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HAL is

• the everywhere asymptotics of the flow X, • the almost-everywhere asymptotics of the flow X,

• the global rectification of the vector field b in Y d ,

• the ergodicity of the flow related to an invariant probability measure which is absolutely continuous with respect to Lebesgue's measure, • the unit set condition for Herman's rotation set C b composed of the means of b related to the invariant probability measures, • the unit set condition for the subset D b of C b composed of the means of b related to the invariant probability measures which are absolutely continuous with respect to Lebesgue's measure, • the homogenization of the linear transport equation with oscillating data and the oscillating velocity b(x/ε) when b is divergence free.

The main and surprising result of the paper is that the almost-everywhere asymptotics of the flow X and the unit set condition for D b are equivalent when D b is assumed to be non empty, and that the two conditions turn to be equivalent to the homogenization of the transport equation when b is divergence free. In contrast, using an elementary approach based on classical tools of PDE's analysis, we extend the two-dimensional results of Oxtoby and Marchetto to any d-dimensional Stepanoff flow: this shows that the ergodicity of the flow may hold without satisfying the everywhere asymptotics of the flow.

Introduction

In this paper we study various aspects of the ODE's flow X in the torus

Y d    ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x ∈ R d , (1.1) 
where b is a Z d -periodic vector field in

C 1 (R d ) d (denoted by b ∈ C 1 (Y d ) d
), which completely determines the flow X.

First, we are interested in the asymptotics of the flow X depending on whether it can hold almost-everywhere (a.e.), or everywhere (e.) in Y d , namely

∃ lim t→∞ X(t, x) t µ-a.e. x ∈ Y d or ∃ lim t→∞ X(t, x) t ∀ x ∈ Y d ,
for some probability measure µ on Y d . If the flow X is ergodic with respect to some invariant probability measure µ, i.e. that µ agrees with its image measure µ X(t,•) for any t ∈ R (see Section 1.2 below), then Birkhoff's theorem (see, e.g., [ The non empty set I b composed of the invariant probability measures for the flow X plays a fondamental role in ergodic theory. Associated with the set I b , the rotations sets of [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF] are strongly connected to the asymptotic behavior of the flow. In particular, the compact convex Herman rotation set [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] defined by which is a priori less interesting than Herman's rotation set, since it may be empty and it is not compact in general. But surprisingly, the set D b characterizes the almost-everywhere asymptotics of the flow, which is the first result of our paper. More precisely, assuming the existence of an a.e. positive invariant density function with respect to Lebesgue's measure, we prove that for any ζ ∈ R d (see Theorem 2.1),

D b = {ζ} ⇔ lim t→∞ X(t, x) t = ζ a.e. x ∈ Y d . (1.5)
On the other hand, as a natural association with flow (1.1), we consider the linear transport equation with oscillating data

   ∂u ε ∂t (t, x) -b(x/ε) • ∇ x u ε (t, x) = f (t, x, x/ε) in (0, T ) × R d u ε (0, x) = u 0 (x, x/ε) for x ∈ R d , (1.6) 
where f (t, x, y) and u 0 (x, y) are suitably regular and Z d -periodic functions with respect to variable y. In their famous paper [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] DiPerna and Lions showed the strong proximity between ODE's flows (1.1) and transport equations, in particular when the velocity has a good divergence. In the context of homogenization, the linear transport equation with oscillating data (1.6) as ε → 0 was widely studied in the literature. Tartar [START_REF] Tartar | Nonlocal effects induced by homogenization[END_REF] proved that in general homogenization of first-order equations leads to nonlocal effects. These effects were studied carefully in [START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF] for equation (1.6). In order to avoid any anomalous effective effect, namely to get a homogenized transport equation of same nature, it is thus necessary to assume some additional condition. Assuming that the vector field b is divergence free and the associated flow X is ergodic, Brenier [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF] first obtained the weak convergence of the solution u ε to the transport equation. Following this seminal work, the homogenization of the transport equation was obtained for instance in [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF][START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] with various conditions, but which are all based on the ergodicity of the flow. Extending the result of [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF] with ergodicity arguments, Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations, Ergodic Theory Dynam[END_REF] proved the convergence of the solution to the two-dimensional transport equation (1.6) with f (t, x, y) = 0 and u 0 (x, y) independent of y, under the sole assumption that b is a non vanishing field in C 1 (Y 2 ) 2 . More recently, the homogenization of the transport equation with f (t, x, y) = 0 and u 0 (x, y) independent of y, was derived in [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF] (see [START_REF] Briane | Homogenization of linear transport equations. A new approach[END_REF] for a non periodic framework) under the global rectification of the vector field b, which is not an ergodic condition, i.e. the existence of a C 2 -diffeomorphism Ψ on Y d and of a vector ξ ∈ R d such that

∀ y ∈ Y d , ∇Ψ(y) b(y) = ξ. (1.7)
This result was extended in [START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF] replacing the classical ergodic condition by the unit rotation set condition #C b = 1, or, equivalently, the everywhere asymptotics (1.3) of the flow.

In the present paper, we prove (see Theorem 3.2) that the homogenization of transport equation (1.6) with a divergence free velocity field, holds if, and only if, one of the equivalent conditions of (1.5) is satisfied. It is a quite new result beyond all the former results based on the sufficient conditions induced either by the ergodic condition, or by the unit Herman's rotation set condition. The proof of this result which is partly based on two-scale convergence [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF][START_REF] Allaire | Homogenization and two-scale convergence[END_REF], clearly shows (see Remark 3.1) the difference between the ergodic approach of [START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF], and the present approach through the unit set condition (1.5) which turns out to be optimal.

Therefore, we establish strong connections between the three following a priori foreign notions: the oscillations in the transport equation (1.6), the means of b only related to the invariant measures for the flow X which are absolutely continuous with respect to Lebesgue's measure, and finally the almost-everywhere asymptotics of X. More generally, owing to this new material we do build the complete array of all logical connections between the following seven conditions (see Theorem 4.1 and Figure 1 below):

• the global rectification (1.7) of the vector field b, • the ergodicity of the flow X (1.1) related to an invariant probability measure which is absolutely continuous with respect to Lebesgue's measure, • the everywhere asymptotics of the flow X in (1.3),

• the almost-everywhere asymptotics of the flow X in (1.5),

• the unit set condition for Herman's rotation set C b (1.2),

• the unit set condition for D b (1.4),

• the homogenization of the transport equation (1.6) when b is divergence free in R d .

In addition, the following pairs of conditions cannot be compared in general:

-the global rectification of b and the ergodicity of X, -the ergodicity of X and the everywhere asymptotics of X, -the ergodicity of X and the unit set condition for C b .

The proof of the three last items involves the Stepanoff flow [START_REF] Stepanoff | Sur une extension du théorème ergodique[END_REF] (see Example 4.1) in which the vector field b has a non empty finite zero set, and is parallel to a fixed direction ξ ∈ R d with incommensurable coordinates. Using a purely ergodic approach, Oxtoby [START_REF] Oxtoby | Stepanoff flows on the torus[END_REF] and later Marchetto [START_REF] Marchetto | Stepanoff flows on orientable surfaces[END_REF] proved that any two-dimensional flow homeomorphic to a Stepanoff flow admits a unique invariant probability measure µ for the flow which does not load the zero set of b, that µ is absolutely continuous with respect to Lebesgue's measure on Y 2 , and finally that the flow is ergodic with respect to µ. Moreover, the set D b is a unit set, but the rotation set C b is a closed line set of R 2 , possibly not reduced to a unit set. We extend (see Proposition 4.1) the two-dimensional results of [START_REF] Oxtoby | Stepanoff flows on the torus[END_REF][START_REF] Marchetto | Stepanoff flows on orientable surfaces[END_REF] on the Stepanoff flow to any dimension d ≥ 2, thanks to a new and elementary approach based on classical tools of PDE's analysis. Finally, owing to another two-dimensional flow (see Example 4.2 and Proposition 4.4) we obtain that the set D b may be either empty or a singleton, while the rotation set C b is a closed line set of R 2 possibly not reduced to a singleton.

