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Highlights 14 

• We present a Bayesian method for estimating parameters of critical nitrogen dilution 15 

curve 16 

• It does not require the classification of nitrogen-limited against non-nitrogen-limited 17 

data 18 

• It can be easily implemented using freely-available software 19 

• This method is useful for analyzing uncertainty in the fitted critical nitrogen curves 20 

• It can take prior knowledge about parameter values into account. 21 

  22 



Abstract 23 

Nitrogen critical curves are frequently used to diagnose the N status of crops and grasslands. 24 

They play an important role in plant modelling and are frequently used in fertilizer 25 

management tools. During the last 20 years, a number of studies have been conducted for 26 

comparing critical curves obtained in different conditions (e.g., different cultivars) and 27 

understanding the origin of their difference. However, uncertainty in the determination of 28 

coefficient of these curves is generally poorly analyzed in these studies, which increase the 29 

risk of false conclusions, in particular on the existence of differences between species, 30 

cultivars and cropping systems. Here, we present a Bayesian statistical model for estimating 31 

parameters of critical nitrogen dilution curve from experimental data. Contrary to standard 32 

methods commonly used for fitting critical nitrogen dilution curves, the proposed approach 33 

allows one to fit these curves in only one step, i.e., directly from the original biomass and 34 

nitrogen content measurements. Specifically, this method does not require the classification 35 

of nitrogen-limited data against non-nitrogen-limited data and does not necessitate the 36 

preliminary identification of critical nitrogen concentrations. Another advantage of the 37 

proposed method is that it can be easily implemented using freely-available software. We 38 

illustrate its practical interest using experimental data collected for winter wheat in France, 39 

and for maize and rice in China. We show that this method is useful for analyzing uncertainty 40 

in the fitted critical nitrogen curves and for comparing several curves obtained for different 41 

crop species and cultivars. The proposed method is based on the specification of prior 42 

probability distributions defining plausible ranges of values for the critical curve parameters, 43 

and we show here that it is preferable to use prior distributions that are not very informative 44 

if we want to limit their influence on the final result.  45 



Keywords: Bayesian statistics, critical concentration, critical N curve, nitrogen, probabilistic 46 

expert elicitation, uncertainty. 47 

 48 

1. Introduction 49 

Nitrogen (N) fertilization plays a major role in agricultural production but excess of N in agro-50 

ecosystems has negative impacts on water pollution (Zhao et al. 2007), and increases risk of 51 

ammonia and N2O emissions (Philibert et al. 2012; Ramanantenasoa et al. 2019). It is thus 52 

essential to precisely manage N fertilization and to develop operational tools helping 53 

farmers to determine optimal N fertilizer doses and times of application. A prerequisite for 54 

the development of such tools is to estimate crop nitrogen requirements as accurately as 55 

possible.  56 

The concept of critical N concentration (NC) is frequently used to diagnose the N status of 57 

crops (Lemaire et al. 2008). The value of NC represents the minimum N concentration that is 58 

required for maximum biomass production. This concentration is usually computed as a 59 

function of biomass using a simple mathematical model, often called critical N curve. 60 

Although several variants of this model exist, the most common model is expressed as 𝑁" =61 

𝐴%𝑊'()  where NC is the critical N concentration for biomass W, and where A1 and A2 are 62 

two parameters that are estimated by fitting the model to a set of experimental data. Critical 63 

N curves relating NC to W have become popular since the late 1990s, and they have been 64 

developed for a number of plant species, including winter wheat (Justes et al. 1994; Chen 65 

and Zhu, 2013), oilseed rape (Colnenne et al., 1998), maize (Plénet and Lemaire, 2000), 66 

ryegrass (Sandana et al. 2019), rice (Ata-Ul-Karim et al. 2017) among others.  67 



It is essential to analyze uncertainty in fitted critical N curves in a rigorous manner. This is 68 

important for assessing risk of N deficit or N excess and, also, for comparing critical curves 69 

obtained in different conditions (e.g., sites, years, different cultivars and/or crop 70 

managements) and understanding the origin of their difference. In some cases, two fitted 71 

curves obtained in two different conditions are apparently different, but their difference 72 

does not reflect a real difference due to the existence of a true effect of the factor studied, 73 

but simply reflects errors in the estimated values of their parameters. In such cases, 74 

concluding that there is a real difference and a real effect of the factor under consideration 75 

will lead to a false conclusion. There is increasing concern that false findings may be very 76 

frequent in research (Ioannidis, 2005). To limit risk of false discoveries, a rigorous analysis of 77 

uncertainty is then crucial. 78 

In practice, the parameters of critical N curves are estimated using a series of pairs of 79 

biomass and plant N concentration measurements obtained at different dates during the 80 

growing period for different N levels. Several methods have been proposed to estimate 81 

parameters of critical curves from this type of data (Greenwood et al. 1990; Justes et al., 82 

1994; Chen and Zhu, 2013). All these methods require a classification of N-limited data vs. 83 

non-N-limited data at each date of measurement. The two groups of data (N-limited vs. non-84 

N-limited) are then used to identify a so-called critical-N-concentration above which biomass 85 

is assumed to reach its maximum value. A critical N curve is finally fitted to the series of 86 

critical-N-concentration values obtained across the different dates of measurement. 87 

