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Abstract

In this paper we present two models for reasoning about strategic actions in opinion

diffusion. In both models a set of agents are endowed with goals expressed com-

pactly in a suitably defined language of Linear Temporal Logic, and are connected

in an influence network which defines the underlying opinion diffusion process. The

agents can act by exerting their influence or retain from it: in the first case we

assume an initial state of incomplete information about the agents’ opinions, while

in the second we assume that the agents have complete information. We investigate

the interplay between network topologies and the existence of game-theoretic so-

lution concepts, and we give bounds for the computational complexity of strategic

reasoning in both settings.

Keywords: Opinion diffusion; Nash equilibria; strategic reasoning; social influence

1 Introduction

We want to model a community in which agents can influence other agents. Namely,

if agent i has influencing power over another agent j, then she can exert it by overtly

expressing her opinions or publicly acting in a certain way, thereby influencing agent j’s

opinions and behaviors.1 We take the notion of influencing power as primitive, without

decomposing it at a finer-grained level. Certainly, in the social reality, there are multiple

factors that determine whether an agent has influencing power over another. One com-

ponent is trust, which positively correlates with influencing power: the higher the trust

agent j has in agent i’s judgment, the higher the power of agent i to influence agent j’s

opinions by disclosing hers. Another component is that of social tie (Granovetter, 1973;

1See Lorini et al. (2013) for a logical formalization of different varieties of social power, including
influencing power.
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Attanasi et al., 2016): agent i can influence agent j in case j has a certain level of social

proximity with i.2 The existence of a social tie between two individuals has been shown

to play a fundamental role in the diffusion of opinions (Granovetter, 1973) and inno-

vations (Rogers, 1983), imitation (Ellwood, 1901), behavioral contagion (Dimant, 2019)

and social learning (Bandura, 1986). For instance, according to social learning theory,

human agents are more willing to learn from socially similar agents with whom they can

identify more easily (e.g., pop stars, sports personalities, business magnates, etc.) and

who are socially closer to them (e.g., parents or friends). As emphasized in innovation dif-

fusion theory, “an obvious principle of human communication is that the transfer of ideas

occurs most frequently between two individuals who are alike, similar, or homophilous.

Homophily is the degree to which pairs of individuals who interact are similar in certain

attributes, such as beliefs, education, social status, and the like” (Rogers, 1983, p. 18).

Our model works under three general assumptions. First, the influencing power re-

lationships between agents are dichotomous: i.e., we do not specify an agent i’s degree

of power over another agent j, but we only say whether agent i has influencing power

over j. Secondly, the graph describing the agents’ influencing power relationships is static

and does not change through interaction. Thirdly, an agent i’s opinions are affected by

another agent j’s opinions only if j exerts her influence over i, despite the fact that i

may know j’s opinions. The latter corresponds to the idea that influence requires an act

of explicit communication by the influencer. Therefore, we exclude from our model all

those forms of implicit influence that are pervasive in the human society whereby the

influencee acquires knowledge about the influencer’s opinions through inference and is

latently affected by them.

The strategic aspect of influence is a central aspect of the model. Agents in the

community have individual goals that they try to achieve by using their influencing power

over others, as well as the structure of the influence graph. For example, suppose agent i

has influencing power over agent j and agent j has influencing power over agent z. Then,

i may decide to overtly express her opinion in order to induce j to adopt it, or she may

stay tacit in order to prevent j from changing his current opinion. Furthermore, i may

decide to affect j’s opinions in order to indirectly affect z’s opinions, given the influence

relationship between j and z.

We present two variants of our model, under complete and incomplete information.

In the complete information variant, it is assumed that agents’ opinions are common

knowledge. Nonetheless, since tacit opinions have no influence force, an agent can only

exert her power over the others by explicitly supporting her opinions. The following

example illustrates this variant of the model.

2According to Granovetter’s theory, the strength of a social tie between two individuals is determined
by multiple parameters including the amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services characterizing the social relationship.
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Ann BobCathy

Jesse

Figure 1: An influence network in which Ann, Cathy, and Bob have a shared influence
on Jesse (in case of unanimous choice), and Ann has a direct influence on Bob.

Jesse has three kids: Ann, Bob and Cathy. Ann is the oldest, Bob is the youngest

and Cathy is the one in the middle. Ann is strongly admired by her brother Bob, thereby

having an influencing power over him (i.e., Bob is usually influenced by what her sister

says). The family has to decide whether to go to the cinema or to make an excursion

to the countryside. Jesse asks the kids what they would like to do. If they unanimously

agree on the same option, then this option will be chosen. Otherwise, if an agreement is

not reached, the default option will be to go to the cinema, which is what Jesse prefers.

Each kid can decide either to abstain or to participate in the vote by declaring her/his

preference.3 It is common knowledge in the family that Jesse and Bob prefer the cinema,

while Ann and Cathy prefer the excursion. Nonetheless, according to the rule of the

game, if a kid does not explicitly says what she/he prefers, her/his preference will not

count. In this situation, Ann should explicitly declare her preference to be sure that

her goal of making an excursion will be achieved. Otherwise, Jesse’s preference of going

to the cinema will possibly prevail. In other words, choosing to explicitly declare her

preference is for Ann a winning strategy relative to her goal of making an excursion. In

fact, by participating in the vote, she will shape Bob’s preference such that an unanimous

agreement to make an excursion will necessarily be reached.4

In the incomplete information variant of the model, an agent’s tacit opinions are

epistemically inaccessible to the others: i.e., if an agent does not reveal her opinions,

the others will be uncertain about them. In the incomplete information variant of the

previous example, Ann would be uncertain about Cathy’s preference before Cathy has

publicly revealed it. Consequently, Ann does not know whether, by choosing to explicitly

declare her preference, a unanimous agreement to make an excursion will necessarily be

reached. In particular, there is no uniform strategy for Ann such that Ann knows that,

by choosing it, she will achieve her goal—where an agent’s uniform strategy is a strategy

that assigns the same choices in states that are epistemically indistinguishable to the

agent (van Benthem, 2001; Schobbens, 2004; Jamroga and Ågotnes, 2016). However,

3For the sake of simplicity, we assume that an expressed preference is a special kind of expressed
opinion about the goodness (or desirability) of a given option.

4We suppose that, although Bob knows Ann’s tacit preference, he will not be affected by it unless
Ann makes it explicit by participating to the vote.
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Ann knows that the choice of explicitly declaring her opinions (weakly) dominates the

choice of abstaining from participating in the vote: i.e., she knows that for any possible

choice of Bob and Cathy, if she achieves her goal by choosing abstention, she will also

achieve it by choosing to participate in the vote. The action of influencing the other

agents about one’s own opinions for the first time has thus the double role of eliminating

the uncertainty and influencing others about them.

Our contribution. The definition of our two variants of strategic opinion diffusion

under influence, with complete and incomplete information, is presented in Section 2.

The diffusion of opinions is unanimous: an agent changes her opinion if all her influencers

who are using their influencing power are unanimous about it. This forms the basic bricks

of a state-transition model in which agents are able to control the accessibility of their

opinions towards the satisfaction of their goals, expressed in a logical language based on

Linear Temporal Logic. In Section 3 we give the full definition of influence games, and we

introduce game-theoretic concepts adapted to our information model (perfect-recall and

memory-less uniform strategies), as well as solution concepts that take into consideration

the epistemic aspect of an agent’s goal satisfaction (subjective winning and weak-dominant

strategies, and subjective Nash equilibrium). We show some simple initial results, that

stress the importance of the complete information model, which we study in Section 4. We

then study the computational complexity of finding game-theoretic solutions for games

of influence, both under complete and incomplete information, in Section 5. Our findings

show that the problem of recognising if a given strategy profile is a (subjective) Nash

equilibrium reduces to the satisfaction of Linear Temporal Logic formulas, and thus can

be solved in polynomial space. All other tasks we consider are significantly harder, and

we give upper bounds above exponential time. Section 6 concludes the paper.

Related work. There exist several contributions on the logical representation of the

dynamics of opinion. Seligman et al. (2013) propose a Facebook logic, mixing proposi-

tional dynamic logic and dynamic epistemic logic. The aim is to represent how messages

circulate over a social network and the associated impact: how agents gain information

and how the network changes. The main difference with our work is that the logic does

not focus on how agents aggregate incoming information and the strategic aspect of diffu-

sion is also not taken into consideration. Ghosh and Velázquez-Quesada (2015) show how

consensus may be reached among a set of agents influencing each other; an important

difference with Facebook logic is the opinion type, i.e., preferences, and the aggregation

procedure, which is represented as preference change methods. However, no strategic

aspect is considered in the influence process. Our work is also close to that of Christoff

and Hansen (2015) and Christoff et al. (2016) which adopts a similar approach with the

above mentioned contribution: embedding in logic the dynamics of opinion. The authors
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propose a sound and complete axiomatisation for reasoning about diffusion and its impact

represented by model transformation, making a distinction between private and public

opinions. We build on their model adding a strategic component with the introduction

of the individual goals. We note in passing that earlier work by Seligman et al. (2011)

and Christoff and Hansen (2013) already made use of the unanimity aggregation rule in

the definition of their influence models.