Notation

• (e 1 , . . . , e d ) denotes the canonical basis of R d .

• " • " denotes the scalar product and | • | the euclidian norm in R d .

• Y d , d ≥ 1, denotes the d-dimensional torus R d /Z d , which is identified to the unit cube [0, 1) d in R d . • C k c (R d ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions in C k (R d ) with compact support in R d . • C k (Y d ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ C k (R d ) which are Z d -periodic, i.e. ∀ k ∈ Z d , ∀ x ∈ R d , f (x + k) = f (x).
(1.8)

• The abbreviations "a.e." for almost everywhere, and "e." for everywhere will be used throughout the paper. The simple mention "a.e." refers to the Lebesgue measure on R d .

• dx or dy denotes the Lebesgue measure on R d .

• For a Borel measure µ on Y d , extended by Z d -periodicity to a Borel measure μ on R d (see definition (1.21) below), a μ-measurable function f :

R d → R is said to be Z d -periodic μ-a.e. in R d , if ∀ k ∈ Z d , f (• + k) = f (•) μ-a.e. on R d .
(1.9)

• For a Borel measure µ on Y d , L p (Y d , µ), p ≥ 1, denotes the space of the µ-measurable functions f : • D (R d ) denotes the space of the distributions on R d .

Y d → R such that Y d |f (x)| p dµ(x) < ∞. • L p (Y d ), p ≥ 1,
• For a Borel measure µ on Y d and for

f ∈ L 1 (Y d , µ), f µ denotes the µ-mean of f on Y d f µ := Y d f (y) dµ(y), (1.10) 
which is simply denoted by f when µ is Lebesgue's measure. The same notation is used for a vector-valued function in L 1 (Y d , µ) d .

• The notation I b in (1.18) will be used throughout the paper.

Definitions and recalls

Let b : R d → R d be a vector-valued function in C 1 (Y d ) d . Consider the dynamical system    ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x ∈ R d .
(

The solution X(•, x) to (1.11) which is known to be unique (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.4]) induces the dynamic flow X associated with the vector field b, defined by

X : R × R d → R d (t, x) → X(t, x), (1.12) 
which satisfies the semi-group property

∀ s, t ∈ R, ∀ x ∈ R d , X(s + t, x) = X(s, X(t, x)). (1.13)
The flow X is actually well defined in the torus Y d , since

∀ t ∈ R, ∀ x ∈ R d , ∀ k ∈ Z d , X(t, x + k) = X(t, x) + k. (1.14)
Property (1.14) follows immediately from the uniqueness of the solution X(•, x) to (1.11) combined with the Z d -periodicity of b.

A possibly signed Borel measure µ on Y d is said to be invariant for the flow X if For a non negative Borel measure µ on Y d , a function f ∈ L 1 (Y d , µ) is said to be invariant for the flow X with respect to µ, if

∀ t ∈ R, ∀ ψ ∈ C 0 (Y d ),
∀ t ∈ R, f • X(t, •) = f (•) µ-a.e. in Y d . (1.16)
The flow X is said to be ergodic with respect to some invariant probability measure µ, if

∀ f ∈ L 1 (Y d , µ), invariant for X w.r.t. µ, f = f µ µ-a.e. in Y d .
(1.17)

Then, define the set

I b := µ ∈ M p (Y d ) : µ invariant for the flow X , (1.18) 
where M p (Y d ) is the set of probability measures on Y d . From the set of invariant probability measures we define the so-called Herman [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] rotation set

C b := b µ = Y 2 b(y) dµ(y) : µ ∈ I b , (1.19) 
and its subset

D b := σ b = Y 2 b(y) σ(y) dy : σ ∈ L 1 (Y d ) and σ(y) dy ∈ I b (1.20)
which is restricted to the invariant probability measures which are absolutely continuous with respect to Lebesgue's measure. If there is no such invariant measure, then the set D b is empty (see Remark 4.1).

We have the following characterization of an invariant measure known as Liouville's theorem, which can also be regarded as a divergence-curl result with measures (see [START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF]Proposition 2.2] and [8, Remark 2.2] for further details).

Proposition 1.1 (Liouville's theorem) Let b ∈ C 1 (Y d ) d , and let µ ∈ M (Y d ). We define the Borel measure μ ∈ M loc (R d ) on R d by R d ϕ(x) dμ(x) = Y d ϕ (y) dµ(y), where ϕ (•) := k∈Z d ϕ(• + k) for ϕ ∈ C 0 c (R d ). (1.21)
Then, the three following assertions are equivalent:

(i) µ is invariant for the flow X, i.e. (1.15) holds,

(ii) μ b is divergence free in the space R d , i.e. div (μ b) = 0 in D (R d ), (1.22) 
(iii) µ b is divergence free in the torus Y d , i.e. ∀ ψ ∈ C 0 (Y d ), Y d b(y) • ∇ψ(y) dµ(y) = 0. (1.23) Remark 1.1 Since any function ψ ∈ C ∞ (Y d ) can be represented as a function ϕ for a suitable function ϕ ∈ C ∞ c (R d ) (see [5, Lemma 3.5]
), we deduce that the mapping

M (Y d ) → ν ∈ M loc (R d ) : ∀ ϕ ∈ C 0 c (R d ), ϕ = 0 ⇒ R d ϕ(x) dν(x) = 0 µ → μ
is bijective. Therefore, the measure μ of (1.21) completely characterizes the measure µ.

By virtue of [8, Proposition 2.1] (see also [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]) Herman's set C b satisfies the following result.

Proposition 1.2 ([8, 18]) Let b ∈ C 1 (Y d ) d . Then, we have for any ζ ∈ R d , C b = {ζ} ⇔ ∀ x ∈ Y d , lim t→∞ X(t, x) t = ζ. (1.24)
2 The rotation subset D b

We have the following characterization of the singleton condition satisfied by D b , which has to be compared to the one satisfied by C b in Proposition 1.2 above.

Theorem 2.1 Let b ∈ C 1 (Y b
) d be such that there exists an a.e. positive function

σ 0 ∈ L 1 (Y d ) with σ 0 = 1, satisfying div(σ 0 b) = 0 in R d .
Then, the flow X associated with b satisfies for any

ζ ∈ R d , D b = {ζ} ⇔ lim t→∞ X(t, x) t = ζ, a.e. x ∈ Y d . (2.1)
Proof. First of all, by virtue of the Birkhoff theorem applied with the invariant measure σ 0 (x) dx with the a.e. positive function

