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Abstract. In this paper, we study the time series generated by the event counts
of the stationary Hawkes process. Using the cluster properties of the stationary Hawkes
process, we prove an upper bound for its strong-mixing coefficient, and for its count series’,
provided that the reproduction kernel has a finite (1 + β)-th order moment (for a β > 0).
When the exact locations of points are not observed, but only counts over fixed time
intervals, we propose a spectral approach to the estimation of Hawkes processes, based
on Whittle’s likelihood. This approach provides consistent and asymptotically normal
estimates provided common regularity conditions on the reproduction kernel. Simulated
datasets illustrate the performances of the estimation, notably, of the Hawkes reproduction
mean and kernel, even with relatively large time intervals.

Keywords. Hawkes process, Strong mixing, Bartlett spectrum, Whittle estimation,
Time series

1 Introduction

In this paper, we study the time series generated by the event counts of a Hawkes process.
We propose a spectral approach to the parametric estimation of the process from its
count data sequence and prove strong-mixing properties necessary to get good asymptotic
properties for the estimator.

Hawkes eponymous self-exciting point processes [1, 2] form a family of models for
point processes for which the occurrence of any event increases temporarily the proba-
bility of further events occurring. Importantly, the Hawkes process exhibits clustering
properties: it is a special case of the Poisson cluster process, where each cluster is a
subcritical continuous-time Galton-Watson tree with Poisson offspring distribution [3].
These self-exciting and clustering properties are appealing in point process modeling, and
while first applications concerned almost exclusively seismology [4, 5], the use of Hawkes
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processes quickly spread to many other disciplines, including neurophysiology [6], finance
[7], genomics [8] and epidemiology [9].

Parameter estimation of Hawkes processes has been studied thoroughly when events
are fully observed, first relying on spectral analysis techniques [4], then on maximum like-
lihood methods [5, 10, 11]. However, when count data are only observed in discrete time
(i.e. the timeline is cut into bins and the numbers of events in each bin is counted) these
methods are not directly applicable. Kirchner [12] proposed a non-parametric estimation,
approximating the distribution of the bin-count sequence by an INAR(∞) sequence, and
showed that the INAR conditional least-square estimation yields consistent and asymp-
totically normal estimates for the underlying Hawkes process when the binsize tends to
zero [13]. However, while adapted for most event data which live on relatively discrete
time grids, these estimates are biased for those with large binsize.

Another approach often taken for the estimation of Hawkes processes, for example
when the processes are multivariate [14] or when the immigration intensity is a renewal
process [15], is using an Expectation Maximization algorithm which considers the branch-
ing structure of the process as a latent variable. For a process sampled in discrete time,
an analogous approach which would consider the arrival times as latent variables is un-
fortunately not adapted, since there is no closed form for their conditional distribution
given the event counts. Stochastic expectation maximization algorithms [16], which ap-
proximate this conditional distribution, do not alleviate this issue since usual convergence
results are based on likelihoods of the exponential families [17], which excludes Hawkes
processes.

In this paper we revisit Adamopoulos’s spectral approach to the parametric estimation
of Hawkes processes [4]. Using the Bartlett spectrum of the Hawkes process (i.e. the
spectral density of the covariance measure of the process), Adamopoulos defined as an
estimator the minimiser of the log-spectral likelihood, first introduced by Whittle [18].
We extend these results to processes whose event counts are only observed in discrete
time.

Section 3 contains our first important result: we establish an upper bound on the
strong-mixing coefficient of the Hawkes process, and therefore of its count series, using its
cluster properties. Rosenblatt [19] introduced the strong-mixing coefficient to formalise
a measure of dependence between random variables, which has been useful in proving
moment inequalities and central limit theorems [20, 21]. While Hawkes processes have
already been shown to be strongly-mixing [3, 22], this has not yet led to any development
in their estimation. Only recent results [23], that hold specifically because the σ-algebras
generated by countable sets are poorer than those generated by continuous sets, enable
the mixing properties to be used in the estimation of Hawkes processes.

In Section 4, we focus on the estimation of Hawkes processes from their count data.
We adapt Adamopoulos’s work by taking into account the aliasing of the spectral density
caused by sampling the process in discrete time. we introduce a correction to the spectral
density function by taking into account the spectral aliasing that occurs when the process
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is sampled in discrete time. Then, using the strong-mixing condition and the work of
Dzhaparidze [24] on Whittle’s method, we propose a consistent and asymptotically normal
estimator to the parameters of the Hawkes process.

Finally, Section 5 provides some numerical experiments to illustrate the results of the
two preceding sections and in Section 6, we discuss some of the appealing features of this
approach.

2 The Hawkes process and its count series

2.1 Notation

In this paper, we consider locally finite point processes on the measure space (R,B(R), `),
where B(A) denotes the Borel σ-algebra of A and ` the Lebesgue measure. A point process
N on R may be defined as a measurable map from a probability space (X ,F ,P) to the
measurable space (N,N ) of locally finite counting measures on R. The corresponding
random set of points, i.e. the atoms of N , is denoted {Ti}. For a function f on R, we
write

N(f) :=

∫
R
f(t)dN(t) =

∑
i

f(Ti)

the integral of f with respect to N . Finally, for a Borel set A, the cylindrical σ-algebra
E(A) generated by N on A is defined by

E(A) := σ
(
{N ∈ N : N(B) = m}, B ∈ B(A),m ∈ N

)
.

2.2 The stationary Hawkes process

A stationary self-exciting point process, or Hawkes process, on the real line R is a point
process N with conditional intensity function

λ(t) = η +

∫ t

0

h(t− u)dN(u)

= η +
∑
Ti<t

h(t− Ti).

The constant η > 0 is called immigration intensity and the measurable function h : R+ →
R+ reproduction function.

