −2)2.

To eliminate these extra linear terms, we will "complete a square" by defining (see Section 7) shifted
creation and annihilation operators for the excited modes. In terms of those the combination of quadratic

3They are the second quantization of the functional derivative of the Hartree energy at the minimizer.



BOSONS IN A DOUBLE WELL: TWO-MODE APPROXIMATION AND FLUCTUATIONS 13

and linear terms is a new quadratic Hamiltonian corrected by a remainder term ∝ �2N−1(1 −2)2,
depending on the variance operator. The latter we can absorb in H2−mode for small enough coupling
constant �. Another remainder comes from the fact that the shifted operators satisfy the canonical
commutation relations only approximately, so that the diagonalization of the new quadratic Hamiltonian
is more involved. After we have decoupled the contributions of the two wells by estimating cross-terms
in the resulting expressions, we can rely on ideas from [17] to handle that aspect, for we have a precise
control on the commutators of the shifted operators.

3. MAPPING TO THE SPACE OF EXCITATIONS

We will use the second quantization formalism, calling F the Fock space associated to L2(ℝd), and
a†(f ), a(f ) the creation and annihilation operators associated to f ∈ L2(ℝd). We refer the reader to,
e.g., [18, Section 18] for precise definitions. We will adopt the notation

a♯+ ∶= a
♯(u+), a♯− ∶= a

♯(u−), a♯m ∶= a
♯(um)

a♯r,� ∶= a
♯(ur,�) =

a♯2�+1 + a
♯
2�+2

√

2
, a♯l,� ∶= a

♯(ul,�) =
a♯2�+1 − a

♯
2�+2

√

2
for ♯ ∈ {⋅, †}, where u+, u−, um, ur,�, and ul,� withm, � ∈ ℕ⧵{0} are the modes introduced in Section 2.
We will denote by dΓ(A) the second quantization of a k-body operator, and bym = a†mam the number
operator for the m-th mode. We furthermore define the number operator for modes beyond u+ and u−
(or u1 and u2)

⟂ ∶=
∑

m⩾3
m. (3.1)

As anticipated in Section 2, the Hamiltonian (1.2) reads, in the notation we introduced4,

HN = dΓ
(

− Δ + VDW
)

+ �
(N − 1)

dΓ(w)

=
∑

m,n⩾1
ℎmn a

†
man +

�
2(N − 1)

∑

m,n,p,q⩾1
wmnpq a

†
ma

†
napaq.

(3.2)

Two-mode Hamiltonian. The part of HN in which summations are restricted to the first two indices
will play a major role.

Definition 3.1 (Two-mode Hamiltonian). We define

H2−mode ∶=
∑

m,n∈{1,2}
ℎmn a

†
man +

�
2(N − 1)

∑

m,n,p,q∈{1,2}
wmnpq a

†
ma

†
napaq (3.3)

as an operator on theN-body space ℌN .

There are a few differences betweenH2−mode and the Bose-Hubbard HamiltonianHBH from (2.24):
∙ HBH is defined on theN-body space generated by themodes u1 and u2 only, that is,

⨂N
sym

(

PL2(ℝd)
)

.
This is equivalent to identify1 +2 = N when working withH2−mode.

4We are considering w as the two-body observable corresponding to the multiplication by the function w(x − y)
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∙ All quartic terms of (3.3) that contain both a♯1 and a
♯
2 are neglected inHBH.

∙ H2−mode contains the one-well non-interacting terms proportional to ℎ11 and ℎ22. They will give
the energyNℎ11 appearing in (2.34).

∙ The coefficient of a†1a2 + a
†
2a1 in (3.3) will turn out to be a perturbation of the (�+ − �−)∕2 of

HBH. The same for the coefficient of the quartic terms.
The difference betweenH2−mode andHBH is not a priori small. We will often work withH2−mode, and

discuss in Section 4 its relation withHBH.

3.1. Excitation space. The energy of the fraction of particles that occupy {um}m⩾3 needs to be sepa-
rately monitored. To this end, it will be useful to consider the second quantization of operators restricted
to the orthogonal complement of u1 and u2. We define the projections

P ∶= |u+⟩⟨u+| + |u−⟩⟨u−| = |u1⟩⟨u1| + |u2⟩⟨u2|

P ⟂ ∶= 1 − P =
∑

m⩾3
|um⟩⟨um|. (3.4)

For self-adjoint operators A on ℌ and B on ℌ⊗ℌ we define

dΓ⟂(A) ∶= dΓ(P ⟂AP ⟂) =
∑

m,n⩾3
⟨um, Aun⟩a

†
man (3.5)

and
dΓ⟂(B) ∶= dΓ

(

P ⟂ ⊗ P ⟂BP ⟂ ⊗ P ⟂
)

=
∑

m,n,p,q⩾3
⟨um ⊗ un, Bup ⊗ uq⟩a

†
ma

†
napaq. (3.6)

In this notation,
⟂ = dΓ⟂(1).

Let us introduce the Hilbert space decomposition induced by P and P ⟂

ℌN =
(

span{u+}⊕ span{u−}⊕
∞
⨁

m⩾3
span{um}

)⊗symN

=
(

span{u1}⊕ span{u2}⊕
∞
⨁

m⩾3
span{um}

)⊗symN
,

(3.7)

Accordingly, any  N ∈ ℌN can be uniquely expanded in the form

 N =
N
∑

s=0

…, N−s−2, N−s
∑

d=−N+s,−N+s+2,…
u⊗(N−s+d)∕21 ⊗sym u

⊗(N−s−d)∕2
2 ⊗sym Φs,d . (3.8)

for suitable
Φs,d ∈

(

{u1, u2}⟂
)⊗syms.

The index s represents the number of excited particles, i.e., those living in the orthogonal of span(u1, u2).
The index d is the difference5 between the number of particles in u1 and the number of particles in u2.
Notice that (3.8) definesΦs,d only for those pairs of integers (s, d) such that (N − s+d)∕2 is an integer.

5It will be clear from the context when d stands for this difference or the physical space dimension.
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For each fixed d, the collection of functions {Φs,d}0⩽s⩽N identifies a vector in the truncated Fock
space

F⩽N
⟂ ∶=

N
⨁

s=0

(

{u1, u2}⟂
)⊗syms ⊂ F⟂ ⊂ F, (3.9)

Replicating the construction for all d we naturally arrive at the following definition.

Definition 3.2 (Excitation space).
We define the full space of excitations as

l2(F⟂) ∶=
⨁

s∈ℕ,d∈ℤ

(

{u1, u2}⟂
)⊗syms =

⨁

d∈ℤ
F⟂. (3.10)

A generic Φ ∈ l2(F⟂) is of the form

Φ =
⨁

s∈ℕ,d∈ℤ
Φs,d such that

⎧

⎪

⎨

⎪

⎩

Φs,d ∈
(

{u1, u2}⟂
)⊗syms

∑

s,d
‖

‖

Φs,d
‖

‖

2
L2 < +∞.

We will adopt capital letters (as in Φ) to indicate excitation vectors in l2(F⟂), while reserving small
letters (as in  N ) forN-body wave-functions in ℌN .

There is a natural operator mapping a N-body wave-function to its excitation content as in (3.8).
We define it by generalizing ideas from [21] (see [34, Definition 5.10] and subsequent discussion for
review):

Definition 3.3 (Excitation map).
Given any  N ∈ ℌN , consider its expansion (3.8). We call excitation map the operator

N ∶ ℌN → l2(F⟂), acting as N N =
⨁

0⩽s⩽N, |d|⩽N−s,
(N−s+d)∕2∈ℕ

Φs,d . (3.11)

It is easy to check that N is a partial isometry from ℌN into l2(F⟂), i.e. it acts unitarily if  ∗
N is

restricted toRanN . In order to isolate the contributions to the energy that come from excited particles,
we will conjugate the HamiltonianHN (or ratherHN −H2−mode) with the unitaryN . This boils down
to having formulae describing the action of N on creation and annihilation operators. We keep the
same notation for the operators a♯m with m ⩾ 3 after conjugation with N , that is,

Na
†
man

∗
N = a

†
man, m, n ⩾ 3.

The samewe do for the operator representing the number of excitations which, onl2(F⟂), acts according
to

⟂Φ =
⨁

s∈ℕ,d∈ℤ
sΦs,d . (3.12)

The difference 1 −2 on the other hand corresponds to the operator that has the indices d as eigen-
values:
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Definition 3.4 (Difference operator).
The difference operator on l2(⟂) is defined as

D ∶= N
(

1 −2
)

 †
N , with action DΦ =

⨁

s∈ℕ,d∈ℤ
dΦs,d . (3.13)

We will refer toD2 (or (1 −2)2 on ℌN ) as the variance operator.

We also need the unitary operator that shifts the index d by one unit.

Definition 3.5 (Shift operator).
We define the unitary operator

Θ ∶ l2(F⟂)→ l2(F⟂) with action
(

ΘΦ
)

s,d = Φs,d−1. (3.14)

As an immediate consequence of the above definitions we have, for any m ⩾ 3,
[

D,Θ
]

= Θ
[

am,Θ
]

=
[

a†m,Θ
]

= 0
[

D, am
]

=
[

D, a†m
]

= 0.
(3.15)

which will be useful in the sequel. It follows from the first commutation relation and the unitarity of Θ
that

Θ∗f (D)Θ = f (Θ∗DΘ) = f (D + 1) (3.16)
for any smooth real function f (by functional calculus). We record the action ofN on operators of the
type a†a, needed to conjugate the full Hamiltonian, in the following

Lemma 3.6 (Operators on the excited Fock space).
For any m, n ⩾ 3 we have

Na
†
1a1

∗
N =

N −⟂ +D
2

Na
†
1a2

∗
N = Θ

√

N −⟂ +D + 1
2

√

N −⟂ −D + 1
2

Θ

Na
†
2a2

∗
N =

N −⟂ −D
2

Na
†
1am

∗
N = Θ

√

N −⟂ +D + 1
2

am

Na
†
2am

∗
N = Θ

−1

√

N −⟂ −D + 1
2

am

Na
♯1
ma

♯2
n N = a♯1ma

♯2
n

(3.17)

as identities on RanN , with ♯1, ♯2 ∈ {⋅, †}.
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Proof. The derivation of the first three identities is similar. We focus on the second one. We have, for
Φ ∈ RanN ,

a†1a2
∗
NΦ =

N
∑

s=0

…,N−s−2,N−s
∑

d=−N+s,−N+s+2,…

√

N − s + d + 2
2

√

N − s − d
2

× u⊗(N−s+d+2)∕21 ⊗sym u
⊗(N−s−d−2)∕2
2 ⊗sym Φs,d

=
N
∑

s=0

…,N−s,N−s+2
∑

d′=−N+s+2,−N+s+4,…

√

N − s + d′
2

√

N − s − d′ + 2
2

× u⊗(N−s+d
′)∕2

1 ⊗sym u
⊗(N−s−d′)∕2
2 ⊗sym Φs,d′−2.

Thus, acting with N we find

(

Na
†
1a2

∗
NΦ

)

s,d′ =
√

N − s + d′
2

√

N − s − d′ + 2
2

Φs,d′−2

=
⎛

⎜

⎜

⎝

√

N −⟂ +D
2

√

N −⟂ −D + 2
2

Θ2Φ
⎞

⎟

⎟

⎠s,d′

.

Using the unitarity of Θ, the commutation of Θ with⟂ and the identity (3.16), one finds
√

N −⟂ +D
2

√

N −⟂ −D + 2
2

Θ

= Θ

√

N −⟂ +D + 1
2

√

N −⟂ −D + 1
2

and the second identity in (3.17) follows.
The proofs of the last three identities are basically identical. We focus on the first one. We have

a†1am
∗
NΦ =

N
∑

s=1

…,N−s−2,N−s
∑

d=−N+s,−N+s+2,…

√

N − s + d + 2
2

× u⊗(N−s+d+2)∕21 ⊗sym u
⊗(N−s−d)∕2
2 ⊗sym

(

amΦ
)

s−1,d

=
N−1
∑

s′=0

…,N−s−1,N−s+1
∑

d=−N+s+1,−N+s+3,…

√

N − s′ + d′
2

× u⊗(N−s
′+d′)∕2

1 ⊗sym u
⊗(N−s′−d′)∕2
2 ⊗sym

(

amΦ
)

s′,d′−1 .

Acting with N we find

(

Na
†
1am

∗
NΦ

)

s′,d′ =
√

N − s′ + d′
2

(

amΦ
)

s′,d′−1 =
⎛

⎜

⎜

⎝

√

N −⟂ +D
2

ΘamΦ
⎞

⎟

⎟

⎠s′,d′
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and the result is again obtained by commuting Θ all the way to the left using (3.15). �

With the above we will be able to conjugate with N each summand in the Hamiltonian (3.2). For
example

Na
†
1a
†
1a1am

∗
N = Na

†
1am

∗
N Na

†
1a1

∗
N = Θ

√

N −⟂ +D
2

N −⟂ +D − 1
2

am

for any m ⩾ 3.

3.2. Bogoliubov Hamiltonian. The Bogoliubov Hamiltonian is a quadratic operator on l2(⟂) that
represents the main contribution to the energy insideN (HN −H2−mode) ∗

N , i.e., after the contribution
from the modes u1 and u2 has been subtracted. We first define operators K11, K22, K12 ∶ L2(ℝd) →
L2(ℝd) through their matrix elements

⟨v,K11u⟩ =
1
2
⟨v ⊗ u1 , w u1 ⊗ u⟩

⟨v,K22u⟩ =
1
2
⟨v ⊗ u2 , w u2 ⊗ u⟩

⟨v,K12u⟩ = ⟨v ⊗ u1 , w u2 ⊗ u⟩.

Since u1 and u2 are real, we have K11 = K∗
11 and K22 = K∗

22. Since w is bounded and u1, u2 ∈ L2(ℝd),
Young’s inequality immediately shows that these are bounded operators.

Definition 3.7 (Bogoliubov Hamiltonian).
We call Bogoliubov Hamiltonian the operator on l2(F⟂)

ℍ =
∑

m,n⩾3

(

− Δ + VDW +
�
2
w ∗ |u1|2 +

�
2
w ∗ |u2|2 + �K11 + �K22 − �+

)

mn
a†man

+ �
2
∑

m,n⩾3

(

K11
)

mn

(

Θ−2a†ma
†
n + Θ

2aman
)

+ �
2
∑

m,n⩾3

(

K22
)

mn

(

Θ2a†ma
†
n + Θ

−2aman
)

+ �
2
∑

m,n⩾3

(

K12
)

mna
†
ma

†
n +

�
2
∑

m,n⩾3

(

K∗
12

)

mnaman

+ �
2
∑

m,n⩾3

(

K12 +w ∗ (u1u2)
)

mnΘ
2a†man +

�
2
∑

m,n⩾3

(

K∗
12 +w ∗ (u1u2)

)

mnΘ
−2a†man

(3.18)

The above is formally obtained fromHN by:
1. considering the parts ofHN in (3.2) that contain exactly two a♯m with m ⩾ 3;
2. acting with (3.17) to pass to the space l2(F⟂);
3. replacing all fractions coming from the right hand sides of (3.17) by (N − 1)∕2.

This procedure will be made rigorous in Proposition 5.1 below.
A crucial feature of ℍ is that, if we could ignore the terms coupling modes (mostly) supported in

different wells (for example the last two lines of (3.18)), then ℍ would coincide with the sum of two
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commuting quadratic Hamiltonians, each depending on one-well modes, as we now explain. We start
with the following definition (recall the definition of left and right modes in (2.26)):

Definition 3.8 (Θ-translated right and left creators/annihilators).
For any m, � ⩾ 1 we define

bm ∶= Θ am br,� ∶= Θ ar,� bl,� ∶= Θ al,�
cm ∶= Θ−1 am cr,� ∶= Θ−1 ar,� cl,� ∶= Θ−1 al,�

(3.19)

together with their adjoints b†m, b
†
r,�, b

†
l,�, c

†
m, c

†
r,�, c

†
l,� (recall that Θ

∗ = Θ−1).

It is straightforward to check the commutation relations
[

bm, b
†
n

]

=
[

cm, c
†
n

]

= �mn ,
[

br,�, b
†
r,�

]

=
[

bl,�, b
†
l,�

]

=
[

cr,�, c
†
r,�

]

=
[

cl,�, c
†
l,�

]

= ���
[

bm, bn
]

=
[

cm, cn
]

= 0 ,
[

br,�, br,�
]

=
[

bl,�, bl,�
]

=
[

cr,�, cr,�
]

=
[

cl,�, cl,�
]

= 0.
(3.20)

The b♯r,� operators will be used to construct the excitation energy of the right well, while the c
♯
l,� will be

associated with the left well. No other combination contributes to the energy at the order of precision
we aim at. This leads to the

Definition 3.9 (Right and left Bogoliubov Hamiltonians).
The quadratic Hamiltonians for right and left modes are

ℍright ∶=
∑

�,�⩾1

⟨

ur,�,
(

ℎMF − �+ + �K11

)

ur,�
⟩

b†r,�br,�

+ �
2
∑

�,�⩾1

⟨

ur,�, K11ur,�
⟩

(

b†r,�b
†
r,� + br,�br,�

)

(3.21)

ℍlef t ∶=
∑

�,�⩾1

⟨

ul,�,
(

ℎMF − �+ + �K22

)

ul,�
⟩

c†l,�cl,�

+ �
2
∑

�,�⩾1

⟨

ul,�, K22ul,�
⟩

(

c†l,�c
†
l,� + cl,�cl,�

)

. (3.22)

Since ⟨ur,�, ul,�⟩ = 0 for all �, �, every creator or annihilator of a right mode b♯r,� commutes with
every creator or annihilator of a left mode c♯l,�. The two Hamiltonians above hence correspond (after
conjugation with Bogoliubov transformations) to independent harmonic oscillators. One should view
ℍright (resp. ℍlef t) as obtained from ℍ by retaining only those summands in which the L2(ℝd) scalar
products are between ur,� modes (resp. ul,� modes). A further difference is the appearance of ℎMF in
(3.21) and (3.22) instead of the operator −Δ + VDW + �w ∗ |u1|2∕2 + �w ∗ |u2|2∕2 that appears in
(3.18). This is due to the fact that their difference, proportional to dΓ⟂(w ∗ (u1u2)), will turn out to be
negligible. The b†b-part of ℍright is the second quantization of the self-adjoint operator PrℎMFPr (and a
similar property for the c†c of ℍlef t).

It follows from the above definitions and the discussion in [17, Sections 4 and 5], that our previous
definition (2.29) coincides with

EBog = inf �l2(F⟂)
(

ℍright
)

+ inf �l2(F⟂)
(

ℍlef t
)

(3.23)
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that we can obtain by acting on the vacuumwith two commuting Bogoliubov transformations and taking
the expectation value ofℍright +ℍlef t in the quasi-free state thus obtained. More details will be provided
in Section 8.1 below.

4. BOUNDS ON THE 2-MODE HAMILTONIAN

The aim of this Section is to prove lower and upper bounds for the Hamiltonian H2−mode defined in
(3.3). We will also show a bound on the Bose-Hubbard energy and prove Proposition 2.4. We define
the operator

 ∶=
�+ − �−

2
− �
N − 1

w1112⟂ −
�

N − 1
w1122(⟂ − 1) (4.1)

and the energy constants

E0 = Nℎ11 +
�N2

4(N − 1)
(2w1122 −w1212) (4.2)

and

Ew
N ∶= N

( �N
4(N − 1)

(w1111 − 4w1122 + 2w1212) −
�

2(N − 1)
(w1111 +w1122)

)

� ∶= ℎ11 +
�
2
w1111 +

�N
2(N − 1)

(w1212 − 2w1122) −
�

2(N − 1)
w1122

U ∶= 1
4
(w1111 −w1212).

(4.3)

The next Lemma gives precise estimates on the magnitude of these quantities.

Lemma 4.1 (w-coefficients and chemical potential).
There exist strictly positive constants c and C independent on N and, for any " > 0, a N-independent
constant C" > 0 such that

c ⩽ w1111 ⩽ C (4.4)
|w1112| ⩽ C"T

1−" (4.5)
0 ⩽ w1122 ⩽ C"T

2−" (4.6)
0 ⩽ w1212 ⩽ C"T

1−", (4.7)
where T is given by (2.13). As a consequence, we have

|� − �+| ⩽ C"T
1−", (4.8)

where � was defined in (4.3) and �+ is the ground state energy of ℎMF.

We postpone the proof of this lemma to Appendix B. As a consequence of Lemma 4.1, the reader
should keep in mind the rule-of-thumb estimates

 ≃
�+ − �−

2
on the states that will be of interest

� ≃ �+

U ≃
w1111

4
⩾ C > 0.
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4.1. Lower bound forH2−mode. We shall prove the following:

Proposition 4.2 (Expression and lower bound forH2−mode ).
We have the exact expression

H2−mode = E0 + Ew
N + 

(

a†1a2 + a
†
2a1

)

− �⟂ +
�U
N − 1

(

1 −2
)2

+ 2�
N − 1

w1122 2
− +

�
4(N − 1)

(w1111 − 2w1122 +w1212) 2
⟂

(4.9)

and the lower bound

H2−mode ⩾ E0 + Ew
N − �+⟂ +N

�+ − �−
2

+ �U
N − 1

(

1 −2
)2 − C"T 1−"⟂.