σ 0 ∈ L 1 (Y d ), combined with the uniform boundedness of X(t, x)/t for t ∈ R and x ∈ Y d , there exists a function ξ ∈ L ∞ (Y d ) which is invariant for the flow X with respect to Lebesgue's measure, such that lim t→∞ X(t, x) t = ξ(x) a.e. x ∈ Y d .
Hence, by Lebesgue's theorem we get that for any invariant measure σ(x) dx

with σ ∈ L 1 (Y d ), Y d b(x) σ(x) dx = lim t→∞ 1 t t 0 Y d b(X(s, x)) σ(x) dx ds = Y d lim t→∞ X(t, x) -x t σ(x) dx = Y d ξ(x) σ(x) dx. (2.2) 
(⇒) Assume that D b = {ζ} for some ζ ∈ R d . Then, we have for any invariant measure σ(x) dx

with σ ∈ L 1 (Y d ), Y d b(x) σ(x) dx = ζ Y d σ(x) dx, which by (2.2) implies that Y d (ξ(x) -ζ) σ(x) dx = 0. (2.3)
On the other hand, since the non negative and the non positive parts (ξ -ζ) ± of ξ -ζ are also invariant functions for the flow X with respect to Lebesgue's measure, by Lemma 2.1 below the measures (ξ(x) -ζ) ± σ 0 (x) dx are invariant for X. Therefore, putting the measures

σ(x) dx = (ξ(x) -ζ) ± σ 0 (x) dx in equality (2.3) we get that Y d (ξ(x) -ζ) (ξ(x) -ζ) ± σ 0 (x) dx = ± Y d (ξ(x) -ζ) ± 2 σ 0 (x) dx = 0,
which due to the a.e. positivity of σ 0 , implies the right hand-side of (2.1).

(⇐) Conversely, we deduce immediately from (2.2) that for any invariant measure σ(x) dx with

σ ∈ L 1 (Y d ), Y d b(x) σ(x) dx = ζ Y d σ(x) dx, which yields D b = {ζ}. Lemma 2.1 Let b ∈ C 1 (Y d
) d be a vector field in R d such that there exists an a.e. positive function

σ 0 ∈ L 1 (Y d ) with σ 0 = 1, satisfying div(σ 0 b) = 0 in R d . Then, a function f in L ∞ (Y d )
is invariant for the flow X with respect to Lebesgue's measure if, and only if, the signed measure f (x) σ 0 (x) dx is invariant for X.

Proof. First of all, for any t ∈ R,

X(t, •) is a C 1 -diffeomorphism on R d with reciprocal X(-t, •),
as a consequence of the semi-group property (1.13) satisfied by the flow X. Moreover, by virtue of Liouville's theorem the jacobian determinant of X(t, •) is given by

∀ t ∈ R, ∀ x ∈ Y d , J(t, x) := det ∇ x X(t, x) = exp t 0 (div b)(X(s, x)) ds . (2.4)
Since by Proposition 1.1 the measure σ 0 (x) dx = σ 0 (x) dx (due to the Z d -periodicity of σ 0 ) is invariant for the flow X, we have for any function

ϕ ∈ C 0 c (R d ) and any t ∈ R, ϕ (X(-t, •)) = ϕ(X(-t, •)) by (1.14),
and

R d ϕ(x) σ 0 (x) dx = Y d ϕ (x) σ 0 (x) dx = Y d ϕ (X(-t, x)) σ 0 (x) dx = Y d ϕ(X(-t, x)) σ 0 (x) dx = R d ϕ(X(-t, x)) σ 0 (x) dx = x=X(t,y) R d ϕ(y) σ 0 (X(t, y)) J(t, y) dy.
This implies that the jacobian determinant J(t, •) satisfies the relation

∀ t ∈ R, σ 0 (X(t, y)) J(t, y) = σ 0 (y) a.e. y ∈ R d . (2.5) Now, let f ∈ L ∞ (Y d ).
From (2.5) we deduce that for any function

ϕ ∈ C 0 c (R d ) and any t ∈ R, R d ϕ(X(-t, x)) f (x) σ 0 (x) dx = x=X(t,y) R d ϕ(y) f (X(t, y)) σ 0 (X(t, y)) J(t, y) dy = R d ϕ(y) f (X(t, y)) σ 0 (y) dy.
By virtue of Remark 1.1 combined with the Z d -periodicity of the function f , the former equality also reads as

∀ ψ ∈ C 0 (Y d ), ∀ t ∈ R, Y d ψ(X(-t, x)) f (x) σ 0 (x) dx = Y d ψ(x) f (X(t, x)) σ 0 (x) dx. (2.6)
Therefore, due to the a.e. positivity of σ 0 , the function f ∈ L ∞ (Y d ) is invariant for the flow X with respect to Lebesgue's measure, i.e. f (X(•, x)) = f (x) a.e. x ∈ Y d , if, and only if, the signed measure f (x) σ 0 (x) dx is invariant for the flow X.

A NSC for homogenization of the transport equation

First of all, recall the definition of the two-scale convergence introduced by Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and Allaire [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], which is easily extended to the time dependent case.

Definition 3.1 Let T ∈ (0, ∞). a) A sequence u ε (t, x) in L 2 ((0, T ) × R d ) is said to two-scale converge to a function U (t, x, y) in L 2 ([0, T ] × R d ; L 2 (Y d )), if we have for any function ϕ ∈ C 0 c ([0, T ] × R d ; C 0 (Y d )) with compact support in [0, T ] × R d × Y d , lim ε→0 (0,T )×R d u ε (t, x) ϕ(t, x, x/ε) dtdx = (0,T )×R d ×Y d U (t, x, y) ϕ(t, x, y) dtdxdy, (3.1) b) According to [1, Definition 1.4] any function ψ(t, x, y) ∈ C 0 c ([0, T ] × R d ; L 2 (Y d )) with compact support in [0, T ] × R d × Y d , is said to be an admissible function for two-scale convergence, if (t, x) → ψ(t, x, x/ε) is Lebesgue measurable and lim ε→0 (0,T )×R d ψ 2 (t, x, x/ε) dtdx = (0,T )×R d ×Y d ψ 2 (t, x, y) dtdxdy. (3.2)
Then, we have the following two-scale convergence compactness result.

Theorem 3.1 ([1], Theorem 1.2, Remark 1.5) Any sequence u ε (t, x) which is bounded in L 2 ((0, T ) × R d ) two-scale converges, up to extract a subsequence, to some function U (t, x, y) in L 2 ((0, T ) × R d ; L 2 (Y d ))
. Moreover, equality (3.1) holds true for any admissible function

(3.2). Let b(y) ∈ C 1 (Y d ) d be a vector field, let u 0 (x, y) ∈ C 0 c (R d ; L 2 (Y d )) be an admissible function with compact support in R d × Y d , and let f (t, x, y) ∈ C 0 c ([0, T ] × R d ; L ∞ (Y d )) be an admissible function with compact support in [0, T ] × R d × Y d . Consider the linear transport equation with oscillating data    ∂u ε ∂t (t, x) -b(x/ε) • ∇ x u ε (t, x) = f (t, x, x/ε) in (0, T ) × R d u ε (0, x) = u 0 (x, x/ε) for x ∈ R d , (3.3) 
which by [10, Proposition II.1, Theorem II.2] has a unique solution in L ∞ ((0, T ); L 2 (R d )).

We have the following criterion for the homogenization of equation (3.3).

Theorem 3.2 Let b be a divergence free vector field in C 1 (Y d ) d , and let X be the flow (1.11) associated with b. Then, we have the equivalence of the two following assertions:

(i) There exists ζ ∈ R d such that the flow X satisfies the asymptotics lim t→∞ X(t, x) t = ζ, a.e. x ∈ Y d , (3.4) 
or, equivalently, D b = {ζ}.