Although this approach has been successful in fitting critical N curves in a great diversity of 88 

contexts, it presents several limitations. This approach requires the definition of one 89 

classification rule to distinguish N-limited vs. non-N-limited data and of a method to define 90 

the N critical concentration from the two groups of data, and Chen and Zhu (2013) showed 91 



that the fitted critical N curve can be sensitive to these choices. Another issue is that the 92 

critical N curves are fitted to the selected critical N concentrations then considered as 93 

perfectly known, ignoring their own uncertainties. Once the critical nitrogen concentrations 94 

are estimated, the critical nitrogen curve is adjusted to their values without explicitly taking 95 

into account their uncertainties. A consequence is that the confidence intervals of the 96 

estimated parameters and of the fitted curves do not fully account for the uncertainties in 97 

the selected critical N concentrations.             98 

Here, we present a Bayesian statistical model for estimating parameters of critical nitrogen 99 

dilution curve from experimental data. Contrary to standard methods commonly used for 100 

fitting critical curves, the proposed approach allows one to fit these curves in only one step, 101 

i.e., directly from the original biomass and nitrogen content measurements. Our approach is 102 

illustrated with experimental data collected for wheat, maize and rice. We show that the 103 

proposed method can be easily used to fit critical N curves, to analyze uncertainty, and to 104 

compare the parameter values estimated for different species and cultivars. 105 

  106 



2. Materials and Method 107 

2.1. Data 108 

2.1.1. Wheat  109 

Data used in this study for wheat are those used by Justes et al. (1994). These data had been 110 

extracted from a large experimental network with different year-location combinations in 111 

France. In each experiment wheat crops were grown with at least four different levels of N 112 

fertilizer supply and several plant samples were regularly harvested all along the crop 113 

growth period until anthesis. Plant samples were analyzed to determine their aboveground 114 

biomass (t ha-1) and plant shoot N concentration (%) at each sampling date. A series of pairs 115 

of N concentration and of biomass were thus obtained across the different N levels * dates 116 

combinations (Appendix A) and included in a single dataset for the statistical analysis. The 117 

dataset covers a large range of biomass values, from about 1 t ha-1 at the early stages of 118 

plant growth to about 12 t ha-1 at plant anthesis. Crop were managed with ample P and K 119 

supply, with irrigation when necessary for avoiding water stress, and with adequate plant 120 

disease control. The total number of pairs of biomass and N content is equal to 73 (Table 1). 121 

2.1.2. Maize 122 

Four field experiments including each several N rates were conducted during the 2015 and 123 

2016 growing seasons at Xinxiang (35.2°N, 113.8°E).  The summer maize cultivars, N 124 

application rates, sowing and harvesting dates, as well as soil characteristics, are 125 

summarized in Appendix B. Soil samples were collected from 0 to 20 cm soil layer before 126 

sowing summer maize crops. The samples were air-dried, sieved, and then used to measure. 127 

All field experiments were arranged in a randomized complete block design with three 128 

replicates. The size of each plot was 60m2 in all the experiments. N fertilizer was applied 129 



before sowing (50%) and at the jointing stage (50%). All plots received adequate quantities 130 

of triple super-phosphate and potassium-chloride before sowing. Summer maize was 131 

planted a density of 75,000 plants ha−1 with a row spacing of 60 cm. The total number of 132 

pairs of biomass (t ha-1) and N content (%) is equal to 45 (Table 1). 133 

2.1.3. Rice 134 

Four multi-N rates (0 to 360 kg N ha-1) field experiments using one Indica (Jingliangyou-534) 135 

and one Japonica rice (Jiahua-1) cultivar were conducted during 2017 and 2018 rice growing 136 

seasons in east China. Experiments were arranged with a randomized complete block design 137 

having three repeats. The size of every plot was 5 m × 5 m with the inter-row spacing of 30 138 

cm. The planting density in all the experiments was approximately 22.2×104 plants ha-1. Five 139 

N supply rates (0, 90, 180, 270, and 360 kg N ha-1 as urea) were applied.  40% N was distributed 140 

before transplanting, 10% at active tillering, 20% at panicle initiation, and 30% at booting.  In 141 

all experiments, ample phosphate and potassium fertilizers were incorporated into the soil as 142 

monocalcium phosphate (Ca(H2PO4)2) and potassium chloride (KCl) before transplantation. 143 

Experiments were carried out according to local recommendations along with adequate plant 144 

pest and disease control measures to ensure optimal production. Plant samples were regularly 145 

harvested all along the crop growth period until heading (pre-anthesis growth period) for 146 

determination of plant dry mass and plant N concentration to provide a set of plant dry mass-147 

%N data across the different N supply rates at each sampling stage. The total number of pairs 148 

of biomass (t ha-1) and N content (%) is equal to 60 (Table 1). 149 

 150 



Table 1. Number of dates of measurement (called ‘dates’ in the model), average number of 151 

N levels per date, and number of data (pairs of biomass and N content observations) for 152 

each dataset 153 

Crop/Cultivar 
Number of dates 

of measurement 

Average number of N 

levels per date 
Number of data 

Rice/Japonica 12 5 60 

Rice/Indica 12 5 60 

Maize/ZD958 10 4.5 45 

Maize/DH605 10 4.5 45 

Winter wheat 16 4.6 73 

 154 

2.2. Model 155 

Our model is a Bayesian hierarchical model including three levels (Figure 1). The basic 156 

principle of this model is to consider that the response of biomass to nitrogen content 157 

follows a linear-plus-plateau function, as commonly considered in many studies (see for 158 

example Chen and Zhu, 2013 and Zhao et al. 2018). The variability of the parameters of the 159 

linear-plus-plateau function are described by probability distributions estimated from the 160 

whole set of available data using a Bayesian method. The parameters of the critical nitrogen 161 

dilution curve are then derived directly from the fitted probability distributions.   162 

