

Experimental and modeling development at JET for DT preparation and ITER risk mitigation

J. Garcia¹ and JET contributors*

1 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Contributors

D. Douai, J. Hillesheim, A. Huber, C.F. Maggi, J. Mailloux, E de la Luna, H. Weisen, M. Sertoli, S. Mazzi, L. Frassinetti, D. King, E. Viezzer, C. Challis, J. Hobirk, A. Kappatou, E. Lerche, Y. Kazakov, V. Kiptily, M. Nocente, J. Ongena, F. Rimini, L. Garzotti, D. van Eester, D. Frigione, P. Carvalho, Z. Stancar, G. Szepesi, H-T. Kim, D. Gallart, D. Zarzoso, F. Casson, A. Ho, J. Citrin

JET: M Keilhacker et al, Nucl Fus 39(2)(1999), 209 J Jacquinot et al, Nucl Fus 39(2)(1999), 235 TFTR: K McGuire et al, Fusion Energy 1996 (Vol 1), 19 (IAEA-CN-64/01-2)

Why a new DT campaign at JET?: Mars as an example

- At least 8 more planned by 2025
- New missions allow for: solving previous mistakes, test new and improved technologies, increasing the scope of the research, answer pending questions, adapt research to new requirements...

DTE1: first DT operation at JET, *unsolved issues*

- Record DTE1 plasmas were obtained in plasma conditions less relevant to ITER: transient regime, very low density, Ti>>Te, ELM free
- H-mode type I ELM plasmas obtained at low power (no high beta plasmas)
- Plasmas obtained in C-wall (high T retention)
- Alpha particle effects weak and difficult to understand
- Alpha heating experiments interpretation difficult
- Isotope effects in contradiction to TFTR
- Diagnostics not as advanced as nowadays

JET is designed for fusion power studies in support of ITER

<u>1975 JET design proposal:</u> "...describes a large Tokamak experiment, which aims to study plasma behaviour in conditions and dimensions approaching those required in a fusion reactor".

Improved capabilities compared to DTE1:

- ITER relevant wall&divertor
- Diagnostic capabilities
- More heating power
- Disruption prediction and mitigation/control
- RT control schemes
- Sophisticated Modelling Better plasma understanding

Objectives and outline

EUROfusion research roadmap: Secure the success of future ITER operation via specific preparation and experiments, including D-T operation of JET.

- 1. Develop D-T scenarios in ITER relevant conditions
- 2. Understand alpha particle physics
- 3. Understand isotope physics
- 4. Prepare the operation in D-T
- 5. Provide new technology for safe DT operation
- 6. Understand how to extrapolate from DD to DT and to ITER

Objectives and outline

EUROfusion research roadmap: Secure the success of future ITER operation via specific preparation and experiments, including D-T operation of JET.

- 1. Develop D-T scenarios in ITER relevant conditions
- 2. Understand alpha particle physics
- **3.** Understand isotope physics
- 4. Prepare the operation in D-T
- 5. Provide new technology for safe DT operation
 - Understand how to extrapolate from DD to DT and to ITER

- Develop D-T scenarios in ITER relevant conditions
- Understand alpha particle physics
- Understand isotope physics
- Understand how to extrapolate from DD to DT and to ITER
- Conclusions

Stationary Scenarios for the DT phase achieved: baseline route

30 (MM) NBI 20 Prad, bulk 10 0 (10²² e/s) 4 Gas rate 2 8 (10¹⁹ m⁻³) 6 4 Line averaged density 2 10 (rw) 6 Stored energy 2 6 (10¹⁶ 1/s) 2 Neutron rate 0 12 D_α (horizontal) (10¹⁴) 8 المراب بالبار بالعام 0 48 50 52 54 56 Time (s)

Baseline: 3 MA/2.8 T (q₉₅=3.1) 96994

- $H_{98}(y,2) = 1$, $\beta_N = 2.2$, $\beta_p = 0.9$, $f_{GLD} \sim 0.7$
- Significant improvement wrt baseline Type-I ELMs plasmas
 - Reduced gas puff + Pellets (+Ne) open up a route at high confinement by simultaneously avoiding type-I ELMs
- Mostly compounded ELMs with long phases with high frequency small ELMs
- Core radiated power stable
- Neon (0.5x10²²e/s, ~half of D2 throughput):
 Divertor in 'attached' conditions
- Low or even absent core particle fueling
- Good scenario for alpha particle studies: impact on heating or sawteeth

J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page 10

Impurity accumulation avoided

- High density peaking increases W neoclassical inward pinch [F J Casson PPCF 2014]
- Baseline has high density peaking but...

JET

- ...radiated power located in the low field side
- Ne shifts radiation blob to the divertor region
- W density profile is hollow: W is blocked in the outer plasma

Mechanisms for improved confinement

Baseline 96994 @ ρ=0.8

- Gyrokinetic simulations performed with the GENE code
- Three edge physical mechanisms lead to good confinement
- Ion heat transport reduction by:
 - Edge impurity concentration dilution (including Ne)
 - $T_i/T_e \sim 1.5$ including the pedestal top
 - Strong edge ExB shearing (as for Hybrid plasmas J. Garcia PPCF 2019)