(ii) There exists ζ ∈ R d such that for any admissible functions u 0 (x, y)

∈ C 0 c (R d ; L 2 (Y d )) with compact support in [0, T ] × R d , and f (t, x, y) ∈ C 0 c ([0, T ] × R d ; L ∞ (Y d )) with compact support in [0, T ] × R d × Y d , the solution u ε to (3.3) converges weakly in L ∞ ((0, T ); L 2 (R d ))
to the solution u(t, x) to the transport equation 3) by u ε (t, x), integrating by parts over R d and using Cauchy-Schwarz inequality, we get that for any t ∈ (0, T ),

   ∂u ∂t (t, x) -ζ • ∇ x u(t, x) = f (t, x, •) in (0, T ) × R d u(0, x) = u 0 (x, •) for x ∈ R d . ( 3 
1 2 d dt R d u 2 ε (t, x) dx = 1 2 d dt R d u 2 ε (t, x) dx - 1 2 R d div(b ε )(x) u 2 ε (t, x) dx = K f ε (t, x) u ε (t, x) dx ≤ C f R d u 2 ε (t, x) dx 1/2
, where C f is a non negative constant only depending on f . This can be justified following the proof of [10, Proposition II.1]. Hence, we deduce the estimate

u ε (t, •) L 2 (R d ) ≤ u ε (0, •) L 2 (R d ) + C f T a.e. t ∈ (0, T ). (3.6) 
Therefore, estimate (3.6) combined with (recall that the admissible function ψ(t, x, y) = u 0 (x, y)

satisfies (3.2)) lim ε→0 u ε (0, •) L 2 (R d ) = u 0 (x, y)) L 2 (R d ×Y d ) ,
implies that the sequence u ε is bounded in L ∞ ((0, T ); L 2 (R d )). Then, up to a subsequence, u ε (t, x) two-scale converges to some function

U (t, x, y) ∈ L 2 ([0, T ] × R d ; L 2 (Y d ))
, and u ε (t, x) converges weakly in L 2 ((0, T ) × R d ) to the mean 

u(t, x) := U (t, x, •) = Y d U (t,
- (0,T )×R d ∂ϕ ∂t (t, x) u ε (t, x) dtdx - R d ϕ(0, x) u 0 (x, x/ε) dx + (0,T )×R d b(x/ε) • ∇ x ϕ(t, x) u ε (t, x) dtdx = R d ϕ(t, x) f (t, x, x/ε) dtdx.
Then, passing to the two-scale limit and using that u 0 (x, y) and f (t, x, y) are admissible functions for two-scale convergence, we get that

- (0,T )×R d ×Y d ∂ϕ ∂t (t, x) U (t, x, y) dtdxdy - R d ×Y d ϕ(0, x) u 0 (x, y) dxdy + (0,T )×R d ×Y d b(y) • ∇ x ϕ(t, x) U (t, x, y) dtdxdy = (0,T )×R d ×Y d ϕ(t, x) f (t, x, y) dtdxdy,
or, equivalently, by Fubini's theorem

- (0,T )×R d ∂ϕ ∂t (t, x) u(t, x) dx - R d ϕ(0, x) u 0 (x, •) dx + (0,T )×R d U (t, x, •) b • ∇ x ϕ(t, x) dtdx = R d ×Y d ϕ(t, x) f (t, x, •) dtdx. (3.8)
Similarly, passing to the two-scale limit with the admissible test function ε ϕ(t, x) ψ(x/ε) for any ϕ(t, x) 

∈ C 1 c ([0, T ) × R d )
U (t, x, •) b = U (t, x, •) ζ = u(t, x) ζ a.e. (t, x) ∈ (0, T ) × R d . (3.11) 
Putting this equality in the weak formulation (3.8) we get that for any ϕ(t, x) (3.12)

∈ C 1 c ([0, T )×R d ), - (0,T )×R d ∂ϕ ∂t (t, x) u(t, x) dx - R d ϕ(0, x) u 0 (x, •) dx + (0,T )×R d u(t, x) ζ • ∇ x ϕ(t, x) dtdx = R d ×Y d ϕ(t, x) f (t, x, •) dtdx,
Let θ ∈ C 1 c (R d ), and define for ε > 0 the function

u ε ∈ C 1 ([0, T ]; C 1 c (R d )) by u ε (t, x) := θ(x + t ζ) v(x/ε) for (t, x) ∈ [0, T ] × R d ,
where ζ is the vector involving in the homogenized equation (3.5). By (3.12) we have

∂u ε ∂t (t, x) -b(x/ε) • ∇ x u ε (t, x) = v(x/ε) ζ • ∇ x θ(x + t ζ) -v(x/ε) b(x/ε) • ∇ x θ(x + t ζ) -1/ε θ(x + t ζ) (b • ∇ y v)(x/ε) = v(x/ε) ζ -(v b)(x/ε) • ∇ x θ(x + t ζ) = f (t, x, x/ε),
where

f (t, x, y) := v(y) ζ -(v b)(y) • ∇ x θ(x + t ζ) for (t, x, y) ∈ [0, T ] × R d × Y d , is an admissible function in C 0 c ([0, T ] × R d ; L ∞ (Y d )) with compact support in [0, T ] × R d × Y d . Moreover, we have u ε (0, x) = θ(x) v(x/ε) for x ∈ R d , where θ(x) v(y) ∈ C 0 c (R d ; L 2 (Y d )) with compact support in [0, T ] × R d is
also an admissible function. Hence, by the homogenization assumption the sequence u ε (t, x) converges weakly in L 2 ((0, T ) × R d ) to u(t, x) = θ(x + t ζ) v solution to the homogenized equation (3.5), i.e.

∀ (t, x) ∈ [0, T ] × R d , ∂u ∂t (t, x) -ζ • ∇ x u(t, x) = f (t, x, •) = v ζ -v b • ∇ x θ(x + t ζ).
But directly from the expression u(t, x) = θ(x + t ζ) v, we also deduce that

∀ (t, x) ∈ [0, T ] × R d , ∂u ∂t (t, x) -ζ • ∇ x u(t, x) = 0.
Equating the two former equations we get that for any θ ∈ C 1 c (R d ),

∀ (t, x) ∈ [0, T ] × R d , v ζ -v b • ∇ x θ(x + t ζ) = 0, which implies that v b = v ζ. (3.13) 
Now, let σ be a non negative function in L 1 (Y d ) with σ = 1, such that σ(x) dx is an invariant measure for the flow X, or, equivalently, by Lemma 2.1 applied with σ 0 = 1, the function σ is invariant for X with respect to Lebesgue's measure. Hence, for any n ∈ N, the truncated function σ ∧ n is also invariant for X. Equality (3.13) 

applied with v = σ ∧ n ∈ L ∞ (Y d ), yields (σ ∧ n) b = σ ∧ n ζ -→ n→∞ σ b = σ ζ = ζ.
Thus, we obtain the desired equality D b = {ζ} = {b}, which owing to Theorem 2.1 concludes the proof of Theorem 3.2. Remark 3.1 From equation (3.9) Hou and Xin [START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF] used the ergodicity of the flow X to deduce that U (t, x, •) is constant a.e. (t, x) ∈ (0, T ) × R d . However, this condition is not necessary. Indeed, the less restrictive condition used in the above proof is that D b is reduced to the unit set {ζ}. This combined with Lemma 2.1 on invariant measures and functions leads us to equality (3.11), and allows us to conclude.

Rec Erg

Asy-a.e. Asy-e. On the other hand, extending the two-dimensional results of Oxtoby [START_REF] Oxtoby | Stepanoff flows on the torus[END_REF] and Marchetto [START_REF] Marchetto | Stepanoff flows on orientable surfaces[END_REF] to any dimension by a different approach, Example 4. 