Moreover, the Hawkes process is a specific case of the Poisson cluster process [3].
Briefly, the process consists of a stream of immigrants, the cluster centres, which arrive
according to a Poisson process Nc with intensity measure η. Then, an immigrant at time Ti
generates offsprings according to an inhomogenous Poisson process N1(·|Ti) with intensity
measure h(· − Ti). These in turn independently generate further offsprings according to
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the same law, and so on ad infinitum. The branching processes N(·|Ti), consisting of an
immigrant at time Ti and all their descendants, are therefore independent. Finally, the
Hawkes process N is defined as the superimposition of all branching processes:

∀A ∈ B(R), N(A) = Nc

(
N(A|·)

)
.

This cluster representation links to the usual Galton-Watson theory. Without loss of
generality, consider one branching process whose immigrant has time 0. Define Zk as the
number of points of generation k, i.e. Z0 = 1 for the immigrant, then Z1 denotes the
number of offsprings that the immigrant generates, Z2 the number of offsprings that the
offsprings of the immigrants generate, etc. Then (Zk)k∈N is a Galton-Watson process.

In particular, (Zk+1 |Zk = z) (k, z ∈ N) follows a Poisson distribution with parameter
zµ, where µ :=

∫
R h(t)dt. Then, by the usual Galton-Watson theory, a sufficient condition

for the existence of the Hawkes process is µ < 1 which ensures that the total number of
descendants of any immigrant is finite with probability 1 and has finite mean. This
condition also ensures that the process is strictly stationary.

2.3 Count series

We are interested in the time series generated by the event counts of the Hawkes process,
that is the series obtained by counting the events of the process on intervals of fixed length.
We give a definition for both time-continuous and discrete time count series, according to
whether the interval endpoints live on the real line or on a regular grid respectively (see
Figure 1):

Definition 1. The count data time series (or count series in short) with binsize ∆ asso-
ciated to a point process N is the process (Xt)t∈R =

(
N
(
t∆, (t+ 1)∆

])
t∈R or (Xk)k∈Z =(

N
(
k∆, (k + 1)∆

])
k∈Z, generated by the count measure on intervals of size ∆.

Xt Xt′

t∆ (t+1)∆ t′∆ (t′+1)∆

(a) Time-continuous: {Xt}t∈R

Xk Xk+1

k∆ (k+1)∆ (k+2)∆

(b) Discrete time: {Xk}k∈Z

Figure 1: Count series with binsize ∆
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3 Strong-mixing properties

Here, we control the strong-mixing coefficients of Hawkes processes and their associated
count series. We recall that, for a probability space (X ,F ,P) and A,B two sub σ-algebras
of F , Rosenblatt’s strong-mixing coefficient is defined as the measure of dependence be-
tween A and B [19]:

α(A,B) := sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B

}
.

This definition can be adapted to a point process N on R, by defining (see [23])

αN(r) := sup
t∈R

α
(
E t−∞, E∞t+r

)
,

where Eba stands for E
(
(a, b]

)
, i.e. the σ-algebra generated by the cylinder sets on the

interval (a, b]. For a given sequence (Xk)k∈Z, the strong-mixing coefficient takes the form

αX(r) := sup
n∈Z

α
(
Fn−∞,F∞n+r

)
,

where F ba stands for the σ-algebra generated by (Xk)a≤k≤b.
The point process N (resp. the sequence (Xk)) is said to be strongly-mixing if αN(r)

(resp. αX(r)) → 0 as r → ∞. Intuitively, the strong-mixing condition conveys that the
past and the future of the process are asymptotically independent the further they are
separated. Note that, since F ba ⊂ E

(
(a, b]

)
, we have that α(Xk)(r) ≤ αN(r) for all r.

We here state the first important result of this article:

Theorem 1. Let N be a Hawkes process on R with reproduction function h = µh∗, where
µ =

∫
R h < 1 and

∫
R h
∗ = 1. Suppose that there exists a β > 0 such that the distribution

kernel h∗ has a finite moment of order 1 + β:

ν1+β :=

∫
R
t1+βh∗(t)dt <∞.

Then N is strongly-mixing and

αN(r) = O
(

1

rβ

)
.

In brief, the proof has two parts: first, we rescale the problem to a single continuous-
time Galton-Watson tree using the cluster representation of the Hawkes process; second,
we derive a upper bound for the strong-mixing coefficients of the tree. The idea for
the latter is that since the Galton-Watson process goes extinct almost surely and the
reproduction distribution kernel h∗ has a finite moment, then the probability that there
exists an offspring of generation k at a far distance from the immigrant goes quickly to 0
when k increases. We refer to Appendix A for the detailed proof of the theorem.

Finally, as an immediate consequence to Theorem 1, we get the following corollary for
Hawkes count series:
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Corollary 1. Let N be a Hawkes process as in Theorem 1, and (Xk)k∈Z =
(
N(k∆, (k +

1)∆]
)
k∈Z its associated count series. Then (Xk) is strongly-mixing and

αX(r) = O
(

1

rβ

)
.

4 Parametric estimation of count series

In this section, we apply the strong-mixing properties of the Hawkes count series to
parametric estimation using a spectral approach. First, we derive the spectral density
function for both the time-continuous and discrete time Hawkes count series. Then using
Whittle’s method, we define a parametric estimator of a Hawkes process from its count
data.

4.1 Spectral analysis

We recall that the Bartlett spectrum of a second order stationary point process N on R
is defined as the unique, non-negative, symmetric measure Γ on the Borel sets such that,
for any rapidly decaying functions ϕ and ψ on R, (see [25, Proposition 8.2.I])

Cov
(
N(ϕ), N(ψ)

)
=

∫
R
ϕ̃(ω)ψ̃∗(ω)Γ(dω), (1)

where ψ∗(u) = ψ(−u), and ·̃ denotes the Fourier transform:

ϕ̃(ω) =

∫
R
e−iωsϕ(s)ds.

