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A major motivation: describe and understand whereby

bifurcations to improved confinement occur

> spontaneous transitions come in many flavours: ITBs, yy-modes

e{H;Il;QH: VH; ...
» common grounds: self-reinforcing feedback vy € d J
e onset of differential rotation

e steepening of Vp;
o electric field well (or hill) = shear-induced bifurcation sigiari PF o]

> robustly observed: variety of machines & config. (Tokamak, stellarator,...)

> narrow region, especially plasma edge = boundary conditions

Global impact of localised boundary interactions is a classical problem
o fluids: Prandtl ; swirling flows [torque vs. velocity [saint-Michel PRL 13]] <> forcing
e MFE: upstream [core & edge] impact of magn. connection to bound. [SOL/wall]

[ .. & vice-versa]

» this work: propagation of information? core < edge <> SOL? mechanisms?
relevance to global confinement? [Spoiler: there is a strong interplay]



Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

» Dynamics of the plasma edge & bifurcation to improved confinement
— large body of theoretical works & concepts proposed

» Added value from “first principles” iff complement understanding
— discriminate btw/propose theoretical mechanisms or settle conundrums
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Our goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

> Dynamics of the plasma edge & bifurcation to improved confinement
— large body of theoretical works & concepts proposed

> Added value from “first principles” iff complement understanding
— discriminate btw/propose theoretical mechanisms or settle conundrums
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[from where bifurcation to H-mode occurs]
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QOur goal: understand turbulence dynamics in L-mode edge

[from where bifurcation to H-mode occurs]

» Dynamics of the plasma edge & bifurcation to improved confinement
— large body of theoretical works & concepts proposed

> Added value from “first principles” iff complement understanding
— discriminate btw/propose theoretical mechanisms or settle conundrums

» Several conundrums

@ important turb. properties:
all locally-determined?

® is there an intrinsic problem [NM'sL?]
with the plasma edge?

Corollary: where does edge turbulence
come from?

® What presides over the onset of edge
transport barrier? Mechanism(s)?

... key ingredients? e large profile uncertainty SOL /edge

L, models to be flux-driven
> ‘ propagation of info., globally‘

e equil. gradient length ~ few p;
L, edge: scale separations break down

s ‘ mechanism(s) for edge turb.? ‘

e magnetic connection to boundaries
L, expect E, shear (Vp/nvs. =V T,)

i ‘ incidence transp. barrier onset? ‘
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Framework: | “minimally” relevant model | to understand

turbulence dynamics in L-mode edge?

HETUEANILESMCNEINWN [Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

D F,
Dt

>

= C(FS)+ Sheat(Fs)*l/M"m(Fs—F“m) & Y;Z:énj =0ne

e flux-driven ' profile evolution

e global domain 0 < r/a< 1.3

e poloidally-localised toroidal |limiter
1<r/fa<13

L, penalisation technique = Krook op.
in gyrokinetic eq. rhs  [isoardi JCP 10]

o kinetic-trapp—elee — adiab. elec.
L, modified QN eq. [in SOL
Bohm cond. forced: dne/ne — ep/Te — A

e circular B geometry; electrostatic;
p+ = 1/300; with collisions



Framework: | “minimally” relevant model | to understand

turbulence dynamics in L-mode edge?

HETUEANILESMCNEINWN [Grandgirard JCP 06 & CPC 16 ; Caschera JPCS 18]

D F,
Dt

>

= C(FS)+ Sheat(Fs)*l/M"m(Fs—F“m) & Y;Z:énj =0ne

e flux-driven ' profile evolution
e global domain 0 < r/a< 1.3

e poloidally-localised toroidal |limiter

1< r/a <13 Systematic comparison
L, penalisation technique = Krook op. (Flux-Driven limiter)
in gyrokinetic eq. rhs  [isoardi JCP 10] 1
o kinati . = adiab. elec. (Flux-Driven poloidally symm.)

0

L, modified QN eq. [in SOL (Gradient-Driven polo. Symmetry.)

Bohm cond. forced: dne/ne — ep/Te — A

e circular B geometry; electrostatic;
p+ = 1/300; with collisions



How do steady
states compare?

[Dif-Pradalier, under review]

Flux-driven &
limiter b.o.

Grad_-driven &
pale. symm b.c.
Case-3
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Heat (& particle) engine fuelled by spontaneous poloidal

symm. breaking @LCFS — persistent mild transp. barrier
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> |mplications for edge?
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Limiter-born fluctuations contaminate outer edge in staged

polo. sequence; turb. spreading [LCFS & core] instrumental

3.5
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Limiter-born fluctuations contaminate outer edge in staged

polo. sequence; turb. spreading [LCFS & core] instrumental

3.5

Flux-driven: with spreading

[EEEE)= limiter b.c.

[SEEEA= poloidally symm. b.c.

Gradient-driven: spreading impeded
Case-3 = poloidally symm. b.c.
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® w/o limiter: core unstable; edge
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profile dynamics:
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— inward spreading pattern
[Kadomtsev 65; Garbet NF 94, Hahm PoP 05]

X 95] Contributions to turbulence spreading
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Conclusions (partial)

» SOL-edge—core do interplay

> boundary conditions are key to:
L, avoiding "shortfall” conundrum
L, establishing modest but persistant transport barrier

» spreading from edge & core is instrumental
L, scale separations hinder crucial physics in edge
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