

Transport in Fusion Plasmas: Is the Tail Wagging the Dog?

Role of Boundaries in SOL-Edge-Core Interplay

G. Dif-Pradalier¹, Ph. Ghendrih¹, Y. Sarazin¹, F. Widmer², Y. Camenen², X. Garbet¹, C. Gillot¹, V. Grandgirard¹, L. Vermare³
¹CEA, IRFM, France
²Aix Marseille Université, France
³LPP, Ecole Polytechnique, France

Ackn .: Festival de Théorie, Aix-en-Provence

A major motivation: describe and understand whereby bifurcations to improved confinement occur

spontaneous transitions come in many flavours: ITBs, yy-modes

 $yy \in \{H; I; QH; VH; ...\}$

- common grounds: self-reinforcing feedback

 - onset of differential rotation
 steepening of ∇p_i
 electric field well (or hill) → shear-induced bifurcation [Biglari PF 90]
- robustly observed: variety of machines & config. (Tokamak, stellarator,...)
- ▶ narrow region, especially plasma edge → boundary conditions

Global impact of localised boundary interactions is a classical problem

- fluids: Prandtl ; swirling flows [torque vs. velocity [Saint-Michel PRL 13]] ↔ forcing
- MFE: upstream [core & edge] impact of magn. connection to bound. [SOL/wall] [...& vice-versa]
- **•** this work: propagation of information? core \leftrightarrow edge \leftrightarrow SOL? mechanisms? relevance to global confinement? [Spoiler: there is a strong interplay]

Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

- Dynamics of the plasma edge & bifurcation to improved confinement
 → large body of theoretical works & concepts proposed
- Added value from "first principles" iff <u>complement understanding</u>
 → discriminate btw/propose theoretical mechanisms or settle conundrums
- Several conundrums
- important turb. properties: all locally-determined?

[[]Gillot, this conference]

Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

- Dynamics of the plasma edge & bifurcation to improved confinement
 → large body of theoretical works & concepts proposed
- Added value from "first principles" iff <u>complement understanding</u>
 → discriminate btw/propose theoretical mechanisms or settle conundrums
- Several conundrums
- important turb. properties: all locally-determined?
- is there an intrinsic problem [NM'sL?] with the plasma edge?

<u>Corollary</u>: where does edge turbulence come from?

[Holland PoP 11]

<u>Our goal:</u> understand turbulence dynamics in L-mode edge [from where bifurcation to H-mode occurs]

- Dynamics of the plasma edge & bifurcation to improved confinement
 → large body of theoretical works & concepts proposed
- Added value from "first principles" iff <u>complement understanding</u>
 → discriminate btw/propose theoretical mechanisms or settle conundrums
- Several conundrums
- important turb. properties: all locally-determined?
- Is there an intrinsic problem [NM'sL?] with the plasma edge?

<u>Corollary:</u> where does edge turbulence come from?

[Gorler PoP 14]

Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

- Dynamics of the plasma edge & bifurcation to improved confinement
 → large body of theoretical works & concepts proposed
- Added value from "first principles" iff <u>complement understanding</u>
 → discriminate btw/propose theoretical mechanisms or settle conundrums
- Several conundrums
- important turb. properties: all locally-determined?
- is there an intrinsic problem [NM'sL?] with the plasma edge?

<u>Corollary:</u> where does edge turbulence come from?

• What presides over the onset of edge transport barrier? Mechanism(s)?

[Kim PRL 03]

<u>Our goal:</u> understand turbulence dynamics in L-mode edge [from where bifurcation to H-mode occurs]

- Dynamics of the plasma edge & bifurcation to improved confinement
 → large body of theoretical works & concepts proposed
- Added value from "first principles" iff <u>complement understanding</u>
 → discriminate btw/propose theoretical mechanisms or settle conundrums
- Several conundrums key ingredients?
- important turb. properties: all locally-determined?
- is there an intrinsic problem [NM'sL?] with the plasma edge?

<u>Corollary</u>: where does edge turbulence come from?

What presides over the onset of edge transport barrier? Mechanism(s)?

- - propagation of info., globally
- equil. gradient length \sim few ρ_i \hookrightarrow edge: scale separations break down

mechanism(s) for edge turb.?

• magnetic connection to boundaries \mapsto expect E_r shear $(\nabla p/n \text{ vs. } -\nabla T_e)$

incidence transp. barrier onset?

<u>Framework:</u> **"minimally" relevant model** to understand turbulence dynamics in L-mode edge?

Framework \equiv GYSELA

[Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

- flux-driven profile evolution
- global domain $0 \le r/a \le 1.3$
- poloidally-localised toroidal limiter $1 \le r/a \le 1.3$

• kinetic trapp. elec \rightarrow adiab. elec. \downarrow modified QN eq. in SOL Bohm cond. forced: $\delta n_e/n_e \rightarrow e\phi/T_e - \Lambda$

- circular **B** geometry; electrostatic; $\rho_{\star} = 1/300$; with collisions

<u>Framework:</u> **"minimally" relevant model** to understand turbulence dynamics in L-mode edge?

Framework \equiv GYSELA

[Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

- flux-driven profile evolution
- global domain $0 \le r/a \le 1.3$
- poloidally-localised toroidal limiter $1 \le r/a \le 1.3$

 $\label{eq:constraint} \begin{matrix} \mbox{ penalisation technique} \equiv Krook \mbox{ op.} \\ in gyrokinetic eq. rhs \qquad \mbox{ [Isoardi JCP 10]} \end{matrix}$

- kinetic trapp. elec \rightarrow adiab. elec. \downarrow modified QN eq. in SOL Bohm cond. forced: $\delta n_e/n_e \rightarrow e\phi/T_e - \Lambda$
- circular **B** geometry; electrostatic; $\rho_{\star} = 1/300$; with collisions

```
Systematic comparison
(Flux-Driven limiter)
↓
(Flux-Driven poloidally symm.)
↓
(Gradient-Driven polo. Symmetry.)
```


How do steady states compare?

[Dif-Pradalier, under review]

Heat (& particle) engine fuelled by spontaneous poloidal symm. breaking @LCFS → persistent mild transp. barrier

Implications for edge?

Limiter-born fluctuations contaminate outer edge in staged polo. sequence; turb. spreading [LCFS & core] instrumental

Limiter-born fluctuations contaminate outer edge in staged polo. sequence; turb. spreading [LCFS & core] instrumental

boundary conditions:

● w/o limiter: core unstable; edge stable → shortfall

profile dynamics:

- - → inward spreading pattern [Kadomtsev 65; Garbet NF 94, Hahm PoP 05]
- edge & core turb. meet → core "empties" [beach effect] [Mattor PRL 94]

Conclusions (partial)

- SOL-edge-core do interplay
- boundary conditions are key to:
 - $\, \, \downarrow \, \text{avoiding "shortfall" conundrum} \,$
- spreading from edge & core is instrumental
 - $\, {\scriptstyle {\scriptstyle \mathsf{L}}} \,$ scale separations hinder crucial physics in edge