For the stationary Hawkes process, the Bartlett spectrum admits a density given by
(see [25, Example 8.2(e)])

γ(ω) =
m

2π

∣∣∣1− h̃(ω)
∣∣∣−2

(2)

where m = E
[
N(0, 1]

]
= η

(
1−

∫
R h(t)dt

)−1
.

We then derive the spectral density of the time-continuous count series with binsize
∆:

Proposition 1. Let N be a stationary Hawkes process on R, and {Xt}t∈R = {N(t∆, (t+ 1)∆]}t∈R
the associated count series. Then Xt has a spectral density function given by

fXt(ω) = m∆ sinc2
(ω

2

) ∣∣∣1− h̃( ω
∆

)∣∣∣−2

. (3)
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Proof. Let ϕ = 1(0,∆] and ψ = 1(∆u,∆(u+1)]. We have

ϕ̃(ω) =

∫ ∆

0

e−iωsds =
i

ω

[
e−iω∆ − 1

]
,

ψ̃∗(ω) =

∫ −∆u

−∆(u+1)

e−iωsds =
i

ω
eiω∆u

[
1− eiω∆

]
.

Then, using (1) and (2), the autocovariance function of Xt is

γXt(u) = Cov(X0, Xu)

= Cov
(
N(ϕ), N(ψ)

)
=

∫
R

1

ω2
eiω∆u

∣∣eiω∆ − 1
∣∣2 Γ(dω)

=
1

2π

∫
R
eiωum∆ sinc2

(ω
2

) ∣∣∣1− h̃( ω
∆

)∣∣∣−2

dω.

For the Hawkes process sampled in discrete time on a regular unit time grid, we must
take into account spectral aliasing, which folds high frequencies back onto the apparent
spectrum:

Corollary 2. Let N be a stationary Hawkes process on R, and {Xk}k∈Z = {N(k∆, (k + 1)∆]}k∈Z
the associated count series. Then Xk has a spectral density function given by

fXk
(ω) =

∑
k∈Z

fXt(ω + 2kπ)

where fXt(·) is the function defined in (3).

4.2 Whittle estimation

For a stationary linear process (Xk)k∈Z with spectral density fθ(·), θ an unknown param-
eter vector, both Hosoya [26] and Dzhaparidze [27], building on the cornerstone laid by
Whittle [18], proposed as an estimator of θ the minimizer

θ̂n = arg min
θ∈Θ
Ln(θ) (4)

where

Ln(θ) =
1

4π

∫ π

−π

(
log fθ(ω) +

In(ω)

fθ(ω)

)
dω (5)

is the log-spectral likelihood of the process, and In(ω) = (2πn)−1
∣∣∑n

k=1 Xk e
−ikω

∣∣2 is
the periodogram of the partial realisation (Xk)1≤k≤n. They also gave the asymptotic
properties of the estimator under appropriate regularity conditions.
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Dzhaparidze [24] extended these results to more general cases, and in particular
to stationary processes verifying Rosenblatt’s mixing conditions. The following con-
ditions and theorems are thus adaptations of those found in Dzhaparidze [24, Theo-
rem II.7.1 and II.7.2] for stationary Hawkes count series.

Theorem 2. Let N be a Hawkes process on R with reproduction function h = µh∗, where
µ =

∫
R h < 1 and

∫
R h
∗ = 1, and (Xk)k∈Z =

(
N(k, k + 1]

)
k∈Z its associated count series

with spectral density function fθ. Assume the following regularity conditions on fθ:

(A1) The true value θ0 of the parameter θ belongs to a compact set Θ of Rp.

(A2) For all θ1 6= θ2 in Θ, then fθ1 6= fθ2 for almost all ω.

(A3) The function f−1
θ is differentiable with respect to θ and its derivatives (∂/∂θk)f

−1
θ

are continuous in θ ∈ Θ and −π ≤ ω ≤ π.

Further assume that there exists a β > 0 such that the reproduction kernel h∗ has a finite
moment of order 2+β. Then the estimator θ̂n defined as in (4) (with Ln(θ) given by (5)),

is consistent, i.e. θ̂n → θ0 in probability.

Proof. The only condition from Dzhaparidze [24, Theorem II.7.1] that we need to verify
is that there exists a γ > 2 such that E[|Xk|2γ] is finite and the following inequality holds:

∞∑
r=1

(
αX(r)

)1−2/γ
<∞. (6)

Since the stationary Hawkes process admit finite exponential moments if h∗ has a moment
of order δ ∈ (0, 1] [28, Theorem 4], E[|Xk|2γ] is finite for any γ. Then using Corollary 1
there always exists a γ > 2 that satisfies (6).

Define the matrix Γθ, which would actually be the limit as n → ∞ of the Fisher’s
information matrix if the process (Xk) were Gaussian [24, Section II.2.2], by the relation:

Γθ =

(
1

4π

∫ π

−π

∂

∂θk
log fθ(ω)

∂

∂θl
log fθ(ω) dω

)
1≤k,l≤p

.

Since the asymptotic properties of the Whittle estimator, when (Xk) is not Gaussian,
depends on the fourth-order statistics of the process, further define the following matrix:

C4,θ =

(
1

8π

∫ ∫ π

−π
f4,θ(ω1,−ω1,−ω2)

∂

∂θk

1

fθ(ω1)

∂

∂θl

1

fθ(ω2)
dω1dω2

)
1≤k,l≤p

where f4,θ(·, ·, ·) is the fourth-order cumulant spectral density of the process. We have the
following result:
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Theorem 3. Let N be a Hawkes process as in Theorem 2, and (Xk)k∈Z =
(
N(k∆, (k +

1)∆]
)
k∈Z its associated count series with spectral density function fθ. Assume conditions

(A1), (A2), (A3) and:

(A4) The function fθ is twice differentiable with respect to θ and its second derivatives
(∂2/∂θk∂θl)fθ are continuous in θ ∈ Θ and −π ≤ ω ≤ π.