Our work draws inspiration from psychological studies on group pressure, informal

social communication and influence from majority groups to minorities (Asch, 1956; Fes-

tinger, 1950; Moscovici and Personnaz, 1980). Problems close to opinion diffusion are

those of information cascades and knowledge diffusion, which have been given formal

treatment in a logical setting (see, e.g., Ruan and Thielscher (2011); Baltag et al. (2013)).

Our model of opinion diffusion is inspired by a recent stream of papers that aims at

conceiving diffusion models for structured information, being it belief sets (Schwind et al.,

2015, 2016), preferences (Brill et al., 2016), or multiple binary issues (Grandi et al., 2015;

Botan et al., 2019). In these papers, the diffusion rule is based on aggregation procedures

imported from the theories of belief merging, voting, or judgment aggregation. We refer

to the discussion in the cited works for the relation with classical models of diffusion, such

as the De Groot or Lehrer-Wagner model (de Groot, 1974; Lehrer and Wagner, 1981) and

threshold models (Granovetter, 1978).

Influence games can be considered a variation of the iterated version of the well-

known Boolean games (Harrenstein et al., 2001; Bonzon et al., 2006; Grant et al., 2011;

Wooldridge et al., 2013; Ågotnes et al., 2013; Gutierrez et al., 2015)—which have recently

been extended with a social network structure where agents choose actions depending on

the actions of their neighbors (Seligman and Thompson, 2015).

This paper builds on our previous work in which the assumption was that of complete

information (Grandi et al., 2017). In complementary work, we studied similar models at

a higher perspective, that of concurrent game structures in which the control of Boolean

variables is shared among sets of agents, showing that the computational complexity of

strategic reasoning is left unchanged—with respect to structures with exclusive proposi-

tional control (Belardinelli et al., 2017). Such structures are used to interpret formulas of

Alternating-time Temporal Logic (Alur et al., 2002), a logic that can be used to reason

about strategic aspects of iterated games. Similarly, Strategy Logic (Mogavero et al.,

2010) is a formalism allowing to express the existence of solution concepts, such as Nash

equilibria, in iterated games. We will use both formalisms for our complexity results.

2 Opinion diffusion

In this section we take inspiration from the framework of propositional opinion diffusion

by Grandi et al. (2015), to model agents who have control over the influence they can
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exert on other agents. We then adapt the diffusion process to this more complex setting.

2.1 Opinion and influence functions

Let I = {p1, . . . , pm} be a finite set of propositions, or issues, and N = {1, . . . , n} a finite

set of individuals, or agents. Agents have opinions on the issues in I in the form of a

propositional evaluation (equivalently, a binary vector):

Definition 1. The opinion of agent i is a function Bi : I → {1, 0} where Bi(p) = 1 and

Bi(p) = 0 express, respectively, the agent’s opinion that p is true and that p is false.

Let B = (B1, . . . , Bn) denote the profile of opinions of agents in N . Propositional

evaluations can be used to represent ballots in multiple referenda, expressions of prefer-

ence over alternatives, or judgments over correlated issues (Christian et al., 2007; Grandi

and Endriss, 2011). Depending on the application at hand, an integrity constraint may

be introduced to model correlations among the issues: for the sake of simplicity we do not

introduce here any such constraint (see the recent work by Grandi et al. (2015); Schwind

et al. (2015); Botan et al. (2019) on opinion diffusion with constraints).

Moreover, for each issue an agent has the option to use her influence power or not:

Definition 2. We call influence function of agent i a map Ii : I → {1, 0} where Ii(p) = 1

expresses that agent i is using her influence on p, and Ii(p) = 0 that she is not.

We denote by I = (I1, . . . , In) the profile composed of the agents’ influence functions.

By combining the opinions with the influence functions of an agent, we can build her

expressed opinion as a three-valued function on the issues:

Definition 3. Let Bi be the opinion of agent i and Ii her influence function. The ex-

pressed opinion of i is a function Pi : I → {1, 0, ?} such that

Pi(p) =

Bi(p) if Ii(p) = 1

? if Ii(p) = 0

Again, P = (P1, . . . , Pn) is the profile of expressed opinions of all the agents in N .

We denote by P C the restriction of profile P to the individuals in C ⊆ N .

2.2 Unanimous opinion diffusion

We define the process of influence among agents in our model starting from the setting of

propositional opinion diffusion proposed by Grandi et al. (2015), that we adapt to take

into account the presence of the influence function. Firstly, the agents are linked by an

influence network, modeled as a directed irreflexive graph:
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Definition 4. We call an influence network a directed irreflexive graph E ⊆ N × N ,

where (i, j) ∈ E reads as “agent j is influenced by agent i”.

We also refer to E as the influence graph and to the individuals in N as the nodes

of the graph. Let Inf (i) = {k ∈ N | (k, i) ∈ E} be the set of influencers of agent i in

the network E. As the graph is irreflexive, i 6∈ Inf (i) for any i ∈ N , i.e., agents do not

influence themselves.

Given a profile of expressed opinions and an influence network, we model the process

of opinion diffusion by means of an aggregation function, which shapes the opinion of an

agent from the expressed opinions of other agents.

Definition 5. An aggregation procedure for agent i is a class of functions

Fi,C : {0, 1}I × {0, 1, ?}I×C −→ {0, 1}I for all C ⊆ N \ {i}

that maps agent i’s opinion and the expressed opinions of a set of agents C to agent i’s

opinion.

We drop C from the subscript when clear from context. Many aggregation procedures

have been considered in the literature on judgment aggregation (Grandi and Endriss,

2011; Lang and Slavkovik, 2013), and they can be adapted to our setting. Notable

examples are quota rules, where agents change their opinion if the number of people

disagreeing with them is higher than a given quota, such as the majority rule—see the

class of threshold models studied in the literature on opinion diffusion (Granovetter, 1978;

Schelling, 1978). Unanimity is also an instance of a quota rule, and we assume it to be

the aggregation function defining influence for the agents for the remainder of this paper:

Definition 6. The unanimous issue-by-issue aggregation procedure is defined as follows:

FU
i,C(Bi,P C)(p) =


x if there is k ∈ C such that Pk(p) = x ∈ {0, 1} and

Pj(p) ∈ {x, ?} for all j ∈ C

Bi(p) otherwise

That is, an individual will change her opinion about issue p if and only if all agents

in C (usually among her influencers) that are using their influence on their opinion are

unanimous (i.e., some of the agents in C may not be using their influence on p, but those

who do are all accepting it or rejecting it).

2.3 Strategic actions and state transitions

In our model of strategic diffusion, the central notion of state consists of the profiles of

opinions and influence functions of the agents. The formal definition is as follows:
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Definition 7. A state is a tuple S = (B, I) where B is a profile of opinions and I is a

profile of influence functions. The set of all states is denoted by S.

Different states can correspond to the same profile of expressed opinions P : namely,

if some agents are not using their influence on an issue (i.e., its value in P is ‘?’), then

there will be multiple corresponding states depending on their opinions in B on the issue.

In our model, agents can use specific actions of type exert(J) and quiet(J) for J ⊆ I
to push (or not) their opinions on the issues in J to the other agents. We thus allow for

simultaneous influence on multiple propositions.

The set of individual actions for the agents is then defined as:

A = {(exert(J), quiet(J ′)) | J, J ′ ⊆ I and J ∩ J ′ = ∅}.

Each joint action, or action profile, a = (a1, . . . , an) ∈ An, consisting of an individual

action for each agent, induces a deterministic transition function between states:

Definition 8. The transition function succ : S × An −→ S associates to each state

S = (B, I) and joint action a a new state S ′ = (B′, I ′) as follows, for all i ∈ N and

p ∈ I. For ai = (exert(J), quiet(J ′)) ∈ A:

• I ′i(p) =


1 if p ∈ J

0 if p ∈ J ′

Ii(p) otherwise

• B′i = FU
i (Bi,P

′
Inf (i))

Where P ′ is the expressed profile obtained from opinion profile B and influence profile V ′.

Observe that, according to Definition 8, for all issues p ∈ (I \ (J ∪ J ′)) their value for

the influence function does not change between S and S ′. By a slight abuse of notation we

denote with a(S) the state succ(S,a) obtained from S and a by applying the transition

function succ. We also use the following abbreviations: skip = (exert(∅), quiet(∅)) for

doing nothing, exert(J) = (exert(J), quiet(∅)), quiet(J) = (exert(∅), quiet(J)), and we

drop curly parentheses in exert({p}) and quiet({p}). The influence process thus occurs

after the actions have changed the influence status of the agents’ opinions: i.e., first,

actions affect the influence of opinions, and then each agent modifies her opinion on the

basis of those opinions of her influencers that are now pushed by them.