The first level of the model describes the biomass response to nitrogen content for a given 163 

date of measurement based on a linear-plus-plateau function. Each date of measurement 164 

corresponds to a specific crop growth stage in a given year at which biomass and N content 165 



are measured for different N fertilizer levels. The second level of the model describes the 166 

variability of the parameters of the linear-plus-plateau function across observation dates 167 

using probability distributions. The critical nitrogen dilution curve is computed from these 168 

parameters. The third level describes prior knowledge about parameter values.  169 

 170 

Figure 1. Graphical description of the three-level hierarchical Bayesian model. Level 1 describes the 171 

relationship between biomass and nitrogen content observations for each date of measurement (light blue). 172 

Level 2 describes the critical nitrogen dilution curve and the variability of biomass and nitrogen content 173 

between measurement dates using several probability distributions (dark blue). Level 3 describes prior 174 

knowledge about parameter values (outside part of the graphic). The indices i and j correspond to the dates of 175 

observation and the supplied N fertilizer rates, respectively. See text for details.   176 

 177 

Level 1: Biomass response to nitrogen content 178 

This part of the model describes the relationship between biomass (𝑊*+ , t ha-1) and nitrogen 179 

content (𝑁*+, %) measurements in the ith date of observation for the jth nitrogen dose. We 180 



assume that 𝑊*+  is distributed according to a Gaussian distribution whose mean value is 181 

specified through a linear-plus-plateau function of the nitrogen content as follows: 182 

 183 

𝑊*+~𝒩.𝜇*+, 𝜏234, with 𝜇*+ = 𝐵6(78 + 𝑆*.𝑁*+ − 𝑁"*4 if 𝑁*+ < 𝑁"*     184 

and 𝜇*+ = 𝐵6(78  otherwise        (1) 185 

  186 

In Eq.(1), 𝐵6(78  is the maximum biomass in t ha-1 (non-N limited) in the ith date (i.e., 𝐵6(78  is 187 

equal to the mean value of 𝑊*+  when 𝑁*+ ≥ 𝑁"*), 𝑆*  is the slope of the linear part of the 188 

function (i.e., the increase rate of biomass per unit increase of nitrogen content, t ha-1 %N-1), 189 

𝑁"*  is the critical nitrogen content for the ith date (%), i.e., the value of nitrogen content (%) 190 

above which 𝐵6(78  is reached, and 𝜏23 is the residual variance. We also assume that the 191 

nitrogen content measurements (𝑁*+) is related to the critical nitrogen content (𝑁"*) 192 

according to the distribution 193 

 194 

 𝑁*+~𝒩(𝑁"*, 𝜏?3),          (2) 195 

 196 

where 𝜏?3 is a variance determining how much the observed nitrogen contents 𝑁*+  can vary 197 

around the critical nitrogen content 𝑁"*  in the ith date. In Eq.(2), nitrogen content 198 

measurements are assumed to vary around the critical nitrogen with a variance equal to 𝜏?3. 199 

A high (low) value 𝜏?3 will reflect a strong (weak) variability of the measurements 𝑁*+  around 200 

the critical nitrogen content 𝑁"*. Part of this variability reflects the different levels of applied 201 

N considered in the field experiments and another part reflects measurement errors. With 202 



Eq.(2), the values of 𝑁"*  are constrained to remain in the same order of magnitude as the 203 

measured nitrogen contents. This prevents the model from producing 𝑁"*  values 204 

inconsistent with observed values. However, Eq.(2) might not offer enough flexibility as it 205 

assumes that the mean value of 𝑁*+  is equal to 𝑁"*  for every date i.  For this reason, we 206 

consider a second model based on more flexible equation defined by:   207 

𝑁*+~𝒩(𝑁"* + 𝜃*, 𝜏?3),          (3) 208 

where 𝜃*  is the deviation between the mean value of 𝑁*+  and the critical nitrogen content 209 

𝑁"*. Eq.(3) does not assume that the mean value of 𝑁*+  is equal to 𝑁"*  for every 210 

measurement date. Indeed, with Eq.(3), the mean value of 𝑁*+  is not strictly equal to 𝑁"*  but 211 

to 𝑁"* + 𝜃*, and each measurement date is characterized by a specific value of 𝜃*. In the 212 

remaining part of the text, models 1 and 2 refer to models based on Eqs.(2) and (3), 213 

respectively.  214 

Level 2: Variability of biomass and nitrogen content between measurement dates 215 

We assume that the critical nitrogen content 𝑁"*	 is related to the maximum biomass 𝐵6(7*  216 

(i.e., to the mean value of 𝑊*+  when 𝑁*+ = 𝑁"*) by a power function defined as  217 

𝑁"* = 𝐴%𝐵6(78
'()          (4) 218 

 where 𝐴% and 𝐴3 are two parameters. The values of 𝐵6(78  and of 𝑆*  are assumed to vary 219 

across dates according to two truncated Gaussian distributions defined by 220 

𝐵6(78~𝒩(𝜇C6(7, 𝜎C6(73 )𝐼(0, ) and 𝑆*~𝒩(𝜇G, 𝜎G3)𝐼(0, ), where I(a,b) is a truncation 221 

operator forcing values to fall within the range defined by a and b, I(0, ) thus indicating that 222 

𝐵6(78  and 𝑆*  are forced to be positive. The use of a truncation is logical here as 𝐵6(78  223 

represents a biomass (and is thus positive) and as the effect of nitrogen on biomass 224 



