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Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and problems [START_REF] Browne | A survey of Monte Carlo tree search methods[END_REF].

Nested Monte Carlo Search (NMCS) [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF] is an algorithm that works well for puzzles. It biases its playouts using lower level playouts. At level zero NMCS adopts a uniform random playout policy. Online learning of playout strategies combined with NMCS has given good results on optimization problems [START_REF] Rimmel | Optimization of the Nested Monte-Carlo algorithm on the traveling salesman problem with time windows[END_REF]. Other applications of NMCS include Single Player General Game Playing [START_REF] Méhat | Combining UCT and Nested Monte Carlo Search for single-player general game playing[END_REF], Cooperative Pathfinding [START_REF] Bouzy | Monte-carlo fork search for cooperative path-finding[END_REF], Software testing [START_REF] Poulding | Generating structured test data with specific properties using nested monte-carlo search[END_REF], heuristic Model-Checking [START_REF] Poulding | Heuristic model checking using a monte-carlo tree search algorithm[END_REF], the Pancake problem [START_REF] Bouzy | Burnt pancake problem: New lower bounds on the diameter and new experimental optimality ratios[END_REF], Games [START_REF] Cazenave | Nested monte carlo search for two-player games[END_REF], Cryptography [START_REF] Dhar Dwivedi | Finding differential paths in arx ciphers through nested monte-carlo search[END_REF] and the RNA inverse folding problem [START_REF] Portela | An unexpectedly effective monte carlo technique for the rna inverse folding problem[END_REF].

Online learning of a playout policy in the context of nested searches has been further developed for puzzles and optimization with Nested Rollout Policy Adaptation (NRPA) [START_REF] Christopher | Nested rollout policy adaptation for Monte Carlo Tree Search[END_REF]. NRPA has found new world records in Morpion Solitaire and crosswords puzzles. Stefan Edelkamp and co-workers have applied the NRPA algorithm to multiple problems. They have optimized the algorithm for the Traveling Salesman with Time Windows (TSPTW) problem [START_REF] Cazenave | Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows[END_REF][START_REF] Edelkamp | Algorithm and knowledge engineering for the tsptw problem[END_REF]. Other applications deal with 3D Packing with Object Orientation [START_REF] Edelkamp | Monte-carlo tree search for 3d packing with object orientation[END_REF], the physical traveling salesman problem [START_REF] Edelkamp | Solving physical traveling salesman problems with policy adaptation[END_REF], the Multiple Sequence Alignment problem [START_REF] Edelkamp | Monte-carlo tree search for the multiple sequence alignment problem[END_REF] or Logistics [START_REF] Edelkamp | Monte-carlo tree search for logistics[END_REF]. The principle of NRPA is to adapt the playout policy so as to learn the best sequence of moves found so far at each level.

Electricité De France (EDF) is the main french electric utility company. Each year, eleven millions of services have to be carried out by EDF technicians at customers places (problem fixing, meter replacement, energetic diagnosis, business prospects). Thus, all together, EDF techicians drive by car more than 220 000 kilometers per year. Each service is accomplished by a technician having the required skills within a time window determined during the appointment booking. As a result, numerous Vehicle Routing Problems with Time Windows (VRPTW) have to be solved on a daily basis (one problem per catchment area). Any of these VRPTW involves quite a big search space, since EDF technicians of a single catchment area have to achieve every day hundreds of visits at customers places. The objective of the work described in this paper was to adapt the NRPA algorithm to the specifics of EDF problem.

Related approaches that apply Artificial Intelligence techniques to transportation include agent based approaches [START_REF] Ana | A review on agent-based technology for traffic and transportation[END_REF], Monte Carlo Search approaches [START_REF] Sörensen | A practical approach for robust and flexible vehicle routing using metaheuristics and monte carlo sampling[END_REF][START_REF] Mańdziuk | Uct-based approach to capacitated vehicle routing problem[END_REF][START_REF] Edelkamp | Monte-carlo tree search for logistics[END_REF][START_REF] Abdo | Nested rollout policy adaptation for optimizing vehicle selection in complex vrps[END_REF] and learning of simulations of urban traffic [START_REF] Crociani | Learning obervables of a multi-scale simulation system of urban traffic[END_REF]. Our work is close to the Monte-Carlo Search approach applied to the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW).

We now give the outline of the paper. The next section briefly describes the state of the art of Vehicle Routing. The third section details the NRPA algorithm and its proposed improvements. The fourth section describe the problems of EDF and the current solver. The fifth section gives experimental results for various instances of Vehicle Routing, both from literature (Solomon instances) and from real-life problems. The last section concludes.