The notion of history describes the temporal aspect of the agents’ opinion dynamic:

Definition 9. Given a set of issues I, a set of agents N , and aggregation procedures Fi

for i ∈ N over a network E, a history H is an infinite sequence of states Hj and action

profiles H = (H0,a0, H1,a1 . . .), such that Ht+1 = at(Ht) for all t ∈ N.
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A partial history H≤t = (H0,a0, H1,a1 . . .at−1, Ht) is a finite sequence of t ≥ 0 states

and actions of history H.

We denote the set of all histories by H and the set of all partial histories by H+.

Observe that Definition 9 restricts the set of all possible histories to those that correspond

to a run of the influence dynamics of Definition 8. For notational convenience, for any

i ∈ N and for any t ∈ N, we denote with HB
i,t agent i’s tacit opinion in state Ht and with

HI
i,t agent i’s influence in Ht.

Example 1. Consider the example in Figure 2 for a single issue p ∈ I, where the

agents are N = {A,B,C} such that Inf (A) = {B,C}. The initial state of the history is

H0 = ((0, 1, 1), (1, 1, 0)), i.e., agent A currently has the tacit opinion that p is false, while

agents B and C have the tacit opinion that p is true. Let a0 = (skip, skip, exert(p)) and

a1 = (skip, quiet(p), skip) be the joint actions of the agents at the first two states. Namely,

agent C pushes her opinion on p, and at the next step B keeps quiet on hers.

(
(0, 1, 1), (1, 1, 0)

)
H0

(
(1, 1, 1), (1, 1, 1)

)
H1

(
(1, 1, 1), (1, 0, 1)

)
H2

(skip, skip, exert(p)) (skip, quiet(p), skip)

Figure 2: The first three states of a history, with the influence network B → A← C.

If all individuals are using the unanimous aggregation procedure, then in state H1,

agent A’s opinion about p has changed to 1, as all her influencers are pushing unanimously

for p, while in H2 no opinion is updated.

Under the assumption of incomplete information the opinions are not common knowl-

edge among the agents (unless they decide to push them). Thus, the influence function

naturally defines an indistinguishability relation between states:

Definition 10. Given two states S and S ′ and an agent i ∈ N we say that they are

indistinguishable for i, written S ∼i S ′ if the following is the case:

1. (∀j ∈ N )(∀p ∈ I) : Ij(p) = I ′j(p), and

2. (∀j ∈ N )(∀p ∈ I) : Ij(p) = 1 implies Bj(p) = B′j(p).

Intuitively, by condition 1 an agent considers equivalent two states where the influence

status is the same, while condition 2 affirms that in equivalent states all the pushed

opinions have to be equivalent. We now prove in the following proposition that the

indistinguishability relation defined above is indeed an equivalence relation:

Proposition 1. The relation ∼i of Definition 10 is an equivalence relation.
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Proof. We need to prove that ∼i is reflexive, symmetric and transitive. For reflexivity,

consider a state S: clearly (∀j ∈ N )(∀p ∈ I) : Ij(p) = 1 implies Bj(p) = Bj(p) and

(∀j ∈ N )(∀p ∈ I) : Ij(p) = Ij(p). Hence, S ∼i S. For symmetry, assume that S ∼i S ′:
we want to show that S ′ ∼i S. From condition 1 we immediately get that (∀j ∈ N )(∀p ∈
I) : I ′j(p) = Ij(p) and thus from condition 2 we get (∀j ∈ N )(∀p ∈ I) : I ′j(p) = 1

implies B′j(p) = Bj(p): hence, S ′ ∼i S. For transitivity, assume that S ∼i S ′ and

S ′ ∼i S ′′: we want to show that S ∼i S ′′. Since (∀j ∈ N )(∀p ∈ I) : Ij(p) = I ′j(p) and

(∀j ∈ N )(∀p ∈ I) : I ′j(p) = I ′′j (p), we have that (∀j ∈ N )(∀p ∈ I) : Ij(p) = I ′′j (p). Hence,

we get that (∀j ∈ N )(∀p ∈ I) : I ′′j (p) = 1 implies Bj(p) = B′j(p) = B′′j (p). Therefore ∼i
is an equivalence relation.

Given agent i ∈ N and state S, we let [S]i = {S ′ | S ∼i S ′} be the equivalence class

of S for i. The set Si contains all the representative elements of the equivalence classes

of states from the perspective of agent i.

Example 2. Consider the example of the introduction. Let us denote the four agents

with capital letters A,B,C, J , and recall that the decision was about one issue p: going

to the cinema, denoted with 1, and going to an excursion, denoted with 0. Recall the

influence network of Figure 1 and that BB(p) = BJ(p) = 1 and BA(p) = BC(p) = 0. If

only Jesse and Cathy push their opinion, the situation can be described in the following

figure, which represents the expressed opinions of the agents, with a dashed line whenever

the expressed opinion is equal to ?:

Ann (?) Bob (?)Cathy (0)

Jesse (1)

In this example, the equivalence class of the initial state from Ann’s point of view is:

[S0]A = {
(
(0, 1, 0, 1), (0, 0, 1, 1)

)
,
(
(0, 0, 0, 1), (0, 0, 1, 1)

)
}.

That is, the only uncertainty for Ann is Bob’s opinion, i.e., the second element of the

first vector of a state. The equivalence class of Jesse contains instead four states, to take

into account her uncertainty about the opinions of both Ann and Bob:

[S0]J = {
(
(0, 1, 0, 1), (0, 0, 1, 1)

)
,
(
(1, 1, 0, 1), (0, 0, 1, 1)

)
,(

(0, 0, 0, 1), (0, 0, 1, 1)
)
,
(
(1, 0, 0, 1), (0, 0, 1, 1)

)
}.

The equivalence relation at the basis of our epistemic model is defined from the
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assignment of values to a given set of variables contained in the states, departing from a

strand of literature that considers epistemic accessibility relations as the primary objects

of actions, and grounding these relations to the notion of states (van der Hoek et al., 2011;

Herzig et al., 2015). Observe that the successor states of two indistinguishable states are

not necessarily indistinguishable from the perspective of an agent:

Proposition 2. There exists a model with two states S1 ∼i S2 and an action profile a

such that a(S1) 6∼i a(S2).

Proof. Assume that N = {1, 2, 3}, I = {p} and the influence network E has no edges,

i.e., the agents do not influence one another. Let S1 = ((1, 0, 0), (0, 0, 1)) and S2 =

(0, 0, 0), (0, 0, 1)): clearly, S1 ∼3 S2, i.e., the two states are indistinguishable from the

perspective of agent 3, as they differ on the opinion of agent 1 on p—who is hiding it.

Now let a = (exert(p), skip, skip): we have that a(S1) =
(
(1, 0, 0), (1, 0, 1)

)
and a(S2) =(

(0, 0, 0), (1, 0, 1)
)
, which are not in the same equivalence class for agent 3.

The following example shows that joint actions reduce the uncertainty of the agents:

Example 3. Let us continue the discussion in Example 2. Assume that Ann pushes

her opinion at the first step, i.e., the action profile is a = (exert(p), skip, skip, skip). The

successor of any state in Ann’s equivalence class, as well as in Jesse’s equivalence class

is
(
(0, 0, 0, 1), (1, 0, 1, 1)

)
. After Ann has supported her opinion publicly, both Ann and

Jesse know that Bob will have updated his opinion to the one of Ann. Hence, even if Bob

still does not use his influence, there is no uncertainty for both Ann and Jesse that his

opinion is equal to 0.

We now define a notion of indistinguishability on partial histories to model the perfect

recall of an agent:

Definition 11. Let H and H ′ be two histories, i ∈ N an agent and t, t′ ∈ N. We say

that two partial histories H≤t and H ′≤t′ are indistinguishable for agent i if:

• t = t′,

• for all 0 ≤ k ≤ t we have that Hk ∼i H ′k,

• for all 0 ≤ k ≤ t we have that ak = a′k.

In such case we denote (H≤t) ∼Hi (H ′≤t′).

Intuitively, two histories are indistinguishable for an agent i if they are generated by

the same set of actions and generate states that are indistinguishable for agent i. Consider

the following example:
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Example 4. Let us consider the usual example, and assume that in the initial state H0

both Bob and Cathy push their opinion. We are in state H0 = ((0, 1, 0, 1), (0, 1, 1, 0)).

