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DTE1: first DT operation at JET
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Why a new DT campaign at JET?: Mars as an \)\\))
example =

e 18 missions to Mars with the aim of landing: 10 successful
* At least 8 more planned by 2025

* New missions allow for: solving previous mistakes, test new and improved
technologies, increasing the scope of the research, answer pending questions,
adapt research to new requirements...
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DTE1: first DT operation at JET, unsolved (‘,‘Tés\)\}
issues =/

 Record DTE1 plasmas were obtained in plasma conditions less
relevant to ITER: transient regime, very low density, Ti>>Te,
ELM free

 H-mode type | ELM plasmas obtained at low power (no high
beta plasmas)

« Plasmas obtained in C-wall (high T retention)

* Alpha particle effects weak and difficult to understand
« Alpha heating experiments interpretation difficult

» |sotope effects in contradiction to TFTR

» Diagnostics not as advanced as nowadays
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JET is designed for fusion power studies /7=
in support of ITER \=

1975 JET design proposal: “...describes a large Tokamak experiment, which aims to study

plasma behaviour in conditions and dimensions approaching those required in a fusion
reactor”.

Improved capabilities
compared to DTE1:

™ « |TER relevant wall&divertor
* Diagnostic capabilities

* More heating power

= » Disruption prediction and

4  mitigation/control

> * RT control schemes

; Sophisticated Modelling

= =-z7¢* Better plasma

Bulk Be PFCs M Be-coated inconel PFCs understanding
B Bulk W B W-coated CFC PFCs

CPS15.139-1¢
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Objectives and outline (@)
\ =7

e

EUROfusion research roadmap: Secure the success of future ITER operation
via specific preparation and experiments, including D-T operation of JET.

A Fusion ‘

ower o .
15 ?MW) 1. Develop D-T scenarios in
Hybrid 9(7781 ) Pruseq ITER relevant conditions
JET-ILW (2020 .
2. Understand alpha particle
10{ DTE1 .
JET-C physics
(1997) Baseline 96994: Py 3. Understand isotope physics
5 JET-ILW (2020) 4. Prepare the operation in D-T

5. Provide new technology for
safe DT operation

0 > 6. Understand how to
0 1 2 3 4 5 6 7 8
Time (s) extrapolate from DD to DT
and to ITER
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EUROfusion research roadmap: Secure the success of future ITER operation

via specific preparation and experiments, including D-T operation of JET.

\ 4
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Hybrid 97781 : P,y cq ITER relevant conditions
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12020) 2. |Understand alpha particle
10| DTE1 :
JET-C physics
(1997) Baseline 96994: Pyq cq 3. |Understand isotope physics
5 JET-LW (2020) 4. Prepare the operation in D-T
5. Provide new technology for
safe DT operation
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Outline O

* Develop D-T scenarios in ITER relevant conditions
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Stationary Scenarios for the DT phase achieved: baseline Zs
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Hes(v,2) = 1, By = 2.2, B, = 0.9, fg ,~ 0.7

Significant improvement wrt baseline Type-I
ELMs plasmas

» Reduced gas puff + Pellets (+Ne) open
up a route at high confinement by
simultaneously avoiding type-l ELMs

Mostly compounded ELMs with long phases
with high frequency small ELMs

Core radiated power stable

Neon (0.5x10%%e/s, ~half of D2 throughput):
- Divertor in ‘attached’ conditions

Low or even absent core particle fueling

Good scenario for alpha particle studies:
impact on heating or sawteeth
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Impurity accumulation avoided {( )
N=2
High density peaking High density peaking 96731 High density peaking 96994

92395 with pellets without Ne with pellets with Ne
: ' [MW/m3L
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« High density peaking increases W neoclassical inward pinch [F J Casson PPCF 2014]
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« Baseline has high density peaking but...
« ...radiated power located in the low field side
* Ne shifts radiation blob to the divertor region

« W density profile is hollow: W is blocked in the outer plasma
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Mechanisms for improved confinement
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Gyrokinetic simulations performed with the GENE code
Three edge physical mechanisms lead to good confinement
lon heat transport reduction by:

« Strong edge ExB shearing (as for Hybrid plasmas J. Garcia PPCF 2019 )
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Stationary Scenarios for the DT phase achieved: hybrid /7
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Outline

 Understand alpha particle physics

JET
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‘“After-glow” ITB scenario shows promisin =s.
(R
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+ Expected performance in DT: 3,(0)~0.33%,
~9MW of fusion power
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Alpha effects on turbulence and transport @)
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« |ICRH 3 ions scheme in D-*He provide MeV ions and mostly electron heating
« Strong AE activity obtained

* Plasmas with ICRH electron heating have higher Ti than NBI plasmas at the same
total power and density

* Improved confinement with electron heating and AE activity
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« GENE simulations: MeV ions completely
supress ion electrostatic transport

* Only in the presence of marginally or even
fully developed AE

« Fastions energy is channelled through
zonal activity to thermal ions

« Similar effect expected with a’s in DT

* Inview of ITER: essential to decouple from
alpha heating and pure isotope effects
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Outline