(4.10)

To prove Proposition 4.2 we will use the trivial identities

a†1
(

1 +2
)

a2 + a
†
2

(

1 +2
)

a1 = (1 +2 − 1)
(

a†1a2 + a
†
2a1

)

(4.11)

 2
1 + 2

2 =

(

1 +2
)2

2
+

(

1 −2
)2

2
, 12 =

(

1 +2
)2

4
−

(

1 −2
)2

4
, (4.12)

as well as the following Lemma.

Lemma 4.3 (An identity in the two-modes subspace).

(a†1a2)
2 + (a†2a1)

2 + 212 = 2
(

1 +2
) (

a†1a2 + a
†
2a1

)

−
(

1 +2
)2

+ 4 2
− − (1 +2) .

(4.13)

The proof, a simple computation based on the CCR, is in Appendix B.

Proof of Proposition 4.2. We start by proving (4.9), which is actually just another way of writing (3.3).
First, notice that, due to the fact that

u1(−x1, x2,… , xd) = u2(x1, x2,… , xd),

and since ℎ = −Δ+VDW involves a symmetric potential VDW with respect to reflexion about the x1-axis
and since w(x, y) = w(|x − y|), we have the relations

ℎ11 = ℎ22, w1111 = w2222, w1112 = w2221.

Moreover, since we work with a basis of real-valued functions and w(x − y) = w(y − x), we have

ℎ12 = ℎ21, wmnpq = wmqpn = wpnmq = wnmqp.
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Using these relations in (3.3) and collecting all terms, we first rewrite (3.3) as

H2−mode = ℎ11
(

1 +2
)

+ ℎ12
(

a†1a2 + a
†
2a1

)

+ �
2(N − 1)

w1111
(

 2
1 + 2

2 −1 −2
)

+ �
N − 1

w1112
(

a†11a2 + a
†
21a1 + a

†
22a1 + a

†
12a2

)

+ �
2(N − 1)

w1122
[

(a†1a2)
2 + (a†2a1)

2 + 212
]

+ �
N − 1

w121212.

Moreover, using the identities (4.11), (4.12), Lemma 4.3, and the definition of U from (4.3), we find

H2−mode =
(

ℎ11 −
�

2(N − 1)
(w1111 +w1122)

)

(

1 +2
)

+ �
4(N − 1)

(w1111 − 2w1122 +w1212)
(

1 +2
)2

+
(

ℎ12 +
�

N − 1
w1112(1 +2 − 1) +

�
N − 1

w1122
(

1 +2
)

)

(

a†1a2 + a
†
2a1

)

+ �U
(N − 1)

(

1 −2
)2 + 2�

N − 1
w1122 2

−.

(4.14)

The identity1 +2 = N −⟂ now yields

H2−mode = E0 + Ew
N − �⟂ +

�
4(N − 1)

(w1111 − 2w1122 +w1212) 2
⟂

+
(

ℎ12 + �w1112 + �w1122 −
�

N − 1
w1112⟂ −

�
N − 1

w1122(⟂ − 1)
)

×
(

a†1a2 + a
†
2a1

)

+ �U
(N − 1)

(

1 −2
)2 + 2�

N − 1
w1122 2

− ,

where E0 and Ew
N are defined by (4.2) and (4.3), respectively. The constant term E0 + Ew

N comes from
the substitution1+2 ⇝ N in the first two lines of (4.14). The third term −�⟂ is the contribution
coming from substituting1 +2 ⇝ −⟂ and (1 +2)2 ⇝ −2N⟂ in the same lines. The proof
of (4.9) is completed by recognizing that the main part of the coefficient of a†1a2 + a

†
2a1 is

ℎ12 + �w1112 + �w1122 =
⟨

u1,
(

− Δ + VDW +
1
2
�w ∗

(

u21 + u
2
2

)

+ �w ∗ (u1u2)
)

u2
⟩

= ⟨u1, ℎMFu2⟩ =
�+ − �−

2
,

having used (2.11) to reconstruct w ∗ |u+|2. This shows that the operator multiplying
(

a†1a2 + a
†
2a1

)

is
the operator  defined in (4.1), thus proving (4.9).
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Let us now prove the lower bound (4.10). We will do so by considering all terms in (4.9) and es-
timating them from below. The main observation is that since �+ − �− < 0, we can use the operator
inequalities

−N ⩽ a†1a2 + a
†
2a1 ⩽ 1 +2 = N −⟂ ⩽ N.

Thus the term 
(

a†1a2 + a
†
2a1

)

satisfies


(

a†1a2 + a
†
2a1

)

=
(�+ − �−

2
−
�w1112

N − 1
⟂ −

�w1122

N − 1
(⟂ − 1)

)

(

a†1a2 + a
†
2a1

)

⩾ −N
|

|

|

|

�+ − �−
2

+
�w1122

N − 1
|

|

|

|

− �N
N − 1

|

|

|

w1112 +w1122
|

|

|

⟂
(4.15)

where we used that if two operatorsA andB commute, z ∈ ℂ, and−N ⩽ A ⩽ N then zAB ⩾ −|z|NB.
The first absolute value in the right hand side is smaller than (�−−�+)∕2 because �−−�+ ⩾ c"T 1+" > 0
by Theorem A.1, 0 < w1122 ⩽ C"T 2−" by (4.5), and T ≪ 1. Furthermore, due to (4.6) the second
absolute value is bounded by C"T 1−". Thus


(

a†1a2 + a
†
2a1

)

⩾ N
�+ − �−

2
− C"T 1−"⟂ . (4.16)

In order to bound the other terms in (4.9) from below, we first notice that, since w1122 ⩾ 0,

2�
N − 1

w1122 2
− ⩾ 0. (4.17)

For the term −�⟂ we use (4.8) to write

− �⟂ ⩾ −�+⟂ − C"T 1−"⟂. (4.18)

The only term left is that proportional to  2
⟂. Thanks to the positivity of w1111 and w1212, using (4.6)

and⟂ ⩽ N , we have

�
4(N − 1)

(w1111 − 2w1122 +w1212) 2
⟂ ⩾ −

�
2(N − 1)

w1122 2
⟂ ⩾ −C"T

2−"⟂. (4.19)

Plugging (4.16), (4.17), (4.18), and (4.19) inside (4.9) gives (4.10). �

4.2. Upper bound forH2−mode. Let us define the trial function

 gauss ∶=
∑

−�2N⩽d⩽�2N
N+d is even

cd u
⊗(N+d)∕2
1 ⊗sym u

⊗(N−d)∕2
2 , (4.20)

where the symmetrized tensor products are normalized in the above and cd are gaussian coefficients,

cd ∶=
1
ZN

e−d2∕4�2N , |d| ⩽ �2N , (4.21)

with �N a variance parameter to be fixed later, such that 1 ⩽ �N ≪ N1∕2, and ZN a normalization
factor ensuring ‖ gauss‖ = 1. We will prove
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Proposition 4.4 (Upper bound forH2−mode).
Assume that T ∼ N−� for some � > 0. Then, with the choice

�2N =

{

√

�− − �+N if � < 2
C otherwise

(4.22)

with C ⩾ 1 a fixed constant, the trial state  gauss defined in (4.20) satisfies

⟨H2−mode⟩ gauss ⩽ E0 + Ew
N +N

�+ − �−
2

+ C"max
(

T 1∕2−", N−1+"�) . (4.23)

We start by computing expectation values with respect to the distribution |cd|2.

Lemma 4.5 (Expectation values for the gaussian trial state).
Let cd be defined by (4.21) if N + d is even and cd ∶= 0 if N + d is odd, where 1 ⩽ �N ⩽ CN1∕2 and
ZN is fixed so that

∑

|d|⩽�2N
|cd|2 = 1. Then

∙ Moments. For any n ∈ ℕ we have
∑

−�2N⩽d⩽�2N

d2n|cd|
2 ⩽ C�2nN ,

∑

−�2N⩽d⩽�2N

d2n+1|cd|
2 = 0 . (4.24)

∙ Tunneling term. For any � ∈ ℤ,
|

|

|

|

∑

−�2N⩽d⩽�2N−�

cdcd+� − 1
|

|

|

|

⩽ C
�2N
. (4.25)

Proof. The equality in (4.24) is trivial because of the odd symmetry d ↦ −d. To prove the inequality in
(4.24), we note that if f (x) is a differentiable function in L1([0,∞[) having a single relative extremum
at xm, which is a maximum, then

∑

0⩽d⩽�2N

f (d) ⩽ ∫

∞

0
f (x) dx + f (⌊xm⌋) + f (⌊xm⌋ + 1)

where ⌊x⌋ denotes the integer part of x. Taking f (d) = d2ne−d2∕2�2N , which is maximum at xm =
√

2n �N , we deduce that
∑

0⩽d⩽�2N

f (d) ⩽ �2n+1N ∫

∞

0
u2ne−u2∕2 du + C�2nN . (4.26)

The desired result then follows from the even symmetry d ↦ −d and from the following lower bound
on ZN

Z2
N =

∑

|d|⩽�2N
N+d is even

e
− d2

2�2N ⩾
∑

|d|⩽�N
N+d is even

e
− d2

2�2N ⩾ �Ne
− 1
2 . (4.27)

Let us prove (4.25). We have

cdcd+� = c2de
− 2�d+�2

4�2N .
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Using the inequality 0 ⩽ e−x − 1 + x ⩽ Cx2 valid for any x ∈ [− log(2C), log(2C)] and extending for
convenience the definition (4.21) of cd for d = �2N + 1,… , �2N + �, we get

0 ⩽
∑

|d|⩽�2N

(

cdcd+� − c2d +
2�d + �2

4�2N
c2d

)

⩽ C
∑

|d|⩽�2N

(

2�d + �2
)2

16�4N
c2d ⩽ C

�2N
,

where the last step follows from the estimates in (4.24) proven above. Recalling that
∑

|d|⩽�2N
c2d = 1,

this gives
|

|

|

|

|

∑

|d|⩽�2N

cdcd+� − 1
|

|

|

|

|

⩽ C
�2N

from which we obtain
|

|

|

|

|

∑

−�2N⩽d⩽�2N−�

cdcd+� − 1
|

|

|

|

|

⩽
|

|

|

|

|

∑

|d|⩽�2N

cdcd+� − 1
|

|

|

|

|

+ C
Z2
N

e−
�2N
2 ⩽ C

�2N
.

This proves (4.25). �

We are now ready to provide the

Proof of Proposition 4.4. We take the trial state  gauss from (4.20) with 1 ⩽ �N ≪ N1∕2 to be suitably
optimized at the end. We will compute the expectation value of all terms in (4.9) on  gauss. First of all,
notice that

⟂ gauss = 0,

which allows to neglect all⟂ and⟂
2-terms in (4.9). Hence,

⟨H2−mode⟩ gauss = E0 + E
w
N +

(�+ − �−
2

+ �
N − 1

w1122

)

⟨

a†1a2 + a
†
2a1⟩ gauss

+ �U
N − 1

⟨(

1 −2
)2⟩

 gauss
+ 2�
N − 1

w1122
⟨

 2
−

⟩

 gauss
.

(4.28)

Let us evaluate the three expectation values on the right hand side. We have

⟨

a†1a2 + a
†
2a1⟩ gauss = 2

∑

−�2N⩽d⩽�2N−2

cdcd+2

√

N + d + 2
2

N − d
2

.

Since |d| ⩽ �2N ≪ N , we can expand the square root around d = 0. We get
|

|

|

|

⟨

a†1a2 + a
†
2a1⟩ gauss−N

∑

−�2N⩽d⩽�2N−2

cdcd+2
|

|

|

|

⩽ N
∑

−�2N⩽d⩽�2N−2

cdcd+2
|

|

|

|

√

1 + 2
N
− d2
N2

− 2d
N2

− 1
|

|

|

|

⩽ N
∑

−�2N⩽d⩽�2N−2

cdcd+2
|

|

|

|

2
N
− d2

N2
− 2d
N2

|

|

|

|

.

(4.29)
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We distinguish between two cases:

∙ if 1 ⩽ �2N ⩽ 2
√

N the second line of (4.29) is bounded by a constant. Indeed

|

|

|

|

2
N
− d2

N2
− 2d
N2

|

|

|

|

⩽ 3
N

for |d| ⩽ 2
√

N

and
cdcd+2 ⩽ e c2d for |d| ⩽ �2N ,

and we recall that
∑

|d|⩽�2N
c2d = 1.

∙ if �2N > 2
√

N , we split the sum in the second line of (4.29) into a sum runing from −2
√

N
to 2

√

N and a remaining sum. Taking advantage of the last two bounds, the expression in this
second line is less than

C
∑

|d|⩽2
√

N

c2d +NC
∑

2
√

N<|d|⩽�2N

c2d .

The first sum in the right hand side is bounded by one. The second sum can be bounded as
follows. Setting dN =

⌊

2
√

N
⌋

, we have

∑

2
√

N<|d|⩽�2N

c2d =
2
Z2
N

∑

2
√

N<d⩽�2N

exp
{

−
(d − dN )2

2�2N
−
ddN
�2N

+
d2N
2�2N

}

⩽ 2
Z2
N

exp
{

−
d2N
2�2N

}

∑

0⩽d′⩽�2N

exp
{

−
(d′)2

2�2N

}

⩽ 2e
− N
�2N .

Hence, in all cases one has
|

|

|

|

⟨

a†1a2 + a
†
2a1⟩ gauss −N

∑

−�2N⩽d⩽�2N−2

cdcd+2
|

|

|

|

⩽ C + CNe
− N
�2N . (4.30)

Combining this result with (4.25), we get

|

|

|

⟨

a†1a2 + a
†
2a1⟩ gauss −N

|

|

|

⩽ C + CN
�2N

+ CNe
− N
�2N . (4.31)

For the variance term in (4.28) we immediately have, using (4.24),
⟨(

1 −2
)2⟩

 gauss
=

∑

|d|⩽�2N

d2|cd|
2 ⩽ C�2N . (4.32)

Finally, since  2
− ⩽ N− on ℌN and− = (1 +2 − a

†
1a2 − a

†
2a1)∕2, we have by (4.31)

⟨ 2
−⟩ gauss ⩽

N
2
(

N − ⟨a†1a2 + a
†
2a1⟩ gauss

)

⩽ CN
(

1 + N
�2N

+Ne
− N
�2N
)

. (4.33)



BOSONS IN A DOUBLE WELL: TWO-MODE APPROXIMATION AND FLUCTUATIONS 27

Plugging (4.31), (4.32), and (4.33) inside (4.28), and recalling the estimates (4.4), (4.6), and (4.7) for
the wmnpq coefficients and our assumption 1 ⩽ �N ≪ N1∕2, we find

⟨H2−mode⟩ gauss ⩽ E0 + Ew
N +N

�+ − �−
2

+ C
(

�− − �+ + C"T 2−"
)

(

N
�2N

+Ne
− N
�2N

)

+ C
�2N
N
. (4.34)

We now optimize the remainder terms by choosing �2N as in (4.22). Since we assume T ∼ N−� for some
� > 0 we have from (A.4)

Ne
− N
�2N ⩽ CN−�

for any � > 0, showing that the exponential term in (4.34) is much smaller than N∕�2N . Using
again (4.22) and (A.4), the two last terms in (4.34) are bounded by C"T 1∕2−" if 0 < � < 2 and by
C"T 1−"N + CN−1 ∼ C"N−(�−1)+"� + CN−1 if � ⩾ 2. The claimed bounds then follow from

max
(

T 1∕2−", N−1+"�) =

{

T 1∕2−" if 0 < � < 2
N−1+"� if � ⩾ 2.

�

4.3. Bose-Hubbard energy and proof of Proposition 2.4. The next result of this Section will allow
us to recover the Bose-Hubbard energy, which is the lowest energy of the Bose-Hubbard Hamiltonian
(2.24), in terms of quantities appearing in the bounds forH2−mode.

Proposition 4.6 (Bose-Hubbard energy).
Let EBH be the bottom of the spectrum of the Bose Hubbard HamiltonianHBH defined in (2.24) on the
N-body two-mode space

⨂N
sym

(

PL2(ℝd)
)

. Then
|

|

|

|

|

EBH −
(

�N2

4(N − 1)
w1111 −

�N
2(N − 1)

w1111 +
(

�+ − �−
) N
2

)

|

|

|

|

|

⩽ C"max
(

T 1∕2−", N−1+"�) . (4.35)

Proof. SinceHBH is defined on
⨂N

sym

(

PL2(ℝd)
)

only, we can plug1 +2 = N (i.e.,⟂ = 0) into
(2.24). This gives

HBH =
�

2(N − 1)

(N2

2
−N

)

w1111 +
�+ − �−

2
(

a†1a2 + a
†
2a1

)

+
�w1111

4(N − 1)
(

1 −2
)2.

We then repeat the proof of (4.10) and (4.23) on this simplified Hamiltonian. This gives
EBH ⩽ ⟨HBH⟩ gauss

⩽ �N2

4(N − 1)
w1111 −

�N
2(N − 1)

w1111 +
(

�+ − �−
) N
2
+ C"max

(

T 1∕2−", N−1+"�)

and
HBH ⩾ �N2

4(N − 1)
w1111 −

�N
2(N − 1)

w1111 +
(

�+ − �−
) N
2
,

which completes the proof. �

We may now conclude the
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Proof of Proposition 2.4. Recall Definition (2.22). We deduce from Proposition 4.4 that

E2−mode ⩽ E0 + Ew
N +N

�+ − �−
2

+ C"max
(

T 1∕2−", N−1+"�) . (4.36)

Since the ground state ofH2−mode entirely lives in the two-modes subspace, for a matching lower bound
we may set⟂ = 0 in (4.10). Thus, recalling that U ⩾ 0, we deduce from Proposition 4.2 that

E2−mode ⩾ E0 + Ew
N +N

�+ − �−
2

.

Let us set

Ẽ0 = E0 −
�N2

4(N − 1)
(4w1122 − 2w1212) = Nℎ11 −

�N2

4(N − 1)
(2w1122 −w1212) .

It follows from the two preceding bounds, Proposition 4.6 and the definition (4.3) of Ew
N that

|

|

|

E2−mode − Ẽ0 − EBH
|

|

|

⩽ |

|

|

E2−mode − E0 − Ew
N −N

�+ − �−
2

|

|

|

+ |

|

|

− EBH +N
�+ − �−

2
+ Ew

N + E0 − Ẽ0
|

|

|

⩽ C"max
(

T 1∕2−", N−1+"�) +
|

|

|

|

− �N2

4(N − 1)
w1111 +

�N
2(N − 1)

w1111

+ Ew
N +

�N2

4(N − 1)
(4w1122 − 2w1212)

|

|

|

|

⩽ C"max
(

T 1∕2−", N−1+"�) + �N
2(N − 1)

w1122 .

Proposition 2.4 follows by using Lemma 4.1 again. �

5. DERIVATION OF THE BOGOLIUBOV HAMILTONIAN AND REDUCTION TO RIGHT AND LEFT MODES

The aim of this Section is two-fold: we will prove that the Bogoliubov Hamiltonian ℍ from (3.18)
is the leading contribution toHN −H2−mode, and we will show that ℍ can be decomposed into the two
quadratic Hamiltonians ℍright and ℍlef t from (3.21) and (3.22). The most delicate part of this program
is the fact that there are terms in HN that contain exactly one a♯m with m ⩾ 3, but that are not a priori
negligible. We keep track of them in Proposition 5.1, and we will show that they are negligible at a later
stage.

Let us state the two main results.
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Proposition 5.1 (Derivation of the Bogoliubov Hamiltonian).
For any excitation vector Φ ∈ l2(F⟂) of the form Φ = N for some  ∈ ℌN , we have

|

|

|

⟨N (HN −H2−mode) ∗
N⟩Φ − ⟨ℍ⟩Φ − �+⟨⟂⟩Φ

− �
√

2(N − 1)

⟨
∑

m⩾3
w+1−mΘamD + h.c.

⟩

Φ

− �
√

2(N − 1)

⟨
∑

m⩾3
w+2−mΘ−1amD + h.c.

⟩

Φ
|

|

|

⩽ C
N1∕4

(

⟨

 2
⟂ + 1

⟩

Φ +
⟨

D2

N

⟩

Φ

)

+ C"
T 1−"

N1∕4

⟨

−
⟩3∕4
 ∗
NΦ

⟨

 2
⟂

⟩1∕4
Φ

(5.1)

While proving the decomposition of ℍ into right and left modes, we will need to project the problem
on the eigenmodes of ℎMF with index smaller than some M ∈ ℕ. To this end, we define the spectral
projections

P⩽M ∶=
∑

1⩽�⩽M

(

|u2�+1⟩⟨u2�+1| + |u2�+2⟩⟨u2�+2|
)

=
∑

1⩽�⩽M

(

|ur,�⟩⟨ur,�| + |ul,�⟩⟨ul,�|
)

. (5.2)

and
P>M ∶=

∑

�>M

(

|u2�+1⟩⟨u2�+1| + |u2�+2⟩⟨u2�+2|
)

= 1 − P⩽M − |u+⟩⟨u+| − |u−⟩⟨u−|.