Then the estimator θ̂n is asymptotically normal and

n1/2(θ̂n − θ0) ∼
n→∞

N
(
0,Γ−1

θ0
+ Γ−1

θ0
C4,θ0Γ

−1
θ0

)
.

Remark. The computation of the integral of the fourth-order cumulant spectra in C4,θ0 is
not straightforward. We refer to the work of Shao [29] for an elegant way to compute an
estimate of this integral.

5 Simulation study

We illustrate the estimation procedure and asymptotic properties of the spectral approach
for Hawkes count series. To highlight the different theorems of the previous sections, we
consider two kernels h∗ for the reproduction function: the exponential kernel for which
all moments exist and the Pareto kernel whose higher moments are not finite.

All simulations and analysis have been done using R [30] and the package hawkesbow,
freely available online1. The code and estimate datasets are also openly accessible2.

5.1 Procedure

Exponential kernel. We first consider a stationary Hawkes process with exponentially
decaying reproduction function:

λ(t) = η + µ

∫
βe−β(t−u)dN(u),

i.e. with reproduction kernel h∗(t) = βe−βt for t ≥ 0. Note that the process verifies the
conditions of both Theorems 2 and 3.

Using the cluster representation of the Hawkes process, we simulated 1,000 realisations
of the Hawkes process on the interval [0, T ] with parameter values η = 1, µ = 0.5 and
β = 1. For each of the simulations, we created four time series by counting the events in
bins of size ∆ = 0.25, 0.5, 1 or 2 respectively. We then estimated the parameters η, µ and
β as in Section 4.2 for each of the four time series. We compared these estimates to the
usual maximum likelihood estimates (Figure 2). Since the latter use the full information

1https://github.com/fcheysson/hawkesbow
2https://github.com/fcheysson/code-spectral-hawkes
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on the location of events, they are arguably better that any estimate based on the count
series, and provide a best case scenario for the Whittle estimates when the binsize tends
to 0. With an exponential kernel, a set of 1,000 simulations and their Whittle estimation
with T = 1000 and binsize ∆ = 1 takes approximately 4 minutes on a laptop computer
with an i5 Intel CPU.
Pareto kernel. We now consider a stationary Hawkes process with a Pareto reproduction
kernel: h∗γ(t) = γaγt−γ−1 for t ≥ a. We recall that the moments of a Pareto distribution are
all finite up to, but not including, the order γ. We illustrate the theorems of the previous
sections by considering three cases for the shape, with each increasingly satisfying the
necessary assumptions: (i) γ = 1, the mean is infinite and the process does not satisfy
the condition of Theorem 1; (ii) γ = 2, the process is strongly-mixing, but the variance
is infinite and the process does not satisfy the assumptions of Theorem 2; (iii) γ = 3,
the process is strongly-mixing and satisfies the assumptions of Theorems 2 and 3, but the
moments of order 3 and higher do not exist.

Similarly to the exponential kernel, we simulated 1,000 simulations of the Hawkes
process for each γ ∈ {1, 2, 3}, with parameter values η = 1, µ = 0.5, and a3 = 2/3 for
γ = 3, a2 = 1/2 for γ = 2, such that the Pareto kernels h∗3 and h∗2 and the exponential
kernel have the same first-order moment. For the Pareto kernel h∗1, we chose a1 = 1/3
arbitrarily. We could not compare the Whittle estimates to those of maximum likelihood,
since the latter were computationally too expensive as the likelihood criterion contained
a large number of discontinuity points with respect to the kernel position parameter
a: p(p − 1)/2 discontinuity points, with p the number of events of the process, though
O(p) discontinuity points for acceptable ranges of a. Estimation figures can be found in
Appendix B. With a Pareto kernel, a set of 1,000 simulations and their Whittle estimation
with T = 1000 and binsize ∆ = 1 takes approximately 14 minutes on a laptop computer
with an i5 Intel CPU.

5.2 Interpretation

Exponential kernel. For T = 100 and small binsizes, the Whittle estimates fare almost
as well as the maximum likelihood estimates. The estimation deteriorates massively for
higher binsizes, notably for the exponential kernel rate β. This is intuitive, since large
binsizes with respect to the kernel scale make it difficult to detect interactions between
points. This can be related to the probability that a point in a bin has an offspring
in the same bin: assuming the stationarity of the process, this probability is equal to
∆−1

∫ ∆

0

∫ ∆

u
βe−β(t−u)dtdu = 1−(β∆)−1(1−e−β∆). For example, with β = 1 and ∆ = 2, we

get a probability of 0.57, i.e. 57% of the information about the interaction of the Hawkes
process is located within bins, with only 43% remaining between bins. Thankfully, by
increasing T , the asymptotic properties ensure that the Whittle estimates improve, even
for large binsizes.

To further illustrate the asymptotic properties of the estimation, notably its rate of
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η = 1, µ = 0.5, h∗(t) = 1e−1t on (0,T) | true values in red

Figure 2: Estimates of parameters η, µ and β for 1,000 simulations of the stationary
Hawkes process with kernel h∗(t) = βe−βt on the interval [0, T ]. True values (in red) are:
η = 1, µ = 0.5, β = 1. The left column refers to the maximum likelihood estimates. The
other colums refer to the Whittle estimates according to different binsizes.