 Understand isotope physics

JET
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* High core B (high NBI power) L-mode discharges at TFTR

JET

Core scaling in ELMy H-mode: T

Supershot at fixed power, £¢rmal

~(A)%82 at lower power tEeT™Mmal L (4)0-5

Low core B (low NBI power) ELMy H-mode discharges at JET

E’ffo’”}?“k(A)‘o'“ [J. G. Cordey et al., NF 1999]

What can be expected in ITER DT plasmas?
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Type | ELMy H-mode: strong positive isotope /7=
dependence on thermal confinement =

H-mode confinement scaling with mass
H: 1.0MA/1.0T and 1.4MA/1.7T
D: 1.0MA/1.0T, 1.4MA/1.7T, 1.7MA/1.7T
1.0 ———————

,’: - 0 Stronger isotope dependence than in JET-C
| and IPB98(y,2) (~A%2)

17 O Global momentum ~ A%5%0.15
Q Global particle ~ A0-5£0.06

All scalings robust against the set of variables
chosen for the regression.

Log T, . [regression]

I Density systematically lower in H at same
| external fuelling

2.0
Log T, . [measurement] H. Weisen JPP 2020

-1.5 C. Maggi, PPCF 2018

V4
-3.04————l
-3.0 25

The pedestal is crucial player in the observed isotope dependence
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Continuous confinement transition between /=,
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Continuous confinement transition
between H and D

However, results highly dependent
on the pedestal at:

« Constant fuelling
« Constant ELM frequency with Kicks

 Closeness to L-H transition at constant
power

Core isotope effect less clear

Results essential to understand DT
mixtures
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Gyrokinetic isotope effects in core transport i (L )
!Anti-GB GB  * Gyrokinetic simulations performed
IGENENL | [ with the GENE code for L-mode
Al effects plasmas:
T__ Add ExB shear | * Local deviations from GB heat
flux are caused by different
_ _ -~ parameters
T-. Add collisions | * Kinetic electrons, collisions and

T Deviations are weak
. Add kinetic electrons | : .
| | | | * Different fast ion content can also lead

to an “apparent” isotope effect
(Bonanomi NF 2019)

0 20 4|0 60 80 100 120 140 ° Plasmas at higher torque and power
Qp/Qy % expected to have stronger core
isotope effects

J. Garcia NF 2019

P. Mantica 2019
J E T J. Garcia | 4th Asia Pacific Conference on Plasma Physics | 27 Oct. 2020 | Page 22



Strong Isotope effects expected for DT at high /=
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J. Garcia POP 2018, J. Garcia NF 2017

* DT plasmas can lead to strong core transport isotope effects with
simultaneous

* Significant presence of alpha particles
* High core B and pressure gradients
* Strong rotation
High input NBI power plasmas at high B will be key in JET DT
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Outline O

 Understand how to extrapolate from DD to DT and
to ITER
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"Predict first" essential activity performed /7~

W)
-
before DT =2
+Hvbrid?R0Nos—T¢LF | | e Strong JET “Predict first” activity has been helpful for:
+Hybrid JINTRAC-BGB
151 +Hybrid JINTRAC-QLK ' 1 . . .
= 2020 DT eq from experiment * |dentify physics that boost alpha power generation
§ ul * |dentify fundamental differences between DD and DT
o plasmas
. * Guide DD experiments
* Disentangle non-linear and coupled effects
20 25 50 35 46 . . .
Pin(MW) * Extrapolations performed to DT started in 2014 with
Baseine CRONOS-TCLF | validated models with D and H plasmas

+Baseline JINTRAC-BGB
Baseline JINTRAC-QLK

15 | 2020 DT eq from experiment * * Broad variety of models and integrated modelling suites
used (“Never rely on only one model for extrapolation”)

(MW)

11+
* Error bars account for: simulations sensitivity and

isotope effects

2016/ * Ps ~ 10-16MW for hybrid and baseline: significant core

Baseline . .
30 3 40 isotope effects for hybrid route

Pfus

3

H Pin(hﬂvv) . . . o
JZ-OGlf;fC'a PPCF 1. Moralesers  ® Comparison to 2020 DT equivalent fusion power is
). Garcia NF 2019 2018 encouraging

S. Saarelma POP F.J. Casson NF 2020
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Outline

e Conclusions

JET
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Highlights of the preparation for D-T

O Existing D-T scenarios have reached 9-10MW/5s equivalent fusion power
and can attain 10 to 16MW of fusion power with 40MW of input power in the
JET ITER-like wall

O After-glow ITB scenario is a credible route for alpha particle driven
instabilities study and code validation for ITER

0 Extended parameter space found in DD for AE excitation

0 Confinement and particle transport show strong positive isotope
dependences and is also investigated for ITER conditions

O First principle modelling show that strong isotope effects can be found at
high power

O Alpha particles expected to play a strong role on transport

O Before DT, TT-campaign expected to further contribute to DT plasmas
preparation
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