(measured by 𝑆*) is expected to be positive when 𝑁*+ < 𝑁"* . The distributions of 𝐵6(78  and 225 

𝑆*  determine the variability of the shape of the linear-plus-plateau function across 226 

measurement dates. We assume that the values of 𝜃*  in Eq.(3) vary across measurement 227 

date as 𝜃*~	𝒩.0, 𝜏H34. Here, a truncation is not required as there is no reason for 𝜃*  to be 228 

strictly positive.   229 

Level 3: Prior 230 

The model defined above included eight unknown quantities, namely 𝐴%, 𝐴3, 𝜇C6(7, 𝜎C6(73 , 231 

	𝜇G, 𝜎G3, 𝜏?3, and 𝜏23. Prior knowledge on plausible values for these parameters are defined by 232 

specifying prior probability distributions. Two types of priors are used successively here, 233 

namely (i) weakly-informative priors and (ii) informative priors based on probabilistic expert 234 

elicitation. These two types of priors are further denoted to as prior 1 and prior 2, 235 

respectively.  236 

The weakly-informative priors (priors 1) are designed to provide only little information about 237 

the plausible values of the eight unknown quantities while reducing the chance to get 238 

unrealistic values. These priors are defined by 𝜇C6(7~𝒩(6,10), 𝜇G~𝒩(0,10), 239 

𝐴%~𝑈𝑛𝑖𝑓(2,6), 𝐴3~𝑈𝑛𝑖𝑓(0,0.5), 1/𝜎C6(73 ~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 1/240 

𝜎C3~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 1/𝜏23~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 1/𝜏?3~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), 241 

1/𝜏H3~𝐺𝑎𝑚𝑚𝑎(0.001,0.001). 242 

The informative priors (priors 2) are specified by expert elicitation. Probabilistic expert 243 

elicitation consists of extracting an expert’s knowledge about the likely values of some 244 

unknown quantity of interest, and representing those beliefs with a probability distribution 245 

(Morris et al., 2014; Chen et al., 2019). Here, one expert with a thorough and international 246 

experience on critical N curves was elicited about the possible values of  𝐴%, 𝐴3, and 𝜇C6(7 . 247 



The elicitation was conducted following the procedure described in details by Chen et al. 248 

(2019). As maize is a C4 crop, the expert chose to define two distributions for 𝐴%, one for 249 

maize and one for the two C3 crop species considered (wheat and rice). For wheat and rice, 250 

the elicited prior distributions defined by the expert are 𝜇C6(7~𝐵𝑒𝑡𝑎(2.31, 2.31, 1,15),  251 

𝐴%~𝒩(4.89,0.13)𝐼(4,5.5), 𝐴3~𝐵𝑒𝑡𝑎(2.12,2.12,0.3,0.4). For maize, the prior for 𝐴% is 252 

𝐴%~𝐵𝑒𝑡𝑎(2.03,1.5, 3,4), but the other priors are unchanged. Note that the last two 253 

parameters of the Beta distributions correspond to lower and upper bounds. 254 

The two types of priors are shown in Figure 2 for the parameters of  𝐴%, 𝐴3, 𝜇C6(7 , and 𝜇G. 255 

Clearly, prior 2 covers narrower ranges of values than prior 1, in coherence with the fact that 256 

prior 2 is designed to be more informative than prior 1. The difference between the two 257 

types of prior is particularly strong for the two parameters of the critical N curve, i.e., 𝐴% and 258 

𝐴3 (Figure 2AB). Noticeably, there is a marked difference between the priors of 𝐴% defined 259 

by the expert for maize vs. wheat + rice. The prior defined for maize covers lower values 260 

than the prior defined for wheat and rice (see the dotted vs. dashed lines in Figure 2A). 261 

 262 

  263 



Figure 2. Priors distributions defined for the parameters 𝐴% (A), 𝐴3 (B), 𝜇C6(7 (C), and 𝜇G (D). Weakly-264 

informative priors are represented by the continuous blue lines. Informative priors defined by expert elicitation 265 

for 𝐴%, 𝐴3, and 𝜇C6(7 are indicated in red dashed lines or in red dotted lines. For 𝐴%, the informative prior is 266 

defined in dashed line for wheat and rice and in dotted line for maize. For 𝐴3 and 𝜇C6(7, the informative priors 267 

are not differentiated among the three species by the expert and are all represented in dashed lines.    268 

 269 
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 271 

2.3. Posterior distributions 272 

The posterior distributions of the model parameters are estimated with a Markov chain 273 

Monte Carlo algorithm (MCMC) implemented with the R package rjags (Plummer, 2017) 274 

using both types of priors, successively. The R code used to fit models 1 and 2 is presented in 275 

Appendix D. With model 1 the convergence was achieved approximately after 10,000 276 

iterations according to the Gelman-Rubin diagnosis. The first 10,000 iterations were 277 

discarded and the MCMC algorithm was run for 40,000 additional iterations which were 278 

then used to compute the median and 95% credibility intervals for several quantities of 279 

interest, in particular 𝐴%, 𝐴3, 𝜇C6(7, 	𝜇G, 𝐵6(7*  and 𝑆*  for all observation dates. The median 280 

values of 𝐵6(78and 𝑆*  were used to fit a specific linear-plus-plateau function for each date 281 

separately. We also computed the median and 95% credibility intervals of the critical 282 

nitrogen dilution curve 𝑁" = 𝐴%𝐵6(7'(). With model 2 (based on Eq.3), the convergence 283 

was achieved approximately after 10,000 to 50,000 iterations for the maize and wheat 284 