However, the following states cannot be distinguished by Ann:

(
(0, 1, 0, 1), (0, 1, 1, 0)

)
∼A

(
(0, 1, 0, 0), (0, 1, 1, 0)

)
Assume a0 = (exert(p), skip, skip, skip): Ann pushes her opinion. Ann still cannot distin-

guish between the two successor states:

a0

((
(0, 1, 0, 1), (0, 1, 1, 0)

))
=
(
(0, 0, 0, 1), (1, 1, 1, 0)

)
a0

((
(0, 1, 0, 0), (0, 1, 1, 0)

))
=
(
(0, 0, 0, 0), (1, 1, 1, 0)

)
However, whatever action will be played next—we assume all players in a1 do nothing—

Ann will stop being uncertain about Jesse’s opinion, since her influence has “reached”

Jesse. Figure 3 summarizes the indistinguishability for Ann between the two partial his-

tories H≤2 ∼HA H ′≤2, which are finally converging in state H2 =
(
(0, 0, 0, 0), (1, 1, 1, 0)

)
.

H0 =
(
(0, 1, 0, 1), (0, 1, 1, 0)

)
H1 =

(
(0, 0, 0, 1), (1, 1, 1, 0)

)
H2 =

(
(0, 0, 0, 0), (1, 1, 1, 0)

)
H′0 =

(
(0, 1, 0, 0), (0, 1, 1, 0)

)
H′1 =

(
(0, 0, 0, 0), (1, 1, 1, 0)

)
∼A ∼A

a0

a1

a0

a1

Figure 3: Indistinguishability relation between two partial histories.

Observe that our notion of indistinguishability relation for partial histories is in line

with formal semantics for temporal epistemic logic in which agents are assumed to have

perfect memory of the past (see, e.g., van Benthem et al. (2009)).

2.4 Individual goals

By using her influence power, an agent influences others towards the satisfaction

of her goal. To account for the temporal aspect of our model, we follow the work on

iterated Boolean games (Gutierrez et al., 2015) and we define a language LLTL–I to express

individual goals on influence using Linear Temporal Logic LTL.

Let therefore LLTL–I be defined as follows:

ϕ ::= op(i, p) | inf(i, p) | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2

where i ranges over N and p ranges over I. We read op(i, p) as “agent i’s opinion is that

12



p is true”, while ¬op(i, p) reads “agent i’s opinion is that p is not true” (as agents have

binary opinions). Moreover, inf(i, p) reads “agent i is using her influence on p”.

The reading of ©ϕ is “ϕ is going to be true at the next state” and of ϕ1Uϕ2 is “ϕ1

will be true until ϕ2 is true”: they are the standard LTL operators ‘next’ and ‘until’.

As usual, we can define the temporal operators ‘eventually’ (3) and ‘henceforth’ (2) as

3ϕ = >Uϕ and 2ϕ = ¬3¬ϕ.

The interpretation of LLTL–I-formulas relative to histories is defined as follows.

Definition 12. Let H be a history, ϕ a formula of LLTL–I and k, k′, k′′ ∈ N. Then:

H≤k |= op(i, p) ⇔ HB
i,k(p) = 1

H≤k |= inf(i, p) ⇔ HI
i,k(p) = 1

H≤k |= ¬ϕ ⇔ H≤k 6|= ϕ

H≤k |= ϕ1 ∧ ϕ2 ⇔ H≤k |= ϕ1 and H≤k |= ϕ2

H≤k |=©ϕ ⇔ H≤k+1 |= ϕ

H≤k |= ϕ1Uϕ2 ⇔ ∃k′ : (k ≤ k′ and H≤k′ |= ϕ2 and

∀k′′ : if k ≤ k′′ < k′ then H≤k′′ |= ϕ1)

Formulas of LLTL–I will be used to express agents’ goals on the iterative diffusion

process. As individuals do not have any influence on the initial state of the history, we

will consider only goals of the form ©ϕ and ϕUψ, for any ϕ and ψ in LLTL–I, which we

denote as goal formulas.

For a subset of agents C ⊆ N and issues J ⊆ I consider the following goals on

consensus and influence in situations of opinion diffusion:

cons(C, J) := 32(pcons(C, J) ∨ ncons(C, J))

issue−cons(C, J) := 32
∧
p∈J

(pcons(C, {p}) ∨ ncons(C, {p}))

influence(i, C, J) := 32
∧
p∈J

(
(op(i, p)→©pcons(C, p))

∧(¬op(i, p)→©ncons(C, p))
)

where:

pcons(C, J) :=
∧
i∈C

∧
p∈J

op(i, p)

ncons(C, J) :=
∧
i∈C

∧
p∈J

¬op(i, p).

Intuitively, an agent holding the goal cons(C, J) wants at some point to reach a
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stable consensus either for or against the issues in J with the agents in C. For the

issue−cons(C, J) goal, all agents in C must reach a consensus on the issues in C, which

can be positive or negative depending on the issue. The influence(i, C, J) goal expresses

the idea that agent i wants to eventually gain a stable influence over the people in C on

the issues in J (i.e., they will always hold her opinion at the next step).

Even if our model features an important epistemic aspect, formalized by the indistin-

guishability relations ∼i and ∼Hi on states and histories, we do not include an epistemic

operator in the goal language, but rather use the classical notions of uniform winning

strategies in the following sections to take this aspect into account.

3 Games of influence

We are now ready to combine all concepts introduced in the previous sections to give the

definition of an influence game:

Definition 13. An influence game is a tuple IG = (N , I, E, S0, Fi, γ1, . . . , γn) where N ,

I, E and S0 are, respectively, a set of agents, a set of issues, an influence network, and

an initial state, Fi for i ∈ N is an aggregation procedure, and γi is agent i’s goal formula.

Given an influence game, the agents build their strategies to attain their goals. We

first introduce two kinds of strategies available to agents, namely memory-less and perfect-

recall uniform strategies, taking into account the epistemic accessibility relation.

It is worth noting the similarity between stochastic games (Shapley, 1953) and influ-

ence games, in which the transition probabilities are degenerate (as captured by the the

transition function of Definition 8). A difference between the two game classes is that

stochastic games have state-dependent utility functions, while in influence games agents

have state-independent (possibly long-term) goals represented by LTL formulas.

3.1 Strategies

The first type of individual strategies to be considered are memory-less, i.e., they only

depend on the equivalence class of the current state:

Definition 14. A memory-less uniform strategy for player i is a function Qi : S → A
such that Qi(S) = Qi(S

′) if S ∼i S ′, associating an action to every equivalence class of

states for agent i.

A strategy profile is a tuple Q = (Q1, . . . ,Qn). For notational convenience, we also

use Q to denote the function Q : S −→ An such that for all S ∈ S we have Q(S) = a

if and only if Qi(S) = ai, for all i ∈ N .
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The second definition we provide is the full-blown notion of perfect-recall uniform

strategy, which assigns an action to each equivalence class of partial histories that has

been observed by the player.

Definition 15. We call a perfect-recall strategy for player i a function Qi : H+ → A
such that Qi(H

′) = Qi(H
′′) for partial histories H ′ and H ′′ if H ′ ∼Hi H ′′, which associates

an action to every equivalence class of finite partial histories for agent i.

As the following definition highlights, every strategy profile (of either type) induces a

different set of possible histories for each agent, when combined with an initial state.

Definition 16. Let S0 be an initial state and let Q be a memory-less uniform strategy

profile. The induced history HS0,Q ∈ H is defined as follows:

HS0,Q
0 = S0

HS0,Q
t+1 = succ(HS0,Q

t ,Q(HS0,Q
t ))

For uniform perfect-recall strategies, the condition is the following:

HS0,Q
0 = S0

HS0,Q
t+1 = succ(HS0,Q

t ,Q(HS0,Q
0 ,a0, . . . , H

S0,Q
t ))

where the successor function succ is as per Definition 8.

The two types of strategies let us differentiate between more or less sophisticated

agents, depending on the information they take into account to choose their actions.

3.2 Solution concepts

The first solution concept we study is that of winning strategy. Intuitively, Qi is a winning

strategy for player i if and only if i knows that, by playing this strategy, she will achieve

her goal no matter what the other players do. In this respect, we consider the winning

condition from the subjective point of view of an agent:

Definition 17. Let IG be an influence game, S0 its initial state, and Qi a strategy for

player i. We say that Qi is a subjective winning strategy for player i in state S0 if for all

profiles Q−i of strategies of players other than i, and for all states S such that S ∼i S0,

we have that HS,Q |= γi.

Namely, Qi is a subjective winning strategy if, starting from any state indistinguish-

able from S0 from i’s perspective, its combination with any profile of strategies by the

other players leads to a history that verifies the goal of i. The definition applies to both

memory-less and perfect-recall strategies.

15



We distinguish the subjective winning strategy of Definition 17 from an objective

winning strategy: i.e., Qi is an objective winning strategy for player i in state S0 if for

all profiles Q−i of strategies of players other than i, we have that HS0,Q |= γi. Clearly, a

subjective winning strategy is also objective since ∼i is an equivalence relation.