Let us introduce the versions of the Bogoliubov Hamiltonians ℍright and ℍlef t in the right and left
wells with an energy cutoff, obtained by restricting all sums in (3.21) and (3.22) to indices �, � smaller
thanM ,

ℍ(M)
right ∶= dΓ(P⩽M )ℍrightdΓ(P⩽M )

=
∑

1⩽�,�⩽M

⟨

ur,�,
(

ℎMF − �+ + �K11

)

ur,�
⟩

b†r,�br,�

+ �
2

∑

1⩽�,�⩽M

⟨

ur,�, K11ur,�
⟩

(

b†r,�b
†
r,� + br,�br,�

)

(5.3)

ℍ(M)
lef t ∶= dΓ(P⩽M )ℍlef tdΓ(P⩽M )

=
∑

1⩽�,�⩽M

⟨

ul,�,
(

ℎMF − �+ + �K22

)

ul,�
⟩

c†l,�cl,�

+ �
2

∑

1⩽�,�⩽M

⟨

ul,�, K22ul,�
⟩

(

c†l,�c
†
l,� + cl,�cl,�

)

,

(5.4)

where we recall that the operators K11, K22 and K12 are defined as

⟨v,Kiiu⟩ =
1
2
⟨v ⊗ ui , w ui ⊗ u⟩ , i = 1, 2, ⟨v,K12u⟩ = ⟨v ⊗ u1 , w u2 ⊗ v⟩.

Proposition 5.2 (Reduction to right- and left-mode Hamiltonians).
Consider Φ ∈ l2(F⟂) such that

⟨

dΓ(ℎMF − �+) + 2
⟂ + dΓ(ℎMF − �+)⟂

⟩

Φ ⩽ C (5.5)
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for a constant C that does not depend on N . For every energy cutoff Λ, letMΛ be the largest integer
such that �2MΛ+2 ⩽ Λ, where {�m}m are the eigenvalues of ℎMF in increasing order. Then,

|

|

|

|

⟨

ℍ − ℍ(MΛ)
right − ℍ(MΛ)

lef t − dΓ⟂
(

P⩾MΛ

(

ℎMF − �+
)

P⩾MΛ

)

⟩

Φ

|

|

|

|

⩽ CΛoN (1) +
C

(

�2MΛ+2 − �+
)1∕2

(5.6)

where the constant CΛ does not depend onN .

The results of Propositions 5.1 and 5.2 will enable us to show in the next sections that the expec-
tation value of HN − H2−mode in the ground state  gs of the N-body Hamiltonian HN is equal to
⟨ℍ + �+⟂⟩ ∗

N gs
up to error terms oN (1) and, furthermore, that the Bogoliubov Hamiltonian in the

last expression can be decomposed as a sum of a “right” and “left” Bogoliubov Hamiltonians up to
small errors. Indeed, let us anticipate the following a priori estimates to be proven in Section 6:

⟨ 2
⟂⟩ gs ⩽ C , ⟨dΓ(ℎMF − �+)⟂⟩ gs ⩽ C , ⟨−⟩ gs ⩽ C"min{N, T −1−"}

where the constants C and C" are independent ofN . In particular, taking Φ = N gs, the second term
in the right hand side of (5.1) is of order T 1∕2−".
To prove Proposition 5.1 we will, in the next three subsections, group the terms in HN − H2−mode

depending on the number of creation and annihilation operators a♯m with m ⩾ 3 they contain.The proof
of Proposition 5.2 is provided in Subsection 5.4.

We first collect a few properties that we will use throughout the section.

Lemma 5.3 (General estimates).

(i) For any functions f, g, ℎ ∈ L2(ℝd) we have
∑

m⩾3

|

|

|

⟨f ⊗ g,wℎ ⊗ um⟩
|

|

|

2
⩽
⟨

g, ||
|

w ∗ (fℎ)||
|

2
g
⟩

⩽ C‖f‖22 ‖g‖
2
2 ‖ℎ‖

2
2 (5.7)

(ii) For any two function f, g ∈ L2(ℝd) we have
∑

m,n⩾3

|

|

|

⟨f ⊗ g,w um ⊗ un⟩
|

|

|

2
⩽ ⟨f ⊗ g,w2f ⊗ g⟩ ⩽ C‖f‖22 ‖g‖

2
2 (5.8)

(iii) We have the following bound
‖

‖

‖

w ∗ (u1u2)
‖

‖

‖L∞
= sup

x∈ℝd
|w ∗ (u1u2)(x)| ⩽ C"T

1−". (5.9)

(iv) The operators K11 and K22 are positive and trace-class. Moreover
‖

‖

‖

K12
‖

‖

‖op
⩽ C"T

1∕2−". (5.10)

Proof. Let us start by proving (5.7). We have
∑

m⩾3

|

|

|

⟨f ⊗ g,wℎ ⊗ um⟩
|

|

|

2
=
∑

m⩾3

⟨

g,w ∗
(

fℎ
)

|um⟩⟨um|w ∗
(

ℎf
)

g
⟩

.
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The first inequality in (5.7) then follows thanks to the operator bound

∑

m⩾3
|um⟩⟨um| ⩽ 1.

To pass to the second inequality of (5.7) one uses Young’s inequality, recalling thatw ∈ L∞. A similar
argument proves (5.8) as well, using instead the operator bound

∑

m,n⩾3
|um ⊗ un⟩⟨um ⊗ un| ⩽ 1.

To prove (5.9) we write, recalling that 2u1u2 = u2+ − u
2
− and w ⩾ 0,

sup
x∈ℝd

|

|

|

|

∫ℝd
w(x − y)u1(y)u2(y)dy

|

|

|

|

⩽ 1
2
sup
x∈ℝd ∫ℝd

w(x − y)||
|

|u+(y)|2 − |u−(y)|2
|

|

|

dy

⩽ C‖‖
‖

|u+|
2 − |u−|

2‖
‖

‖L1
⩽ C"T

1−",

where the second inequality follows from Young’s inequality, while the third one follows from (A.1).
The operators K11 and K22 are trace-class since they are integral operators with kernels Kii(x, y) =

1
2
ui(x)w(x − y)ui(y) and their trace is equal to

∫ℝd
Kii(x, x)dx =

1
2 ∫ℝd

w(0) |
|

ui(x)||
2 dx = 1

2
w(0) <∞, for i, j ∈ {1, 2}.

They are positive because of our assumption that w is of positive type, see (2.1). To prove (5.10) we
use the Cauchy-Schwarz inequality to obtain

‖

‖

‖

K12
‖

‖

‖op
= sup

u,v∈L2(ℝd ), ‖u‖=‖v‖=1

|

|

|

⟨v,K12u⟩
|

|

|

⩽ sup
‖u‖=‖v‖=1∬ℝ2d

|v(x)|u1(y)w(x − y)u2(x)|u(y)|dxdy

⩽ sup
‖u‖=‖v‖=1

(

∬ℝ2d
|v(x)|2w(x − y)|u(y)|2dxdy

)1∕2
w1∕2
1212

and the result then follows from w ∈ L∞ and (4.7). �
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5.1. Linear terms. The part of the Hamiltonian containing only one a♯m is, recalling the identities
wmnpq = wpnmq = wmqpn = wnmqp,

A1 =
∑

m⩾3

(

− Δ + VDW
)

+ma
†
+am + h.c. (5.11)

+
∑

m⩾3

(

− Δ + VDW
)

−ma
†
−am + h.c. (5.12)

+ �
N − 1

∑

m⩾3
w+++ma

†
+a

†
+a+am + h.c. (5.13)

+ �
N − 1

∑

m⩾3
w++−ma

†
+a

†
+a−am + h.c. (5.14)

+ �
N − 1

∑

m⩾3
w+−+ma

†
+a

†
−a+am + h.c. (5.15)

+ �
N − 1

∑

m⩾3
w+−m+a

†
+a

†
−ama+ + h.c. (5.16)

+ �
N − 1

∑

m⩾3
w+−−ma

†
+a

†
−a−am + h.c. (5.17)

+ �
N − 1

∑

m⩾3
w+−m−a

†
+a

†
−ama− + h.c. (5.18)

+ �
N − 1

∑

m⩾3
w−−+ma

†
−a

†
−a+am + h.c. (5.19)

+ �
N − 1

∑

m⩾3
w−−−ma

†
−a

†
−a−am + h.c.. (5.20)

The main result of this Subsection is the following Proposition.

Proposition 5.4 (Linear terms).
Let Φ ∈ l2(F⟂) be such that Φ = N for some  ∈ ℌN . We have:

∙ Elimination of sub-leading terms.

|

|

|

⟨A1 ⟩ −
�

N − 1

⟨(

∑

m⩾3
(w++−ma

†
+ +w+−−ma

†
−)
(

1 −2
)

am + h.c.
)⟩

 

|

|

|

⩽ C
√

N
⟨ 2
⟂ + 1⟩ + C"

T 1−"

N1∕4
⟨−⟩

3∕4
 ⟨ 2

⟂⟩
1∕4
 .

(5.21)
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∙ Conjugation with N .

|

|

|

⟨NA1 ∗
N⟩Φ −

�
√

2(N − 1)

⟨
∑

m⩾3
w+1−mΘamD + h.c.

⟩

Φ

− �
√

2(N − 1)

⟨
∑

m⩾3
w+2−mΘ−1amD + h.c.

⟩

Φ
|

|

|

⩽ C
N1∕4

(

⟨ 2
⟂ + 1⟩Φ +

⟨D2

N
⟩

Φ

)

+ C"
T 1−"

N1∕4
⟨−⟩

3∕4
 ∗
NΦ

⟨ 2
⟂⟩

1∕4
Φ .

(5.22)

Some linear terms still appear explicitly in (5.22), of the form

1
N
a†±(1 −2)am m ⩾ 3.

According to the standard prescriptions of Bogoliubov theory (a♯± ≃
√

N and a♯m ≃ 1 for m ⩾ 3), and
using the a priori estimate (6.6), for the variance, this term would not result to be negligible. We will
prove that it actually is at a later stage of the proof.

Proof. Let us start with (5.21). The terms (5.11), (5.13), and (5.18) will be considered together (and
analogous arguments will hold for (5.12)+(5.15)+(5.20)). Their sum gives

(5.11) + (5.13) + (5.18)

=
∑

m⩾3

[

(

− Δ + VDW
)

+ma
†
+am +

�
N − 1

w+++ma
†
+

(

+ +−
)

am
]

+ h.c.

+ �
N − 1

∑

m⩾3

[

(w+−m− −w+++m
)

a†+−am
]

+ h.c.

=∶ L1 + L2.

(5.23)

In order to estimate L1 we write, using+ +− = N −⟂ and w+++m = (w ∗ u2+)+m,

L1 =
∑

m⩾3

[

(

ℎMF
)

+ma
†
+am −

�
N − 1

w+++ma
†
+(⟂ − 1)am

]

+ h.c.

But (ℎMF)+m = �+⟨u+, um⟩ = 0 if m ⩾ 3 and thus

⟨L1⟩ = −
�

N − 1
∑

m⩾3
w+++m⟨ , a

†
+(⟂ − 1)am ⟩ + h.c.
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Using the Cauchy-Schwarz inequality twice, inserting (5.7), recalling that+ ⩽ N and 2⟂ ⩽  2
⟂+1,

we have

|⟨L1⟩ | ⩽
C
N

[

∑

m⩾3
|w+++m|

2
]1∕2[

∑

m⩾3

(

‖ 1∕2
⟂ a+ ‖

2
‖ 1∕2
⟂ am ‖

2 + ‖a+ ‖
2
‖am ‖

2
)

]1∕2

⩽ C
N

[

∑

m⩾3

(

⟨+⟂⟩ ⟨⟂m⟩ + ⟨+⟩ ⟨m⟩ 

)

]1∕2

⩽ C
√

N
⟨ 2
⟂ + 1⟩ .

(5.24)

The term L2 in (5.23) can be rewritten as

L2 =
�

N − 1
∑

m⩾3

⟨

u+, w ∗
(

|u−|
2 − |u+|

2) um
⟩

a†+−am + h.c..

Hence

|⟨L2⟩ | ⩽
C
N

[

∑

m⩾3

|

|

|

⟨u+, w ∗ (|u−|2 − |u+|
2)um⟩

|

|

|

2
]1∕2[

∑

m⩾3
‖ 1∕2

− a+ ‖
2
‖ 1∕2

− am ‖
2
]1∕2

⩽ C
N
⟨u+,

(

w ∗ (|u+|2 − |u−|
2)
)2u+⟩

1∕2
⟨+−⟩

1∕2
 ⟨⟂−⟩

1∕2
 

⩽ C"
T 1−"

N1∕2
⟨−⟩

1∕2
 ⟨ 2

⟂⟩
1∕4
 ⟨ 2

−⟩
1∕4
 

⩽ C"
T 1−"

N1∕4
⟨−⟩

3∕4
 ⟨ 2

⟂⟩
1∕4
 .

In the first step we used the Cauchy-Schwarz inequality for the m-sum and for the scalar product. In the
second step we used (5.7). In the third one we usedYoung’s inequality,w ∈ L∞ and theL2-bound (A.1),
as well as+ ⩽ N and the Cauchy Schwarz inequality ⟨⟂−⟩

2
 ⩽ ⟨ 2

⟂⟩ ⟨
2
−⟩ . In the last step we

used  2
− ⩽ N−.

Having estimated both L1 and L2, we deduce

|⟨ ,
(

(5.11) + (5.13) + (5.18)
)

 ⟩| ⩽ C
√

N
⟨ 2
⟂ + 1⟩ 

+ C"
T 1−"

N1∕4
⟨−⟩

3∕4
 ⟨ 2

⟂⟩
1∕4
 .

(5.25)

Analogous arguments lead to a similar bound for |⟨ ,
(

(5.12) + (5.15) + (5.20)
)

 ⟩|.
The remaining terms in A1 yield the linear terms in the left hand side of (5.21). In fact, noticing that

w++−m = w−++m = w+−m+, and using the identity

a†+a− + a
†
−a+ =1 −2,

we find

(5.14) + (5.16) + (5.17) + (5.19) = �
N − 1

∑

m⩾3

(

w++−ma
†
+ +w+−−ma

†
−

)

(

1 −2
)

am + h.c.. (5.26)
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The estimate (5.21) is then deduced by merging (5.25) and (5.26).
We now turn to (5.22). Using the definition of u1 and u2 in terms of u+ and u− (see (2.11)) we can

replace a♯+ and a♯− with linear combinations of a♯1 and a
♯
2. The action of N on a†man is then obtained

using (3.17). For example, recalling that [1, am] = [2, am] = 0 form ⩾ 3, and recalling the definition
ofD from (3.13),

Na
†
1(1 −2)am ∗

N = Na
†
1am

∗
N N (1 −2) ∗

N

= Θ

√

N −⟂ +D + 1
2

amD.

The action of N on the term of (5.22) containing a†2 is computed analogously, and the same holds for
the adjoint operators. Thus, acting with N on the linear terms in the right hand side of (5.21) and
recalling the definition of u1 and u2 to re-express the matrix elements of w gives

�
N − 1

N

∑

m⩾3
(w++−ma

†
+ +w+−−ma

†
−)
(

1 −2
)

am ∗
N + h.c.

= �
√

2(N − 1)

∑

m⩾3

[

w+1−mΘ
√

N −⟂ +D + 1 + h.c.

+w+2−mΘ−1
√

N −⟂ −D + 1
)]

Dam + h.c..

(5.27)

The linear terms in (5.22) are obtained by replacing all square roots in the above right hand side by
√

N − 1. We now bound the remainders this operation produces. Consider for example the second line
of (5.27), and denote

R1 ∶=
�

√

2(N − 1)

∑

m⩾3
w+1−m

⟨

Θ
(
√

N −⟂ +D + 1 −
√

N − 1
)

Dam
⟩

Φ
+ h.c.

Proceeding as when estimating ⟨L1⟩ and ⟨L2⟩ above, recalling that [D, am] = 0, one obtains

|R1| ⩽
C

√

N

(

∑

m⩾3
|w+1−m|

2
)1∕2

⟨⟂D2⟩
1∕2
Φ

×
⟨

Θ

(

√

1 −
⟂
N − 1

+ D
N − 1

+ 2
N − 1

− 1

)2

Θ−1
⟩1∕2

Φ
.

We now use the inequality

(

√

√

√

√1 +
K
∑

j=1
Xj − 1

)2

⩽
(1
2

K
∑

j=1
Xj

)2
⩽ CK

K
∑

j=1
X2
j , (5.28)
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for a collection X1,… , XK of K mutually commuting self-adjoint operators. Inserting (5.7) and using
the Cauchy-Schwarz inequality to get ⟨⟂D2⟩2Φ ⩽ ⟨ 2

⟂D
2
⟩Φ⟨D2⟩Φ we find

|R1| ⩽
C
N3∕4

⟨ 2
⟂D

2
⟩

1∕4
Φ

⟨D2

N
⟩1∕4
Φ

(

1
N
⟨ 2
⟂ + 1⟩Φ +

⟨D2

N
⟩

Θ−1Φ

)1∕2

.

Since Φ = N , we know that

⟨ 2
⟂D

2
⟩Φ =

∑

s,d
s2d2‖Φs,d‖

2 ⩽ N2
⟨ 2
⟂⟩Φ .

Moreover, the commutation relation [D,Θ] = Θ implies
⟨D2⟩Θ−1Φ = ⟨(ΘDΘ−1)2⟩Φ = ⟨(D − 1)2⟩Φ ⩽ 2⟨D2 + 1⟩Φ

and we deduce

|R1| ⩽
C
N1∕4

⟨ 2
⟂⟩

1∕4
Φ

⟨D2

N
⟩1∕4
Φ

(

1
N
⟨ 2
⟂ + 1⟩Φ + ⟨

D2

N
⟩Φ

)1∕2

⩽ C
N1∕4

(

⟨ 2
⟂ + 1⟩Φ + ⟨

D2

N
⟩Φ

)

.

The remainder for the term in the third line of (5.27) can be treated in the same way, completing the
proof of (5.22). �

5.2. Cubic and quartic terms. The part ofHN containing three a♯m with m ⩾ 3 is

A3 ∶=
�

N − 1
∑

m,n,p⩾3

[

w+mnpa
†
+a

†
manap +w−mnpa

†
−a

†
manap

]

+ h.c.,

while the one containing four is

A4 ∶=
�

2(N − 1)
∑

m,n,p,q⩾3
wmnpqa

†
ma

†
napaq.

Proposition 5.5 (Cubic and quartic terms).
For any Φ ∈ l2(F⟂) we have

|

|

⟨NA3 ∗
N⟩Φ

|

|

⩽ C
√

N
⟨ 2
⟂ + 1⟩Φ. (5.29)

and
|

|

⟨NA4 ∗
N⟩Φ

|

|

⩽ C
N
⟨ 2
⟂⟩Φ. (5.30)

Proof. To prove (5.30) notice that with the notation (3.6) we have

NA4 ∗
N =

�
2(N − 1)

dΓ⟂(w),

where w is the operator of multiplication by w(x − y) on L2(ℝd)⊗2. Since w ∈ L∞ we have

NA4 ∗
N ⩽ C

N
dΓ⟂(1⊗ 1) = C

N
⟂(⟂ − 1) ⩽

C
N

 2
⟂
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because second quantization preserves operator inequalities. Since A4 ⩾ 0, (5.30) follows.
Let us now prove (5.29). Taking the second quantization of the operator inequality (recall thatw ⩾ 0)

P ⟂ ⊗ (P ⟂ − "P+)wP ⟂ ⊗ (P ⟂ − "P+) + (P ⟂ − "P+)⊗ P ⟂w(P ⟂ − "P+)⊗ P ⟂ ⩾ 0,

for some " > 0, we deduce
∑

m,n,p⩾3
w+mnpa

†
+a

†
manap + h.c. ⩽ " dΓ⟂

(

w ∗ |u+|2
)

+ +
1
"

∑

m,n,p,q⩾3
wmnpqa

†
ma

†
napaq

⩽ "C⟂+ +
1
"

∑

m,n,p,q⩾3
wmnpqa

†
ma

†
napaq.

In the last step we used the inequality dΓ⟂
(

w ∗ |u+|2
)

⩽ C⟂, which holds by boundedness of w ∗
|u+|2. We can use the same arguments for the part of A3 that contains w−mnp. Adding the two results
and multiplying by �∕(N − 1) we thus obtain

A3 ⩽
"C�
N − 1

⟂(+ +−) +
4
"
A4

Using the fact that+ +− ⩽ N on ℌN , and then conjugating by N , this implies

NA3 ∗
N ⩽ "C⟂ + "−1CNA4 ∗

N

and plugging (5.30) in the last term gives

NA3 ∗
N ⩽ "C⟂ + "−1

C
N

 2
⟂.

We optimize this bound by choosing " = N−1∕2. Repeating the same proof with " replaced by −" and
with reversed inequalities, this yields

− C
√

N

(

⟂ + 2
⟂

)

⩽ NA3 ∗
N ⩽ C

√

N

(

⟂ + 2
⟂

)

.

Using also 2⟂ ⩽  2
⟂ + 1, this concludes the proof. �

5.3. Quadratic terms. The part A2 ofHN that contains exactly two a♯m with m ⩾ 3 is composed of 24
terms which can be combined together by using the equalities wmnpq = wpnmq = wmqpn = wnmqp and the
identities

∑

m.n⩾3
(wimin +wimni)a†man = dΓ⟂

(

w ∗ |ui|2 + 2Kii
)

, i = 1, 2

∑

m.n⩾3
(w1m2n +w1mn2)a†man = dΓ⟂

(

w ∗ (u1u2) +K12
)
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to obtain

A2 ∶=
∑

m,n⩾3

(

− Δ + VDW
)

mna
†
man

+ �
2(N − 1)

∑

m,n⩾3

(

w11mna
†
1a
†
1 + 2w12mna

†
1a
†
2 +w22mna

†
2a
†
2

)

aman + h.c.

+ �
N − 1

(

a†1a1dΓ⟂
(

w ∗ |u1|2 + 2K11
)

+ a†2a2dΓ⟂
(

w ∗ |u2|2 + 2K22
)

+ �
N − 1

(

a†1a2dΓ⟂
(

w ∗ (u1u2) +K12
)

+ h.c.
)

.