#C b = 1 #D b = 1 Hom Rec ⇑ ⇑ ⇑ ⇑ ⇑ Erg ⇑ ⇑ ⇑ Asy-a.e. ⇐ ⇐ ⇐ ⇐ ⇔ ⇔ Asy-e. ⇐ ⇑ ⇔ ⇑ ⇑ #C b = 1 ⇐ ⇑ ⇑ ⇑ #D b = 1 ⇐ ⇐ ⇐ ⇐ ⇔ Hom ⇐ ⇐ ⇐ ⇐
   ∂S ∂t (t, x) = b S (S(t, x)) = ρ S (S(t, x)) ξ, t ∈ R S(0, x) = x ∈ R d , (4.1)
where ρ S is a non negative function in C 1 (Y d ) with a finite positive number of roots in Y d and σ S := 1/ρ S ∈ L 1 (Y d ), and where ξ is a constant vector of R d with incommensurable coordinates. Under these conditions σ S (x)/σ S dx is the unique invariant probability measure on Y d for the flow S, which does not load the zero set of ρ S , and S is ergodic with respect to the measure σ S (x)/σ S dx. Hence, condition Erg holds true with the probability measure σ S (x)/σ S dx. On the one hand, consider the constant vector field b = e 1 in R d , which induces the flow

X(t, x) = x + t e 1 for (t, x) ∈ R × R d .
Then, any function f ∈ L 1 (Y d ) independent of variable x 1 is invariant for the flow X with respect to any invariant probability measure which is absolutely continuous with respect to Lebesgue's measure. Hence, the flow X is not ergodic with respect to such an invariant probability measure. Exemple 4. 1 Oxtoby [20] provided an example of a free divergence analytic two-dimensional vector field b with (0, 0) as unique stationary point in Y 2 , such that the associated flow X is ergodic with respect to Lebesgue's measure, and such that Lebesgue's measure is the unique invariant measure for the flow X among all the invariant probability measures which do not load the point (0, 0). Oxtoby's example is actually based on a Stepanoff flow (4.1), where ρ S is a non negative function in C 1 (Y 2 ) with (0, 0) as unique stationary point, and where ξ is a constant vector of R 2 with incommensurable coordinates. Stepanoff [START_REF] Stepanoff | Sur une extension du théorème ergodique[END_REF]Section 4] proved that Birkhoff's theorem applies if σ S := 1/ρ S is in L 1 (Y 2 ), which is not incompatible with the analyticity for ρ S . A suitable candidate for ρ S is then the function (see [START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF]Example 4.2] for another application) ρ S (x) := sin 2 (πx 1 ) + sin 2 (πx 2 )

β 0 for x ∈ Y 2 , with β 0 ∈ (1/2, 1). (4.2)
More generally, Oxtoby [START_REF] Oxtoby | Stepanoff flows on the torus[END_REF]Theorem 1] proved that any two-dimensional flow homeomorphic to a Stepanoff flow with a unique stationary point x 0 , admits a unique invariant probability measure µ for the flow S (4.1) satisfying µ({x 0 }) = 0, and that S is ergodic with respect to µ. In what follows, we extend the two-dimensional results of [START_REF] Oxtoby | Stepanoff flows on the torus[END_REF][START_REF] Marchetto | Stepanoff flows on orientable surfaces[END_REF] to any dimension d ≥ 2, using a non ergodic and elementary approach based on some classical tools of PDE's analysis (mollification, truncation) combined with the characterization of invariant functions of Lemma 2.1. 

∈ C 1 (Y d ) d , by X(t, x) := Ψ X(t, Ψ -1 (x)) for (t, x) ∈ R × Y d . (4.3) 
According to [8, Remark 2.1] the homeomorphic flow X is the flow associated with the vector

field b ∈ C 1 (Y d ) d defined by b(x) = ∇Ψ(Ψ -1 (x)) b(Ψ -1 (x)) for x ∈ Y d . (4.4) 
Now, let µ be a probability mesure on Y d , and let μ be the image measure of µ by Ψ defined by

Y d ϕ(x) dμ(x) = Y d ϕ(Ψ(y)) dµ(y) for ϕ ∈ C 0 (Y d ).
By (4.3) we have

           ∀ ϕ ∈ C 0 (Y d ), Y d ϕ X(t, x) dμ(x) = Y d ϕ Ψ(X(t, y)) dµ(y), ∀ ρ ∈ C 0 (Y d ), μ({ρ = 0}) = µ({ρ • Ψ = 0}), ∀ f ∈ L 1 (Y d ), f := f • Ψ -1 , ∀ t ∈ R, f X(t, x) = f X(t, Ψ -1 (x)) a.e. x ∈ Y d . (4.5) 
Also note that, if µ is invariant for X, so is μ for X. Therefore, if the homeomorphic flow X is a Stepanoff flow S satisfying the assumptions of Proposition 4.1, we easily deduce from (4.5) that Proposition 4.1 holds true for the flow X. Namely, there exists a unique invariant probability measure µ on Y d for the flow X, which does not load the zero set of ρ S • Ψ. Moreover, the measure µ is absolutely continuous with respect to Lebesgue's measure with an a.e. positive density, and the flow X is ergodic with respect to µ. Hence, applying Lemma 4.2 below with the measure ν = ρ S µ which is connected to the measure ν = ρ S μ by (1.21), there exists a constant c ∈ R such that ρ S (x) dµ(x) = c dx on Y d , i.e.

∀ ϕ ∈ C 0 (Y d ), Y d ϕ(x) ρ S (x) dµ(x) = Y d c ϕ(x) dx.
Then, we get that for any n ≥ 1,

∀ ϕ ∈ C 0 (R d ), Y d ϕ(x) ρ S (x) + 1/n ρ S (x) dµ(x) = Y d c ϕ(x) ρ S (x) + 1/n dx. (4.7) 
However, since measure µ does not load the finite zero set of ρ S in Y d (at this point this assumption is crucial), we have

         ϕ ρ S ρ S + 1/n -→ n→∞ ϕ dµ(x)-a.e. in Y d , with ϕ ρ S ρ S + 1/n ≤ ϕ ∞ ∈ L 1 (Y d , µ) ϕ ρ S + 1/n -→ n→∞ ϕ ρ S dx-a.e. in Y d , with ϕ ρ S + 1/n ≤ ϕ ∞ ρ S ∈ L 1 (Y d ).
Therefore, passing to the limit as n → ∞ owing to Lebesgue's theorem in (4.7), we get that

∀ ϕ ∈ C 0 (Y d ), Y d ϕ(x) dµ(x) = Y d c ϕ(x) σ S (x) dx.
We thus obtain the equality dµ(x) = σ S (x)/σ S dx, which shows the uniqueness of an invariant probability measure for the flow S, which does not load the zero set of ρ S . Conversely, σ S b S = ξ is clearly divergence free, which by Proposition 1.1 implies that µ is an invariant probability measure for the flow S. We have just proved that µ is the unique invariant probability measure for the flow S, which does not load the zero set of ρ S . Now, let us prove that the flow S is ergodic with respect to the measure dµ(x) = σ S (x)/σ S dx. To this end, let f ∈ L 1 (Y d ) be an invariant function for the flow S with respect to measure µ. Let T ± n be the truncation functions at level n ∈ N, defined by

T ± n (t) := (± t) ∨ 0) ∧ n for t ∈ R.
Then, the functions T ± n (f ) ∈ L ∞ (Y d ) are also invariant functions for the flow S with respect to measure µ. We know that σ S (x) dx is an invariant measure for the flow S. Hence, by virtue of Lemma 2.1 the Radon measures dµ ± n (x) := (T ± n (f ) σ S )(x) dx are invariant for S, which by relation (1.21) and Proposition 1.1 implies that

µ ± n b S = µ ± n b S = (T ± n (f ) σ S b S )(x) dx = T ± n (f )(x) ξ dx
are divergence free in R d . Therefore, applying Lemma 4.2 with measures dν(y) = T ± n (f )(y) dy which satisfy ν = ν, the functions T ± n (f ) agree with constants c ± n ∈ R a.e. in Y d . However, since the sequences T ± n (f ) converge strongly in L 1 (Y d ) to the non negative and the non positive parts f ± of f , the sequences c ± n converge to some constants c ± in R. Hence, the function f = f + -f - agrees with the constant c + -c -a.e. in Y d . This proves the desired property.