A subjective winning strategy corresponds to the notion of power studied by sociol-

ogists (Barnes, 1988; Castelfranchi, 2003) according to which, for an agent to have the

power of achieving γi, she must have both the objective capability of achieving γi and the

knowledge about her capability (see Herzig and Troquard (2006) and Lorini et al. (2013)

for a formalization of this concept of power in a logic of actions).

Example 5. In our running example, we represent with a Boolean variable p the op-

tions at stake: op(J, p) is true if Jesse’s opinion is to go to the cinema, and false if

she would rather go to the excursion. Let us start our analysis from when only Cathy

pushes her opinion H0 =
(
(0, 1, 0, 1), (0, 0, 1, 0)

)
, and assume that the goal of Ann is

γA = 32¬op(J, p): that is, Ann wants to influence Jesse so that eventually her opinion

will be to go to the excursion. There are four possible states for Ann, since the opinion of

Bob and Jesse has not been revealed yet. However, in any history starting from each of

these initial states, if Ann plays exert(p) then eventually a state in which ¬op(J, p) holds

is reached (see the figure in Example 4 for an example of two such histories). Therefore,

playing exert(p) in the equivalence class of state H0 and skip otherwise is a memory-less

subjective winning strategy for Ann.

As we will show in further sections, the concept of winning strategy is rather strong

for our setting. Let us then define the less demanding notion of weak dominance:

Definition 18. Let IG be an influence game and Qi a strategy for player i. We say that

Qi is a subjective weakly dominant strategy for player i and initial state S0 if and only

if for all profiles Q−i of strategies of players other than i, for all strategies Q ′i for player

i, and for all states S ∼i S0, we have that

HS,(Q′i,Q−i) |= γi ⇒ HS,(Qi,Q−i) |= γi.

Namely, Qi is a subjective weakly dominant strategy, if it gives at least the same

result (or better) as any other strategy Q′i in all possible profiles and induced histories.

As for the concept of winning strategy, we also distinguish subjective weak dominance

from objective. In particular, we say that Qi is an objective weakly dominant strategy for

player i and initial state S0 if and only if for all profiles Q−i of strategies of players other

than i, for all strategies Q ′i for player i, we have thatHS0,(Q′i,Q−i) |= γi ⇒ HS0,(Qi,Q−i) |= γi.

Example 6. Let us now revisit our running example and assume a different initial state in

which no agent pushes anything. We are thus in state H0 =
(
(0, 1, 0, 1)(0, 0, 0, 0)

)
. There
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are eight indistinguishable states for Ann, since all other opinions are not expressed.

In particular, without knowing the tacit opinion of Cathy, Ann cannot know if she can

influence Jesse to go to the excursion: this is possible if also Cathy wants to go to the

excursion, or if she wants to go to the cinema but does not push it. Otherwise, Jesse

might still stick to her initial opinion since her influencers would not be unanimous.

Still, if Ann’s goal is γA = 32¬op(J, p), the action of revealing her opinion in any

indistinguishable initial state (and do nothing afterwards) is a subjective weakly dominant

strategy for Ann: if her goal is satisfied in a possible history, then it is also satisfied by

playing the exert(p) action in the initial state.

Finally, we introduce the concept of Nash equilibrium for influence games:

Definition 19. Let IG be an influence game and let Q be a strategy profile. Agent i has

a subjective profitable deviation Q′i at initial state S0 if for all states S ∼i S0 we have

HS,(Q′i,Q−i) |= γi and HS,(Qi,Q−i) 6|= γi.

We say that Q is a subjective Nash equilibrium for initial state S0 if and only if no agent

has a profitable deviation at S0.

In words, in a subjective Nash equilibrium no agent wants to unilaterally deviate

from the chosen strategy. Note that we are making a further assumption here, i.e., that

a deviation is profitable only if it leads to the satisfaction of the agent’s goal in all

states indistinguishable from the initial one. This corresponds to a qualitative variant of

the notion of Bayesian Nash equilibrium (BNE): a similar qualitative variant of BNE is

studied by Amor et al. (2019) in the context of possibility theory.

We say that agent i has an objective profitable deviation at initial state S0 if we have

that HS0,(Q′i,Q−i) |= γi and HS0,(Qi,Q−i) 6|= γi. The concept of objective Nash equilibrium

is defined in the usual way from the concept of objective profitable deviation.

The notion of subjective Nash equilibrium given in Definition 19 is quite demanding

from an epistemic point view. Indeed, it requires that every agent knows the opponents’

actual equilibrium strategy. In order to weaken it, we can draw inspiration from Kalai &

Lehrer’s notion of subjective equilibrium Kalai and Lehrer (1993) according to which (i)

each agent is assumed to best respond to her beliefs (or conjectures) about the opponents’

strategies, and (ii) the play induced by the agents’ actual equilibrium strategy coincides

with the plays induced by the beliefs of each agent.5 A crucial aspect of Kalai & Lehrer’s

notion is that an agent’s beliefs about the opponents’ strategies may be wrong and differ

from the other agents’ beliefs.

In our model, agents do not form conjectures about the opponents’ strategies and

have no uncertainty about future histories. They only have knowledge and uncertainty

5This notion of equilibrium has also been called conjectural equilibrium (Battigalli and Guaitoli, 1997)
and self-confirming equilibrium (Fudenberg and Levine, 1993).
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about the actual state which is solely determined either by the agents’ present influencing

opinions (in the memory-less case) or by the agents’ present and past influencing opinions

and the agents’ past actions (in the perfect-recall case). For this reason, Kalai & Lehrer’s

notion of subjective equilibrium is not expressible in our model.

However, there is an alternative way to weaken the notion of subjective equilibrium

of Definition 19 and to make it “more subjective”. First of all, we could define, for every

strategy profile Q = (Qi, Q−i) and state S, the set

Q(S,Qi, Q−i) = {Q′−i : HS,(Qi,Q−i) = HS,(Qi,Q
′
−i)}.

This is the set of strategies of i’s opponents that with state S and i’s strategy Qi are

history-equivalent to their strategyQ−i. Secondly, we could say that the strategy profile Q

is a truly subjective equilibrium for the initial state S0 if and only if, for every agent i and

every possible deviation Q′i, there exists Q′−i ∈ Q(S0, Qi, Q−i) such that, if HS,(Q′i,Q
′
−i) |=

γi then HS,(Qi,Q
′
−i) |= γi for some S ∼i S0.

This notion of equilibrium is weaker than the one of Definition 19 since Q−i ∈
Q(S0, Qi, Q−i). This means that every subjective Nash equilibrium in the sense of Defi-

nition 19 is a truly subjective equilibrium as well. It is also less demanding in epistemic

terms. It only requires that an agent believes that the opponents will play some strategy

that, given the agent’s actual equilibrium strategy, is history-equivalent to the opponents’

actual equilibrium strategy. We leave for future work an in-depth analysis of this notion

of truly subjective equilibrium.

3.3 Results

We begin by showing that joint observable actions in the incomplete information model

can only reduce the uncertainty of the agents.

Proposition 3. For history H, agent i and t ≥ 0, we have that |[Ht+1]i| ≤ |[Ht]i|.

Proof. We provide the proof for the case of a single issue, whose generalization to multiple

issues is straightforward. We begin by proving the following fact. If S is a state, let

Ui([S]i) = {j ∈ N | ∃S, S ′ ∈ [S]i s.t. SBj (p) 6= S
′B
j (p)} be the set of agents j on whose

opinions agent i is uncertain about in state S. From the definition we obtain that |[Ht]i| =
2Ui([Ht]i). We now show that for all t ≤ 0 we have that Ui([Ht+1]i) ⊆ Ui([Ht]i). Since

exert(p) actions remove the uncertainty about the agent playing it, the only thing we

need to show is that it is not possible to have an agent j such that j ∈ Ui([Ht+1]i) but

j 6∈ Ui([Ht]i). Suppose this is the case. If at,j (i.e., j’s action at time t) is exert(p) or skip,

then agent j’s opinion is known at step t+ 1. Suppose at,j = quiet(p). We need to check

that there are no S, S ′ ∈ [Ht+1]i where j has different opinions. But this is not possible,

since j’s opinion is either the same at time t, or is the result of influence updates starting
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from known opinions. Hence, the set of agents whose opinion i is uncertain about is

decreasing with the play of each action profile.

The following result is a corollary of the previous proof, and shows the importance of

the complete information model that will be studied in later sections:

Proposition 4. Let H be a history. If for each agent i ∈ N and issue p ∈ I there is a

time t ≥ 0 such that at,i = exert(p), then there is a time T ≥ 0 such that |[HT ]i| = 1 for

all i (i.e., complete information is reached).