datasets. However, with model 2, we were able to achieve convergence for rice, even with a 285 

large number of iterations, probably due to the fact that model 2 was overparametrized for 286 

rice. The results obtained with model 2 for maize and wheat were almost identical as those 287 

obtained with model 1 (see appendix C).  For this reason, we only present the results 288 

obtained with model 1 in the next section. Nonetheless, values of A1 and A2 estimated with 289 

model 2 can be found in Appendix C.  290 

 291 



3. Results  292 

3.1. Fitted critical N curves 293 

The fitted critical N curve and its 95% critical interval obtained for the maize cultivar DH605 294 

with prior 1 are shown in Figure 3a. The width of the critical interval describes the level of 295 

uncertainty in the fitted curve and directly reflects the distributions of the values of the 296 

parameters A1 and A2 (Figure 3bc). Clearly, for the maize cultivar DH605, the level of 297 

uncertainty in critical N depends on the biomass value. The width of the critical interval is 298 

equal to about 0.5% of plant N concentration when the biomass is lower than 2 t ha-1 and 299 

becomes lower than 0.25% when the biomass is higher than 4 t ha-1. The level of uncertainty 300 

is thus lower for high compared to low biomass values. This decreasing trend in the level of 301 

uncertainty is also observed for the second maize cultivar considered in this study (Appendix 302 

A1), but not for wheat or rice (Appendix A2-A4). For the latter two crop species, the 303 

uncertainty is small compared to maize, even for low biomass values, and its level does not 304 

show any substantial increasing or decreasing trend. The uncertainty is especially low for 305 

wheat for which the width of the 95% credibility interval is close to 0.1% over a wide range 306 

of biomass values. For rice, the level of uncertainty is intermediate between maize and 307 

wheat (Appendix A3-A4). 308 

 309 

  310 



Figure 3. Fitted critical N curve obtained for the maize cultivar DH605 and its 95% credibility interval. In graphic 311 
3a, continuous and dashed thick lines represent the posterior median and the 95% credibility interval, 312 
respectively. The thin lines represent the linear-plus-plateau responses fitted for all combinations of 313 
measurement stage and year available in the dataset. Data collected for different stage*years are indicated by 314 
points of different colors. Posterior distributions of the parameters A1 and A2 (40,000 parameter values 315 
generated by MCMC) are presented in the histograms in graphics 3b and 3c, respectively. Results were 316 
obtained with prior 1. The ranges of the x-axis in b and c reflect the ranges of values covered by the prior 317 
distributions.  318 
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The whole set of fitted critical N curves obtained for the different crops and cultivars are 324 

compared in Figure 4. With prior 1 (Figure 4A), the critical N curve obtained for wheat is 325 

higher than those obtained for the other crop species when the biomass is lower than 4 t ha-326 

1, but it becomes lower than the critical N curve obtained for rice indica for higher values of 327 

biomass. The critical curve of indica is higher than the curve of japonica but the difference is 328 

very small for low biomass values (Figure 4A). The curves obtained for the two maize 329 

cultivars are very similar and close to the curve of indica (Figure 4A).  330 

The curve obtained for wheat with prior 2 (Figure 4B) is very similar to the curve obtained 331 

with prior 1. For wheat, the fitted critical N curve is thus insensitive to the choice of prior. On 332 

the contrary, the curves obtained for rice indica and japonica are much higher with prior 2 333 

compared to prior 1. With prior 2, the critical N curves of rice become very close to the 334 

critical N curve of wheat (Figure 4B). For maize, compared to prior 1, the critical N curves 335 

obtained with prior 2 tend to be slightly higher and closer to the curve obtained for wheat.   336 

Overall, the differences between the critical N curves obtained for the different species and 337 

cultivars are thus relatively small. These differences may simply reflect uncertainties in the 338 

values of the parameters A1 and A2 characterizing the critical N curves. In order to conclude, 339 

it is thus necessary to analyze the parameter values. This is done in the next section. 340 

 341 

  342 



Figure 4. Fitted critical N curve obtained for wheat, maize (two cultivars), and rice (two cultivars). Each curve 343 

corresponds to a posterior median obtained with prior 1 (A) or prior 2 (B). 344 
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3.2. Estimated parameter values  347 

Figure 5 shows the estimated parameter values obtained for the different crops and 348 

cultivars. The posterior medians correspond to point estimates that can be used to draw 349 

critical N curves, as shown in figures 3a and 4ab. The 95% credibility intervals presented in 350 

Figure 5 cover 95% of the values sampled in the posterior distributions using MCMC. Thus, 351 

the intervals shown in Figure 5 for maize DH605 cover 95% of the values of the histograms 352 

presented in Figure 3bc. These intervals describe the levels of uncertainty in the values of 353 

the parameters A1 and A2. 354 

 355 

Figure 5. Estimated values (posterior medians) and 95% credibility intervals of parameters A1 (a, b, in %) and 356 

A2 (c, d) with priors 1 (a, c) and 2 (b, d), for wheat, maize (two cultivars), rice indica, and rice japonica.  357 

 358 
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 360 

With prior 1 (Figure 5ac), the parameter values are significantly higher for wheat than for 361 

the other crop species. For wheat, the posterior median is equal to 4.86 (95%CI=[4.61, 5.12]) 362 

for A1 and to 0.43 (95%CI=[0.40, 0.46]) for A2. In comparison, for maize and rice, the 363 

posterior medians of A1 are always lower than 3.5 and those of A2 are always lower than 364 