The action of N on quadratic terms of the type a†a was given in Lemma 3.6. To deduce the action of
N on terms of the type a†a†aa as the ones in A2, we can always reduce ourselves to terms of type a†a
by commuting operators, as in

Na
†
1a
†
2aman

∗
N = Na

†
1am

∗
NNa

†
2an

∗
N for m, n ⩾ 3.

This is allowed because for m, n ⩾ 3 the operators a♯ma
♯
n commute with a♯1 and a

♯
2. The same argument

holds for terms of the type

Na
†
1a
†
ma2an

∗
N = Na

†
1a2

∗
NNa

†
man

∗
N .

Arguing in this way to commute operators, one easily deduces the expression

NA2 ∗
N ∶=

∑

m,n⩾3

(

− Δ + VDW
)

mna
†
man (5.31)

+ �
2(N − 1)

[

∑

m,n⩾3
w11mnΘ2

√

N −⟂ +D + 2
2

√

N −⟂ +D + 1
2

aman + h.c. (5.32)

+ 2
∑

m,n⩾3
w12mn

√

N −⟂ +D
2

√

N −⟂ −D + 1
2

aman + h.c. + h.c. (5.33)

+
∑

m,n⩾3
w22mnΘ−2

√

N −⟂ −D + 2
2

√

N −⟂ −D + 1
2

aman + h.c. (5.34)

+ (N −⟂ +D) dΓ⟂
(

w ∗ |u1|2 + 2K11
)

(5.35)

+ (N −⟂ −D) dΓ⟂
(

w ∗ |u2|2 + 2K22
)

(5.36)

+ 2Θ2
√

N −⟂ +D + 2
2

√

N −⟂ −D
2

dΓ⟂
(

w ∗ (u1u2) +K12
)

+ h.c.
]

(5.37)
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If we could replace all square roots by
√

(N − 1)∕2 and (N −⟂ ±D) byN − 1, then the expression
on the right hand side would coincide with

ℍ + �+⟂ ∶= dΓ⟂
(

− Δ + VDW +
�
2
w ∗ |u1|2 +

�
2
w ∗ |u2|2 + �K11 + �K22

)

+�
2
∑

m,n⩾3

(

K12 +w ∗ (u1u2)
)

mnΘ
2a†man + h.c. (5.38)

+�
2
∑

m,n⩾3

(

(K11)mnΘ2 + (K22)mnΘ−2 + (K∗
12)mn

)

aman + h.c. ,

see (3.18). The �+⟂ term is there to compensate a term which we included in the definition of ℍ but
that does not come fromNA2 ∗

N . We will prove the following result, showing that such a replacement
can be done at the expense of negligible remainders.

Proposition 5.6 (Quadratic terms).
Let Φ ∈ l2(F⟂) be such that Φ = N for some  ∈ ℌN . Then

|

|

|

⟨NA2 ∗
N⟩Φ − ⟨ℍ⟩Φ − �+⟨⟂⟩Φ

|

|

|

⩽ C
√

N

⟨ 2
⟂ +D

2 + 1
N

⟩

Φ
, (5.39)

where ℍ was defined in (3.18).

Proof. The result is proven if we show the following three general estimates:

∙ Controlling terms (5.32)-(5.34): For every i, k ∈ {1, 2}, c1, c2 ∈ ℤ, j ∈ {−2, 0, 2}, and
"1, "2 ∈ {−1, 1},

|

|

|

|

�
2(N − 1)

⟨

∑

m,n⩾3
wikmnΘj

×

(

√

N −⟂ + "1D + c1
2

√

N −⟂ + "2D + c2
2

− N − 1
2

)

aman

⟩

Φ
+ h.c.

|

|

|

|

⩽ C
N
⟨ 2
⟂⟩

1∕2
Φ

⟨ 4
⟂

N3
+ D

4

N3
+

 2
⟂

N
+ D

2

N
+ 1
N

⟩1∕2

Φ
.

(5.40)

∙ Controlling terms (5.35)-(5.36): For every i ∈ {1, 2},

|

|

|

|

�
N − 1

⟨

(

(N −⟂ ±D) − (N − 1)
)

dΓ⟂
(

w ∗ |ui|2 + 2Kii
)

⟩

Φ

|

|

|

|

⩽ C
N
⟨

 2
⟂ +D

2 + 1
⟩1∕2
Φ ⟨ 2

⟂⟩
1∕2
Φ .

(5.41)
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∙ Controlling the last term (5.37): Finally,

|

|

|

|

�
N − 1

⟨

Θ2
(

√

N −⟂ +D + 2
2

√

N −⟂ −D
2

− N − 1
2

)

× dΓ⟂
(

w ∗ (u1u2) +K12

)⟩

Φ
+ h.c.

|

|

|

|

⩽ C
N
⟨ 2
⟂⟩

1∕2
Φ

⟨ 4
⟂

N3
+ D

4

N3
+

 2
⟂

N
+ D

2

N
+ 1
N

⟩1∕2

Φ
.

(5.42)

Let us prove (5.40). We have
|

|

|

|

|

�
2(N − 1)

⟨

∑

m,n⩾3
wikmnΘj

×
(

√

N −⟂ + "1D + c1
2

√

N −⟂ + "2D + c2
2

− N − 1
2

)

aman

⟩

Φ
+ h.c.

|

|

|

|

|

⩽ �N
2(N − 1)

(

∑

m,n⩾3
|wikmn|

2
)1∕2 ( ∑

m,n⩾3
‖amanΦ‖2

)1∕2

×
⟨

Θj
(

√

1 −
⟂
N

+ "1
D
N
+
c1
N

√

1 −
⟂
N

+ "2
D
N
+
c2
N
− 1 + 1

N

)2

Θ−j
⟩1∕2

Φ

⩽ C
⟨

⟂(⟂ − 1)
⟩1∕2
Φ

⟨

Θj
( 4

⟂

N4
+

 2
⟂

N2
+ 1
N2

+ D
2

N2
+ D

4

N4

)

Θ−j
⟩

Φ

where in the first step we used the Cauchy-Schwarz inequality for the sum over m, n and for the l2(F⟂)
scalar product, and in the second step we used (5.8), the inequality (5.28), the commutation of⟂ and
D, and the bound 2

⟂D
2 ⩽ N2D2. The proof of (5.40) is complete if we show how to get rid of Θ. For

the terms containing n
⟂ we simply use the fact that [Θ,⟂] = 0 and thatΘ is unitary. For theD-terms

we use the identity
ΘDΘ−1 = D − 1,

which implies ΘDnΘ−1 = (D − 1)n for each n ∈ ℕ, and therefore
Θ2D2Θ−2 = (D − 2)2 ⩽ CD2 + C

Θ2D4Θ−2 ⩽ (D − 2)4 ⩽ C(D4 +D2 + 1) .
This completes the proof of (5.40).

Let us now prove (5.41). We have
|

|

|

|

�
N − 1

⟨

(

(N −⟂ ±D) − (N − 1)
)

dΓ⟂
(

w ∗ |ui|2 +Kii

)⟩

Φ

|

|

|

|

=
|

|

|

|

�
N − 1

⟨

(

−⟂ ±D + 1
)

dΓ⟂
(

w ∗ |ui|2 +Kii

)⟩

Φ

|

|

|

|

⩽ C
N
⟨

 2
⟂ +D

2 + 1
⟩1∕2
Φ ⟨ 2

⟂⟩
1∕2
Φ ,
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where we used the Cauchy-Schwarz inequality for the l2(F⟂) scalar product, the boundedness of w ∗
|ui|2 and Kii, and the fact that ||dΓ⟂(K)|| ⩽ ||K||⟂ for a bounded one-body operator K .

Finally, one may prove (5.42) in a similar way, using the boundedness of w ∗ (u1u2) and K12, In-
equality (5.28), and commuting Θ with ⟂ andD as done above for (5.40). �

Proposition 5.1 now follows by merging (5.22), (5.29), (5.30), and (5.39), with a rearrangement of
the remainder terms.

5.4. Reduction to left and right modes: proof of Proposition 5.2.
Proof of Proposition 5.2. We have the decomposition

ℍ − ℍ(MΛ)
right − ℍ(MΛ)

lef t − dΓ⟂
(

P>MΛ

(

ℎMF − �+
)

P>MΛ

)

= ℍ12 + K>MΛ
+

3
∑

j=1
Ξj (5.43)

where

ℍ12 ∶=
�
2
∑

m,n⩾3

(

w ∗ (u1u2)
)

mn

(

− 2 + Θ2 + Θ−2
)

a†man

+ �
2
∑

m,n⩾3

(

K12
)

mnΘ
2a†man +

�
2
∑

m,n⩾3

(

K∗
12

)

mnΘ
−2a†man (5.44)

+ �
2
∑

m,n⩾3

(

K12
)

mna
†
ma

†
n +

�
2
∑

m,n⩾3

(

K∗
12

)

mnaman

K>MΛ
∶= �

∑

m,n>2MΛ+2

(

K11 +K22
)

mna
†
man + �

∑

3⩽m⩽2MΛ+2
n>2MΛ+2

(

K11 +K22
)

mn

(

a†man + h.c.
)

+ �
2

∑

m,n>2MΛ+2

[(

(

K11
)

mnΘ
−2 +

(

K22
)

mnΘ
2
)

a†ma
†
n + h.c.

]

(5.45)

+ �
∑

3⩽m⩽2MΛ+2
n>2MΛ+2

[(

(

K11
)

mnΘ
−2 +

(

K22
)

mnΘ
2
)

a†ma
†
n + h.c.

]

Ξ1 ∶=
∑

1⩽�,�⩽MΛ

⟨

ur,�,
(

ℎMF − �+
)

ul,�
⟩

a†r,�al,� + h.c. (5.46)

Ξ2 ∶= �
∑

1⩽�,�⩽MΛ

⟨

ur,�,
(

K11 +K22
)

ul,�
⟩

a†r,�al,� + h.c. (5.47)

+ �
∑

1⩽�,�⩽MΛ

[

⟨

ur,�, K11ul,�
⟩

Θ−2 +
⟨

ur,�, K22ul,�
⟩

Θ2
]

a†r,�a
†
l,� + h.c.

Ξ3 ∶= �
∑

1⩽�,�⩽MΛ

[

⟨

ur,�, K22ur,�
⟩

a†r,�ar,� +
⟨

ul,�, K11ul,�
⟩

a†l,�al,�
]

(5.48)

+ �
2

∑

1⩽�,�⩽MΛ

[

⟨

ur,�, K22ur,�
⟩

Θ2a†r,�a
†
r,� +

⟨

ul,�, K11ul,�
⟩

Θ−2a†l,�a
†
l,� + h.c.

]

.
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Let us briefly explain the rationale behind the above decomposition. First, in view of the definitions of
ℎMF and of the right and left modes ur,� and ul,�, see (2.6) and (2.26), one has

dΓ⟂
(

− Δ + VDW +
�
2
w ∗ |u1|2 +

�
2
w ∗ |u2|2 − �+

)

=
∑

1⩽�,�⩽MΛ

[

⟨ur,�, (ℎMF − �+)ur,�⟩a†r,�ar,� + ⟨ul,m, (ℎMF − �+)ul,n⟩a
†
l,mal,n

]

+ Ξ1 + dΓ⟂
(

P>MΛ
(ℎMF − �+)P>MΛ

)

− �dΓ⟂
(

w ∗ (u1u2)
)

,

(5.49)

where the sum in the first line contains the terms involving ℎMF − �+ in ℍ(MΛ)
right and ℍ(MΛ)

lef t , see (5.3) and
(5.4). One can proceed similarly for the terms involving K11 and K22 in the Bogoliubov Hamiltonian
(5.38). Now, we gather inℍ12 all those terms that involve the operatorsw ∗ (u1u2) andK12 (including the
last term in (5.49)) For ℍ12 we will prove a cutoff-independent quantitative bound. We then gathered
in dΓ⟂

(

P>MΛ

(

ℎMF − �+
)

P>MΛ

)

and K>MΛ
those terms of ℍ − ℍ12 for which one or two indices m

and n are larger than the cutoff MΛ. We will show that the contribution of K>MΛ
is negligible, while

dΓ⟂
(

P>MΛ

(

ℎMF − �+
)

P>MΛ

)

, being non-negative, can be dropped for a lower bound. For the part of
ℍ−ℍ12 in which sums run over modes below the energy cutoffMΛ, we want to control those terms that
contain matrix elements that couple ‘right’ modes with ‘left’ modes. They are of different types, and we
collected them in Ξ1, Ξ2, and Ξ3. The remaining terms precisely give ℍ(MΛ)

right +ℍ(MΛ)
lef t . We will show that

(expectations of) all terms in the right hand side of (5.43) are controllable in the limitN → ∞ followed
byM →∞.

We first prove that
|

|

|

⟨

ℍ12
⟩

Φ
|

|

|

⩽ C"T
1∕2−"

⟨ 2
⟂ + 1⟩Φ. (5.50)

For the first two lines of ℍ12 we write

I1 =∶
|

|

|

|

⟨�
2
∑

m,n⩾3

[

(

w ∗ (u1u2)
)

mn

(

− 2 + Θ2 + Θ−2
)

+
(

K12
)

mnΘ
2 +

(

K∗
12

)

mnΘ
−2
]

a†man
]

⟩

Φ

|

|

|

|

= �
2
|

|

|

|

⟨

dΓ⟂
(

w ∗ (u1u2)
)

(−2 + Θ2 + Θ−2) +
(

dΓ⟂
(

K12
)

Θ2 + h.c.
)⟩

Φ

|

|

|

|

⩽ �
2
‖

‖

‖

(−2 + Θ2 + Θ−2)Φ‖‖
‖

‖

‖

‖

dΓ⟂
(

w ∗ (u1u2)
)

Φ‖‖
‖

+ � ‖‖
‖

Θ2Φ‖‖
‖

‖

‖

‖

dΓ⟂
(

K∗
12

)

Φ‖‖
‖

.

Recalling that the norms of w ∗ (u1u2) and K12 were estimated in (5.9) and (5.10), arguing as in Sub-
section 5.3 we find

I1 ⩽ C"T
1∕2−"

⟨ 2
⟂⟩Φ.

For the other terms of ℍ12 we write

I2 =∶
|

|

|

|

⟨�
2
∑

m,n⩾3

(

K12
)

mna
†
ma

†
n + h.c.

⟩

Φ

|

|

|

|

⩽ �‖Φ‖
‖

‖

‖

‖

∑

m,n⩾3

(

K12
)

mnamanΦ
‖

‖

‖

‖

.

Since we assumed that all elements of the basis {um}m are real-valued functions, we have

⟨um, K12un⟩ ≡ ⟨um ⊗ u1, w u2 ⊗ un⟩ = ⟨um ⊗ un, w u2 ⊗ u1⟩
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and this gives
‖

‖

‖

‖

∑

m,n⩾3
⟨um, K12un⟩amanΦ

‖

‖

‖

‖

2

=
∑

m,n,p,q⩾3
⟨um, K12un⟩ ⟨uq, K

∗
12up⟩

⟨

a†pa
†
qaman

⟩

Φ

=
∑

m,n,p,q⩾3
⟨um ⊗ un, w u2 ⊗ u1⟩ ⟨u2 ⊗ u1, w up ⊗ uq⟩

⟨

a†pa
†
qaman

⟩

Φ

=
⟨

dΓ⟂
(

w|u2 ⊗ u1⟩⟨u2 ⊗ u1|w
)⟩

Φ .

However,
‖

‖

‖

w|u1 ⊗ u2⟩⟨u1 ⊗ u2|w
‖

‖

‖

2

op
= sup

u∈L2(ℝ2d ), ‖u‖=1
|⟨u,w u1 ⊗ u2⟩|

2
⟨u1 ⊗ u2, w

2 u1 ⊗ u2⟩

⩽
(

∫
(

w(x − y)
)2
|u1(x)|2|u2(y)|2dxdy

)2
⩽ C"T

2−",

where the last step is due to (4.7). Since the second quantization preserves operator inequalities, we
conclude

‖

‖

‖

‖

∑

m,n⩾3
⟨um, K12un⟩amanΦ

‖

‖

‖

‖

2

⩽ C"T
1−"

⟨ 2
⟂⟩Φ,

from which
I2 ⩽ C"T

1∕2−"
⟨ 2
⟂⟩Φ.

This completes the proof of (5.50), since the expectation in the right hand side is uniformly bounded by
our assumption (5.5).

We now explain how to bound K>MΛ
, focusing, as an example, on the term

K(1)
>MΛ

∶=
∑

3⩽m⩽2MΛ+2
n>2MΛ+2

[(

K11
)

mnΘ
−2a†ma

†
n + h.c.

]

.

We have

|

|

|

|

⟨

K(1)
>MΛ

⟩

Φ

|

|

|

|

⩽ 2

(

∑

m,n⩾1

|

|

⟨um, K11un⟩||
2

)1∕2(
∑

m⩾3, n>2MΛ+2

‖

‖

anamΦ‖‖
2

)1∕2
‖

‖

‖

Θ−2Φ‖‖
‖

⩽ 2 Tr(K2
11)

1∕2
‖Φ‖

⟨

⟂
∑

n>2MΛ+2
a†nan

⟩1∕2

Φ

.

The first bound follows from the Cauchy-Schwarz inequality both for the sum over m, n and for the
l2(F⟂)-scalar product. The second one follows from the fact that K11 and thus K2

11 are trace-class, as
proven in Lemma 5.3, and by commuting a†nan with am and ignoring a negative term coming from the
commutator. For the last square root we write

⟨

⟂
∑

n>2MΛ+2
a†nan

⟩

Φ

⩽ 1
�2MΛ+2 − �+

⟨

⟂
∑

n>2MΛ+2

(

�n − �+
)

a†nan

⟩

Φ

.
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We now notice that the sum in the right hand side satisfies
∑

n>2MΛ+2

(

�n − �+
)

a†nan ⩽ dΓ⟂
(

ℎMF − �+
)

,

and since all the operators commute with⟂ we can plug this into the expectation value above. We
thus find

|

|

|

|

⟨

K(1)
>MΛ

⟩

Φ

|

|

|

|

⩽ C

(

1
�2MΛ+2 − �+

⟨

⟂dΓ⟂
(

ℎMF − �+
)⟩

Φ

)1∕2

.

Since, by the assumptions (5.5) on Φ, the expectation value is bounded uniformly inN , we deduce
|

|

|

|

⟨

K(1)
>MΛ

⟩

Φ

|

|

|

|

⩽ C
(

�2MΛ+2 − �+
)1∕2

.

All the terms in the second and third lines of (5.45) can be estimated in this way. For the terms in the
first line the argument is slightly simpler since, arguing as above,
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|
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|
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3⩽m⩽2MΛ+2
n>2MΛ+2

(

K11 +K22
)
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a†man + h.c.
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|
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⟨
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Φ
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⟨

a†nan
⟩

Φ
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⩽ C
⟨

⟂
⟩1∕2
Φ

⟨

dΓ⟂
(

ℎMF − �+
)⟩

Φ
(

�2MΛ+2 − �+
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This proves
|

|

|

⟨

K>MΛ

⟩

Φ
|

|

|

⩽ C
(

�2MΛ+2 − �+
)1∕2

. (5.51)

We next turn to estimating the Ξ terms in (5.43). Since all sums are finite, it is enough to show that the
L2(ℝd)-expectation values multiplying a♯rr,�a

♯l
l,� in the sums converge to zero asN →∞ (notice that our

assumption (5.5) onΦ ensures that all expectation values in l2(F⟂) are well-defined). For Ξ1 we notice
that

⟨

ur,�,
(

ℎMF − �+
)

ul,�
⟩

= 1
2
(

�2�+1 − �2�+2
)

��,� , (5.52)

and therefore, by (A.7), for any �, � ∈ {1,… ,MΛ},

lim
N→∞

⟨

ur,�,
(

ℎMF − �+
)

ul,�
⟩

= 0.

The fact that ⟨Ξ2⟩Φ and ⟨Ξ3⟩Φ converge to zero as N → ∞ is a consequence of the localization of ur,�
and ul,� in the right and left wells, respectively. More precisely, for Ξ2 we notice that, by definition of
K11,

|

|

|

⟨

ur,�, K11ul,�
⟩

|

|

|

= 1
2
|

|

|

⟨

ur,� ⊗ u1, w u1 ⊗ ul,�
⟩

|

|

|

⩽ C
⟨

|ul,�|, |u1|
⟩

⩽ C
(

∫x1⩾0
|ul,�(x)|2dx

)1∕2

+ C
(

∫x1⩽0
|u1(x)|2dx

)1∕2

,
(5.53)



BOSONS IN A DOUBLE WELL: TWO-MODE APPROXIMATION AND FLUCTUATIONS 45

and both terms in the right hand side converge to zero asN →∞ by (A.8) and (A.9). The expectations
of K22 in Ξ2 coincide with those of K11 by reflection symmetry, so the same argument applies. For Ξ3
we argue similarly by noticing that

|

|

|

⟨

ur,�, K22ur,�
⟩

|

|

|

⩽ C
⟨

|ur,�|, |u2|
⟩⟨

|ur,�|, |u2|
⟩

⟨

|ur,�|, |u2|
⟩

⩽ C
(

∫x1⩽0
|ur,�(x)|2dx

)1∕2

+ C
(

∫x1⩾0
|u2(x)|2dx

)1∕2

and the right hand side of the second bound converges to zero as N → ∞, once again by (A.8) and
(A.9). These arguments prove that, for i = 1, 2, 3,

|

|

|

⟨

Ξi
⟩

Φ
|

|

|

⩽ CMΛ
oN (1) asN → ∞ (5.54)

for some constantCΛ that does not depend onN . Comparing this, (5.50), and (5.51), with (5.43), proves
(5.6).