Proof. (sketch). A careful analysis of the proof of Proposition 3 reveals that the strict

inequality |[Ht+1]i| < |[Ht]i| is obtained whenever an agent different than i reveals her

tacit opinion on a previously unknown variable p. Equivalence classes have cardinality

2U where U is the number of opinions that are uncertain from an agent i’s viewpoint.

Since every exert(p) action divides the number of models by a factor of 2, we eventually

reach complete information, i.e., cardinality of 1.

4 Influence under complete information

In this section we focus on the special case of complete information, simplifying the model.

While the notion of states remains the same, i.e., a pair composed of an opinion profile

B and an influence profile I, no two distinct states are indistinguishable, as opinions are

common knowledge among the agents from the start. A unique history is generated by a

sequence of profiles of exert(p) or quiet(p) actions starting from an initial state S0.

Given a game of influence, the two notions of memory-less and perfect-recall strate-

gies do not therefore need to take into consideration the indistinguishability of states.

Definition 16 still applies, defining the unique history generated by a profile of strategies

and an initial state.

4.1 Game-theoretic results under complete information

In this section we analyze the interplay between network structure and existence of so-

lutions concepts for the goals defined in Section 2.4. We assume memory-less strategies

and complete information.

We begin by restricting the class of graphs to delegation graphs,6 i.e., networks where

each agent has at most one influencer:

6Similar networks are created in the study of liquid democracy or transitive proxy voting, where a set
of voters can either vote directly on an issue at stake, or delegate their vote to a different member of the
electorate (Christoff and Grossi, 2017). Note that agent i being influenced by agent j would correspond
to i delegating her vote to j.
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Proposition 5. If E is acyclic and |Inf (i)| ≤ 1 for all agents i ∈ N , and if agent a has

goal γa := cons(Ca, J) where J ⊆ I and Ca := {k ∈ N | a ∈ Inf (k)} ∪ {a}, then agent a

has an objective winning strategy.

Proof (sketch). Consider an acyclic E and an agent a with goal γa. Let Qa be the strategy

associating to every state S action exert(J). We want to show that HS0,(Qa,Q−a) |= γa

holds for all S0 and Q−a. Consider the position of agent a in the graph for arbitrary S0.

In case there is no agent b such that a ∈ Inf (b), the goal reduces to cons({a}, J) which

is always trivially satisfied. In case Inf (a) = ∅, by playing exert(J) in S0 and since every

agent uses unanimous aggregation, at stage 1 all child nodes of a will update their beliefs

on J by copying a’s opinion (she is their only influencer). Moreover, they can’t change

their opinions on J later on in the history.

On the other hand, suppose there is some agent b such that a ∈ Inf (b) and some

agent c ∈ Inf (a). By assumption on E we thus have that Inf (a) = {c} and Inf (b) = {a}.
Hence, either at some point k in the history all ancestors of a will have reached consensus,

such that by playing exert(J) from point k + 1 onwards the consensus among a and her

child nodes will be maintained, or there is no such k. Since there is a unique path linking

a to one of the source nodes of E, if her ancestors always disagree in the history it means

that there is some agent among them who has a different opinion and who will never play

exert(J). Thus, the opinion of a will nonetheless be stable and γa will be attained.

The assumption of acyclicity in the above result rules out the situation where all nodes

in a cycle play exert(J) and they start in S0 by having alternating positive and negative

opinions on the issues in J . Moreover, having at most one influencer per agent ensures

each agent to have full control over their child nodes. Observe that the type of graphs

covered by Proposition 5 include, among others, trees and chains. In general, however,

we can see how winning strategy is too strong of a solution concept, since in order to

attain it the scope of goals and network structures have to be narrow.

If we move to the less demanding concept of (objective) weak dominance, we may

intuitively think that a strategy associating action exert(J) to all states is weakly dom-

inant for an agent a having goal γa := influence(a, C, J) for C ⊆ N , regardless of the

network E or the initial state S0: in fact, all agents use the monotonic aggregation rule

FU
i . However, the following example shows that to satisfy goals of type γa as described,

an agent could sometimes benefit from hiding her opinion.

Example 7. For four agents N = {1, 2, 3, 4} and one issue I = {p} consider the network

E = {(1, 2), (2, 3), (3, 4)}. Suppose that agents 1 and 2 associate action exert(p) to all

states, agent 3 associates action quiet(p) only to those states where 1, 2 and 3 agree on

p, while agent 4 always skips. Let the goal of agent 2 be γ2 = influence(2, {4}, {p}) and

consider the history below for these strategies, where goal γ2 is not attained (we only

represent B):
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(0, 1, 0, 1)

H0

(0, 0, 1, 0)

H1

(0, 0, 0, 1)

H2

. . .
((exert(p), exert(p), exert(p), skip) ((exert(p), exert(p), exert(p), skip)

From state H2 onwards, given the strategies of the agents, the profile of opinions

B = (0, 0, 0, 1) won’t change. Consider now a strategy for agent 2 identical to the previous

one, but for the fact that it associates action quiet(p) to state H0:

(0, 1, 0, 1)

H0

(0, 0, 0, 0)

H1

. . .
((exert(p), quiet(p), exert(p), skip)

From state H1 onwards, given the strategies of the agents, the profile of opinions won’t

change. Thus, we found a network, an initial state H0, and strategies for the other agents,

such that agent 2 is better off by hiding her opinion on p to satisfy her influence goal γ2.

We can now see an example of how the network structure and the agents’ goals

can yield a Nash equilibrium in the spirit of anti-coordination games (Rapoport and

Chammah, 1966).

Proposition 6. Let IG be an influence game. If E is a graph such that Inf (i) 6= ∅ for

all i ∈ N and γi = issue−cons(N , J) for i ∈ N and J ⊆ I, then there exists an objective

Nash equilibrium Q for any initial state S0.

Proof (sketch). We construct a strategy profile Q such that the issue-wise consensus goal

γi = issue−cons(N , J) of all agents in N is attained, thus making Q a Nash equilibrium.

Intuitively, the agents must coordinate on the issues in J about which they disagree in

S0. We denote S0 with H0 for clarity. Recall that we are considering IGs where all agents

use the unanimous aggregation of Definition 6.

Observe that the agents want to reach a consensus on each issue in J , regardless of

whether the consensus is in favour or against it. Let J c ⊆ J be the set of issues on which

the agents agree already in S0: for these issues, the strategy of the agents can associate

any action to any state (as, by definition, they already have a consensus).

For the issues in J \ J c, it sufficies to construct a strategy which progressively prop-

agates, w.l.o.g., the positive opinion on all the issues in J in the network (an equivalent

strategy would propagate the negative opinion on the issues, or a mix of both). The

assumption of Inf (i) 6= ∅ for all i ∈ N prevents the case where two sources have opposite

opinions on the issues in J , which would make the consensus among all agents impossible

(as they can never change their opinions). Hence, construct a strategy profile Q such

that Qi(H0) = exert(p) for all i and p such that HB
i,0(p) = 1 and Qk(H0) = quiet(q) for all

k and q such that HB
k,0(q) = 0. The stratregy is defined analogously for all other states

until consensus is reached, and then it can just associate action skip to the issues in J .

21



By this coordination effort of the agents, all the γi = issue−cons(N , J) will be satisfied,

thus making Q a Nash equilibrium.

The above proof can easily be adapted to the case where the agents want to reach

specifically a positive or negative consensus (i.e., the goals 32pcons(N , J) and 32ncons(N , J)),

provided that there is at least one agent holding a positive or negative opinion on the

issues in S0; as well as to the case where the agents want to reach a global consensus on

all issues (i.e., the goal cons(N , J)), provided that they are currently disagreeing on all

issues in J (i.e., J c = ∅).
For the complete information model, we thus see how limited (and sometimes counter-

intuitive) results can be obtained on the existence of classical solution concepts, depending

on the network structure and the goal of the agents. In the next section we thus move to

the study of computational complexity problems related to existence of solution concepts

in influence games.

5 Computational complexity and solution concepts

We now study the computational complexity of reasoning about solution concepts in

influence games. Our results will rely on reductions to well-known logical formalisms, such

as ATL, LTL, and graded strategy logic. The results presented in this section show upper

bounds on the main strategic reasoning tasks associated to influence games: deciding if a

game admits a winning strategy or a unique Nash equilibrium, and testing if a given profile

of strategies is a Nash equilibrium. We will consider three complexity classes: PSPACE,

the class of problems solvable by a Turing machine in polynomial space, 2-EXPTIME and

3-EXPTIME, the class of problems solvable in time that is doubly (triply, respectively)

exponential in the size of the input.7

5.1 Problem definitions

We provide the formal definitions of the complexity problems we are interested in studying

for influence games for both information models, in line with the solution concepts we

introduced in Section 3.2, and we provide complexity results.