0.25. The uncertainty levels (reflected by the sizes of the credibility intervals) are 365 

substantially higher for maize and rice than for wheat. This is because the number of 366 

measurements used to fit the critical N curve is higher for wheat compared to maize and rice 367 

(see also Appendix A).  Because of their large credibility intervals, the parameter values 368 

obtained for the two maize cultivars and for the two rice cultivars are not significantly 369 

different.  370 

The whole ensembles of parameter values drawn by MCMC from the posterior distributions 371 

of A1 and A2 obtained with prior 1 are shown in Figure 6. These values are those used to 372 

derived the posterior medians and credibility intervals presented in Figure 5ac. Parameter 373 

values presented in Figure 6 show that A1 and A2 are positively correlated; high (low) values 374 

of A1 tend to be associated with high (low) values of A2. Figure 6 also confirms that the 375 

parameter values obtained for the two cultivars of maize strongly overlap, that those 376 

obtained for the two rice cultivars partly overlap, and that the parameter values obtained 377 

for wheat are much higher than those obtained for maize and rice.   378 

 379 

 380 

 381 

 382 



Figure 6. Ensembles of parameter values drawn from the posterior distributions of A1 and A2 (obtained with 383 

model 1 and prior 1). Maize vs. Wheat (a) and Rice vs. Wheat (b).  384 

 385 
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The use of prior 2 (informative priors) instead of prior 1 does not substantially impact the 387 

parameter values estimated for wheat (Figure 5bd). For this crop, both priors lead to similar 388 

values for A1 and A2. On the contrary, for rice, the estimated parameter values are much 389 

higher with prior 2 than with prior 1. Consequently, the parameter values obtained for rice 390 

with prior 2 are not significantly different from those obtained for wheat anymore. This is 391 

because the informative priors (prior 2) defined for rice and wheat force the values of A1 to 392 

be higher than 4 and the values of A2 to be higher than 0.3 (Figure 2ab). For wheat, prior 2 393 

has no substantial impact because the posterior medians of A1 and A2 obtained with prior 1 394 

were already higher than 4 and 0.3, respectively. For rice, the use of prior 2 has a strong 395 

impact on the estimated parameter values because the posterior medians of A1 and A2 396 

obtained with prior 1 were much lower than 4 and 0.3.  397 
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For maize, the use of prior 2 has also a strong impact on the estimated values of A2 (Figure 398 

5d) but less on the values of A1. This is because the informative prior defined for A1 (prior 2) 399 

is different for maize than for rice and maize (Figure 2a). For maize, the informative prior 400 

defined for A1 forces the values of this parameter to fall within the range 3-4, i.e., close to 401 

the posterior medians of A1 obtained with prior 1. The use of prior 2 instead of prior 1 has 402 

thus a limited impact on A1 for maize.  403 

 404 

4. Discussion 405 

The proposed Bayesian method has several advantages. First, it does not require any 406 

preliminary classification of N-limited data against non-N-limited data and does not 407 

necessitate the preliminary identification of critical N concentration values. This is an 408 

important advantage because it was shown that the critical N curve is sensitive to the 409 

method used for estimating critical N concentration values (i.e., type of statistical test and 410 

type I error level) and because there is no consensus on how these critical N concentration 411 

values should be estimated (Greenwood et al. 1990; Justes et al., 1994; Chen and Zhu, 2013). 412 

Our Bayesian approach can be implemented even with sparse data, i.e., when observations 413 

are available for a limited number of fertilizer doses only. This is made possible because the 414 

proposed model borrows strength from all dates of measurements and because parameters 415 

are estimated by combining data with prior information.  416 

Second, the proposed method can be easily implemented with free software to fit critical 417 

nitrogen curves. The R code presented in appendix D can be easily run to estimate critical N 418 

dilution curves using a dataset including only three columns; a column with the biomass 419 

observations, a column with the associated nitrogen concentration observations, and a 420 



column with the indices identifying the different dates of the dataset. This R code produces 421 

chains of values for all parameters, including the two parameters defining the critical N 422 

curve. The generated chains of values can be easily summarized by standard quantities such 423 

as median, mean, and percentiles, and can be used to estimate the N critical curve and 424 

compute its credibility interval. In our applications, 10,000 iterations were sufficient to reach 425 

convergence in most cases and the computation time did not exceed 1 or 2 minutes using a 426 

standard commercial computer.  427 

Finally, another advantage of the proposed approach is that it facilitates the analysis of the 428 

uncertainty of the fitted critical N curves. The proposed method is based on a Bayesian 429 

hierarchical model whose parameters are estimated taking into account the number of 430 

observation dates included in the data set, the number of data available per date and the 431 

variability of observations between and within dates. The estimation results are expressed 432 

by probability distributions from which the uncertainty of any quantity of interest can easily 433 

be analyzed. In particular, our approach allows us to calculate the credibility intervals of the 434 

N critical curves and their parameters. Our applications show that, because the dataset used 435 

for wheat has been constituted from a large number of experiments network across France, 436 

the uncertainty of critical N curve for wheat is relatively low. For maize and rice in China, 437 

where the numbers of available data are smaller, the widths of the credibility intervals are 438 

larger revealing a higher level of uncertainty.  439 

From the probability distributions and credibility intervals computed by our method, it is 440 

possible to compare different species of crops, cultivars or cropping systems, taking into 441 

account uncertainties in parameter estimates. Since critical nitrogen curves are often 442 

included in mechanistic crop models, the probability distributions provided by our method 443 



could also be useful for performing uncertainty and sensitivity analyses with these models 444 