�

5.5. Reduction to right and left modes: linear terms. We now prove that the main contribution to
the linear terms surviving in the left hand side of (5.22) actually comes from terms that couple u1 with
the modes ur,� and u2 with the modes ul,�. As previously we also show show that we can neglect the
contribution of modes beyond the energy cutoffMΛ. First, we remark that using the definition of b♯’s
and c♯’s from (3.19) we can rewrite the linear terms of Proposition 5.1 as

�
√

2(N − 1)

∑

m⩾3
w+1−m

(

bmD + h.c.
)

+ �
√

2(N − 1)

∑

m⩾3
w+2−m

(

cmD + h.c.
)

Proposition 5.7 (Reduction of linear terms to right and left modes).
Assume Φ ∈ l2(F⟂) satisfies

⟨

⟂ +
D2

N
+ dΓ⟂

(

ℎMF − �+
)

⟩

Φ
⩽ C uniformly inN. (5.55)

For every energy cutoff Λ large, letMΛ be the largest integer such that �2MΛ+2 ⩽ Λ, where {�m}m are
the eigenvalues of ℎMF. We have

∙ Large cutoff limit.

|

|

|

|

|

|

�
√

2(N − 1)

∑

m>2MΛ+2

(

w+1−m
⟨

bmD
⟩

Φ +w+2−m
⟨

cmD
⟩

Φ + h.c.
)

|

|

|

|

|

|

⩽ C
(

�2MΛ+2 − �+
)1∕2 (5.56)
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∙ Reduction to right and left modes.
�

√

2(N − 1)

|

|

|

|

∑

3⩽m⩽2MΛ+2
w+1−m

⟨

bmD + h.c.
⟩

Φ

−
∑

1⩽�⩽MΛ

⟨
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⟩⟨
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⟩

Φ

|

|

|

|

⩽ CMΛ
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�
√
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|

|

|

|

∑
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⟨

cmD + h.c.
⟩

Φ

−
∑
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⟩⟨
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⟩

Φ

|

|

|

|

⩽ CMΛ
oN (1)

(5.57)

Proof. Let us discuss how to prove (5.56), by focusing on the first limit (the second one is treated
similarly). We have

|

|

|

|

|

|

�
√

2(N − 1)

∑

m>2MΛ+2
w+1−m

⟨

bmD + h.c.
⟩

Φ

|

|

|

|

|

|

⩽ C

(

∑

m>2MΛ+2
|w+1−m|

2

)1∕2
‖DΦ‖
√

N

×

(

∑

m>2MΛ+2

⟨

a†mam
⟩

Φ

)1∕2

,

(5.58)

where we have used the Cauchy-Schwarz inequality both for the sum and for the l2(F⟂) scalar product
and the identities bmD = (D − 1)bm and b†mbm = a

†
mam. The first sum in the right hand side is bounded

by a fixed constant thanks to (5.7). We now multiply and divide by �2MΛ+2−�+ to get, arguing as in the
previous subsection,

∑

m>2MΛ+2
a†mam ⩽ 1

�2MΛ+2 − �+
dΓ⟂

(

ℎMF − �+
)

.

Plugging this inside (5.58), and using the assumption (5.55), we get
|

|

|

|

|

|

�
√

2(N − 1)

∑

m>2MΛ+2
w+1−m

⟨

bmD + h.c.
⟩

Φ

|

|

|

|

|

|

⩽ C
(

�2MΛ+2 − �+
)1∕2

,

which is the desired bound.
Let us now prove (5.57), again by focusing on the first bound only. By a change of basis we have

∑

3⩽m⩽2MΛ+2
w+1−m

⟨bmD + h.c.⟩Φ
√

2(N − 1)

=
∑

1⩽�⩽MΛ

⟨

u1, w ∗ (u+u−)ur,�
⟩

⟨

br,�D + h.c.
⟩

Φ
√

2(N − 1)

+
∑

1⩽�⩽MΛ

⟨

u1, w ∗ (u+u−)ul,�
⟩

⟨

bl,�D + h.c.
⟩

Φ
√

2(N − 1)
.

(5.59)
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The second sum in the right hand converges to zero in the limit N → ∞ because each summand does,
and the sum is finite. Indeed, for instance

|

|

|

⟨

u1, w ∗ (u+u−)ul,�
⟩

|

|

|

⩽ C
⟨

|u1|, |ul,�|⟩

and the right hand side tends to zero as N → ∞ by (5.53). The expectations on the state Φ in the sum
are well defined thanks to the assumption (5.55). We thus have

|

|

|

|

|

|

∑

1⩽�⩽MΛ

⟨

u1, w ∗ (u+u−)ul,�
⟩

⟨

bl,�D + h.c.
⟩

Φ
√

2(N − 1)

|

|

|

|

|

|

⩽ CMΛ
oN (1),

which proves (5.57). �

6. A PRIORI ESTIMATES ON THE GROUND STATE OF HN

Based on the previous results we can now deduce non-trivial information on the ground state  gs of
HN , in particular that ⟨(1 −2)2⟩ gs ⩽ CN and ⟨ 2

⟂⟩ gs ⩽ C with C a constant independent ofN .

Proposition 6.1 (Number and energy of excitations).
⟨⟂⟩ gs ⩽ C (6.1)

⟨dΓ⟂(ℎMF − �+)⟩ gs ⩽ C (6.2)

⟨−⟩ gs ⩽ C"min
{

N, T −1−"
}

. (6.3)

Proposition 6.2 (Second moment of excitations).
⟨

 2
⟂

⟩

 gs
⩽ C
N
⟨(

1 −2
)2⟩

 gs
+ C (6.4)

⟨

⟂dΓ⟂
(

ℎMF − �+
)⟩

 gs
⩽ C
N
⟨(

1 −2
)2⟩

 gs
+ C. (6.5)

Proposition 6.3 (Variance in the two-mode subspace).
⟨(

1 −2
)2⟩

 gs
⩽ CN. (6.6)

Inserting (6.6) in (6.4) and (6.5) yields
⟨

 2
⟂

⟩

 gs
⩽ C

⟨

⟂dΓ⟂
(

ℎMF − �+
)⟩

 gs
⩽ C

(6.7)

As a consequence of (6.3), (6.6), and (6.7), if one applies Proposition 5.1 to the vector Φ = N gs, the
error terms in the right hand side of (5.1) are small, being bounded by

C
N1∕4

+ C"
T −2"

N1∕2
(6.8)

The rest of this section is devoted to the proofs of Propositions 6.1-6.3. The general strategy for
the first two results is similar to the single-well case (that is, the case of fixed L) and some arguments
are accordingly borrowed from [17]. The two-mode nature of our low energy space however calls for
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additional ingredients, in particular as regards the proof of Proposition 6.2. Proposition 6.3 uses as input
our results of Sections 4 and 5.

We will use several times Onsager’s inequality (see e.g. [34, Lemma 2.6].)
1
N

∑

i≠j
w(xi − xj) ⩾ −N∬ w(x − y)|u+(x)|2|u+(y)|2dxdy

+ 2
N
∑

i=1
∫ w(xi − y)|u+(y)|2dy −w(0).

(6.9)

Proof of Proposition 6.1. Using (6.9) and then the definition of �+ from (2.8) we get (since the interac-
tion term in theN-body Hamiltonian (1.2) is non-negative, we may replace the prefactor �∕(N − 1) by
�∕N)

⟨HN⟩ gs ⩾
⟨

dΓ(ℎMF)
⟩

 gs
− �N

2 ∬ w(x − y)|u+(x)|2|u+(y)|2dxdy − C

⩾
⟨

dΓ(ℎMF − �+)
⟩

 gs
+NH[u+] − C

>
⟨

dΓ⟂(ℎMF − �+)
⟩

 gs
+NH[u+] − C.

(6.10)

The last step is due to the identity
dΓ(ℎMF − �+) = (�− − �+)− + dΓ⟂(ℎMF − �+) (6.11)

and to the fact that �− > �+. On the other hand, the factorized trial function u⊗N+ yields the energy
upper bound

⟨HN⟩ gs ⩽ NH[u+], (6.12)
and putting together (6.10) and (6.12) we find

⟨

dΓ⟂(ℎMF − �+)
⟩

 gs
⩽ C, (6.13)

which is precisely (6.2). Recalling the spectral decomposition (2.25), and the fact that �m − �+ ⩾ C for
m ⩾ 3 (by Theorem A.1), we deduce

⟨

dΓ⟂(ℎMF − �+)
⟩

 gs
⩾ C⟨⟂⟩ gs ,

which, together with (6.2), proves (6.1).
To prove (6.3) we use (6.11) again and notice that, by the spectral properties of ℎMF from Theorem

A.1,
⟨

dΓ(ℎMF − �+)
⟩

 gs
⩾ (�− − �+)⟨−⟩ gs ⩾ c"T

1+"
⟨−⟩ gs .

This, compared with (6.10) and (6.12), yields (6.3) after recalling that ⟨−⟩ gs ⩽ N also trivially
holds. �

Proof of Proposition 6.2. We claim that
⟨

⟂dΓ(ℎMF − �+)
⟩

 gs
⩽ �⟨ 2

⟂⟩ gs +
C
N
⟨(

1 −2
)2⟩

 gs
+ C� (6.14)
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for � > 0 arbitary and for some constants C,C� > 0. This implies the bound (6.4) because
dΓ(ℎMF − �+) ⩾ c⟂

on L2(ℝdN ) with c > 0, and because ℎMF commutes with⟂.
To prove (6.14) we define the operators

S ∶= �
N
∑

j=1
w ∗ |u+|2(xj) −

�
N − 1

∑

i<j
w(xi − xj) + E(N) −N�+

and
Pj = |u+⟩⟨u+|j + |u−⟩⟨u−|j , P ⟂j = 1 − Pj

with j = 1,… , N . The latter project a single particle in (or out) the two-modes subspace. We also
denote by ℎMF,j the operator that acts as ℎMF on the j-th variable and as the identity on all the others.
We then have

⟨

⟂dΓ⟂
(

ℎMF − �+
)⟩

 gs
=
⟨

⟂
N
∑

j=1

(

ℎMF,j − �+
)⟩

 gs
= ⟨⟂S⟩ gs = N⟨P ⟂1 S⟩ gs (6.15)

where we have usedHN gs = E(N) gs in the second equality and the fact that  gs is symmetric under
permutations of variables in the last one. We split the operator S into the part which commutes with
P ⟂1 and the part which does not, according to

S = Sa + Sb
where

Sa ∶= �
N
∑

j=2
w ∗ |u+|2(xj) −

�
N − 1

∑

2⩽i<j⩽N
w(xi − xj) + EN −N�+

and

Sb ∶= �w ∗ |u+|2(x1) −
�

N − 1

N
∑

j=2
w(x1 − xj).

We will estimate separately the contributions of the terms containing Sa and Sb inside (6.15). For the
contribution of the term containing Sa we use (6.9) forN − 1 variables, that is,

�
N − 1

∑

2⩽i<j⩽N
w(xi − xj) ⩾ −�

N − 1
2

w++++ + �
N
∑

j=2
w ∗ |u+|2(xj) − C.

We also take advantage of the upper bound

⟨HN⟩ gs ⩽ N�+ − �
N
2
w++++,

which follows immediately from (6.12) if we recall the expression (2.8) of �+. The two last formulae
yield

Sa ⩽ C.
Since Sa commutes with P ⟂1 we have, using also (6.1),

N⟨P ⟂1 Sa⟩ gs ⩽ C⟨⟂⟩ gs ⩽ C. (6.16)
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To estimate the contribution of Sb, we decompose

N⟨P ⟂1 Sb⟩ gs = �N
⟨

P ⟂1
[

w ∗ |u+|2(x1) −w(x1 − x2)
]⟩

 gs

= �N
⟨

P ⟂1 P
⟂
2

[

w ∗ |u+|2(x1) −w(x1 − x2)
]⟩

 gs

+ �N
⟨

P ⟂1 P2
[

w ∗ |u+|2(x1) −w(x1 − x2)
]

P ⟂2
⟩

 gs

+ �N
⟨

P ⟂1 P2
[

w ∗ |u+|2(x1) −w(x1 − x2)
]

P2
⟩

 gs

=∶ Term1 + Term2 + Term3.

(6.17)

We estimate the last three terms separately. For the first one we use the Cauchy-Schwarz inequality and
the fact that w and w ∗ |u+|2 are bounded to get

|

|

|

Term1
|

|

|

⩽ CN
⟨

P ⟂1 P
⟂
2

⟩1∕2
 gs
= CN

⟨

P ⟂1
1

N − 1

N
∑

j=2
P ⟂j

⟩1∕2

 gs

⩽ C⟨ 2
⟂⟩

1∕2
 gs

⩽ �⟨ 2
⟂⟩ gs + C�

with � > 0 arbitary, where the last bound follows from
√

x ⩽ �x+1∕(4�) for any x > 0. For the second
term in (6.17) we argue similarly to get

|

|

|

Term2
|

|

|

⩽ CN⟨P ⟂1 ⟩
1∕2
 gs

⟨P ⟂2 ⟩
1∕2
 gs
= C⟨⟂⟩ gs ⩽ C ,

where the last bound follows from (6.1).
The third term in (6.17) is more delicate, since it contains only one P ⟂j . We write

Term3 = �N
⟨

P ⟂1 |u−⟩⟨u−|2 w ∗
(

|u+|
2 − |u−|

2)(x1)
⟩

 gs

− �N
⟨

P ⟂1
(

|u+⟩⟨u−|2 + |u−⟩⟨u+|2
)

w ∗ (u+u−)(x1)
⟩

 gs

=∶ Term3,1 + Term3,2 ,

(6.18)

where we have used several times the operator identity
|u⟩⟨u|2 w(x1 − x2) |v⟩⟨v|2 = |u⟩⟨v|2 w ∗ (uv)(x1).

Use the Cauchy-Schwarz and Young inequalities, then the L1-estimate (A.1), and then the a priori
estimate (6.3), we find

|

|

Term3,1
|

|

⩽ CN
⟨

P ⟂1
⟩1∕2
 gs

⟨

|u−⟩⟨u−|2
⟩1∕2
 gs

‖

‖

‖

|u+|
2 − |u−|

2‖
‖

‖L1

⩽ C"T
1−"∕2

⟨−⟩
1∕2
 gs

⟨⟂⟩1∕2 gs

⩽ C"T
1−"∕2min

{

N, 1
T 1+"

}1∕2
⟨⟂⟩1∕2 gs

⩽ C"T
1∕2−"

⟨⟂⟩1∕2 gs
⩽ C"T

1∕2−".
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Recalling that
N
∑

j=1

(

|u+⟩⟨u−|j + |u−⟩⟨u+|j
)

= a†+a− + a
†
−a+ =1 −2

one may write

−Term3,2 =
N

N − 1

⟨

P ⟂1 w ∗ (u+u−)(x1)
(

1 −2
)

⟩

 gs

− N
N − 1

⟨

P ⟂1 w ∗ (u+u−)(x1)
(

|u+⟩⟨u−|1 + |u−⟩⟨u+|1
)

⟩

 gs
.

The second summand is clearly bounded by a constant and thus we include it into the error. For the first
one we write, using the Cauchy-Schwarz inequality and the boundedness of w ∗ (u+u−),

N
N − 1

|

|

|

⟨

P ⟂1 w ∗ (u+u−)(x1)
(

1 −2
)

⟩

 gs

|

|

|

⩽ C
⟨

P ⟂1
⟩1∕2
 gs

⟨

(

1 −2
)2
⟩1∕2

 gs
.

We finally get

|

|

Term3,2
|

|

⩽ C⟨⟂⟩1∕2 gs

(

⟨(1 −2)2⟩ gs
N

)1∕2

⩽ CN−1∕2
⟨

(

1 −2
)2
⟩1∕2

 gs
,

where we have used (6.1) in the last bound. All in all we proved

|

|

|

Term3
|

|

|

⩽ CN−1∕2
⟨

(

1 −2
)2
⟩1∕2

 gs
+ C,

and therefore
N⟨P ⟂1 Sb⟩ gs ⩽ �⟨ 2

⟂⟩ gs +
C
N
⟨(

1 −2
)2⟩

 gs
+ C�. (6.19)

The annouced bound (6.14) then follows from (6.16) and (6.19). We deduce (6.4) by choosing � small
enough. Plugging (6.4) inside (6.14) yields (6.5) as well. �

Proof of Proposition 6.3. We combine Proposition 5.1 with a computation similar to Proposition 4.4
to obtain an energy upper bound. For a corresponding lower bound we use Propositions 4.2 and 4.4
to control the two-mode energy, and argue that the excitation energy must be uniformly bounded with
respect toN .

Recall the trial state  gauss from (4.20). We apply (5.1) with Φ = N gauss. Since  gauss has no
excitation in the subspace P ⟂±ℌ

N (am gauss = 0 for any m ⩾ 3), we get

⟂N gauss = ℍN gauss = 0.

The expectation of the linear terms in am in the left hand side of (5.1) also vanish for  =  gauss.
Furthermore, we will use

1
N
⟨

D2
⟩

N gauss
= 1
N

⟨

(

1 −2
)2
⟩

 gauss
⩽ 1

N
�2N =

√

�− − �+ ⩽ C"T
1∕2−",
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where the first bound was proven in (4.32). By the variational principle for the ground state problem of
HN we find

E(N) ⩽ ⟨HN⟩ gauss ⩽ ⟨H2−mode⟩ gauss +
C
N1∕4

⩽ E0 + Ew
N +N

�+ − �−
2

+ C"T 1∕2−" +
C
N1∕4

⩽ E0 + Ew
N +N

�+ − �−
2

+ C

(6.20)

applying successively (5.1) and (4.23).
For a lower bound we apply (5.1) with Φ = Φgs =∶ N gs, obtaining

|

|

|

E(N) − ⟨H2−mode + �+⟂⟩ gs − ⟨ℍ⟩Φgs − ⟨linear terms⟩Φgs
|

|

|

⩽ error terms.

In this inequality,
(i) The error terms are bounded by using (6.3), the identity ⟨D2⟩Φgs = ⟨(1 −2)2⟩ gs , and the

inequality ⟨−⟩ gs ⩽ N , yielding

error terms ⩽
( C
N1∕4

+ C"T 1−"
)

(

⟨(1 −2)2⟩ gs
N

+ 1
)

.

(ii) The expectation ofH2−mode+�+⟂ is bounded from below by using the lower bound of Propo-
sition (4.2),

⟨H2−mode + �+⟂⟩ gs ⩾ E0 + Ew
N +N

�+ − �−
2

+ �U
N − 1

⟨

(1 −2)2
⟩

 gs

− C"T 1−"
⟨

⟂
⟩

 gs
.

Thanks to (6.1), the term in the second line can be replaced by −C .
(iii) The expectation of ℍ is bounded from below using the fact that ℍ is bounded below indepen-

dently ofN (this can easily seen as in [21, Equation (A.6)], keeping in mind that ℎMF − �+ has
a finite gap on the excited subspace).

(iv) The expectation of linear terms can be bounded by using the Cauchy-Schwarz inequality as
follows

|

|

|

|

|

�
√

2(N − 1)

∑

m⩾3

[

w+1−m
⟨

ΘamD + h.c.
⟩

Φgs
+w+2−m

⟨

Θ−1amD + h.c.
⟩

Φgs

]|

|

|

|

|

⩽ 2�
√

2(N − 1)

(

∑

m⩾3
|w+1−m|

2
)1∕2(∑

m⩾3

‖

‖

‖

amΦgs
‖

‖

‖

2)1∕2
‖

‖

‖

DΘ−1Φgs
‖

‖

‖

+ 2�
√

2(N − 1)

(

∑

m⩾3
|w+2−m|

2
)1∕2(∑

m⩾3

‖

‖

‖

amΦgs
‖

‖

‖

2)1∕2
‖

‖

‖

DΘΦgs
‖

‖

‖

.

The sums of |w+i−m|
2 are bounded by constants thanks to (5.7). The other sums equal ⟨⟂⟩ gs ,

for which we use (6.1). Finally, thanks to the commutation relation (3.15) one has
‖DΘ±1Φgs‖

2 = ⟨(1 −2 ± 1)2⟩ gs ⩽ 2⟨(1 −2)2⟩ gs + 2
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and thus
|

|

|

⟨ Linear terms ⟩Φgs
|

|

|

⩽ �
N
⟨(

1 −2
)2⟩

 gs
+ C�

for any � > 0 arbitrarily small.
Overall we find

EN ⩾ E0 + Ew
N +N

�+ − �−
2

+ c
N − 1

⟨(

1 −2
)2⟩

 gs
− C,

for a suitable small enough positive constant c. Notice that we used the fact that the constant U in (4.3)
satisfies U ⩾ C > 0 independently of N thanks to the estimates of Lemma 4.1, Comparing this with
(6.20) gives the desired (6.6). �

7. SHIFTED HAMILTONIANS AND LOWER BOUND

Shifted CCR. Let us introduce the notation

ℍ(M)
right,shif t ∶= ℍ(M)

right +
�

√

2(N − 1)

∑

1⩽�⩽M

⟨

u1, w ∗ (u+u−)ur,�
⟩ (

br,�D + h.c.
)

ℍ(M)
lef t,shif t ∶= ℍ(M)

lef t +
�

√

2(N − 1)

∑

1⩽�⩽M

⟨

u2, w ∗ (u+u−)ul,m
⟩ (

cl,�D + h.c.
)

.
(7.1)

The linear terms are those appearing in (5.1) up to a change of basis from {um}m⩾3 to the right and
left mode basis {ur,�, ul,�}�⩾1), where we have ignored the modes beyond the cutoffM and small error
terms, as justified in Proposition 5.7.