Let x ∈ {subjective, objective}. The first problem we define takes as input an influence

game and an agent, and it asks whether there exists a subjective/objective winning

strategy for that agent in the game:

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn), i ∈ N .

E-WINNINGx
i (F ): Is there a x winning strategy Qi for agent i in IG?

7For a general reference on complexity theory see, e.g., Arora and Barak (2009).
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Next, we define the problem of checking if a strategy profile is a subjective/objective

Nash equilibrium in a given influence game:

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn), Q.

M-NASHx(F ): Is Q a x Nash equilibrium of IG?

Then, given an influence game, we define the problems of existence and uniqueness of a

subjective/objective Nash equilibrium:

INPUT: IG = (N , I, E, F, S0, γ1, . . . , γn).

E-NASHx(F ): Is there some x Nash equilibrium Q of IG?

U-NASHx(F ): Is there a unique x Nash equilibrium Q of IG?

Observe that F is not part of the input but a parameter of the problems defined above,

since, as we shall see later, different aggregation functions may give rise to computational

problems in different complexity classes.

5.2 Existence of winning strategy

We recall here the syntax and semantics of Alternating-time Temporal Logic ATL. The

language of ATL is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈〈C〉〉© ϕ | 〈〈C〉〉(ϕ1Uϕ2)

where C ranges over 2N and p ranges over a set of atomic propositions Atm. The formula

〈〈C〉〉©ϕ is read “coalition C has the capability to ensure that ϕ is going to be true in the

next state, regardless of what the agents outside C do”, and the formula 〈〈C〉〉(ϕ1Uϕ2)

is read “coalition C has the capability to ensure that ϕ1 will be true until ϕ2 is true,

regardless of what the agents outside C do”.

We consider the standard ATL semantics in terms of concurrent game structures:

Definition 20. A concurrent game structure is a tuple G = (W ,M, R, T,Val) where

W is a set of worlds or states, M is a set of moves, function R : N ×W −→ 2M \ ∅
defines a nonempty repertoire of moves for each agent at each world, T :W×Mn −→W
is a transition function mapping a world w and a move profile m = (m1, . . . ,mn) to the

successor world T (w,m), and Val :W −→ 2Atm is a valuation function.

In ATL, a strategy for player i is a function fi that maps every finite sequence of

worlds π = w0 . . . wn in W+ (i.e., a path) to a move fi(π) ∈ R(i, wn) available to agent i

at the end of path π.8 A strategy for coalition C is a function GC that maps every agent

8Observe that ATL does not distinguish a semantics based on perfect-recall strategies from a semantics
based on memory-less strategies, i.e., a function mapping a world to the set of moves available in this
world. Specifically, the set of ATL validities with a semantics based on perfect-recall strategies and the
set of ATL validities with a semantics based on memory-less strategies are the same.
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i ∈ C to a strategy GC(i) for i. The set of strategies for coalition C is denoted by StrC .

We write G instead of GN , and Str instead of StrN .

A move profile is used to determine a successor of a world using the transition function

T . We define the set of available move profiles at world w as follows:

P(w) = {(m1, . . . ,mn) ∈Mn | mi ∈ R(i, w) for all i ∈ N}

The set of possible successors of w is defined as Succ(w) = {T (w,m) | m ∈ P(w)}. An

infinite sequence λ = w0w1w2 . . . of worlds from W is called a computation if wk+1 ∈
Succ(wk) for all k ≥ 0. The k-th component wk in λ is denoted by λ[k]. Moreover, for

every computation λ = w0w1w2 . . . and for every positive integer k, Prf (λ, k) = w0 . . . wk

denotes the prefix of λ of length k.

The set O(w,GC) denotes all computations λ = w0w1w2 . . . such that w0 = w and,

for every k ≥ 0, there is m = (m1, . . . ,mn) ∈ P(wk) such that GC(i)(w0 . . . wk) = mi for

all i ∈ C, and T (w,m) = wk+1. Notice that O(w,G) is a singleton.

Truth conditions of ATL are defined relative to a CGS G = (W ,M, R, T,Val) and a

world w ∈ W—we omit the standard truth conditions for Boolean formulas:

G, w |= 〈〈C〉〉© ϕ ⇔ there exists GC ∈ StrC such that

G, λ[1] |= ϕ for all λ ∈ O(w,GC)

G, w |= 〈〈C〉〉(ϕ1Uϕ2) ⇔ there is GC ∈ StrC such that for

all λ ∈ O(w,GC) there is k ≥ 0

such that G, λ[k] |= ϕ2 and

G, λ[h] |= ϕ1 for all 0 ≤ h < k.

The following theorem gives an upper bound on the complexity of the problem of

checking the existence of an objective winning strategy for perfect-recall strategies and

for the unanimous aggregation procedure under complete information.

Theorem 1. Let x = objective. Then, E-WINNINGx
i (F

U
i ) for perfect-recall strategies

is in EXPTIME.

Proof (sketch). We reduce E-WINNINGx
i (F

U
i ) to the model checking problem of ATL

where Atm = {op(i, p) | i ∈ N and p ∈ I} ∪ {inf(i, p) | i ∈ N and p ∈ I}. First

of all, recall our assumption that goal formulas in influence games are of the form ©ϕ
and ϕUψ, for any ϕ and ψ in LLTL–I. Moreover, observe that we can generate the CGS

GIG = (W ,M, R, T,Val) corresponding to the influence game IG as follows:

• W = S,

• M = A,
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• for all i ∈ N and w ∈ W , R(i, w) =M,

• for all w ∈ W and a ∈ An, T (w,a) = succ(w,a),

• for all op(i, p), inf(i, p) ∈ Atm and w ∈ W , op(i, p) ∈ Val(w) iff Bi(p) = 1, inf(i, p) ∈
Val(w) iff Vi(p) = 1.

Secondly, it is easy to verify that the answer to the problem E-WINNINGx
i (F

U
i ) is

positive if and only if GIG , w0 |= 〈〈{i}〉〉γi with w0 = S0. Alur et al. (2002, Theorem 5.2)

show that the model checking problem for ATL can be solved in time O(m · l) where m

is the number of transitions in the CGS (which is polynomial in the size of W and M)

and l is the size of the formula. Since the number of states S is exponential in the size of

an influence game (more precisely, it is O(2|I| × |N |) where I is the set of issues and N
is the set of agents), we obtain the upper bound.

5.3 Nash membership

We study here the complexity of the M-NASHx(F ) problem, for memory-less strategies.

We begin by translating a memory-less strategy in the language of LTL–I defined in

Section 2.4. A conjunction of literals α(S) can be defined to uniquely identify a state S:

α(S) will specify the tacit opinion of all individuals and their influence function. For an

action ai = (exert(J), quiet(J ′)) for agent i, let βi(a) be the following formula:

βi(a) =
∧
p∈J

©inf(i, p) ∧
∧
q∈J ′
©¬inf(i, q).

In case a = skip we let βi(a) = >. Given a memory-less strategy Qi, we construct the

following formula:

τi(Qi) =
∧
S∈S

α(S)→ βi(Qi(S)).

If Q is a strategy profile, let τ(Q) =
∧
i∈N τi(Qi). We now need to encode the unanimous

aggregation function into a formula as well.

Consider the following formula unan(i, p):

© op(i, p)↔([ ∧
j∈Inf (i)

©¬inf(j, p) ∧ op(i, p)
]
∨

[ ∨
j∈Inf (i)

© inf(j, p) ∧
∧

j∈Inf (i)

(© inf(j, p)→ op(j, p))
]
∨

[ ∨
j,z∈Inf (i):

(© inf(j, p) ∧© inf(z, p)∧

op(j, p) ∧ ¬op(z, p)) ∧ op(i, p)
])
.
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as well as the following formula unan(i,¬p):

©¬op(i, p)↔([ ∧
j∈Inf (i)

©¬inf(j, p) ∧ ¬op(i, p)
]
∨

[ ∨
j∈Inf (i)

© inf(j, p) ∧
∧

j∈Inf (i)

(© inf(j, p)→ ¬op(j, p))
]
∨

[ ∨
j,z∈Inf (i):

(© inf(j, p) ∧© inf(z, p)∧

¬op(j, p) ∧ op(z, p)) ∧ ¬op(i, p)
])
.

If the influencers of agent i are unanimous, then agent i’s opinion should be defined

according to the three cases described in Definition 6. Recall that, while actions take one

time unit to be performed—hence the © operator in front of inf(j, p), the diffusion of

opinions is simultaneous. Let now:

τ(FU
i ) =

∧
{i∈N|Inf (i)6=∅}

∧
p∈I

(unan(i, p) ∧ unan(i,¬p))

be the formula encoding the transition process defined by the opinion diffusion. The

formula τ(FU
i ) is polynomial in both the number of individuals and the number of issues—

in the worst case it is quadratic in the number of agents and linear in the number of issues.