(Wallach et al. 2019). The importance of rigorous uncertainty analysis is illustrated by some 445 

of the results of our case studies where we found that parameter estimates for different 446 

cultivars of the same species could not be considered statistically significant when 447 

uncertainty is taken into account. Clearly, in our examples, the differences between the 448 

point estimates of the critical N curve parameters obtained for the different cultivars are 449 

small compared to the associated levels of uncertainty.  450 

Like all Bayesian methods, our approach allows modellers to combine two sources of 451 

information to estimate the parameters. More specifically, it combines prior information 452 

based on expert knowledge and experimental data. Prior information is described using 453 

probability distributions that summarize the initial state of knowledge on parameter values 454 

before using the data. Here, we use two types of priors. The former are poorly informative 455 

and are designed to provide little information on plausible values of model parameters. They 456 

do not therefore strongly limit the values of the parameters. The second priors are more 457 

informative and are specified by the probabilistic elicitation of an expert. This technique 458 

allows to represent the experts' knowledge on the value of a parameter through a 459 

probability distribution.  460 

Probabilistic elicitation is useful when you want to rely on both experimental data and 461 

expert knowledge for parameter estimation. The use of informative prior is useful when the 462 

number of observations available is low and insufficient to accurately estimate parameter 463 

values.  However, this approach should be used with caution, as it can have a significant 464 

effect on parameter estimates, especially when the size of the data set is small. In our 465 

applications, the parameter estimates obtained for wheat are not substantially influenced by 466 



the choice of prior because the size of the dataset is relatively large in this case. For wheat, 467 

both priors lead to similar point estimates and credibility intervals. In contrast, for maize and 468 

rice, the sizes of the data sets are smaller and, in both cases, the values of the estimated 469 

parameters are sensitive to the choice of a prior; they take on larger values and their 470 

credibility intervals are narrower when calculations are made with informative a priori. 471 

When used, informative priors should therefore be defined by using qualified experts based 472 

on relevant information. 473 

We believe that our approach opens new perspectives for the estimation of critical nitrogen 474 

dilution curves. Different variants of the model proposed here could be tested in the future 475 

in order to better take into account possible correlations between measurements, to better 476 

describe the a priori information available on the values of the parameters, or to handle 477 

larger networks of experiments. 478 
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Appendix A: Individual fitted critical N curves 527 

In this appendix, we present the posterior median, the 95% credibility intervals and the 528 

experimental data obtained for maize ZD958m (see main text for the other maize cultivar), 529 

rice (Japonica and Indica) and wheat. 530 

 531 

A1. Maize ZD958m 532 

 533 
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A2. Wheat 539 
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A3. Rice Japonica 542 

 543 

A4. Rice Indica 544 

 545 
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Appendix B: Characteristics of the maize experiments 548 

 549 

Experiment No. 
Sowing/Harvesting 

date 
Soil characteristics Cultivar N(kg N ha–1) Sampling stage 

Experiment 1 8-Jun Type: light loam soil Zhengdan958 0 (N0) Elongation stage 

(2015 Xinxiang) 25-Sep Organic matter: 12.26 g kg–1 (ZD958) 75 (N1) Bell stage 

  Total N: 0.74 g kg–1  150 (N2) Tasseling stage 

  Olsen-P: 35.67 mg kg–1  225 (N3) Anthesis stage 

  NH4oAc-K+: 84 mg kg–1  300 (N4) Silking stage 

Experiment 2 8-Jun Type: sandy light loam soil Denghai605 0 (N0) Elongation stage 

(2015 Xinxiang) 25-Sep Organic matter: 10.43 g kg–1 (DH605) 75 (N1) Bell stage 

  Total N: 0.61 g kg–1  150 (N2) Tasseling stage 

  Olsen-P: 33.94 mg kg–1  225 (N3) Anthesis stage 

  NH4oAc-K+: 76 mg kg–1  300 (N4) Silking stage 

Experiment 3 6-Jun Type: light loam soil Zhengdan958 0 (N0) Elongation stage 

(2016 Xinxiang) 22-Sep Organic matter: 14.2 g kg–1 (ZD958) 90 (N1) Bell stage 

  Total N: 0.83 g kg–1  180 (N2) Tasseling stage 

  Olsen-P: 44 mg kg–1  270 (N3) Anthesis stage 

  NH4oAc-K+: 90 mg kg–1   Silking stage 

Experiment 4 6-Jun Type: light loam soil Denghai605 0 (N0) Elongation stage 

(2016 Xinxiang) 22-Sep Organic matter: 9.5 g kg–1 (DH605) 90 (N1) Bell stage 

  Total N: 0.57 g kg–1  180 (N2) Tasseling stage 

  Olsen-P: 23.51 mg kg–1  270 (N3) Anthesis stage 

  NH4oAc-K+: 58.45 mg kg–1   Silking stage 

 550 



Appendix C:  Estimated values of A1 and A2 for maize and wheat 551 

obtained with model 1 (based on Eq.(2)) and model 2 (based on 552 

Eq.(3)).    553 

 554 
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Appendix D: R Code 557 

Model 1 558 

###Data 559 

# Q=total number of biomass observations 560 

# K=number of dates 561 

# W=column of data including biomass observations  562 

# N=column of data including observations of nitrogen concentrations 563 

# Date=column with the indices identifying the different dates of the dataset 564 

 565 

###Model parameters 566 

# Nc=Critical nitrogen concentration 567 

# Bmax=maximum biomass value in a specific date 568 

# S=slope of the linear-plus-plateau function 569 

# W=biomass increase per unit of nitrogen concentration 570 

# A1 and A2 = parameters of the critical N curve 571 

# tau_b and tau_n = 1/residual variances for biomass and nitrogen content observations 572 

# Mu_Bmax,Prec_Bmax = parameters defining the between-date variability of Bmax 573 

# Mu_S,Prec_S = parameters defining the between-date variability of S 574 

 575 

Q<-length(Date) 576 
K<-length(unique(Date)) 577 
 578 
modelstring= " 579 
model { 580 
  581 
 for (i in 1:Q) 582 
 { 583 
  W[i]~dnorm(mu[i], tau_b) 584 