Next, since σ S (x)/σ S dx is the unique invariant probability measure on Y d for the flow S, among the invariant probability measures which are absolutely continuous with respect to Lebesgue's measure, we have

D b S = Y d ρ S (x) ξ σ S (x)/σ S dx = {1/σ S ξ}.
Note that the former equality can be alternatively deduced from the ergodicity of the flow S combined with Theorem 4.1. On the other hand, set b n := b S + 1/n for n ≥ 1. Since ξ has incommensurable coordinates, we have (see [8, Assume that ν ξ is divergence free in R d , i.e.

∀ ϕ ∈ C ∞ c (R d ), R d ξ • ∇ϕ(x) dν(x) = 0. (4.8)
Then, there exists a constant c ∈ R such that dν(y) = c dy on Y d .

Remark 4.4 In Lemma 4.2 the incommensurability of ξ s coordinates is also a necessary condition to get (4.8). Indeed, assume that there exists a non nul integer vector k ∈ Z d \ {0} such that k • ξ = 0. Then, for any non constant Z-periodic function θ ∈ C 1 (Y 1 ), the function

τ : x → θ(k • x) belongs to C 1 (Y d ), τ (x) dx = τ (x) dx, and 
∀ x ∈ R d , div(τ ξ)(x) = θ (k • x) k • ξ = 0,
so that the conclusion of Lemma 4.2 does not hold true.

Proof of Lemma 4.2. Let (φ n ) n∈N be a sequence of mollifiers in C ∞ c (R d ) with φ n = 1. Applying successively Fubini's theorem twice and (4.8), the convolution

φ n * ν ∈ C ∞ (R d ) satisfies for any n ∈ N and for any ϕ ∈ C ∞ c (R d ), R d R d φ n (x -y) dν(y) ξ • ∇ϕ(x) dx = R d R d φ n (x -y) ξ • ∇ϕ(x) dx dν(y) = R d R d φ n (x) ξ • ∇ x ϕ(x + y) dx dν(y) = R d R d ξ • ∇ y ϕ(x + y) dν(y) φ n (x) dx = 0, or, equivalently, div (φ n * ν) ξ = ∇(φ n * ν) • ξ = 0 in R d . (4.9) 
Now, consider ξ 1 , . . . , ξ d-1 (d-1) vectors in R d such that (ξ 1 , . . . , ξ d-1 , ξ) is an orthogonal basis of R d , and let Λ be the matrix in R (d-1)×d whose lines are the vectors ξ 1 , . . . , ξ d-1 , i.e. its entries are given by Λ ij = ξ i j for (i, j) ∈ {1, . . . , d-1} × {1, . . . , d}. Then, make the linear change of variables

R d → R d x → y = (Λx, ξ • x) = (ξ 1 • x, . . . , ξ d-1 • x, ξ • x).
Since (4.9) means that (φ n * ν)(x) is independent of the variable y d = ξ • x, it follows that there exists a function

θ n ∈ C ∞ (R d-1 ) such that ∀ x ∈ R d , (φ n * ν)(x) = θ n (Λx).
Moreover, due to (1.21) and the Z d -periodicity of (φ n ) , we have for any

x ∈ R d and k ∈ Z d , (φ n * ν)(x + k) = R d φ n (x + k -y) dν(y) = Y d (φ n ) (x + k -y) dν(y) = Y d (φ n ) (x -y) dν(y) = R d φ n (x -y) dν(y) = (φ n * ν)(x),
which implies that the function φ n * ν is also Z d -periodic. As a consequence, the regular function θ n satisfies the periodicity condition

∀ k ∈ Z d , ∀ x ∈ R d-1 , θ n (x + Λk) = θ n (x).
Hence, by virtue of the density Lemma 4.3 below we get that θ n is a constant c n ∈ R, and thus

φ n * ν = c n in R d . Therefore, by Fubini's theorem we have for any ϕ ∈ C ∞ c (R d ), R d c n ϕ(x) dx = R d R d φ n (x -y) dν(y) ϕ(x) dx = R d R d φ n (x -y) ϕ(x) dx dν(y),
where the function y → R d φ n (x -y) ϕ(x) dx converges uniformly to ϕ on R d as n → ∞, whose support is included in a fixed compact set of R d , and which is bounded uniformly by ϕ ∞ . Therefore, passing to the limit as n → ∞ thanks to Lebesgue's theorem with respect to measure ν, we get that the sequence (c n ) n∈N converges to some c ∈ R, and that

∀ ϕ ∈ C ∞ c (R d ), R d c ϕ(x) dx = R d ϕ(y) dν(y).
Hence, we deduce the equality dν(x) = c dx on R α i e i = α ξ. (4.10)

Replacing the vector e d in the first equality of (4.10) and using that Λξ = 0, we get that

Λ Z d = d i=1 Z Λe i = d-1 i=1 (Z + α i Z) Λe i .
Assume that there exists j ∈ {1, . . . , d -1} such that the set (Z + α j Z) is not dense in R, or, equivalently, α j ∈ Q. Taking the j-th and d-th coordinates in the second equality of (4.10), it follows that ξ j + α j ξ d = 0, which contradicts the incommensurability of ξ's coordinates. Therefore, the set Λ Z d is dense in R d-1 , which concludes the proof. and ∇u has incommensurable coordinates. Also assume that σ 0 := 1/ρ 0 ∈ L 1 (Y 2 ). An example of such a function is given by (4.2). Note that, by virtue of Proposition 1.1 the probability measure σ 0 (x)/σ 0 dx is invariant for the flow X associated with b. Now, let σ ∈ L 1 (Y 2 ) be a non negative function with σ = 1, such that div(σb) = 0 in R 2 . By Proposition 1.1 σ(x) dx is an invariant probability measure for the flow X. Hence, by Fubini's theorem we have for any T > 0, Remark 4.5 The result of Example 4.2 can be deduced from the Proposition 4.1 combined with Remark 4.2, using Kolmogorov's theorem [START_REF] Kolmogorov | On dynamical systems with an integral invariant on the torus[END_REF] (see, e.g., [START_REF] Ya | Sinaï: Introduction to Ergodic Theory[END_REF]Lecture 11], and see also [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF]Theorem 2.1] for an elementary proof when one of the coordinates of the vector field does not vanish). Indeed, since the divergence free field R ⊥ ∇u of Example 4. 

  dµ(y) µ-a.e. x ∈ Y d .