The estimates of Propositions 5.1, 5.2, and 5.7 have for consequence the lower bound

N (HN −H2−mode) ∗
N ⩾ ℍ(MΛ)

right,shif t + ℍ(MΛ)
lef t,shif t + �+⟂ − remainders (7.2)

We will show in this section how to deal with the linear terms in ℍ(MΛ)
right,shif t and ℍ(MΛ)

lef t,shif t . The idea is
to define new shifted creation and annihilation operators b̃♯r,� and c̃

♯
l,� in such a way that ℍ(MΛ)

right,shif t and
ℍ(MΛ)
lef t,shif t are quadratic in terms of, respectively, b̃♯r,� and c̃

♯
l,�, up to a constant term. We will do this for

each fixedM , not necessarily theMΛ from Proposition 5.2.
From now on we will use the notation {r, �} or {l, �} to indicate that the mode ur,� or ul,� intervene

in an expectation value. For example, for any operator A on L2(ℝd),
A{r,�}{l,�} =

⟨

ur,�, Aul,�
⟩

.
Similarly,

wm{r,�}p{r,�} =
⟨

um ⊗ ur,�, w up ⊗ ur,�
⟩

,
and so on.

Definition 7.1 (Shifted creators and annihilators).
For any � ⩾ 1 we define

b̃r,� ∶= br,� + x�D

c̃†l,� ∶= c
†
l,� + y�D

(7.3)

where x�, y�, � = 1,… ,M , are real numbers whose values will be given below.
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A simple calculation using the commutation relations (3.15), (3.20) yields

Lemma 7.2 (Commutations relations for shifted operators).
One has

[b̃r,�, b̃
†
r,�] = ��� − x�br,� − x�b

†
r,�

[b̃r,�, b̃r,�] = − x�br,� + x�br,�
(7.4)

Similar commutation relations, with straightforward adaptations, hold for the c̃♯l,�.

We define the following quadratic Hamiltonians, obtained from (3.21) and (3.22) by replacing the
creation and annihilation operators b♯ and c♯ by the shifted creators and annihilators (7.3),

ℍ̃(M)
right ∶=

1
2

∑

1⩽�,�⩽M

(

ℎMF − �+ + �K11

)

{r,�}{r,�}

(

b̃†r,�b̃r,� + b̃r,�b̃
†
r,�

)

+ �
2

∑

1⩽�,�⩽M

(

K11
)

{r,�}{r,�}

(

b̃†r,�b̃
†
r,� + b̃r,�b̃r,�

)

(7.5)

ℍ̃(M)
lef t ∶=

1
2

∑

1⩽�,�⩽M

(

ℎMF − �+ + �K22

)

{l,�}{l,�}

(

c̃†l,� c̃l,� + c̃l,� c̃
†
l,�

)

+ �
2

∑

1⩽�,n⩽M

(

K22
)

{l,�}{l,�}

(

c̃†l,� c̃
†
l,� + c̃l,� c̃l,�

)

, (7.6)

where we have ignored the modes beyond the cutoffM and symmetrized the terms involving one creator
and one annihilator.

Let us introduce the orthogonal projections

Pr,⩽M ∶= PrP⩽M = P⩽MPr =
∑

1⩽�⩽M
|ur,�⟩⟨ur,�| (7.7)

Pl,⩽M ∶= PlP⩽M = P⩽MPl =
∑

1⩽�⩽M
|ul,�⟩⟨ul,�|. (7.8)

We will show the following result.

Proposition 7.3 (Shifted Hamiltonians).
For any Φ ∈ l2(F⟂) we have

|

|

|

|

⟨

ℍ(M)
right,shif t

⟩

Φ −
⟨

ℍ̃(M)
right

⟩

Φ
+ 1
2
Tr

(

Pr,⩽M (ℎMF − �+ + �K11)
)

+ �2

2(N − 1)

⟨

u1, K11Wr,⩽MK11 u1
⟩

⟨

D2
⟩

Φ

|

|

|

|

⩽ C
√

N
⟨⟂⟩Φ +

C"T 1∕2−"

N
⟨

D2
⟩

Φ

(7.9)

whereWr,⩽M is defined by

Wr,⩽M ∶= Pr,⩽M
(

Pr,⩽M
(

ℎMF − �+ + 2�K11
)

Pr,⩽M
)−1 Pr,⩽M (7.10)
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and we picked
x� =

�
√

2(N − 1)

⟨

ur,�,Wr,⩽M w ∗ (u+u−) u1
⟩

. (7.11)

A similar bound holds for ℍ(M)
lef t,shif t upon replacing K11 by K22.

Thus the quadratic Hamiltonianℍ(M)
right together with the linear terms coincides, up to remainders, with

ℍ̃(M)
right minus a constant term given by the trace in (7.9) and minus a term proportional to �2D2. The

latter term will be absorbed using the variance term fromH2−mode which is proportional to �, and ℍ̃
(M)
right

minus the constant term will give the correct Bogoliubov energy in the lower bound. Note that the trace
in the constant term is finite because we are restricting ourself to modes � ⩽M .

Proof. Using the commutation relations (7.4) and [b̃r,�,D] = [Θ,D]ar,� = −b�, one finds that ℍ
(M)
right,shif t

is given in terms of the shifted creators and annihilators b̃♯ by

ℍ(M)
right,shif t =

1
2

∑

1⩽�,�⩽M

(

ℎMF − �+ + �K11
)

{r,�}{r,�}

(

b̃†r,�b̃r,� + b̃r,�b̃
†
r,�

)

+ �
2

∑

1⩽�,�⩽M

(

K11
)

{r,�}{r,�}

(

b̃†r,�b̃
†
r,� + b̃r,�b̃r,�

)

− 1
2
Tr

(

Pr,⩽M (ℎMF − �+ + �K11)
)

−
∑

1⩽�⩽M

(

∑

1⩽�⩽M

(

ℎMF − �+ + 2�K11
)

{r,�}{r,�}x� −
�

√

2(N − 1)
w+1−{r,�}

)(

b̃†r,�D +Db̃r,�
)

+
∑

1⩽�⩽M

(

∑

1⩽�⩽M

(

ℎMF − �+ + 2�K11
)

{r,�}{r,�}x� −
2�

√

2(N − 1)
w+1−{r,�}

)

x�D2

+ 1
2

∑

1⩽�⩽M

(

∑

1⩽�M

(

ℎMF − �+ + 2�K11
)

{r,�}{r,�}x� −
2�

√

2(N − 1)
w+1−{r,�}

)

(

b� + b†�
)

.

(7.12)

The first and second lines in the right hand side precisely coincide with ℍ̃(M)
right defined in (7.5) minus the

constant term −Tr
(

Pr,⩽M (ℎMF − �+ + �K11)
)

∕2. The condition for the vanishing of the linear terms in
the third line is

∑

1⩽�⩽M

(

ℎMF − �+ + 2�K11
)

{r,�}{r,�}x� =
�

√

2(N − 1)
w+1−{r,�}, (7.13)

which leads to (7.11), using the projection Pr,⩽M defined in (2.27) and (7.10). With this choice, the
expectation in Φ of the last line in (7.12) becomes

RΦ = −
�

√

2(N − 1)

∑

1⩽�⩽M
w+1−{r,�}

⟨

br,� + br,�†
⟩

Φ.

This can be bounded with the help of the Cauchy-Schwarz inequality and the boundness of w ∗ (u+u−)
as in the proofs of Sec. 5, that is,

|RΦ| ⩽ C�
√

N

{

∑

�⩾1
|w+1−{r,�}|

2
}

1
2
{

∑

�⩾1
‖br,�Φ‖2

}
1
2

⩽ C
√

N
⟨⟂⟩

1∕2
Φ ,
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withC independent ofN andM . Plugging (7.13) inside (7.12) we only have to compute the contribution
of the term proportional toD2 in the fifth line, which is given by

− �
√

2(N − 1)

∑

1⩽�⩽M
w+1−{r,�}x� D2

= − �2

2(N − 1)

⟨

u1, w ∗
(

u+u−
)

Wr,⩽Mw ∗
(

u+u−
)

u1
⟩

D2.
(7.14)

To bring this contribution to the form appearing in (7.9) we have to show that one can replace the
multiplication operator w ∗ (u+u−) by the integral operator K11 up to a small error. To this end we
notice that, using (1.6), for any f ∈ L2(ℝd),

|

|

|

⟨

u1,
(

w ∗ (u+u−) −K11
)

f
⟩

|

|

|

2
= |

|

|

⟨

u1,
(

w ∗ (u+u−) −
w ∗ |u1|2

2

)

f
⟩

|

|

|

2

= 1
4
|

|

|

⟨

u1, w ∗ |u2|2f
⟩

|

|

|

2

⩽ ‖f‖22
⟨

u1,
(

w ∗ |u2|2
)2u1

⟩

⩽ C‖f‖22w1212

where we have bounded one of the w ∗ |u2|2 in the square by a constant. Using (4.7) this implies
|

|

|

⟨

u1,
(

w ∗ (u+u−) −K11
)

f
⟩

|

|

|

⩽ C"T
1∕2−"

‖f‖2.

Noting that the operatorsWr,⩽M is bounded (recall that ℎMF−�+ has a finite gap by (A.5) andK11 ⩾ 0),
this yields

|

|

|

⟨u1, w ∗ (u+u−)Wr,⩽Mw ∗ (u+u−)u1⟩ − ⟨u1, K11Wr,⩽MK11u1⟩
|

|

|

⩽ C"T
1∕2−"(

‖Wr,⩽M w ∗ (u+u−) u1‖22 + ‖Wr,⩽M K11 u1‖2
)

⩽ C"T
1∕2−" .

This means that we can replacew ∗ (u+u−) byK11 in (7.14), thus obtaining the term proportional toD2
in (7.9), at the expense of a remainder term of the form

C"T 1∕2−"

N − 1
D2.

This completes the proof. �

Lower bound on the shifted Hamitonian. We now discuss how to minimize ℍ̃(M)
right + ℍ̃(M)

lef t .

Proposition 7.4 (Lower bound for the full shifted Hamiltonian).
Let EBog be defined in (2.29). Then

ℍ̃(M)
right + ℍ̃(M)

lef t ⩾E
Bog + 1

2
Tr

[

Pr,⩽M (ℎMF − �+ + �K11)
]

+ 1
2
Tr

[

Pl,⩽M (ℎMF − �+ + �K22)
]

−
CM
√

N

(

⟂ + 1
)

.
(7.15)
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The lower bound (7.15) is one of the main points in which our proofs significantly deviate from the
standard techniques of derivation of Bogoliubov theory. Indeed, the Hamiltonian ℍ̃right (with or without
cutoff) is defined in terms of operators which do not satisfy an exact CCR (see Lemma 7.2 above). For
this reason, the techniques that are normally used to diagonalize quadratic Hamiltonians (see e.g. [21,
Appendix A]) are not directly applicable here, and we thus need slightly different methods in order
to recover the correct energy EBog in (7.15). We will adopt a method already used in [17], whose
main point is to perform a suitable linear symplectic transformation mixing creators and annihilators
(Bogoliubov transformation). After such a transformation the original Hamiltonian is brought into a
diagonal part in the new creation and annihilation opertors d♯r,� and a part containing commutators of
these operators. If the b̃♯r,�’s were satisfying the CCR, then the same would be true for the d♯r,�’s and after
the transformation the Hamiltonian would have the form

∑

� e�d†r,�dr,� + E
Bog. In our case, however,

this is not true, and the commutators will be corrected by terms that need to be controlled. Since we
work here with a finite number of modes (due to the energy cutoff), we can simplify the analysis by
considering the symmetrized versions of the quadratic Hamiltonians defined in (7.5)-(7.6), instead of
the Hamiltonians obtained from (3.21) and (3.22) by replacing the creators and annihilators b♯r,� and c

♯
l,�

by b̃♯r,� and c̃
♯
l,�.

The proof of Proposition 7.4 will occupy the rest of the present section. Define the operators

Dr ∶= Pr
(

ℎMF − �+
)

Pr , Dr,⩽M ∶= Pr,⩽M
(

ℎMF − �+
)

Pr,⩽M . (7.16)

The operators Dl and Dl,⩽M are defined similarly.
Recall from (2.29) that EBog = EBog

r + EBog
l with

EBog
r ∶= −1

2
Tr⟂,r

[

Dr + �PrK11Pr −
√

D2
r + 2�D

1∕2
r PrK11PrD

1∕2
r

]

.

The quantity EBog
r is the ground state energy

EBog
r = inf spec(ℍΘ=1

right) (7.17)

of the quadratic Hamiltonian

ℍΘ=1
right ∶=

∑

�,�⩾1

⟨

ur,�,
(

Dr + �PrK11Pr
)

ur,�
⟩

A†�A�

+ �
2
∑

�,�⩾1

⟨

ur,�, PrK11Pr ur,�
⟩ (

A†�A
†
� + h.c.

)

,
(7.18)

where A♯
� are canonical creation and annihilation operators on a Fock space F⟂,r whose base space is

the span of the right modes ur,�, � ⩾ 1, that is, the A♯
�’s are operators on F⟂,r satisfying the CCR (the

notation Θ = 1 is there to recall that this Hamiltonian can be formally obtained from ℍright by setting
Θ equal to the identity inside the b♯’s). Equation (7.17) can be deduced by replicating the arguments of
[17, Section 4-5] or [21, Appendix A]. The fact that the operator

Dr + �PrK11Pr −
√

D2
r + 2�D

1∕2
r PrK11PrD

1∕2
r
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is trace-class on the spacePrL2(ℝd) is part of the proof, cf [17, Equation (53) and below]. The adaptation
to our case is immediate because the method does not depend on the details of Dr.

It follows from the variational principle that EBog
r is bounded from above by the ground state energy

EBog
r,⩽M of a quadratic Hamiltonian obtained from (7.18) by ignoring the modes ur,�, � > M , i.e.

ℍ(M),Θ=1
right ∶=

∑

1⩽�,�⩽M

⟨

ur,�,
(

Dr,⩽M + �Pr,⩽MK11Pr,⩽M
)

ur,�
⟩

A†�A�

+ �
2

∑

1⩽�,�⩽M

⟨

ur,�, Pr,⩽MK11Pr,⩽M ur,�
⟩ (

A†�A
†
� + h.c.

)

.
(7.19)

The aforementioned arguments adapted to the finite dimensional setting ensure that

EBog
r,⩽M ∶= −1

2
Tr⟂,r

[

Dr,⩽M + �Pr,⩽MK11Pr,⩽M −
√

D2
r,⩽M + 2�D1∕2

r,⩽MPr,⩽MK11Pr,⩽MD
1∕2
r,⩽M

]

.

Notice that EBog
r is formally obtained from EBog

r,⩽M by replacing Pr,⩽M by Pr (i.e.,M = ∞). The ground
state energies EBog

l and EBog
l,⩽M of the left Bogoliubov Hamiltonians without and with energy cutoff are

given by a similar expressions as in (7.18) and (7.19), with r replaced by l and K11 replaced by K22.

Lemma 7.5 (Bogoliubov energies with and without cutoff).
One has

EBog
r ⩽ EBog

r,⩽M , EBog
l ⩽ EBog

l⩽M . (7.20)

Proof. As we already mentioned, EBog
r and EBog

r,⩽M are the ground state energies of the quadratic Hamil-
tonians (7.18) and (7.19). They are reached (see previous references again) by unique (up to a phase)
ground states. Let Φ(M),Θ=1 be the ground state of ℍ(M),Θ=1

right . We have that
⟨

ℍΘ=1
right

⟩

Φ(M),Θ=1
= EBog

r,⩽M

because all terms with �, � ⩾ M vanish, Φ(M),Θ=1 having no components in the sectors of the Fock
space corresponding to those modes. The claimed result thus immediately follows from the variational
principle. �

We now prove that ℍ̃(M)
right can be bounded from below by EBog

r,⩽M , up to
∙ a correcting term originating from the symmetrization in the creators and annihilators in the
definitions (7.5) and (7.6).

∙ a controllable error due to operators entering ℍ̃(M)
right do not exactly satisfy the CCR.

Lemma 7.6 (Lower bounds for the shifted Hamiltonians).
We have

ℍ̃(M)
right ⩾

1
2
Tr[Dr,⩽M + �Pr,⩽MK11] + E

Bog
r,⩽M −

CM
√

N

(

⟂ + 1
)

(7.21)

ℍ̃(M)
lef t ⩾

1
2
Tr[Dl,⩽M + �Pl,⩽MK22] + E

Bog
l,⩽M −

CM
√

N

(

⟂ + 1
)

. (7.22)
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The bound of Proposition 7.4 immediately follows from (7.21), (7.22), Lemma 7.5, and EBog =
EBog
r + EBog

l . There thus only remains to provide the

Proof of Lemma 7.6. We discuss (7.21) only, since (7.22) can be obtained by completely analogous
arguments. Let us define theM ×M real symmetric matrices

D ∶=
(

⟨ur,�, Dr,⩽M ur,�⟩
)M
�,�=1

V ∶= �
(

⟨ur,�, Pr,⩽MK11Pr,⩽M ur,�⟩
)M
�,�=1

E ∶=
√

D2 + 2D1∕2V D1∕2.

(7.23)

The notation is chosen to allow direct comparison with the arguments in [17, sections 4-5]. In terms of
these matrices, the Hamiltonian ℍ̃(M)

right reads

ℍ̃(M)
right =

1
2
(

(̃b†)t , b̃t
)

(

D + V V
V D + V

)(

b̃
b̃†

)

(7.24)

where we have used the matrix notation b̃ = (b̃r,�)M�=1 and b̃
† = (b̃†r,�)

M
�=1 for the creation and annihilation

operators and t denote the transpose.
Let us introduce new creators and annihilators d♯r,� obtained by means of the Bogoliubov transforma-

tion
(

d
d†
)

= 1
2

(

A−10 + B−10 A−10 − B−10
A−10 − B−10 A−10 + B−10

)(

b̃
b̃†

)

(7.25)

where A0 and B0 are the realM ×M matrices defined by
A0 ∶= D1∕2E−1∕2U0, B0 ∶= (A−10 )

t = D−1∕2E1∕2U0
with U0 the orthogonalM ×M matrix diagonalizing E,

U t
0EU0 = Λ = diag(e�) .

The inverse transformation is
(

b̃
b̃†

)

= S
(

d
d†
)

∶= 1
2

(

A0 + B0 A0 − B0
A0 − B0 A0 + B0

)(

d
d†
)

. (7.26)

The matrix S is symplectic and diagonalizes the 2M × 2M symmetric matrix in (7.24),

S t
(

D + V V
V D + V

)

S =
(

Λ 0
0 Λ

)

,

(this can be checked by an explicit calculation, noting that At
0(D + 2V )A0 = B

t
0DB0 = Λ). Thus

ℍ̃(M)
right =

1
2
(

(d†)t , dt
)

(

Λ 0
0 Λ

)(

d
d†
)

=
M
∑

�=1
e�d

†
r,�dr,� +

1
2

M
∑

�=1
e�[dr,�, d†r,�] .

If the operators b̃♯r,� would satisfy the CCR, the same would be true for the d♯r,�’s and the last sum would
be equal to

Tr(E) = Tr
√

D2
r,⩽M + 2�D1∕2

r,⩽MPr,⩽MK11Pr,⩽MD
1∕2
r,⩽M ,
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which is precisely the sum of the two first terms in the right hand side of (7.21).
In our case, the sum involving the commutators can be obtained from the following identity: if R is

a realM ×M symmetric matrix, then
[

dt, R d†
]

∶=
∑

1⩽�,�⩽M
R��[dr,�, d

†
r,�] = Tr(R) − xtB0RAt

0(b + b†) , (7.27)

where x = (x�)M�=1 is given by (7.13). The identity (7.27) follows by noting that the commutation
relations of the b̃♯r,�’s given in Lemma 7.2 can be rewritten as

[

b̃t, Q b̃
]

= xt(Q −Qt)b ,
[

b̃t, Q b̃†
]

= Tr(Q) − xt(Qt b +Qb†) (7.28)

for anyM ×M matrix Q. One deduces from (7.25) and from A−10 = Bt
0, B

−1
0 = At

0 that
[

dt, R d†
]

= − 1
4
[

b̃t, (A0 + B0)R(A0 − B0)t b̃
]

+ h.c.