The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is one of the most studied optimization problem. It was first stated in 1959 in [START_REF] Dantzig | The truck dispatching problem[END_REF]. Basically, it consists of finding an optimal route for a number of vehicles that are used to deliver goods or services to a set of customers, taking into account a set of constraints. In the simpler variant of the problem, all vehicles start from a single depot and end their tour in this depot. The objective function to be minimized may combine up to three criteria (namely the number of customers that are not serviced, the number of vehicles used, the total distance travelled by the vehicles), each criterion having an associated weight. The VRP can be formalized as a graph problem : let G = (V, A) be a directed graph where V is the set of vertices, and A is the set of arcs. Each arc is labelled with a non-negative number. One of the vertices represent the depot, the others represent the customers locations. The arcs symbolize the roads between two customers, and the label of the arcs give the distance (or the travel time, or the travel cost) between two points. Lets us remind that the G is a directed graph, and thus its associated distance matrix is not necessarily symmetric.Now the problem consists of finding the minimum number of tours so that each vertex except the depot belongs to one and only one tour, and the depot belongs to all of them. The VRP is of the non deterministic polynomial time hard type (NP-Hard), which implies that so far we don't know of a general method which is able to optimally solve any instance of the problem in polynomial time. As a result, the VRP is considered very difficult. Nowadays exact methods can solve to optimality quite challenging instances of the problem (for instance up to one hundred visits or so with Branch and Price methods).

VRP variations

The VRP is a real challenge for delivery companies operating a fleet of vehicles. It has given rise to a number of variations. The CVRP (Capacitated VRP) is defined as a VRP with a demand associated to each customers (e.g. the number of parcels they have purchased) and each vehicle has a limited capacity. The VRP with time windows (VRPTW) implies to serve each customer within a given time window (possibly different for each customer). The capacitated VRP with time windows (CVRPTW) combines the characteristics of the two previous variants. Although the previous variations are the most widely studied because of their great practical importance, many other extensions of the basic VRP have also been proposed. Among them, let us just mention two of them. First, the dynamic VRP (DVRP) where vehicles may be dynamically re-routed during their tour in order to fulfill new customers orders. Second, the VRP with Pickup and Delivery (VRPPD) where a fleet of vehicles must satisfy transportation requests (e.g. picking parcels up at some places and delivering them at given locations).

Principal methods used for solving VRP

A wide range of methods have been used to solve the VRP. These methods may be broken down into three sub-groups, namely exact methods, heuristic methods and metaheuristic methods. These methods are presented hereafter.

Exact methods These methods tend to find an optimal solution for the VRP. As mentioned above, they are thus used to solve instances of the VRP of consequent size. Among the most studied exact methods for the VRP and variations we may mention the Branch-and-Cut and the Branch-and-Price algorithms [START_REF] Gutierrez-Jarpa | A branch-and-price algorithm for the vehicle routing problem with deliveries, selective pickups and time windows[END_REF], the column-generation algorithm [START_REF] Azi | An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles[END_REF] and the set-partitioning method [START_REF] Agrawal | A set-partitioning-based algorithm for the vehicle routing problem[END_REF].

These methods can also provide a bound of optimum, especially in relaxing some of the most complicated constraints. For example, in suppressing the classical subtour elimination constraint.

Heuristic methods Not in a comprehensive manner, let us mention two interesting approaches. First the cluster-first, route-second heuristic [START_REF] Fisher | A generalized assignment heuristic for ve-hicle routing[END_REF]. Second, the savings heuristic [START_REF] Clarke | Scheduling of vehicles from a central depot to a number of delivery points[END_REF] [START_REF] Anbuudayasankar | Modified savings heuristics and genetic algorithm for bi-objective vehicle routing problem with forced backhauls[END_REF]. For the local search approaches we see in [START_REF] Yuichi | A powerful route minimization heuristic for the vehicle routing problem with time windows[END_REF] a heuristic projection pool with powerful insertion and guided local search strategies. The local search described in [START_REF] Rochat | Probabilistic diversification and intensification in local search for vehicle routing[END_REF] gives reference solutions on several instances of the benchmark VRP Solomon instances tested in this work.