convergence, we compute the mean square error, defined by MSE = S−1
∑

(θ̂n − θ0)2, for
the estimates of each set of S = 1, 000 simulations at given T s and binsizes (Figure 3).
For large T s, the slope of the mean square error with respect to T reaches −1 (in log-log
scale) for all parameters and almost all binsizes, illustrating theO(n−1) rate of convergence
stated in Theorem 3. For small T s and both the Whittle and the maximum likelihood
estimation methods, the estimates of the immigration intensity η and reproduction mean µ
have already reached the optimal rate of convergence, while the MSE for the exponential
kernel rate β is up to one and a half orders of magnitude higher than what would be
expected by extrapolating the MSE for large T s. Finally note that, for reasonable binsizes
(∆ ≤ 1), the Whittle estimates of the reproduction mean µ have a MSE comparable to
those of the maximum likelihood.
Pareto kernel. Performances for the point estimates are remarkably similar amongst all
values of γ. Both the immigration intensity η and the reproduction mean µ exhibit the
optimal rate of convergence O(n−1) throughout all T s considered for almost all binsizes.
On the other hand, the estimates for the Pareto kernel position a show a curious behaviour.
While for binsizes 0.5, 1 and 2, the mean square error with respect to T asymptotically
reaches the ideal slope of −1 (though with an order of magnitude between binsize 0.5 and
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Figure 3: Mean square error of the estimates of parameters η, µ and β for 1,000 simulations
of the stationary Hawkes process with kernel h∗(t) = βe−βt on the interval [0, T ], in log-log
scale. The dashed grey line represents the ideal slope of −1, i.e. a rate of convergence of
O(n−1).

binsize 1, and another between binsize 1 and binsize 2), it does not seem to have reached
a similar asymptotic regime for binsize 0.25, which exhibits MSE almost comparable to
binsize 2. We are not able to explain this behaviour.

Interestingly, that the point estimates exhibit good asymptotic behaviours for all val-
ues of γ, binsize 0.25 excepted, even though the Pareto kernels h∗2 and h∗1 do not satisfy
the assumptions of Theorems 2 and 3 would suggest that the upper bound found on
the strong-mixing coefficient is not optimal. This can be expected since Theorem 1 only
proves a strong-mixing condition for kernel with finite moments 1 + β, β > 0, while it
has been shown that all stationary Hawkes processes are strongly-mixing, irrespective of
their reproduction kernels [3, 22]. Nevertheless, the assumption on the moments of the
kernels are mild enough that the spectral approach developed in this article can be useful
for applications in many disciplines.

6 Conclusion

In this article, we propose a Whittle estimation procedure for the Hawkes process from
their count series. This approach has appealing features: (i) it has good asymptotic
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properties, similar to maximum likelihood estimation; (ii) it is easy to implement and

flexible, since the only user-specified input is the Fourier transform h̃ of the reproduction
kernel h∗; (iii) it is computationally efficient, with a complexity of O(n log n), n the
number of bins, from calculating the periodogram with a fast Fourier transform, compared
to O(p2), p the number of events, for the maximum likelihood method (except when the
kernel is exponential, in which case the complexity is reduced to O(p) with minimal efforts
[11], making it more efficient than our approach); (iv) it is particularly well-adapted to
applications where the binsize cannot be chosen arbitrarily, i.e. the events are only
counted in bins of fixed size.

A direct extension of the results proved hereby concerns non causal Hawkes processes,
for which the reproduction kernel h∗ may take non-negative values on R−. Indeed, all
but Lemmas 7 and 8 from Appendix A are directly applicable to non causal Hawkes. For
Lemma 8, split the integral into two: one from −∞ to t + r/2, the other from t + r/2
to ∞. The first integral is treated as written. For the second integral, Lemma 7 can be
extended using a symmetry argument regarding the location of the immigrant and the
interval considered. Then the spectral estimation procedure proposed here is applicable
to non causal Hawkes processes, with a central limit theorem for its estimator.

We expect that the results of our paper also hold in a multivariate setup, with minimal
modifications. Strong-mixing properties were derived using some properties of the Galton-
Watson tree that extend to the multitype process. Moreover, the spectral analysis of the
Hawkes count series can be straightforwardly extended to the multivariate case, using
the results of Daley and Vere-Jones on the multivariate Bartlett spectrum of mutually
exciting point processes [25, Example 8.3(c)]. Nevertheless, we decided to concentrate on
the univariate case for brevity and added clarity.
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A Proof of Theorem 1

By definition, for a given Hawkes process N , we have

αN(r) := sup
t∈R

α
(
E t−∞, E∞t+r

)
= sup

t∈R
sup
A∈Et−∞
B∈E∞t+r

∣∣Cov
(
1A(N),1B(N)

)∣∣,
where 1A(N) is the indicator function of the cylinder set A, i.e. for an elementary cylinder
set AB,m = {N ∈ N : N(B) = m}, 1AB,m

(N) = 1 if N(B) = m and 0 otherwise.
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We recall that a point process N is said to be positively associated if, for all families of
pairwise disjoint Borel sets (Ai)1≤i≤k and (Bj)1≤j≤l, and for all coordinate-wise increasing
functions F : Nk → R and G : Nl → R, it satisfies

Cov
(
F
(
N(A1), . . . , N(Ak)

)
, G
(
N(B1), . . . , N(Bl)

))
≥ 0.

We start by stating a useful property (see [31, Section 2.1, key property (e)]), which
follows from Hawkes processes being infinitely divisible processes:

Proposition 2. The stationary Hawkes process is positively associated.

Using this proposition and Poinas et al.’s work on associated point processes [23], the
following lemma controls the covariance of the indicator functions by the covariance of
the count measure of the process, then rescale the problem to a single branching process,
thanks to the independence between clusters of a Hawkes process.

Lemma 1. Let s, t, u ∈ R and r > 0 such that s < t < t+r < u, and let A ∈ E ts,B ∈ Eut+r.
Then, ∣∣Cov

(
1A(N),1B(N)

)∣∣ ≤ ∫ ∣∣∣Cov
(
N
(
(s, t]

∣∣y), N((t+ r, u]
∣∣y))∣∣∣Mc(dy)

where Mc(·) refers to the first-order moment of the centre process Nc.