  N[i]~dnorm(Nc[Date[i]], tau_n) 585 
  mu[i]<-min(Bmax[Date[i]], Bmax[Date[i]]+S[Date[i]]*(N[i]-Nc[Date[i]])) 586 
 } 587 
  588 
 for (j in 1:K) 589 
 { 590 
  Nc[j]=A1*Bmax[j]^(-A2) 591 
  Bmax[j]~dnorm(Mu_Bmax,Prec_Bmax)T(0,) 592 
  S[j]~dnorm(Mu_S,Prec_S)T(0,) 593 
   } 594 
    595 
   #Weakly informative 596 
   Mu_Bmax~dnorm(6,0.1) 597 
   Mu_S~dnorm(0,0.1) 598 
   A1~dunif(2,6) 599 
   A2~dunif(0,0.5) 600 
     601 
   #Informative prior C3 602 
   #A1~dnorm(4.89,7.72)T(4,5.5) 603 
   #ZA2~dbeta(2.12,2.12) 604 
   #A2=(0.4-0.3)*ZA2+0.3 605 
   #ZMu_Bmax~dbeta(2.31,2.31) 606 
   #Mu_Bmax=(15-1)*ZMu_Bmax+1 607 
   #Mu_S~dnorm(0,0.1) 608 
     609 
   #Informative prior C4 610 
   #ZA1~dbeta(2.03,1.5) 611 
   #A1=(4-3)*ZA1+3 612 
   #ZA2~dbeta(2.12,2.12) 613 
   #A2=(0.4-0.3)*ZA2+0.3 614 
   #ZMu_Bmax~dbeta(2.31,2.31) 615 
   #Mu_Bmax=(15-1)*ZMu_Bmax+1 616 
   #Mu_S~dnorm(0,0.1) 617 
    618 
   Prec_Bmax~dgamma(0.001,0.001) 619 
   Prec_S~dgamma(0.001,0.001)  620 
   tau_b~dgamma(0.001,0.001) 621 
   tau_n~dgamma(0.001,0.001) 622 
    623 
} 624 
" 625 
writeLines(modelstring, con="model.txt") 626 
 627 
model<-jags.model('model.txt', data=list('W'=W, 'N'=N, 'Date'=Date, 'Q'=Q,'K'=K), 628 
n.chains=3, n.adapt=10000) 629 

 630 
 631 



Model 2 632 

modelstring= " 633 
model { 634 
  635 
 for (i in 1:Q) 636 
 { 637 
  W[i]~dnorm(mu[i], tau_b) 638 
  N[i]~dnorm(Nc[Date[i]]+Theta[Date[i]], tau_n) 639 
  mu[i]<-min(Bmax[Date[i]], Bmax[Date[i]]+S[Date[i]]*(N[i]-Nc[Date[i]])) 640 
 } 641 
  642 
 for (j in 1:K) 643 
 { 644 
  Nc[j]=A1*Bmax[j]^(-A2) 645 
  Bmax[j]~dnorm(Mu_Bmax,Prec_Bmax)T(0,) 646 
  S[j]~dnorm(Mu_S,Prec_S)T(0,) 647 
  Theta[j]~dnorm(0,tau_t) 648 
   } 649 
    650 
   #Weakly informative 651 
   Mu_Bmax~dnorm(6,0.1) 652 
   Mu_S~dnorm(0,0.1) 653 
   A1~dunif(2,6) 654 
   A2~dunif(0,0.5) 655 
     656 
   #Informative prior C3 657 
   #A1~dnorm(4.89,7.72)T(4,5.5) 658 
   #ZA2~dbeta(2.12,2.12) 659 
   #A2=(0.4-0.3)*ZA2+0.3 660 
   #ZMu_Bmax~dbeta(2.31,2.31) 661 
   #Mu_Bmax=(15-1)*ZMu_Bmax+1 662 
   #Mu_S~dnorm(0,0.1) 663 
     664 
   #Informative prior C4 665 
   #ZA1~dbeta(2.03,1.5) 666 
   #A1=(4-3)*ZA1+3 667 
   #ZA2~dbeta(2.12,2.12) 668 
   #A2=(0.4-0.3)*ZA2+0.3 669 
   #ZMu_Bmax~dbeta(2.31,2.31) 670 
   #Mu_Bmax=(15-1)*ZMu_Bmax+1 671 
   #Mu_S~dnorm(0,0.1) 672 
    673 
   Prec_Bmax~dgamma(0.001,0.001) 674 
   Prec_S~dgamma(0.001,0.001)  675 
   tau_b~dgamma(0.001,0.001) 676 
   tau_n~dgamma(0.001,0.001) 677 



   tau_t~dgamma(0.001,0.001) 678 
} 679 
" 680 
writeLines(modelstring, con="model.txt") 681 
model<-jags.model('model.txt', data=list('W'=W, 'N'=N, 'Date'=Date, 'Q'=Q,'K'=K), 682 
n.chains=3, n.adapt=10000) 683 
 684 
 685 