C 3 ) 2 b

 32 b := Y d b(y) dµ(y) : µ ∈ I b (1.2) characterizes the everywhere asymptotics of the flow, since by [8, Proposition 2.1] we have for any ζ ∈ R d , C b = {ζ} ⇔ ∀ x ∈ Y d , lim t→∞ We also consider the subset D b of C b defined by D b := Y (y) σ(y) dy : σ ∈ L 1 (Y d ) and σ(y) dy ∈ I b , (1.4)

  Y d ψ X(t, y) dµ(y) = Y d ψ(y) dµ(y).(1.15)

. 5 )

 5 Moreover, in both cases we have ζ = b. Proof of Theorem 3.2. (i) ⇒ (ii). First of all, note that, since b is divergence free in R d , by Proposition 1.1 Lebesgue's measure is an invariant probability measure for the flow X associated with b, which implies that b ∈ D b = {ζ} and ζ = b. Now, let u 0 (x, y) ∈ C 0 c (R d ; L 2 (Y d )) be an admissible function with compact support in [0, T ] × R d , and let f (t, x, y) ∈ C 0 c ([0, T ] × R d ; L ∞ (Y d )) be an admissible function whose support is contained in [0, T ] × K, K being a compact set of R d . Denote b ε (x) := b(x/ε) which is divergence free in R d , and denote f ε (t, x) := f (t, x, x/ε) which is uniformly bounded in [0, T ] × R d and is compactly supported in [0, T ] × K. Formally, multiplying (3.

  x, y) dy for a.e. (t, x) ∈ (0, T ) × R d . (3.7) Next, we follow the two-scale procedure of the proof of [15, Theorem 2.1]. Putting the test function ϕ(t, x) ∈ C 1 c ([0, T ) × R d ) in the weak formulation of (3.3), and integrating by parts we have

  and any ψ ∈ C 1 (Y d ), we get that (0,T )×R d ×Y d ϕ(t, x) b(y) • ∇ y ψ(y) U (t, x, y) dtdxdy= (0,T )×R d ϕ(t, x) Y d U (t, x, y) b(y) • ∇ y ψ(y) dy dtdx = 0, which by Proposition 1.1 implies that div y (U (t, x, •) b) = 0 in D (R d ), a.e. (t, x) ∈ (0, T ) × R d . (3.9) Then, applying Lemma 2.1 with σ 0 = 1, for a.e. (t, x) ∈ (0, T ) × R d , the function U (t, x, •) is an invariant function for the flow X associated with b related to Lebesgue's measure, and so are the positive and negative parts U ± (t, x, •) of U (t, x, •). Hence, again by Lemma 2.1 the measures U ± (t, x, y) dy are invariant for X, which by the definition (1.20) of D b = {ζ}, implies that U ± (t, x, •) b = Y d b(y) U ± (t, x, y) dy = Y d U ± (t, x, y) dy ζ a.e. (t, x) ∈ (0, T ) × R d . (3.10) From (3.10) and (3.7) we deduce that

  which is the weak formulation of the homogenized transport equation(3.5). (ii) ⇒ (i). First of all, note that the set D b contains the mean b, since by the free divergence of b and by Proposition 1.1, Lebesgue's measure is an invariant probability measure for the flow X associated with b. Now, let us prove that any invariant probability measure σ(x) dx with σ ∈ L 1 (Y d ), for the flow X satisfies the equality σ b = ζ, which will yield the desired equality D b = {ζ}. To this end, let us first show this for any invariant probability measure v(x)/v dx with v ∈ L ∞ (Y d ). By virtue of Proposition 1.1 such a function v is solution to the equation div(v b) = b • ∇v = 0 in D (R d ).

Figure 1 :

 1 Figure 1: Logical connections between the seven conditions

  1 and Proposition 4.1 below deal with a d-dimensional Stepanoff flow [23, Section 4] defined by

  Moreover, Proposition 4.1 shows that D b S = {ζ} and C b S = [0, ζ] with ζ = (1/σ S ) ξ = 0. Therefore, condition Erg does not imply in general condition #C b = 1, or, equivalently, condition Asy-e.. Conditions #C b = 1 and #D b = 1. Since D b is assumed to be non empty, condition #C b = 1 clearly implies condition #D b = 1. In contrast, as above mentioned the Stepanoff flow induces that D b S = {ζ} and C b S = [0, ζ] with ζ ∈ R d \{0}. Alternatively, Example 4.2 below provides a different class of two-dimensional vanishing vector fields b such that D b is a singleton, while C b is a closed line set not reduced to a singleton. Therefore, condition #D b = 1 does not imply in general #C b = 1. Condition #D b = 1. Since condition #C b = 1 implies condition #D b = 1, but #C b = 1 does not imply in general condition Erg, by a transitivity argument condition #D b = 1 does not imply in general condition Erg. Moreover, since condition #C b = 1 is equivalent to condition Asy-e., but condition #D b = 1 does not imply in general #C b = 1, condition #D b = 1 does not imply in general condition Asy-e.. Condition Hom. Here, we assume that the vector field b is divergence free in R d .

  Moreover, we have immediately C b = D b = {e 1 }. Therefore, condition Hom which is equivalent to condition #D b = 1 (by Theorem 3.2), does not imply in general condition Erg. On the other hand, the two-dimensional divergence free Oxtoby example [20, Section 2] combined with the uniqueness result of [20, Theorem 1] (see Example 4.1) provides a flow which is ergodic with respect to Lebesgue's measure, and such that C b is not a unit set (see Proposition 4.1). Therefore, since condition Erg implies condition Hom (see, e.g., [15, Theorem 3.2]) condition Hom does not imply in general condition #C b = 1. Finally, condition Hom does not imply in general either condition Erg, or condition #C b = 1, or, equivalently, condition Asy-e.. The rest of the implications can be easily deduced from the former arguments.

Proposition 4 . 1

 41 Consider a d-dimensional, d ≥ 2, Stepanoff flow S (4.1) where ρ S ∈ C 1 (Y d ) is non negative with a finite positive number of roots (the stationary points for S) in Y d and σ S := 1/ρ S ∈ L 1 (Y d ), and where ξ ∈ R d has incommensurable coordinates. Then, the measure σ S (x)/σ S dx is the unique invariant probability measure on Y d for the flow S, which does not load the zero set of ρ S . The flow S is also ergodic with respect to the measure σ S (x)/σ S dx. Moreover, we have D b S = {ζ} and C b S = [0, ζ], where ζ := 1/σ S ξ.

Remark 4 . 2

 42 Similarly to[START_REF] Oxtoby | Stepanoff flows on the torus[END_REF][START_REF] Marchetto | Stepanoff flows on orientable surfaces[END_REF] the result of Proposition 4.1 actually extends to any flow which is homeomorphic to a Stepanoff flow. Indeed, let Ψ be a C 2 -diffeomorphism on Y d (see[START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF] Remark 2.1]). Define the flow X obtained through the homeomorphism Ψ from the flow X associated with a vector field b

Remark 4 . 3

 43 Assuming the uniqueness result of Proposition 4.1, the ergodicity of σ S (x)/σ S dx and equality C b S = [0, ζ] can also be proved using standard arguments of ergodic theory. Indeed, let E b S be the set of all the ergodic invariant probability measures for the flow S. Recall (see, e.g., [9, Theorem 2, Chapter 1]) that I b S = conv (E b S ), and that two elements in E b S are either equal, or mutually singular. Now, if µ ∈ E b S satisfies µ({x 0 }) > 0 for some zero of ρ S , then µ = δ x 0 due to δ x 0 ∈ E b S . Next, since σ S (x)/σ S dx is the unique invariant probability measure on Y d for the flow S, which does not load the zero set of ρ S , it follows from equality I b S = conv (E b S ) that the flow S is ergodic with respect to σ S (x)/σ S dx. Hence, E b S is the finite setE b S = σ S (x)/σ S dx ∪ δ x : ρ S (x) = 0 . (4.6) Therefore, σ S b S /σ S = ζ provides the unique non zero contribution in C b S through E b S , which by convex combination implies that C b S = [0, ζ]. Equality I b S = conv (E b S ) and property (4.6) also give D b S = {ζ}. Proof of Proposition 4.1. Assume that µ is an invariant probability measure for the flow S (4.1), which does not load the zero set of ρ S . Then, by virtue of Proposition 1.1 the Borel measure μ on R d defined by (1.21) is solution to the equation div(μ b S ) = div(ρ S μ ξ) = 0 in D (R d ).