Proof. Using Proposition 2 and [23, Theorem 2.5], we have∣∣Cov
(
1A(N),1B(N)

)∣∣ ≤ ∣∣∣Cov
(
N
(
(s, t]

)
, N
(
(t+ r, u]

))∣∣∣.
Then, conditioning by the cluster centre process Nc (see for example [25, Exercise 6.3.4]):

Cov
(
N
(
(s, t]

)
, N
(
(t+ r, u]

))
=

∫
Cov

(
N
(
(s, t]

∣∣y), N((t+ r, u]
∣∣y))Mc(dy)

+

∫
E
[
N
(
(s, t]

∣∣x)]E[N((t+ r, u]
∣∣y)]Cc(dx× dy),

where Mc(·) and Cc(·) refer to the first-order moment measure and the covariance measure
of the centre process Nc respectively. Since the centre process is Poisson, Cc ≡ 0 and the
second term is zero.

We are now interested in deriving an upper bound for the covariance of counts of a
single branching process. Without loss of generality, we consider a cluster whose immi-
grant is located at time 0. Let Zk denote the number of points of generation k, and by
Z

(s,t]
k those that are located in the interval (s, t]. By definition, we have

N
(
(s, t]

∣∣0) =
+∞∑
k=0

Z
(s,t]
k .
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Then, the covariance between two intervals for a branching process is

Cov
(
N
(
(s, t]

∣∣0), N((t+ r, u]
∣∣0)) =

+∞∑
k=0

+∞∑
l=0

Cov
(
Z

(s,t]
k , Z

(t+r,u]
l

)
.

Before continuing further, we will need a few results on the Galton-Watson process
(Zk)k∈N:

Lemma 2. The expectation, variance and second-order moment of Zk are

E[Zk] = µk,

Var(Zk) = µk
k−1∑
j=0

µj = µk
1− µk

1− µ
,

E[Z2
k ] = µk

k∑
j=0

µj = µk
1− µk+1

1− µ
.

Proof. Call φk the probability-generating function of Zk:

∀s ∈ [0, 1], φk(s) = E[sZk ].

It is well-known, for a Galton-Watson process, that (φk)k∈N verifies

∀k ∈ N, φk+1 = φk ◦ φ1

where in our case φ1 is the probability-generating function of a Poisson process with
parameter µ. Differentiating the recurrence relation up to order 2 then evaluating it in
s = 1 gives the following relations:

φ′k+1(1) = φ′1(1)φ′k(1),

φ′′k+1(1) = φ′′1(1)φ′k(1) + (φ′1(1))2φ′′k(1),

where φ′k(1) and φ′′k(1) are related to the moments of the process by

E[Zk] = φ′k(1), Var(Zk) = φ′′k(1) + φ′k(1)− (φ′k(1))2.

Finally plugging in the initial conditions for the Poisson variable Z1, φ′1(1) = µ and
φ′′1(1) = µ2, yields the expected result.

Lemma 3. The covariance and second-order product moment of (Zk) are

Cov(Zk, Zl) = µk∨l
k∧l−1∑
j=0

µj = µk∨l
1− µk∧l

1− µ
,

E[ZkZl] = µk∨l
k∧l∑
j=0

µj = µk∨l
1− µk∧l+1

1− µ
,

where k ∨ l = max (k, l) and k ∧ l = min (k, l).
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Proof. This is a straightforward recurrence, noting that

Cov(Zk, Zk+h) = Cov

(
Zk,

+∞∑
i=1

1{Zk+h−1≥i}Z1,i

)

= E [Z1,1] Cov

(
Zk,

+∞∑
i=1

1{Zk+h−1≥i}

)
= µCov(Zk, Zk+h−1).

wherein Z1,i denotes the number of offsprings of the point i of generation k + h − 1, is
independent of Z1,j (i 6= j), of Zk+h−1 and of Zk, and has the same distribution as Z1.

Let T ki denote the time of arrival of the i-th point of generation k. It has a parent
T k−1
j (when k > 0). Let ∆k

i be the associated inter-arrival time, i.e. ∆k
i = T ki − T k−1

j .

Then, for each point i of generation k, there exists a sequence (α
(j)
i,k )1≤j≤k, with α

(k)
i,k = i,

denoting the indices of the ancestors of T ki , such that

T ki =
k∑
j=1

∆j

α
(j)
i,k

.

For the stationary Hawkes process, the ∆k
i are independent of all other ∆l

j, and iden-
tically distributed according to the measure h∗. As a consequence, we get the following
lemma:

Lemma 4. For k ∈ N and 1 ≤ i, j ≤ Zk,

(i) T ki and T kj are identically distributed, with distribution measure equal to the k-
multiple convolution of h∗ with itself,

(ii) For m > 1, there is a upper bound on the m-th moment of T k1 :

E
[
(T k1 )m

]
≤ km E

[
(∆1

1)m
]

= km νm

where νm :=
∫
R t

mh∗(t)dt.

Proof. This uses the upper bound on the m-th moment of a sum of random variables from
[32]:

E
[
(T k1 )m

]
≤ km−1

k∑
j=1

E
[(

∆j

α
(j)
i,k

)m]
.
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Additionally, since for any point of the branching process offsprings are generated by a
Poisson process, the arrival times, say ∆k

i , are independent from the number of offsprings
generated at the current or past generations. Conversely, since the reproduction mean
µ does not depend on the time, the number of offsprings generated at any generation,
say Zl, are independent from the past arrival times. Consequently, we have the following
lemma:

Lemma 5. For k, l ∈ N and 1 ≤ i ≤ Zk, T ki and Zl are independent.

Remark. This lemma separates the genealogy of the Galton-Watson process (Zk) from
the arrival times (T ki ) of the branching process, analogously to how the Poisson process
is a binomial process with Poisson-distributed number of points. Then, a cluster in a
stationary Hawkes process is equivalent to a Galton-Watson process (Zk), upon which

the ancestors (α
(k−1)
i,k ) are drawn equiprobably from the Zk−1 possible ancestors and the

(∆k
i ) independently from h∗. Intuitively, since each point j of generation k − 1 generates

offsprings according to the same intensity measure, then each point of generation k has
ancestor j with equiprobability. This is analogous to the backwards simulation of a
Wright-Fisher process without the constant population size restriction.