Metaheuristic methods

The most commonly used metaheuristics for solving VRP and variations are the particle swarm optimization [START_REF] Marinakis | Particle swarm optimization for the vehicle routing problem with stochastic demands[END_REF], simulated annealing [START_REF] Chiang | Simulated annealing metaheuristics for the vehicle routing problem with time windows[END_REF], genetic algorithm [START_REF] Potvin | The vehicule routing problem with time windows part ii : Genetic search[END_REF] [43] and tabu search [START_REF] Cordeau | A tabu search heuristic for the periodic and multi-depot vehicle routing problems[END_REF] [START_REF] Potvin | The vehicule routing problem with time windows part i : Tabu search[END_REF]. Among the best algorithms for solving the VRP Solomon instances tested in this work, we can cite genetic algorithm described in [START_REF] Barkaoui | A parallel hybrid genetic algorithm for the vehicle routing problem with time windows[END_REF], evolutionnary algorithm detailed in [START_REF] Bräysy | A multi-parametric evolution strategies algorithm for vehicle routing problems[END_REF] or tabu Search proposed in [START_REF] Gendreau F. Geurtin | A tabu search heuristic for the vehicle routing problem with time windows[END_REF].

Nested Rollout Policy Adaptation for Vehicle Routing

In this section we start with explaining the NRPA algorithm. Then we give our modelling of the CVRPTW problem for NRPA. We finish the section describing how weight are heuristically initialized in order to speed-up convergence of the algorithm.

Description of NRPA

An effective combination of nested levels of search [START_REF] Cazenave | Nested Monte-Carlo Search[END_REF] and of policy learning has been proposed with the NRPA algorithm [START_REF] Christopher | Nested rollout policy adaptation for Monte Carlo Tree Search[END_REF]. NRPA holds world records for Morpion Solitaire and crosswords puzzles. NRPA is given in algorithm 3. The principle is to learn weights for the possible actions so as to bias the playouts. The playout algorithm is given in algorithm 1. It performs Gibbs sampling, choosing the actions with a probability proportional to the exponential of their weights.

The adaptive rollout policy is a policy parameterized by weights on each action. During the playout phase, action is sampled according to this weights. The playout algorithm is given in algorithm 1. It uses Gibbs sampling, each move is associated to a weight. A move is coded as an integer that gives the index of its weight in the policy array of floats. The algorithm starts with initializing the sequence of moves that it will play (line 2). Then it performs a loop until it reaches a terminal states (lines 3-6). At each step of the playout it calculates the sum of all the exponentials of the weights of the possible moves (lines 7-10) and chooses a move proportional to its probability given by the softmax function (line 11). Then it plays the chosen move and adds it to the sequence of moves (lines 12-13).

Then, the policy is adapted on the best current sequence found, by increasing the weight of the best actions. The Adapt algorithm is given in algorithm 2. The weights of the actions are updated at each step of the algorithm so as to favor moves of the best sequence found so far at each level. The principle of the adaptation is to add α to the action of the best sequence for each state encountered in the best sequence (lines 3-5) and to decrease the weight of the other possible actions by an amount proportional to their probabilities of being played (lines 6-12). The adaptation algorithm is given in algorithm 2.

In NRPA, each nested level takes as input a policy, and returns a sequence. Inside the level, the algorithm makes many recursive calls to lower levels, providing weights, getting sequences and adapting the weights on those sequences. In the end, the algorithm returns the best sequence found in that level. At the lowest level, the algorithm simply makes a rollout.

The NRPA algorithm is given in algorithm 3. At level zero it simply performs a playout (lines 2-3). At greater levels it performs N iterations and for each iteration it calls itself recursively to get a score and a sequence (lines 4-7). If it finds a new best sequence for the level it keeps it as the best sequence (lines 8-11). Then it adapts the policy using the best sequence found so far at the current level (line 12).

NRPA balances exploitation by adapting the probabilities of playing moves toward the best sequence of the level, and exploration by using Gibbs sampling at the lowest level. It is a general algorithm that has proven to work well for many optimization problems.

Playout policy adaptation has also been used for games such as Go [START_REF] Graf | Adaptive playouts in monte-carlo tree search with policy-gradient reinforcement learning[END_REF] or various other games with success [START_REF] Cazenave | Playout policy adaptation with move features[END_REF].

Modelling of the problem

There are several design choices when implementing NRPA. The first choice is to decide how to code the possible moves. For the vehicle routing problem we choose to code a move as a starting node, and arrival node and a vehicle.More precisely, a solution to the problem is an ordered sequence of visits, including special visits (SV) that represent the fact that the corresponding technician is at the depot. So a sequence solution always starts and ends with a SV. If there Algorithm 1 The playout algorithm for move in sequence do state ← play (state, move)

14:

end for 15:

policy ← polp Algorithm 3 The NRPA algorithm.