+ 1
4
[

b̃t, (A0 + B0)R(A0 + B0)t b̃†
]

− 1
4
[

b̃t, (A0 − B0)R(A0 − B0)t b̃†
]

,

from which (7.27) is obtained by relying on (7.28).
Applying (7.27) with R = Λ yields

ℍ̃(M)
right =

M
∑

�=1
e�d

†
r,�dr,� +

1
2
Tr(E) − �

2
√

2(N − 1)
wt
+1−D

1∕2E−1D1∕2(b + b†) , (7.29)

where w+1− stands for the vector (w+1−{r,�})M�=1. To deduce the above equation we used

(D + 2V )−1B0ΛAt
0 = D

1∕2E−1D1∕2,

which follows thanks to the identities B0ΛAt
0 = D

−1∕2ED1∕2 and D−1∕2E2D−1∕2 = (D + 2V ). The ex-
pectation of the last term in (7.29) on the vectorΦ ∈ l2(F⟂) can be bounded using the Cauchy-Schwarz
inequality, the boundedness of w ∗ (u+u−), and the fact that E−1 ⩽ D−1 by operator monotonicity of
the inverse and square root (recall that E2 = D1∕2(D + 2V )D1∕2 ⩾ D2 since V ⩾ 0), to write

|

|

|

|

1
2
√

2(N − 1)
wt
+1−D

1∕2E−1D1∕2
⟨b + b†⟩Φ

|

|

|

|

⩽ C
√

N

{

∑

�⩾1

|

|

|

w+1−{r,�}
|

|

|

2
}1∕2{

∑

�⩾1

‖

‖

‖

∑

�⩾1
(D1∕2E−1D1∕2)��br,�Φ

‖

‖

‖

2
}1∕2

⩽ C
√

N

⟨

⟂
⟩1∕2
Φ .

The lower bound in the lemma then follows from the fact that the first term in (7.29) is non-negative
(since E ⩾ 0 and thus e� ⩾ 0 for all �). �

8. PROOF OF THE MAIN RESULTS

Recall that Proposition 2.4 follows from the considerations of Section 4.



BOSONS IN A DOUBLE WELL: TWO-MODE APPROXIMATION AND FLUCTUATIONS 61

8.1. Energy upper bound. We obtain an upper bound on the ground state energyE(N) corresponding
to (2.32) by constructing a trial state  trial as follows. Recall that by the decomposition (3.8), any wave-
function is uniquely identified by the componentsΦs,d ofN . The d-dependence of the components
of N trial will be encoded in the gaussian coefficients cd = e−d2∕4�2N∕ZN that we already used in
Section 4. The s-dependence, in turn, will be chosen so that the expectation of ℍ on N trial will
coincide (up to remainders) with EBog defined in (2.29). To evaluate this part of the energy, we need a
well-known lemma. Its claims follow e.g. from arguments6 in [17].

Lemma 8.1 (Minimization of quadratic Hamiltonians).
Let V be a locally bounded external potential such that lim

|x|→∞ V (x) = +∞, and define ℎ ∶= −Δ+V .
Let k be the integral operator onL2(ℝd)whose kernel is u(x)w(x−y)u(y), for a real-valued u ∈ L2(ℝd)
andw as in Assumption 2.1. Given an orthonormal basis {un} ofL2(ℝd) such that all un are real-valued,
denote by ℎmn = ⟨um, ℎ un⟩ and kmn = ⟨um, k un⟩ the matrix elements of ℎ and k in this basis. Consider
the quadratic Hamiltonian

ℍquad =
∑

m,n

(

ℎ + k
)

mnA
†
mAn +

1
2
∑

m,n
kmn

(

A†mA
†
n + AmAn

)

,

where A†m and An are creation and annihilation operators on the Fock space  with base L2(ℝd) sat-
isfying the Canonical Commutation Relations. Then the unique (up to a phase) ground state of ℍquad
is

UΩ,

whereΩ is the vacuum vector of  andU a Bogoliubov transformation, acting on creation/annihilation
operators as

U∗A†mU =
∑

n

(

cmnA
†
n + smnAn

)

(8.1)

for suitable coefficients cmn and smn. Moreover, the ground state energy of ℍquad is

inf �(ℍquad) = −
1
2
Tr
(

ℎ + k −
√

ℎ2 + 2ℎ1∕2kℎ1∕2
)

. (8.2)

We refer to [21, 17, 27, 4, 10, 11] for more details. It folllows from (8.1) that we have
⟨

UΩ|A
†
mUΩ

⟩

= 0, (8.3)

i.e. particles appear only in pairs in the Bogoliubov ground state. Moreover, by using the fact that UΩ
is a quasi-free state, one can show that all moments of the number operator⟂ =

∑

nA†nAn in this state
are finite, i.e., ⟨ k

⟂⟩UΩ
<∞ for all positive integer k.

Recall the Bogoliubov Hamiltonian ℍright for right modes, defined in (3.21). Let us consider its
version in which the d-translation operator Θ is formally set to the identity. This amounts to replacing

6In particular, notice that the transformation in [17, Equation (26)] is implemented in Fock space by eXa , where Xa is
defined before [17, Lemma 3].
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the b♯’s with the a♯’s, i.e.,

ℍΘ=1
right ∶=

∑

�,�⩾1

⟨

ur,�,
(

ℎMF − �+ + �K11

)

ur,�
⟩

a†r,�ar,�

+ �
2
∑

�,�⩾1

⟨

ur,�, K11ur,�
⟩

(

a†r,�a
†
r,� + ar,�ar,�

)

.

This operator acts on the right Fock space

Fr⟂ = F
(

P⟂,rL
2(ℝd)

)

, P⟂,r ∶=
∑

�⩾1
|ur,�⟩⟨ur,�|. (8.4)

Similarly, we consider the Bogoliubov HamiltonianℍΘ=1
lef t for the left modes and the left Fock spaceFl⟂,

defined by the same formulas with r replaced by l andK11 byK22. We extend both operators to the full
excited Fock space F⟂ by using the unitary equivalence

F⟂ = F
((

P⟂,rL
2(ℝd)

)

⊕
(

P⟂,lL
2(ℝd)

))

≃ Fr⟂ ⊕F
l
⟂

and having ℍΘ=1
right acting as the identity on the left Fock space (respectively ℍΘ=1

lef t acting as the identity
on the right Fock space). Applying Lemma 8.1, there exist unitary Bogoliubov transformations Uright
and Ulef t such that

ℍΘ=1
rightUrightΩ = E

Bog
rightUrightΩ,

ℍΘ=1
lef t Ulef tΩ = E

Bog
lef t Ulef tΩ

with Ω the vacuum vector of F⟂ and

EBog
right = − 1

2
Tr⟂,r

[

Dr + �PrK11Pr −
√

(

Dr
)2 + 2�D1∕2

r PrK11PrD
1∕2
r

]

EBog
lef t = − 1

2
Tr⟂,l

[

Dl + �PlK22Pl −
√

(

Dl

)2 + 2�D1∕2
l PlK22PlD

1∕2
l

]

,

where Dr, Dl are defined in (7.16).
The latter quantities are those given by adapting (8.2) to our case. Their sum coincides with EBog

defined in (2.29). By construction, ℍΘ=1
right commutes with Ulef t , because the latter is defined in terms of

left modes only. Similarly, ℍΘ=1
lef t commutes with Uright . Thus

(

ℍΘ=1
right + ℍΘ=1

lef t

)

Ulef tUrightΩ =
(

EBog
right + E

Bog
lef t

)

Ulef tUrightΩ

= EBogUlef tUrightΩ.
(8.5)

We denote by (Ulef tUrightΩ)s the component of Ulef tUrightΩ in the s-particle sector of F⟂.
We are now ready to define our trial state. To control some terms arising fromBogoliubov excitations,

our choice of variance differs slightly from that of Section 4.
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Definition 8.2 (Trial state with fluctuations).
We define

 trial ∶=
N
∑

s=0

∑

|d|⩽�2N

cd,su
⊗(N−s+d)∕2
1 ⊗sym u

⊗(N−s−d)∕2
2 ⊗sym Φtrial,s , (8.6)

where the coeficients cd,s are defined by

cd,s =

{

1
ZN
e−d2∕4�2N ifN − s + d is even and |d| ⩽ �2N

0 otherwise,
(8.7)

ZN being a normalization factor such that
∑

|d|⩽�2N
c2d,s = 1 for all s and

�2N =

{

√

�− − �+N if � < 1 in the assumption T ∼ N−�

N1∕2 otherwise
. (8.8)

Moreover, let

Φtrial,s ∶=

(

Ulef tUrightΩ
)

s
√

∑N
s=0

‖

‖

‖

(

Ulef tUrightΩ
)

s
‖

‖

‖

2
. (8.9)

The excitation content of  trial is
(

N trial
)

s,d = cd,sΦtrial,s

for 0 ⩽ s ⩽ N and |d| ⩽ �2N , and zero otherwise. Note that the function of the s variables Φtrial,s does
not depend on d, and that cd,s = cd,s′ for all d if s and s′ have the same parity. Note also that  trial is
normalized to one. In the rest of this subsection we prove

Proposition 8.3 (Energy upper bound).
Pick a sequence T (N) ∼ N−� with 0 < �. Then, along this sequence,

lim sup
N→∞

(

⟨HN⟩ trial − E2−mode − E
Bog) ⩽ 0. (8.10)

Proof. By using Proposition 5.1 with Φ = N trial to estimate ⟨HN⟩ trial , one obtains the upper bound

⟨HN⟩ trial ⩽ ⟨H2−mode⟩ trial + ⟨ℍ⟩N trial + �+⟨⟂⟩N trial

+ ⟨ linear terms ⟩N trial − error terms.
(8.11)

We first determine the expectations in the trial state of the 2-mode HamiltonianH2−mode (Step 1), then
that of the Bogoliubov Hamiltonian ℍ (Steps 2 and 3), before showing that the expectation of the linear
terms and the error terms converge to zero asN → ∞.

Step 1: 2-mode energy of the trial state. The 2-mode Hamiltonian (4.9) does not contain operators
that change the number of excitations (i.e., the index s). The only terms in H2−mode that involve the
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variable s are those containing⟂ or 2
⟂. For example, we compute

⟨ 2
⟂⟩ trial =

N
∑

s=0

∑

|d|⩽�2N

|cd,s|
2s2 ‖

‖

Φtrial,s
‖

‖

2 =
N
∑

s=0
s2 ‖
‖

Φtrial,s
‖

‖

2

=

⟨

 2
⟂1⟂⩽N

⟩

Ulef tUrightΩ

|

|

|

|

|

|

1⟂⩽NUlef tUrightΩ
|

|

|

|

|

|

2
.

The denominator in the last line tends to 1 when N → ∞ and it easily follows from the previous
definitions that

⟨

 2
⟂

⟩

Ulef tUrightΩ
=
⟨

 2
⟂

⟩

Ulef tΩ
+
⟨

 2
⟂

⟩

UrightΩ
.

Since both moments in the right hand side are finite, it follows that

⟨ 2
⟂⟩ trial ⩽ C (8.12)

for a constantC > 0 independent ofN . By the Cauchy-Schwarz inequality, this implies that ⟨⟂⟩ trial ⩽
√

C .
For all other terms of H2−mode in (4.9), i.e. those that only contain a♯1 and a

♯
2, we will use a general

formula of the type

⟨f (a♯1, a
♯
2)⟩ trial =

N
∑

s=0

∑

|d|⩽�2N

∑

|d′|⩽�2N

cd,scd′,s ‖‖Φtrial,s
‖

‖

2

×
⟨

u⊗(N−s+d
′)∕2

1 ⊗sym u
⊗(N−s−d′)∕2
2 , f (a♯1, a

♯
2) u

⊗(N−s+d)∕2
1 ⊗sym u

⊗(N−s−d)∕2
2

⟩

.

To compute the expectations in the second line, we can repeat the calculations performed in the proof
of the upper bound (4.23) for the 2-mode Hamiltonian, keeping track of the fact that the total number
of particles is nowN − s, for a generic 0 ⩽ s ⩽ N . Let

 trial,s ∶=
∑

|d|⩽�2N

cd,su
⊗(N−s+d)∕2
1 ⊗sym u

⊗(N−s−d)∕2
2 ⊗sym Φtrial,s

be the component of  trial with exactly s excitations. One finds
⟨(

1 +2
)n⟩

 trial,s
= (N − s)n ‖

‖

Φtrial,s
‖

‖

2

⟨

−
⟩

 trial,s
= 1
2
⟨

1 +2 − a
†
1a2 − a

†
2a1

⟩

 trial,s
⩽ C

(

1 + N − s
�2N

+ (N − s)e
−N−s

�2N

)

‖

‖

Φtrial,s
‖

‖

2

⟨(

1 −2
)2⟩

 trial,s
⩽ C"(N − s)T 1∕2−" ‖

‖

Φtrial,s
‖

‖

2 .
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Using
∑N

s=0  trial,s =  trial and splitting the sum into two parts for 0 ⩽ s < N∕2 and forN∕2 ⩽ s ⩽ N ,
one has for example (C is a generic constant which may change from line to line)

⟨

−
⟩

 trial
⩽ C

∑

0⩽s<N∕2

(

1 + N − s
�2N

+ (N − s)e
−N−s

�2N

)

‖

‖

Φtrial,s
‖

‖

2 + CN
∑

N∕2⩽s⩽N

‖

‖

Φtrial,s
‖

‖

2

⩽ C

(

1 + N
�2N

+Ne
− N
2�2N

)

+ C
N

⩽ C

(

1 + N
�2N

)

⩽ C
(

1 + max
(

C"T
− 1
2−", N1∕2

))

,

(8.13)

where in the second line we have used
∑N

s=0
‖

‖

Φtrial,s
‖

‖

2 = 1 and the bound

N2

4
∑

N∕2⩽s⩽N

‖

‖

Φtrial,s
‖

‖

2 ⩽
∑

N∕2⩽s⩽N
s2 ‖
‖

Φtrial,s
‖

‖

2 ⩽
⟨

 2
⟂

⟩

 trial
⩽ C ,

and in the third line we have used (A.4), the assumption T ∼ N−�, and the fact that Ne
− N
2�2N can be

bounded by a constant timesN(�2N∕N)
2�−1(1−")−1 . Similarly, we find

⟨(

1 +2
)n⟩

 trial
=
⟨

(N −⟂)n
⟩

 trial
⩽ CNn

0 ⩽
⟨

N −⟂ − a
†
1a2 − a

†
2a1

⟩

 trial
= 2

⟨

−
⟩

 trial
⩽ C

(

1 + max
(

C"T
− 1
2−", N1∕2

))

⟨(

1 −2
)2⟩

 trial
⩽ max

(

C"NT
1
2−", N1∕2

)

⟨

 2
−

⟩

 trial
⩽ N

⟨

−
⟩

 trial
⩽ CN

(

1 + max
(

C"T
− 1
2−", N1∕2

))

.

(8.14)

According to the identity (4.9) of Proposition 4.2, one has

⟨H2−mode⟩ trial = E0 + E
w
N +N

�+ − �−
2

+
�− − �+

2
⟨

N − a†1a2 − a
†
2a1

⟩

 trial

− �N
N − 1

(

(w1112 +w1122)⟨⟂⟩ trial −w1122
)

+ �
N − 1

⟨

(

(w1112 +w1122)⟂ −w1122
)(

N − a†1a2 − a
†
2a1

)

⟩

 trial

− �⟨⟂⟩ trial +
�U
N − 1

⟨

(1 −2)2
⟩

 trial

+ 2�
N − 1

w1122⟨ 2
−⟩ trial +

�
4(N − 1)

(

w1111 − 2w1122 +w1212
)

⟨ 2
⟂⟩ trial .

Plugging (8.12) and (8.14) into this identity, bounding the expectation in the third line by (|w1112| +
w1122)N⟨N − a†1a2− a

†
2a1⟩ trial , and recalling the estimates for the variousw-coefficients and for �−�+

from Lemma 4.1, we deduce that

⟨H2−mode⟩ trial ⩽ E0 + Ew
N +N

�+ − �−
2

− �+⟨⟂⟩ trial + oN (1)
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in both cases of (8.8). Arguing as in Section 4.3, we conclude

⟨H2−mode⟩ trial ⩽ E2−mode − �+⟨⟂⟩ trial + oN (1). (8.15)

Step 2: Bogoliubov energy of the trial state. We want to compute ⟨ℍ⟩N trial . We decompose analo-
gously to (5.43):

ℍ = ℍright + ℍlef t + ℍ12 +
3
∑

j=1
�j (8.16)

with ℍright , ℍlef t given by 3.21-(3.22), ℍ12 given by (5.44), and

�1 =
∑

�,�⩾1

⟨

ur,�,
(

ℎMF − �+
)

ul,�
⟩

a†r,�al,� + h.c.

�2 = �
∑

�,�⩾1

⟨

ur,�,
(

K11 +K22
)

ul,�
⟩

a†r,�al,� + h.c.

+ �
∑

�,�⩾1

[

⟨

ur,�, K11ul,�
⟩

Θ−2 +
⟨

ur,�, K22ul,�
⟩

Θ2
]

a†r,�a
†
l,� + h.c.

�3 =
∑

�,�⩾1

⟨

ur,�, K22ur,�
⟩

a†r,�ar,� +
∑

�,�⩾1

⟨

ul,�, K11ul,�
⟩

a†l,�al,�

+ �
2
∑

�,�⩾1

(

⟨

ur,�, K22ur,�
⟩

Θ2a†r,�a
†
r,� +

⟨

ul,�, K11ul,�
⟩

Θ−2a†l,�a
†
l,� + h.c.

)

.

(8.17)

We will show below (see Step 3) that the main part of the energy in the trial state comes from the
expectation of ℍright + ℍlef t . We now prove that the latter expectation is equal to EBog up to errors of
order N−1T −1∕2−". Each term of ℍright + ℍlef t contains Θ elevated to a certain power, either −2, 0, or
+2 (this power is zero for the b†b and c†c part). We know that the excitation content of  trial is

{

N trial
}

s,d = cd,sΦtrial,s ,

thus the operator Θ acts on N trial by simply translating the cd,s coefficient as cd,s → cd−1,s. Taking
one term of ℍright as an example, we have

∑

�,�⩾1

(

K11
)

��

⟨

Θ2ar,�ar,�
⟩

N trial

=
∑

�,�⩾1

(

K11
)

��

N
∑

s=0

(

∑

|d|⩽�2N

⟨(

N trial
)

s,d
,
(

ar,�ar,�N trial
)

s,d−2

⟩

=
∑

�,�⩾1

(

K11
)

��

N
∑

s=0

(

∑

|d|⩽�2N

cd,scd−2,s

)

⟨

Φtrial,s, ar,�ar,�Φtrial,s+2
⟩

,
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where we have used that cd,s only depends of the parity of s. For the sum over d, we know that, by
(4.25), for all � ∈ 2ℤ,

|

|

|

|

∑

|d|⩽�2N

cd,scd±�,s − 1
|

|

|

|

⩽ C
�2N

⩽

{ 1
c"NT 1∕2+"

if � < 1
1

N1∕2 otherwise
(8.18)

having used the lower bound (A.4) on the gap for the second inequality and recalled the choice (8.8).
This proves that
|

|

|

|

|

|

∑

�,�⩾1

(

K11
)

��

⟨

Θ2ar,�ar,�
⟩

N trial
−

∑

�,�⩾1

(

K11
)

��

⟨

ar,�ar,�
⟩

N trial

|

|

|

|

|

|

=
|

|

|

|

|

|

N
∑

s=0
g(s)

⟨

Φtrial,s, K̃Φtrial,s+2

⟩

|

|

|

|

|

|

⩽ oN (1),

where
g(s) = 1 −

∑

d
cd,scd−2,s and K̃ =

∑

�,�

(

K11
)

��ar,�ar,� .

We used the Cauchy-Schwarz inequality, (8.18) and the fact that, K11 being trace-class, K̃ is controled
by  2

⟂, whose expectation in Φtrial is uniformly bounded. All terms in ℍright and ℍlef t that contain Θ±2
can be treated similarly. This shows that, up to a remainder, ℍright + ℍlef t acts on N trial as if Θ were
set to the identity, and therefore

|

|

|

⟨

ℍright + ℍlef t
⟩

N trial
− EBog|

|

|

⩽ |

|

|

⟨

ℍΘ=1
right + ℍΘ=1

lef t

⟩

N trial
− EBog|

|

|

+ oN (1).

On the other hand, recalling the definition of N trial, the normalization of cd , and (8.5), we see that

⟨

ℍΘ=1
right + ℍΘ=1

lef t

⟩

N trial
=

∑N
s=0

⟨

(

Ulef tUrightΩ
)

s,
(

(

ℍΘ=1
right + ℍΘ=1

lef t

)(

Ulef tUrightΩ
)

)

s

⟩

∑N
s=0

‖

‖

‖

(

Ulef tUrightΩ
)

s
‖

‖

‖

2

= EBog + oN (1)

where the error is due to sum reaching only toN <∞. Hence
|

|

|

⟨

ℍright + ℍlef t
⟩

N trial
− EBog|

|

|

⩽ oN (1). (8.19)

Step 3: remainder terms in ℍ. We now have to compute the contributions of ℍ12 and of the �j’s
in (8.17). For ℍ12 we have the a priori estimate (5.50), which implies,

|

|

|

⟨ℍ12⟩N trial
|

|

|

⩽ C"T
1∕2−". (8.20)

The terms inside �1 and �2 each contain exactly one operator a♯r,� and one a♯l,� . Using (8.3) and the fact
that all the a♯r,�’s commute with a♯l,� and with Ulef t , we obtain

⟨�1⟩N trial
= ⟨�2⟩N trial

= 0. (8.21)
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We now consider �3, focusing on its second line. As in Proposition 5.2, we introduce an energy cutoff Λ
and an integerMΛ which is the largest integer such that �2MΛ+2 ⩽ Λ, where {�m}m are the eigenvalues
of ℎMF. We have

|

|

|

|

|

|

∑

�,�⩾1

⟨

ur,�, K22ur,�
⟩ ⟨

Θ−2ar,�ar,�
⟩

N trial

|

|

|

|

|

|

⩽
|

|

|

|

|

|

∑

1⩽�,�⩽MΛ

⟨

ur,�, K22ur,�
⟩ ⟨

Θ−2ar,�ar,�
⟩

N trial

|

|

|

|

|

|

+ 2
|

|

|

|

|

|

∑

�⩾1, �>MΛ

⟨

ur,�, K22ur,�
⟩ ⟨

Θ−2ar,�ar,�
⟩

N trial

|

|

|

|

|

|

=∶ �⩽MΛ
3 + 2�>MΛ

3 .