We state a useful lemma for the covariance of the product of independent random
variables.

Lemma 6. Let (Xk
i )i,k∈N and (Y l

j )j,l∈N be two collections of random variables such that,
for all i, j, k, l ∈ N, the variables Xk

i and Y l
j are independent. Then

Cov(Xk
i Y

k
i , X

l
jY

l
j ) = E[Xk

i X
l
j] Cov(Y k

i , Y
l
j ) + E[Y k

i ]E[Y l
j ] Cov(Xk

i , X
l
j).

Proof. Writing the expression of the covariance then adding and substracting the term
E[Xk

i X
l
j]E[Y k

i ]E[Y l
j ] yields the relation.

We can now derive an upper bound for Cov
(
Z

(s,t]
k , Z

(t+r,u]
l

)
:

Lemma 7. Suppose that there exists m > 1 such that νm <∞, and l ≥ 0. Then∣∣∣Cov
(
Z

(s,t]
k , Z

(t+r,u]
l

)∣∣∣ ≤ 2
lm νm

(t+ r)m
µk∨l

1− µk∧l+1

1− µ
.

Proof. We have

Cov
(
Z

(s,t]
k , Z

(t+r,u]
l

)
= Cov

(
Zk∑
i=1

1{Tk
i ∈(s,t]},

Zl∑
j=1

1{T l
j∈(t+r,u]}

)

=
+∞∑
i=1

+∞∑
j=1

Cov
(
1{Zk≥i}1{Tk

i ∈(s,t]},1{Zl≥j}1{T l
j∈(t+r,u]}

)
.
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Then, by Lemmas 5 and 6,

Cov
(
1{Zk≥i}1{Tk

i ∈(s,t]},1{Zl≥j}1{T l
j∈(t+r,u]}

)
= E

[
1{Zk≥i}1{Zl≥j}

]
Cov

(
1{Tk

i ∈(s,t]},1{T l
j∈(t+r,u]}

)
+ E

[
1{Tk

i ∈(s,t]}

]
E
[
1{T l

j∈(t+r,u]}

]
Cov

(
1{Zk≥i},1{Zl≥j}

)
.

For the first term,

Cov
(
1{Tk

i ∈(s,t]},1{T l
j∈(t+r,u]}

)
= E

[
1{Tk

i ∈(s,t]}1{T l
j∈(t+r,u]}

]
− E

[
1{Tk

i ∈(s,t]}

]
E
[
1{T l

j∈(t+r,u]}

]
≤ E

[
1{T l

j∈(t+r,u]}

]
≤ P

(
T lj ≥ t+ r

)
≤

E
[
(T l1)m

]
(t+ r)m

≤ lm νm
(t+ r)m

,

using Markov’s inequality for the second to last inequality, and Lemma 4 for the last one.
Similarly,

Cov
(
1{Tk

i ∈(s,t]},1{T l
j∈(t+r,u]}

)
= E

[
1{Tk

i ∈(s,t]}1{T l
j∈(t+r,u]}

]
− E

[
1{Tk

i ∈(s,t]}

]
E
[
1{T l

j∈(t+r,u]}

]
≥ −E

[
1{T l

j∈(t+r,u]}

]
≥ − lm νm

(t+ r)m
,

The second term is straightforward,∣∣∣E [1{Tk
i ∈(s,t]}

]
E
[
1{T l

j∈(t+r,u]}

]∣∣∣ ≤ E
[
1{T l

j∈(t+r,u]}

]
≤ lm νm

(t+ r)m
.
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Then: ∣∣∣∣∣
+∞∑
i=1

+∞∑
j=1

Cov
(
1{Zk≥i}1{Tk

i ∈(s,t]},1{Zl≥j}1{T l
j∈(t+r,u]}

)∣∣∣∣∣
≤ lm νm

(t+ r)m

∣∣∣∣∣
+∞∑
i=1

+∞∑
j=1

E
[
1{Zk≥i}1{Zl≥j}

]
+

+∞∑
i=1

+∞∑
j=1

Cov
(
1{Zk≥i},1{Zl≥j}

)∣∣∣∣∣
=

lm νm
(t+ r)m

∣∣E [ZkZl] + Cov
(
Zk, Zl

)∣∣
≤ 2

lm νm
(t+ r)m

µk∨l
1− µk∧l+1

1− µ
,

using Lemma 3 for the last inequality.

Straightforwardly, since
∑
µk and

∑
lmµl are summable for m ≥ 0, we get the follow-

ing lemma:

Lemma 8. Suppose that there exists m > 1 such that νm <∞. Then,∣∣∣Cov
(
N
(
(s, t]

∣∣0), N((t+ r, u]
∣∣0))∣∣∣ = O

(
1

(t+ r)m

)
.

All that is left to prove Theorem 1 is to integrate the upper bound with respect to the
first-moment measure of the centre process. Using the notations of Lemmas 1 and 8, and
with Mc(·) = η`(·) where `(·) is the Lebesgue measure,∣∣Cov

(
1A(N),1B(N)

)∣∣ ≤ ∫
R

∣∣∣Cov
(
N
(
(s, t]

∣∣y), N((t+ r, u]
∣∣y))∣∣∣Mc(dy)

=

∫ t

−∞

∣∣∣Cov
(
N
(
(s, t]

∣∣y), N((t+ r, u]
∣∣y))∣∣∣Mc(dy)

= O
(∫ t

−∞

1

(t+ r − y)m
dy

)
= O

(
1

rm−1

)
.

This upper bound is valid for any s, u ∈ R, therefore holds for A ∈ E t−∞,B ∈ E∞t+r.