1: NRPA (level, policy)

2:
if level == 0 then 3:

return playout (root, policy)

4: else 5: bestScore ← -∞ 6:
for N iterations do 7:

(result,new) ← NRPA(level -1, policy)

8:
if result ≥ bestScore then policy ← Adapt (policy, seq)

13:

end for 14:

return (bestScore, seq)

15:

end if is a SV between two visits within the sequence, that means the end of a tour for a technician, and the beginning of a tour for another technician (with no chronological ordering of these two tours that will be carried out simultaneously). Another design choice is to define the score of a playout. Score includes number of non visited customers multiplied by a great penalization number, number of used vehicles multiplied by an rather great weight, and number of kilometers. We filter movements that do not respect the time windows in the playout algorithm : all solutions respect customers time windows and vehicle time windows.

If there were more objectives, a lexicographic ordering of the objectives would be the best way to represent the scores of a playout. Playouts could then be compared simply and easily.

Initialization of the Weights

In NRPA weights are uniformly initialized to 0.0. We propose to initialize the weight of NRPA heuristically in order to speedup convergence. The greater the distance from the current city to another city the less likely the other city is a good choice. Standard NRPA starts with an uniform policy with all weights set to 0.0 and does not distinguishes between close and far cities. The heuristic initialization of the weights initializes the weight with a value proportional to the inverse of the distance. This initialization is only used for the first iteration of NRPA.

Algorithm 4

The NRPA algorithm with quantiles.

1: NRPA with quantile (level, policy)

2: allScores ← [] 3: quantile ← -∞ 4:
if level == 0 then for N iterations do (result,new) ← NRPA(level -1, policy) end if

The Quantile Heuristic

The objective of the Quantile Heuristic is to penalize movements from bad solutions. Solution scores for all playouts need to be stored. When a new playout is computed, if its score is worse than a defined quantile, then its movements weights are decreased in the weight. Efficient implementation is needed to limit the increase of computation time needed to sort the solution scores and compute the quantile. Sequence of algorithm is described in 4. The adapt function is the same as for good solutions, with negative coefficient α, as described in 5. The coefficient α used for bad solutions can be different from the one used to adapt policy to good solutions. state ← play (state, move)

14:
end for 15:

policy ← polp

The EDF Capacitated Vehicle Routing Problem with Time Windows

In this section we first explain the optimization problem encountered at EDF and then describe the current EDF approach to the problem.

Description of the EDF problems

The Vehicle Routing Problem modeled here includes time windows, which is a classical feature of VRP problems. That means that :

• Each technician has an availability time window. Each tour starts at the beginning of this time window and must end before the end of this time window. • Each appointment has a time window and a duration. A tour visiting the appointment must start after the beginning of the time window and end (including the appointment duration) before the end of the time window • If a tour arrives at an appointment location before the beginning of its time windows, it is possible to add waiting time before starting the appointment.

The problem also includes capacities, another classical feature of VRP problems :

• Each vehicle has several stock capacities (in EDF problem 6 per vehicle). Vehicle stocks are initialized with initial capacity at the begining of each tour. • For any stock, each operation will consume a stock quantity.

• For each tour, for each capacity, the sum of the quantity used by the operation of the tour must not be greater than the capacity of the stock.

Several peculiar features are taken into account in EDF modelization.

• Taking into account an off-duty time window for lunch break. No place is imposed for it. It can interrupt a trip but not a service to a customer.

• Taking into account specific skills for visits. For each visit, only a subset of technicians is skilled to carry out the technical operations. • Traject distance and traject duration are not proportionnal, because vehicle mean speed depends on the traject. Consequently, 2 different traject matrixs are provided. • Traject matrix and are not symetric : traject between two points depends on the direction of the traject.

Another difference with academic data is that on real problems, there is not always enough people to carry out the whole set of visits. Consequently, we must first maximize the number of visits that will be done. Some of the appointments have a high priority, and because of customers satisfaction, it is not possible to cancel it. Other appointments have less priority, because they consist for example in a technical operation that can be postponed, with no corresponding customer appointment. Moreover, network preventive maintenance visits have less priority than troubleshooting activities. In order to evaluate a solution, a lexicographic objective function is taken into account :

• Maximization of the number of achieved visits of high priority.

• Maximization of the number of achieved visits of low priority.

• Minimization of the economic function, taking into account number of technicians used (ponderated with a proportional daily wage) and number of kms (ponderated with a proportional km cost).

Thus, when comparing two solutions, we first compare the number of visits of high priority that are achieved in each solution.if these numbers are not equal then we know which solution is best. If they are equal, then we compare the number of visits of low priority, if again these numbers are equal, then we compare the third criterion of the two solutions, that is the economic function. The problem is solved each day for determining the technicians tours of the next day, with a computing time which must not last more than an few hours.