J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page 12

Stationary Scenarios for the DT phase achieved: hybrid route

Hybrid: 2.3 MA/3.4 T (q₉₅=4.9) 97781

- H₉₈(y,2)~1.1, β_N~2.3, β_p~1.1, f_{GLD}~0.65
- Mix of initial ELM free phase and type I ELMs
- Core radiated power stable and no inner core impurity accumulation
- Unlike baseline scenario, β_p~ 1.1 1.4 is necessary for good confinement
- Good scenario for alpha particle studies: impact on turbulence, MHD and fishbones

- Develop D-T scenarios in ITER relevant conditions
- Understand alpha particle physics
- Understand isotope physics
- Understand how to extrapolate from DD to DT and to ITER
- Conclusions

"After-glow" ITB scenario shows promising route for alpha-driven mode studies

- Afterglow scenario with ITB for TAE studies
- Pellets trigger high frequency ELMs → impurity accumulation avoidance
- Expected performance in DT: $\beta_{\alpha}(0)$ ~0.33%, ~9MW of fusion power

Alpha effects on turbulence and transport

- ICRH 3 ions scheme in D-³He provide MeV ions and mostly electron heating
- Strong AE activity obtained

JET

- Plasmas with ICRH electron heating have higher Ti than NBI plasmas at the same total power and density
- Improved confinement with electron heating and AE activity

Alpha effects on turbulence and transport

- GENE simulations: MeV ions completely supress ion electrostatic transport
- Only in the presence of marginally or even fully developed AE
- Fast ions energy is channelled through zonal activity to thermal ions
- Similar effect expected with α 's in DT
- In view of ITER: essential to decouple from alpha heating and pure isotope effects

- Develop D-T scenarios in ITER relevant conditions
- Understand alpha particle physics
- Understand isotope physics
- Understand how to extrapolate from DD to DT and to ITER
- Conclusions

- High core β (high NBI power) L-mode discharges at TFTR
- Supershot at fixed power, $\tau_E^{thermal} \sim \langle A \rangle^{0.82}$, at lower power $\tau_E^{thermal} \sim \langle A \rangle^{0.5}$
- Low core β (low NBI power) ELMy H-mode discharges at JET
- Core scaling in ELMy H-mode: $\tau_{E,core}^{thermal} \sim \langle A \rangle^{-0.16}$ [J. G. Cordey et al., NF 1999]

What can be expected in ITER DT plasmas?

Type I ELMy H-mode: strong positive isotope dependence on thermal confinement

H-mode confinement scaling with mass

- Stronger isotope dependence than in JET-C and IPB98(y,2) (~A^{0.2})
- Global momentum ~ A^{0.5±0.15}
- Global particle ~ A^{0.5±0.06}

All scalings robust against the set of variables chosen for the regression.

Density systematically lower in H at same external fuelling

C. Maggi, PPCF 2018 H. Weisen JPP 2020

JET

J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page 20

Continuous confinement transition between H and D

D King, E Viezzer et al., NF 2020

- Continuous confinement transition between H and D
- However, results highly dependent on the pedestal at:
 - Constant fuelling
 - Constant ELM frequency with Kicks
 - Closeness to L-H transition at constant power
 - Core isotope effect less clear Results essential to understand DT mixtures

Gyrokinetic isotope effects in core transport

J. Garcia NF 2019 P. Mantica 2019

- Gyrokinetic simulations performed with the GENE code for L-mode plasmas:
 - Local deviations from GB heat flux are caused by different parameters
 - Kinetic electrons, collisions and ExB shearing
 - Deviations are weak
- Different fast ion content can also lead to an "apparent" isotope effect (Bonanomi NF 2019)
- Plasmas at higher torque and power expected to have stronger core isotope effects

J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page ${\bf 22}$

- DT plasmas can lead to strong core transport isotope effects with simultaneous
 - Significant presence of alpha particles
 - High core $\boldsymbol{\beta}$ and pressure gradients
 - Strong rotation

High input NBI power plasmas at high β will be key in JET DT J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page 23

- Develop D-T scenarios in ITER relevant conditions
- Understand alpha particle physics
- Understand isotope physics
- Understand how to extrapolate from DD to DT and to ITER
- Conclusions

"Predict first" essential activity performed before DT

- Strong JET "Predict first" activity has been helpful for:
 - Identify physics that boost alpha power generation
 - Identify fundamental differences between DD and DT plasmas
 - Guide DD experiments
 - Disentangle non-linear and coupled effects
- Extrapolations performed to DT started in 2014 with validated models with D and H plasmas
- Broad variety of models and integrated modelling suites used ("Never rely on only one model for extrapolation")
- Error bars account for: simulations sensitivity and isotope effects
- P_{fus} ~ 10-16MW for hybrid and baseline: significant core isotope effects for hybrid route
- Comparison to 2020 DT equivalent fusion power is encouraging

- Develop D-T scenarios in ITER relevant conditions
- Understand alpha particle physics
- Understand isotope physics
- Understand how to extrapolate from DD to DT and to ITER
- Conclusions

Highlights of the preparation for D-T

- Existing D-T scenarios have reached 9-10MW/5s equivalent fusion power and can attain 10 to 16MW of fusion power with 40MW of input power in the JET ITER-like wall
- □ After-glow ITB scenario is a credible route for alpha particle driven instabilities study and code validation for ITER
- **Extended parameter space found in DD for AE excitation**
- □ Confinement and particle transport show strong positive isotope dependences and is also investigated for ITER conditions
- □ First principle modelling show that strong isotope effects can be found at high power
- □ Alpha particles expected to play a strong role on transport
- Before DT, TT-campaign expected to further contribute to DT plasmas preparation