�
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Figure 4: Estimates of parameters η, µ and a for 1,000 simulations of the stationary
Hawkes process with kernel h∗3(t) = 3a3t−4 on the interval [0, T ]. True values (in red) are:
η = 1, µ = 0.5, a = 2/3.
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[9] S. Meyer, J. Elias, and M. Höhle. A Space-Time Conditional Intensity Model for
Invasive Meningococcal Disease Occurrence. Biometrics, 68(2):607–616, 2012.

[10] Y. Ogata. The asymptotic behaviour of maximum likelihood estimators for stationary
point processes. Ann. Inst. Stat. Math., 30(1):243–261, 1978.

[11] T. Ozaki and Y. Ogata. Maximum likelihood estimation of Hawkes’ self-exciting
point processes. Ann. Inst. Stat. Math., 31(1):145–155, dec 1979.

[12] M. Kirchner. Hawkes and INAR(∞) processes. Stoch. Process. their Appl., 126(8):
2494–2525, aug 2016.

[13] M. Kirchner. An estimation procedure for the Hawkes process. Quant. Financ., 17
(4):571–595, apr 2017.

[14] J. F. Olson and K. M. Carley. Exact and approximate EM estimation of mutually
exciting hawkes processes. Stat. Inference Stoch. Process., 16(1):63–80, 2013.

[15] S. Wheatley, V. Filimonov, and D. Sornette. The Hawkes process with renewal
immigration & its estimation with an EM algorithm. Comput. Stat. Data Anal., 94:
120–135, feb 2016.

21



binsize = 0.25 binsize = 0.5 binsize = 1 binsize = 2

T
 =

 100
T

 =
 1000

η µ a η µ a η µ a η µ a

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Parameters

E
st

im
at

es

η = 1, µ = 0.5, h∗(t) = 2(1/2)2t−3 on (0,T) | true values in red

Figure 6: Estimates of parameters η, µ and a for 1,000 simulations of the stationary
Hawkes process with kernel h∗2(t) = 2a2t−3 on the interval [0, T ]. True values (in red) are:
η = 1, µ = 0.5, a = 1/2.

[16] G. Celeux, D. Chauveau, and J. Diebolt. On Stochastic Versions of the EM Algo-
rithm. Technical report, INRIA, 1995.

[17] B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation
version of the EM algorithm. Ann. Stat., 27(1):94–128, 1999.

[18] P. Whittle. Some results in time series analysis. Scand. Actuar. J., 1952(1-2):48–60,
1952.

[19] M. Rosenblatt. A Central Limit Theorem and a Strong Mixing Condition. Proc.
Natl. Acad. Sci., 42(1):43–47, jan 1956.

[20] P. Doukhan. Mixing: Properties and Examples. Springer-Verlag, New York, 1994.

[21] E. Rio. Asymptotic Theory of Weakly Dependent Random Processes, volume 80 of
Probability Theory and Stochastic Modelling. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2017.

[22] M. Westcott. On Existence and Mixing Results for Cluster Point Processes. J. R.
Stat. Soc. Ser. B, 33(2):290–300, 1971.

[23] A. Poinas, B. Delyon, and F. Lavancier. Mixing properties and central limit theorem
for associated point processes. Bernoulli, 25(3):1724–1754, aug 2019.

[24] K. Dzhaparidze. Parameter Estimation and Hypothesis Testing in Spectral Analysis
of Stationary Time Series. Springer Series in Statistics. Springer New York, New

22



 Slope = −1

η

µ

a

η

µ

a
η

µ

a

η

µ

a

10−3

10−2

10−1

100

100 300 1000
T

M
ea

n 
S

qu
ar

e 
E

rr
or

Parameter
η
µ
a

Binsize
2
1
0.5
0.25

Figure 7: Mean square error of the estimates of parameters η, µ and a for 1,000 simulations
of the stationary Hawkes process with kernel h∗2(t) = 2a2t−3 on the interval [0, T ], in log-
log scale. The dashed grey line represents the ideal slope of −1, i.e. a rate of convergence
of O(n−1).

York, NY, 1986.

[25] D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes, Vol-
ume I: Elementary Theory and Methods. Probability and its Applications. Springer,
New York, 2003.

[26] Y. Hosoya. Estimation problems on stationary time series models. Ph.d. dissertation,
Yale University, 1974.

[27] K. O. Dzhaparidze. A New Method for Estimating Spectral Parameters of a Station-
ary Regular Time Series. Theory Probab. Its Appl., 19(1):122–132, dec 1974.

[28] F. Roueff, R. von Sachs, and L. Sansonnet. Locally stationary Hawkes processes.
Stoch. Process. their Appl., 126(6):1710–1743, jun 2016.

[29] X. Shao. A self-normalized approach to confidence interval construction in time
series. J. R. Stat. Soc. Ser. B Stat. Methodol., 72(3):343–366, jun 2010.

[30] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2019.

[31] X. Gao and L. Zhu. Functional central limit theorems for stationary Hawkes processes
and application to infinite-server queues. Queueing Syst., 90(1-2):161–206, 2018.

[32] B. von Bahr and C.-G. Esseen. Inequalities for the r-th Absolute Moment of a Sum

23



binsize = 0.25 binsize = 0.5 binsize = 1 binsize = 2

T
 =

 100
T

 =
 1000

η µ a η µ a η µ a η µ a

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Parameters

E
st

im
at

es

η = 1, µ = 0.5, h∗(t) = 1(1/3)1t−2 on (0,T) | true values in red

Figure 8: Estimates of parameters η, µ and a for 1,000 simulations of the stationary
Hawkes process with kernel h∗1(t) = a1t−2 on the interval [0, T ]. True values (in red) are:
η = 1, µ = 0.5, a = 1/3.
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Figure 9: Mean square error of the estimates of parameters η, µ and a for 1,000 simulations
of the stationary Hawkes process with kernel h∗1(t) = a1t−2 on the interval [0, T ], in log-log
scale. The dashed grey line represents the ideal slope of −1, i.e. a rate of convergence of
O(n−1).
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