Lemma 4 . 2

 42 Example 4.1]) C bn = {ζ n } where ζ n := the function ρ S vanishes in Y d , by virtue of [8, Theorem 3.1] we obtain that C b S = [0, ζ], where ζ = lim n→∞ ζ n = 1/σ S ξ. Note that the ergodic approach of Remark 4.3 alternatively shows that C b S = [0, ζ]. The proof of Proposition 4.1 is now complete. Let ν ∈ M (Y d ), let ν ∈ M loc (R d ) be the Borel measure on R d connected to the measure ν by relation (1.21), and let ξ ∈ R d be a vector with incommensurable coordinates.

Exemple 4 . 2

 42 Consider a two-dimensional vector field b = ρ 0 R ⊥ ∇u such that ρ 0 ∈ C 1 (Y 2 ) is a.e. positive in Y 2 and does vanish in Y 2 , and such that ∇u ∈ C 1 (Y 2 ) 2 does not vanish in Y 2

2 σ 2 X 2 σ

 222 (x) b(X(t, x)) dx dt = Y (T, x) -x T σ(x) dx. (4.11) On the other hand, since the function ρ 0 does vanish in Y 2 together with ρ 0 > 0 a.e. in Y 2 , from [8, Lemma 3.1] applied with the invariant probability measure dµ(x) := σ 0 (x)/σ 0 dx, 0) a.e. x ∈ Y 2 . Therefore, passing to the limit T → ∞ in equality (4.11) thanks to Lebesgue's theorem, we get that for any invariant probability measure σ(x) dx with σ ∈ L 1 (Y 2 ), Y (x) b(x) dx = ζ = (0, 0), which thus implies that D b = {ζ}. However, by virtue of [8, Corollary 3.4] we obtain that C b = [0, ζ]. Therefore, we have #C b = ∞, while #D b = 1.

Proposition 4 . 4 1 .

 441 2 does not vanish in Y 2 , by virtue of Kolmogorov's theorem there exists a C 1 -diffeomorphism on Y 2 which transforms the flow X associated with the vector field b = ρ 0 R ⊥ ∇u, to a Stepanoff flow satisfying the assumptions of Proposition 4.1 provided the zero set of ρ 0 is finite. Therefore, Remark 4.2 allows us to conclude.We can extend Example 4.2 to the following variant of[START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF] Corollary 3.4], which provides a general framework where the sets C b and D b may differ. Let b = ρ Φ ∈ C 1 (Y 2 ) 2 be a vector field, where ρ ∈ C 1 (Y 2 ) is a non negative function with a positive finite number of roots, and where Φ ∈ C 1 (Y 2 ) 2 is a non vanishing vector field. Also assume that there exists a functionu ∈ C 1 (Y 2 ) with ∇u ∈ C 0 (Y 2 ) 2 , such that ∇u has incommensurable coordinates and Φ • ∇u = 0 in Y 2 . Then, the exists a vector ζ ∈ R 2 such that C b = [0, ζ], together with D b = Ø or D b = {ζ}.Proof. First of all, define for n ≥ 1, the function ρ n := ρ + 1/n > 0, and the vector field b n := ρ n Φ. By the equality Φ • ∇u = 0 in Y 2 , we get that u is an invariant function for the flow X n associated with the vector field b n , with respect to Lebesgue's measure. Then, following the proof of[START_REF] Briane | Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result[END_REF] Corollary 3.4], from the ergodic case of [21, Theorem 3.1] and the incommensurability of ∇u's coordinates, we deduce that there exists a vectorζ n ∈ R 2 such that C bn = {ζ n }.On the one hand, since the function ρ vanishes in Y 2 , by the second case of [8, Theorem 3.1] it turns out that the sequence (ζ n ) n≥1 converges to some ζ ∈ R 2 , and thatC b = [0, ζ].On the other hand, assume that the set D b is non empty. Then, there exists an invariant probability measure σ(x) dx with σ ∈ L 1 (Y 2 ), for the flow X associated with the vector field b, i.e. σ(x)/σ dx ∈ I b . Following the proof of [8, Corollary 3.3] define the probability measure µ n bydµ n (x) := C n ρ(x) ρ n (x) σ(x) dx where C n := Y d ρ(x) ρ n (y) σ(y) dy -Note that C n < ∞,since ρ σ is non negative and not nul a.e. in Y 2 . Due to σ(x)/σ dx ∈ I b , by Proposition 1.1 we have∀ ϕ ∈ C 1 (Y 2 ), Y d b n (x) • ∇ϕ(x) dµ n (x) = C n Y d b(x) • ∇ϕ(x) σ(x) dx = 0,which again by Proposition 1.1 implies that µ n ∈ I bn . This combined with C bn = {ζ n } yieldsζ n = Y d b n (x) dµ n (x) = C n Y d b(x) σ(x) dx = C n σ bwhich is actually independent of σ. Due ρ > 0 a.e. in Y 2 , by Lebesgue's theorem we get that the sequence (C n ) n≥1 converges to σ = 1. Hence, we deduce thatζ = lim n→∞ ζ n = σ bwhich is also independent of σ. Therefore, we obtain that D b = {ζ}, which concludes the proof of Proposition 4.4.

  simply denotes the space of the Lebesgue measurable functions f in L p loc (R d ), which are Z d -periodic dx-a.e. in R d . • M loc (R d ) denotes the space of the non negative Borel measures on R d , which are finite on any compact set of R d . • M (Y d ) denotes the space of the non negative Radon measures on Y d , and M p (Y d ) denotes the space of the probability measures on Y d .

  Twenty five years later, Marchetto [17, Proposition 1.2] extended this result to any flow homeomorphic to a Stepanoff flow with a finite number of stationary points in Y 2 .

  Lemma 4.3 Let ξ be a vector in R d for d ≥ 2, with incommensurable coordinates, let ξ 1 , . . . , ξ d-1 be (d -1) vectors in R d such that (ξ 1 , . . . , ξ d-1 , ξ) is an orthogonal basis of R d , and let Λ be the matrix in R (d-1)×d whose lines are the vectors ξ 1 , . . . , ξ d-1 . Then, the latticeΛ Z d is dense in R d-1 .Proof. Lemma 4.3 follows easily from [3, Proposition 6 & Corollary, Section VII.7] which leads one to Kronecker's approximation theorem [3, Proposition 7, Section VII.7]. For the reader's convenience we propose a more direct proof. Since matrix Λ has rank (d-1) and Ker(Λ) = R ξ, we may assume, up to reorder the vectors, that the vectors Λe 1 , . . . , Λe d-1 are linearly independent and that there exist d real numbers α 1 , . . . , α d-1 , α satisfying Λe i and e d -

	Λe d =	d-1	α i d-1
		i=1	i=1

d , or, equivalently, dν(y) = c dy on Y d by virtue of Remark 1.1. This concludes the proof of Lemma 4.2.

Comparison between the seven conditions

In the sequel we denote:

Erg

if the ergodic condition (1.17) holds with an invariant probability measure for X, which is absolutely continuous with respect to Lebesgue's measure, Asy-a.e. if there exist ζ ∈ R d such that lim