We are now ready to prove the following:

Theorem 2. Let x = {objective, subjective}. M-NASHx(FU
i ) for memory-less strategies

is in PSPACE.

Proof. We give the proof for the subjective case, thus under incomplete information.

The case for complete information is straightforward from the given proof. Let Q be a

memory-less strategy profile for game IG . The following algorithm can be used to check

whether Q is a subjective Nash equilibrium. For all individuals i ∈ N , and for all states

S ∈ [S0]i, we check the following entailment:

α(S) ∧ τ(Q) ∧ τ(FU
i ) |=LTL γi

in the language LLTL–I of LTL built out of the set of propositions {op(i, p) | i ∈ N and p ∈
I} ∪ {inf(i, p) | i ∈ N and p ∈ I}.

If for a given agent i and state S the previous entailment is not verified, we consider

all the possible strategies Q′i 6= Qi for agent i—there are exponentially many of them,

but each one can be specified in space polynomial in the size of the input—and check the
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following entailment:

α(S) ∧ τ(Q−i, Q
′
i) ∧ τ(FU

i ) |=LTL γi

If the answer is positive we output NO; otherwise, we proceed until all strategies and

all individuals have been considered (as well as the associated initial states).

The entailment for LTL can be reduced to the problem of checking validity in LTL.

Indeed, the following holds:

ψ |=LTL ϕ iff |=LTL 2ψ → ϕ.

Since the problem of checking validity in LTL can be solved in PSPACE (Sistla and Clarke,

1985), we obtain that M-NASHx is in PSPACE.

Theorem 2 can be easily generalized to all aggregation procedures that can be axiom-

atized by means of polynomially many formulas in LLTL–I, such as quota rules. This is

not the case for all aggregation procedures: the majority rule would for instance require

an exponential number of formulas, one for each subset of influencers forming a relative

majority, against the constraint of using polynomial space.

Observe also that the reduction described in this setting can be used to check the ex-

istence of Nash equilibria (and uniqueness, or existence of winning strategies), by model-

checking an LTL formula for each strategy profile. However, such LTL formulas would be

doubly exponential in the size of the game description.

5.4 Nash existence and uniqueness

Strategy logic SL is a logic of strategic reasoning that embeds ATL (Mogavero et al.,

2010), but that allows to quantify over strategies in a more flexible way. The flexibility

of SL is mainly due to the fact that it has variables for strategies that are associated to

specific agents with a binding operator.

An extension of SL by graded quantifiers over tuples of strategy variables has also

been presented (Aminof et al., 2016). We here focus on this SL extension, denoted by

G−SL, whose language is defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1Uϕ2 | 〈〈x1, . . . , x`〉〉≥kϕ |
[i 7→ x]ϕ

where p ranges over Atm, i ranges over N , k and ` range over the set of positive integers,

x1, . . . , x` range over a countable infinite set of variables Var with the additional con-

straint that xh 6= xh′ for all 1 ≤ h, h′ ≤ ` such that h 6= h′. We read 〈〈x1, . . . , x`〉〉≥kϕ as

“there exist at least k different `-tuples of strategies ensuring ϕ” while [i 7→ x]ϕ is read
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“if agent i selects strategy x then ϕ will hold”. Formulas ©ϕ and ϕ1Uϕ2 have the same

reading as in LTL. Moreover, the basic SL operator 〈〈x〉〉 abbreviates 〈〈x〉〉≥1 in G−SL.

As for ATL, SL semantics is based on concurrent game structures. However, to pro-

vide an interpretation of SL some extra components are needed. We denote with X an

assignment function mapping agents and variables in N ∪ Var to strategies in Str . For

every assignment function X, strategy G ∈ Str and e ∈ N ∪ Var, we write X[e 7→ G] to

denote the assignment function that differs from X only in the fact that e maps to G.

We extend this definition to tuples of agents or variables −→e = (e1, . . . , e`) and tuples of

strategies
−→
G = (G1, . . . , G`) with eh 6= eh′ for h 6= h′, by denoting with X[−→e 7→

−→
G ] the

assignment function differing from X only in that eh maps to Gh for each 1 ≤ h ≤ `.

Furthermore, for every assignment function X, we write GX to denote the strategy

in Str generated by the assignment function X. That is, GX is the strategy in Str such

that, for all i ∈ N , GX(i) = X(i)(i). For every world w ∈ W , we write λw,X to denote

the computation starting in w generated by the assignment function X. More precisely,

λw,X denotes the computation w0w1 . . . such that O(w,GX) = {(w0w1 . . .)}. For every

path π, we write Xπ to denote the assignment function obtained by shifting all strategies

in the image of X by π. For all e ∈ N ∪ Var, i ∈ N and π, π′ ∈ W+, we thus have:

Xπ(e)(i)(π′) = X(e)(i)(π · π′)

Any G−SL formula ϕ is evaluated relative to a CGS G, a world w ∈ W and assignment

function X. Let −→x = (x1, . . . , x`). Then:

G, w,X |= [i 7→ x]ϕ ⇔ G, w,X[i 7→ X(x)] |= ϕ

G, w,X |= 〈〈−→x 〉〉≥kϕ ⇔ there exists k many `-tuples
−→
G 1, . . . ,

−→
G k of strategies

such that for all 1 ≤ h, h′ ≤ k

if
−→
Gh 6=

−→
Gh′ then h 6= h′

and G, w,X[−→x 7→
−→
Gh] |= ϕ

G, w,X |=©ϕ ⇔ G, λw,X [1], XPrf (λw,X ,1) |= ϕ

G, w,X |= ϕ1Uϕ2 ⇔ there exists k ≥ 0 such that

G, λw,X [k], XPrf (λw,X ,k) |= ϕ2

and for all 0 ≤ h < k we have

G, λw,X [h], XPrf (λw,X ,h) |= ϕ1

The following theorem highlights the high complexity of checking existence and unique-

ness of Nash equilibria in influence games.

Theorem 3. Let x = objective. E-NASHx(FU
i ) and U-NASHx(FU

i ) for perfect-recall
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strategies are both in 3EXPTIME.

Proof (sketch). As in the proof of Theorem 1, we generate the CGS GIG corresponding

to the influence game IG . Following Aminof et al. (2016), we reduce E-NASHx(FU
i )

and U-NASHx(FU
i ) to the problems of checking GIG , w0 |= E-NASHIG and GIG , w0 |=

U-NASHIG respectively, with w0 = S0, where:

E-NASH = 〈〈x1, . . . , xn〉〉≥1ψNash

U-NASH = E-NASH ∧ ¬〈〈x1, . . . , xn〉〉≥2ψNash

with:

ψNash =[1 7→ x1] . . . [n 7→ xn]
∧

1≤i≤n

(
(〈〈y〉〉[i 7→ y]γi)→ γi

)
.

Aminof et al. (2016, Theorems 3.1) show that the model checking problems for the

G−SL formulas E-NASH and U-NASH can be decided in 2EXPTIME (with respect to

the size of the CGS and the size of the agents’ temporal goals γ1, . . . , γn). As in the

proof of Theorem 1, we obtain the desired bound by recalling that the size of the CGS

generated by an influence game is exponential in the size of the game.

Note that existence and uniqueness of Nash equilibria have been proved to be in

2EXPTIME in the context of iterated Boolean games (Gutierrez et al., 2015). We be-

lieve that the discrepancy between these results and Theorem 3 is due to the different

representations of strategies we use. Our perfect-recall strategies may not have a finite

representation, while in the setting of iterated Boolean games strategies are deterministic

finite state machines having a finite representation.

6 Conclusions and future work

We have presented here two models of opinion diffusion on a network, where the agents

try to achieve their individual goals by deciding to enforce (or not) their opinions over

the agents they can influence. The difference in the two models lies in what is common

knowledge for the agents with respect to their opinions (at least until they decide to use

their influence for the first time). In order to model the strategic dynamics of agents over

such networks we introduced influence games and found agents to be greatly empowered

by the basic action of deciding whether to enforce their opinion, as reflected by our results

on the interaction between goals, network structure and solution concepts.

From a computational complexity point of view, we found that for memory-less strate-

gies checking whether a given strategy profile is a Nash equilibrium is in PSPACE, for both

the complete and the incomplete information model, as it is the model-checking problem

29



of LTL in which individual goals are expressed. Moreover, for perfect-recall strategies

and complete information the problems of checking existence of a winning strategy is in

EXPTIME, while existence and uniqueness of Nash equilibrium are both in 3EXPTIME.

An obvious extension of this work would be to endow agents with additional strategic

actions, e.g., lying about their tacit opinions, in line with the work by Christoff and

Hansen (2015). Secondly, changing the aggregation procedures used to update agents’

opinions would have a great impact on the game-theoretic structures of our setting, as

well as on the computational complexity of reasoning about solution concepts.
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