For each fixed � and �, the matrix element ⟨ur,�, K22ur,�⟩ tends to zero as N → ∞ by the argument
presented in the proof of Proposition 5.2, see Sec. 5.4. Consequently, �⩽MΛ

3 vanishes as N → ∞ for
each fixed MΛ. For �>MΛ

3 we argue as in the estimate of K>MΛ
in the proof of Proposition 5.2. By

repeated use of the Cauchy Schwarz inequality, we have

�>MΛ
3 ⩽

(

∑

�⩾1, �>MΛ

|

|

|

⟨

ur,�, K22ur,�
⟩

|

|

|

2
)1∕2(

∑

�⩾1, �>MΛ

‖

‖

‖

ar,�ar,�NΨtrial
‖

‖

‖

2
)1∕2

⩽

(

∑

�,�⩾1

⟨

ur,�, K22ur,�
⟩⟨

ur,� , K22ur,�
⟩

)1∕2⟨

⟂
∑

�>MΛ

a†r,�ar,�

⟩1∕2

N trial

.

The square root that containsK22 in the right hand side is equal to TrK22, recalling thatK22 is trace-class
as proven in Lemma 5.3. For the other square root we notice that

∑

�>MΛ

a†r,�ar,� ⩽
∑

�>MΛ

(

a†r,�ar,� + a
†
l,�al,�

)

=
∑

n>2MΛ+2
a†nan,

having passed to the basis (2.25) in the second step. Since all operators commute with ⟂, we deduce
using the same arguments as in the proof of Proposition 5.2 that

⟨

⟂
∑

�>MΛ

a†r,�ar,�

⟩

N trial

⩽ 1
�2MΛ+2 − �+

⟨

⟂
∑

n>2MΛ+2

(

�n − �+
)

a†nan

⟩

N trial

.

The operators a†nan commutewith⟂ andwe can bound the sum in the right hand side by dΓ⟂
(

ℎMF − �+
)

.
Hence

�>MΛ
3 ⩽ C

(

1
�2MΛ+2 − �+

⟨

⟂dΓ⟂
(

ℎMF − �+
)⟩

N trial

)1∕2

.

The matrix element in the right hand side is bounded by aN-independent constant. Indeed,N trial be-
ing a quasi-free state, Wick’s theorem gives the expectation of a quartic operator such as⟂dΓ⟂

(

ℎMF−
�+

)

in terms of the expectations of ⟂ and dΓ⟂
(

ℎMF − �+
)

, which are uniformly bounded in N . This
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proves

�>MΛ
3 ⩽ C

(

�2MΛ+2 − �+
)1∕2

. (8.22)

Plugging (8.19), (8.20), (8.21) and (8.22) inside (8.16) gives the final bound

|

|

|

⟨ℍ⟩N trial − E
Bog|

|

|

⩽ C
(

�2MΛ+2 − �+
)1∕2

+ CΛoN (1). (8.23)

Step 4: error and linear terms. Note that, with the choice (8.8),
⟨D2

N

⟩

N trial
= 1
N

N
∑

s=0

∑

|d|⩽�2N

d2c2d,s ‖‖Φtrial,s
‖

‖

2 ⩽ C
�2N
N

⩽ oN (1)

where the second bound follows from Lemma 4.5. In view also of (8.12), the first error term in (5.1)
whenΦ = N trial is bounded by CN−1∕4. The second error terms, in turn, can be bounded by a oN (1),
relying on (8.12) and (8.13). Let us now show that the expectation in  trial of the linear terms in (5.1)
are also negligible. Using the Cauchy-Schwarz inequality we find

|

|

|

|

�
√

2(N − 1)

⟨
∑

m⩾3
w+1−m bmD + h.c.

⟩

N trial
+ �
√

2(N − 1)

⟨
∑

m⩾3
w+2−m cmD + h.c.

⟩

N trial

|

|

|

|

⩽ �
√

2(N − 1)

[(

∑

m⩾3
|w+1−m|

2
)1∕2

+
(

∑

m⩾3
|w+2−m|

2
)1∕2]

⟨⟂⟩1∕2 trial
⟨

(

1 −2
)2
⟩

1∕2
 trial

⩽ oN (1),

where the last inequality follows from (5.7) and (8.14). Hence we deduce from (8.11) that

⟨HN⟩ trial ⩽ ⟨H2−mode⟩ trial + ⟨ℍ⟩N trial + �+⟨⟂⟩ trial + oN (1).

Plugging (8.15) and (8.23) into this inequality gives precisely (8.10) by passing to the limit N → ∞
and then Λ→ ∞. �

8.2. Energy lower bound. We now prove the following:

Proposition 8.4 (Energy lower bound).
Assume T ≪ 1. For every large enough energy cutoff Λ, let MΛ be the largest integer such that
�2MΛ+2 ⩽ Λ, where {�m}m are the eigenvalues of ℎMF in increasing order (this implies thatMΛ → ∞
as Λ→∞). Then there exists �0 > 0 such that, for all 0 ⩽ � ⩽ �0,

⟨HN⟩ gs ⩾ E0 + Ew
N +N

�+ − �−
2

+ EBog + c�
N − 1

⟨(

1 −2
)2⟩

 gs

− CΛoN (1) − C"
T −"

N1∕2
− C"T 1∕2−" −

C
(

�2MΛ+2 − �+
)1∕2

,
(8.24)

where c is a positive constant.
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We first need to prove that the (negative) coefficients multiplying the variance ⟨D2⟩Φ in (7.9), and its
analog for ℍ(M)

lef t,shif t , can be absorbed by the variance term of the 2-mode Hamiltonian. Recall that

Wr,⩽MΛ
= Pr,⩽MΛ

(

Pr,⩽MΛ

(

ℎMF − �+ + 2�K11
)

Pr,⩽MΛ

)−1
Pr,⩽MΛ

,

with a similar formula forWl,⩽MΛ
(replacing K11 by K22).

Lemma 8.5 (Variance coefficients).
Let U be the coefficient from (4.3). We have

⟨

u1, K11Wr,⩽MΛ
K11u1

⟩

⩽ C ,
⟨

u2, K22Wl,⩽MΛ
K22u2

⟩

⩽ C (8.25)

for some constant C that does not depend on � and Λ. Consequently, if 0 < � ⩽ �0 with �0 small
enough, then

�U − �2

2
⟨

u1, K11Wr,⩽MΛ
K11u1

⟩

− �2

2
⟨

u2, K22Wl,⩽MΛ
K22u2

⟩

⩾ c� (8.26)

for some c > 0.

Proof. Using the positivity of K11 and the finite energy gap (A.5), one has

Pr,⩽MΛ

(

ℎMF − �+ + 2�K11
)

Pr,⩽MΛ
⩾ Pr,⩽MΛ

(

ℎMF − �+
)

Pr,⩽MΛ
> C−1Pr,⩽MΛ

for some C > 0. Hence
Wr,⩽MΛ

⩽ CPr,⩽MΛ

because the inverse power is operator monotone [6] and we are restricting everything to the range of
Pr,⩽MΛ

. Since K11 is also bounded, the first inequality in (8.25) follows, and the second one is proven
in the same way. The estimate (8.26) is a consequence of (8.25). Actually, the right hand side in this
estimate is bounded from below by �(U −C�) and U −C� > 0 for � smaller than some �0 that depends
on C , because U > 0 by (4.4). �

The rest of the subsection is devoted to the proof of Proposition 8.4. We use the a priori estimates
of Section 6 systematically, without further mention. We also use the fact that  4

⟂ ⩽ N2 2
⟂ when

evaluated on  gs, and similarly forD4.

Proof of Proposition 8.4. We first use Proposition 5.1 with Φ = N gs. For such Φ, the error terms
are bounded as in (6.8) and one gets

⟨HN⟩ gs ⩾ ⟨H2−mode⟩ gs + �+⟨⟂⟩ gs + ⟨ℍ⟩N gs

+ �
√

2(N − 1)

⟨

∑

m⩾3

(

w+1−m bmD +w+2−m cmD + h.c.
)

⟩

 gs

− C
N1∕4

− C"
T −"

N1∕2
.

(8.27)

Next we use Proposition 5.2 to separate the full excitation energy into the excitation energy of right and
left modes, at the expense of the appearance of the cutoff Λ. For a lower bound, we ignore the positive
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dΓ⟂
(

P⩾MΛ

(

ℎMF − �+
)

P⩾MΛ

)

. We also use Proposition 5.7 to reduce the linear terms to modes below
the cutoff without coupling between right and left modes. We thus obtain for any Λ > 0 large enough

⟨HN⟩ gs ⩾ ⟨H2−mode⟩ gs + �+⟨⟂⟩ gs +
⟨

ℍ(MΛ)
right + ℍ(MΛ)

lef t

⟩

N gs

+ �
√

2(N − 1)

⟨

∑

1⩽�⩽MΛ

(

w+1−{r,�} br,�D +w+2−{l,�} cl,�D + h.c.
)⟩

N gs

− CΛoN (1) − C"
T −"

N1∕2
− C
(

�2MΛ+2 − �+
)1∕2

.

Let us now plug into the above estimate the lower bound on H2−mode from Proposition 4.2, see (4.10).
This produces, among other terms, a term −�+⟨⟂⟩ gs that cancels the one above. The expectation
in the ground state of the last term in (4.10) is bounded from below by −C"T 1−" due to (6.1). We also
recognize thatℍ(MΛ)

right +ℍ
(MΛ)
lef t together with the linear terms coincide withℍ(MΛ)

right,shif t+ℍ
(MΛ)
lef t,shif t from (7.1).

Thus

⟨HN⟩ gs ⩾ E0 + Ew
N +N

�+ − �−
2

+ �U
N − 1

⟨

(

1 −2
)2
⟩

 gs
+
⟨

ℍ(MΛ)
right,shif t + ℍ(MΛ)

lef t,shif t

⟩

N gs

− CΛoN (1) − C"
T −"

N1∕2
− C"T 1∕2−" −

C
(

�2MΛ+2 − �+
)1∕2

.

We now use Proposition 7.3 to bound the term containing the shift Bogoliubov Hamiltonians, which
enable to absorb the linear terms at the expense of passing to b̃♯ and c̃♯ operators and of the appearance
of a negative variance term. According to the apriori bound (6.6) on ⟨D2⟩N gs = ⟨(1 −2)2⟩ gs , the

error terms in Proposition 7.3 are bounded by C∕
√

N + C"T 1∕2−". The new lower bound looks like

⟨HN⟩ gs ⩾ E0 + Ew
N +N

�+ − �−
2

+
⟨

ℍ̃(MΛ)
right + ℍ̃(MΛ)

lef t

⟩

N gs

− 1
2
Tr

(

Pr,⩽MΛ
(ℎMF − �+ + �K11)

)

− 1
2
Tr

(

Pl,⩽MΛ
(ℎMF − �+ + �K22)

)

+ 1
N − 1

⟨

(

1 −2
)2
⟩

 gs

[

�U − �2

2
⟨

u1, K11Wr,⩾MΛ
K11u1

⟩

− �2

2
⟨

u2, K22Wl,⩾MΛ
K22u2

⟩

)

]

− CΛoN (1) − C"
T −"

N1∕2
− C"T 1∕2−" −

C
(

�2MΛ+2 − �+
)1∕2

.

By relying on Proposition 7.4, we bound the difference of the expectation of ℍ̃(MΛ)
right +ℍ̃

(MΛ)
lef t and the terms

in the second line by EBog, up to remainders CΛoN (1). Finally, the terms in the square brackets can be
bounded from below by using the lemma 8.5 above, see (8.26). This yields the desired result (8.24). �
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8.3. Proof of Theorem 2.3. Putting together Propositions 8.3 and 8.4, we can now conclude the proof
of Theorem 2.3. Taking the limitN →∞ in (8.24) yields

lim inf
N→∞

(

⟨HN⟩ gs − E0 − E
w
N −N

�+ − �−
2

− EBog
)

⩾ lim sup
N→∞

⎛

⎜

⎜

⎝

c�
N

⟨

(

1 −2
)2
⟩

 gs
− C
(

�2MΛ+2 − �+
)1∕2

⎞

⎟

⎟

⎠

.

On the other hand, combining (8.10) and the estimate (4.36) on E2−mode, which follows from Proposi-
tion 2.4, we have

lim sup
N→∞

(

⟨HN⟩ gs − E0 − E
w
N −N

�+ − �−
2

− EBog
)

⩽ 0 .

This gives
lim sup
N→∞

c�
N

⟨(

1 −2
)2⟩

 gs
⩽ lim sup

N→∞

C
(

�2MΛ+2 − �+
)1∕2

.

As argued below Proposition 5.2, the limit of the eigenvalue �2MΛ+2 asN →∞ is theMΛ-th eigenvalue
of a fixed one-well Hamiltonian with compact resolvent. Hence, letting Λ→∞,

lim sup
N→∞

c�
N

⟨(

1 −2
)2⟩

 gs
= 0, (8.28)

thus proving (2.31). Inserting (8.28) in the energy upper and lower bounds (8.10) and (8.24), we find
by using (4.36) again

oN (1) −
C

(

�2MΛ+2 − �+
)1∕2

+ E2−mode + EBog ⩽E(N)

⩽E2−mode + EBog + oN (1) .
Thus we may let firstN →∞ and then Λ →∞ to conclude the proof of (2.32).
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APPENDIX A. THE ONE-BODY HARTREE PROBLEM

We recall here a number of results that were proved in our companion paper [29], i.e. properties of
the eigenvectors and eigenfunctions of the one-body Hamiltonian ℎMF.

In Section 1 we defined u+ and u− as the first and second eigenfunctions of ℎMF, corresponding to the
eigenvalues �+ and �−, and the the full spectral decomposition of ℎMF is

ℎMF = �+|u+⟩⟨u+| + �−|u−⟩⟨u−| +
∑

m⩾3
�m|um⟩⟨um|.

Moreover, we defined right and left modes as

ur,� ∶=
u2�+1 + u2�+2

√

2
and ul,� ∶=

u2�+1 − u2�+2
√

2
,

for any � ⩾ 1.
We have the following result.

Theorem A.1 (One-body Hartree problem).
(i) Lower eigenvectors convergence.

‖

‖

‖

|u+|
2 − |u−|

2‖
‖

‖L1
⩽ C"T

1−" (A.1)
‖

‖

|u+| − |u−|‖‖L2 ⩽ C"T
1∕2−" (A.2)

‖

‖

|u+| − |u−|‖‖L∞ ⩽ C"T
1∕2−". (A.3)

(ii) Bounds on the fist spectral gap.

c"T
1+" ⩽ �− − �+ ⩽ C"T

1−". (A.4)

(iii) Second gap.
�m − �− ⩾ C ∀m ⩾ 3 (A.5)

independently of L.
(iv) Properties of u+. The function u+ is smooth, strictly positive (up to a phase), and even under

reflections across the {x1 = 0} hyperplane.
(v) Properties of u−. The function u− is smooth and odd under reflections across the {x1 = 0}

hyperplane. Moreover, up to a phase,

u1(x) > 0 for x1 ⩾ 0. (A.6)

(vi) Higher spectrum. For any � ⩾ 1 we have

lim
T→0

(

�2�+2 − �2�+1
)

= 0. (A.7)

and, for an appropriate phase choice of the um’s

lim
T→0∫x1⩽0

|

|

ur,�||
2 dx = lim

T→0∫x1⩾0
|

|

ul,�||
2 dx = 0. (A.8)
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Items (i), (ii), and (iii) follow from [29, Theorem 2.1]. The fact that u+ can be chosen as positive is
a standard fact already recalled in Section 2. Since the ℎMF commutes with reflection across {x1 = 0}
we can choose its eigenvectors to be either odd or even under such a permutation. Since u+ is positive,
it must be even. The fact that u− is odd and its sign follow from [29, Lemma 4.2]. Notice that, for u1
defined in (2.11), as a consequence of (iv) and (v) we have

∫x1⩽0
|

|

u1(x)||
2 dx = 1

√

2 ∫x1⩽0
|

|

u+(x) + u−(x)||
2 dx = 1

√

2 ∫x1⩽0
|

|

|u+(x)| − |u−(x)|||
2 dx.

Hence, by (A.2),

∫x1⩽0
|

|

u1(x)||
2 dx = ∫x1⩾0

|

|

u2(x)||
2 dx ⩽ C"T

1−", (A.9)

which is the analogous of (A.8) for the low energy modes.

APPENDIX B. ESTIMATES AND IDENTITIES IN THE TWO-MODE SPACE

We prove here some results that were stated in Section 4.
Proof of Lemma 4.1. The upper bound on w1111 follows immediately from Young’s inequality (recall
thatw ∈ L∞). To prove the lower bound, we use the pointwise lower bound on u+ (see [29, Proposition
3.1])

u+(x) ⩾ c"e
−(1+")ADW(x), (B.1)

where

ADW =

{

A
(

|x − xL|
)

, x1 ⩾ 0
A
(

|x + xL|
)

, x1 ⩽ 0,
and A is the Agmon distance (2.12). Let us notice that, using the definition (2.11) of u1 and u2,

w1111 ⩾ ∬x1⩾0
y1⩾0

w(x − y)|u1(x)|2|u1(y)|2dxdy ⩾
1
4∬x1⩾0

y1⩾0

w(x − y)|u+(x)|2|u+(y)|2dxdy,

having used in the second inequality the fact that u+(x) > 0 and u−(x) ⩾ 0 for x1 ⩾ 0, as granted by
Theorem A.1. Using the lower bound (B.1) we deduce

w1111 ⩾ c"∬x1⩾0
y1⩾0

w(x − y)e−2(1+")A(|x−xL|)e−2(1+")A(|y−xL|)dxdy

= c"∬x1⩾−L∕2
y1⩾−L∕2

w(x − y)e−2(1+")A(|x|)e−2(1+")A(|y|)dxdy

⩾ c"∬x1⩾0
y1⩾0

w(x − y)e−2(1+")A(|x|)e−2(1+")A(|y|)dxdy =∶ c > 0,

where all the steps are justified since the functions in the integral are manifestly positive and summable.
To prove (4.5) we use the definition of u1 and u2 in terms of u+ and u− from (2.11), then Young’s

inequality and (A.1), to get
|

|

|

w1112
|

|

|

⩽ 1
2 ∫ℝd

w ∗ |u1|2
|

|

|

|u+|
2 − |u−|

2|
|

|

⩽ ‖

‖

‖

w ∗ |u1|2
‖

‖

‖L∞
‖

‖

‖

|u+|
2 − |u−|

2‖
‖

‖L1
⩽ C"T

1−".
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Similarly, for (4.6) we write

w1122 ⩽
1
4 ∫ℝd

w ∗ ||
|

|u+|
2 − |u−|

2|
|

|

|

|

|

|u+|
2 − |u−|

2|
|

|

⩽ C‖‖
‖

|u+|
2 − |u−|

2‖
‖

‖

2

L1
⩽ C"T

2−".

On the other hand, the positivity of w1122 is deduced by noticing that

w1122 = ∫ ŵ(k)||
|

û1u2(k)|2dk ⩾ 0, (B.2)

since ŵ(k) ⩾ 0 by assumption.
To estimatew1212 we use the fact thatw has compact support and it is bounded by a constant to write

w1212 ⩽ C∬x1⩽0
y1⩽C

|u1(x)|2|u2(y)|2dxdy

+ C∬ x1⩾0
y1⩾−C

|u1(x)|2|u2(y)|2dxdy.

In the first integral we recognize that
√

2u1(x) = u+(x) + u−(x) = |u+(x)| − |u−(x)| for x1 ⩽ 0 (recall
that Theorem A.1 ensures that u− is negative for negative x1’s), and, using (A.2)

C ∫x1⩽0, y1⩽C
|u1(x)|2 |u2(y)|2dxdy ⩽ C‖‖

‖

|u+| − |u−|
‖

‖

‖

2

L2
‖u2‖

2
L2 ⩽ C"T

1−".

In the second integral we can ignore the region in which −C ⩽ y1 ⩽ 0, since both u1 and u2 are
exponentially small there, because u+ and u− are (see [29, Proposition 3.1]). For the region in which
y1 ⩾ 0we argue as in the integral above by recognizing that

√

2u2(y) = u+(y)−u−(y) = |u+(y)|−|u−(y)|
for y1 ⩾ 0. This proves (4.7).

To prove (4.8) we only have to notice that

� − �+ =
�

2(N − 1)
(

w1212 −w1112 + (1 − 2N)w1122
)

,

and the result follows from the estimates above. �

Proof of Lemma 4.3. Since− = (1+2− a
†
1a2− a

†
2a1)∕2 and [1+2, a

†
1a2+ a

†
2a1] = 0, one has

4 2
− = (1 +2)2 − 2(1 +2)(a

†
1a2 + a

†
2a1) + (a

†
1a2 + a

†
2a1)

2

and thus

2(1 +1)(a
†
1a2 + a

†
2a1) − (1 +1)2 + 4 2

− −1 −2

= (a†1a2)
2 + (a†2a1)

2 + a†1a2a
†
2a1 + a

†
2a1a

†
1a2 −1 −2

= (a†1a2)
2 + (a†2a1)

2 + 212 .

where the last equality follows from the commutation relations of a1, a
†
1, a2 and a

†
2. �
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