Description of current EDF approach

Current approach for the problem is based on stochastic greedy algorithm and variable neighborhood search. The stochastic greedy algorithm is based on [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF] algorithm. First phase consist in creating tours and insert in each tour the visits that increases the less the travelled distance, until there is no room for new visits. For each insertion, the place in the tour is chosen to minimize the increase of kms. If no insertion is possible, a new round is created. Then the process is repeated, until no visits nor technicians are left. The local search consist of 2 kinds of movements :

• Small movements consist in choosing randomly an appointment, and finding the best place to move the appointment, i.e. the best place in all the existing tours to reinsert the appointment. • Large movements consist in choosing randomly a tour, then entirely destroying it and trying to reinsert all its appointments in the other tours. If no improvement is possible, the movement is canceled.

Advantages of such a method is that it computes rapidly good solutions, very often acceptable by operators because greedy algorithm choices, based on distance, are humanly intuitive. 

Experimental Results

The operational process of EDF consists in providing a solution to the CVRPTW in less than two hours. Each problem is solved during the night so as to provide solutions for the next day. The parameters used in our experiments for NRPA are to use level 3, α = 1 and 100 iterations per level. This algorithm is called nrpa in our tables. The results are given out of 11 independent runs. The distance heuristic is tested and the initialization of the weights is only applied at the first iteration. The corresponding name of the algorithm is nrpaD in the tables. The Quantile heuristic is applied in 80% of the worst cases. It uses all the simulations performed to date and uses a specific α = 0.5. The algorithm that uses both the Distance and the Quantile heuristics is named nrpaDQ int the tables. The current solver of EDF, Opturn is launched only once with 3 000 iterations of greedy search and 3 000 iterations of local search. These values were chosen during the tuning of Opturn after many experiments that showed that no improvements are obtained with bigger values. As a result, the running time of Opturn is smaller than the running time of the NRPA.

The running time for NRPA is approximately 7 000 seconds and up to 8 000 seconds when using the Quantile heuristic. The running time of Opturn is approximately 5 000 seconds. Importantly, these run times are compatible with the operational process as they last approximately two hours.

Table 1 gives the results of runs on the litterature instances. It compares 4 algorithms: To compare the results of the 4 variants, the lexicographical approach takes into account first the number of vehicles used and then the kilometers.

• V : number of needed vehicles • Km : sum of the Kms of the rounds Table 2 gives the summary for all the runs of the algorithms on the standard problems. For the Km and the Vehicles (V), the figures are the average of each algorthm on the Solomon instances. The δ value is the number of problems that are solved better than with standard NRPA minus the number of problems that are solved worse. Comparison is lexicographic, based on number of vehicles, and if equals, on the number of Kms. Logically, the δ value is 0 for the reference (nrpa variant).

We observe that nrpaDQ scores 55 while Opturn scores -50. This is a great improvement over the current solver. However the current solver was optimized on the EDF problems. The Distance heuristic improves a lot over standard NRPA. The Distance + Quantile heuristic only improves slightly over the Distance heuristic alone.

Table 3 and Table 4 give the results of the 4 algorithms on the EDF instances. For each algorithm, the 3 components of objective function are displayed:

• Missed : number of missed appointments • V : number of needed vehicles • Km : sum of the Kms of the tours Table 3 compares the results of runs of the algorithms on the EDF problems. For each instance we compare the number of realized technical operations because on real EDF instances there are not necessarily enough vehicles to achieve all the operations. We also measure the number of vehicles and the number of kilometers, as in classical VRP problem instances. To compare the results of the 4 variants, the lexicographical approach takes into account first the achieved operations, then the number of vehicles used and finally the kilometers.

Table 4 gives the average values on the whole set of EDF instances. The average number of missed visits is smaller with NRPA than with Opturn. It is the same for all NRPA variants. The number of vehicles used for the operations is also slightly smaller and this is the same for all NRPA variants. The average number of kilometers is greater with standard NRPA than with Opturn, however it is smaller with nrpaD and nrpaDQ than with Opturn. With respect to the lexicographic objective function described in subsection 4.1, we can conclude that nrpaD and nrpaDQ improves on the current solver for the operational EDF instances.

The Distance and Quantile heuristics provide solutions with the same values for the 3 components of the objective function. These two heuristics perform better in average than the standard NRPA variant as for the number of travelled kilometers : 324 vs 363, that is a 10 percents improvement. If we compare with Opturn results, the improvement account for around 5 percents. This is still significant from a practical point of view because of the huge amount of kilometers travelled by the technicians on a yearly basis : about 220 millions of kilometers.

Conclusion

We have presented the NRPA algorithm and its application to the CVRPTW problems. This problem is important for EDF, a company that plans numerous operations every day on the french electrical network. We have given the modelization used to address the CVRPTW problem and two heuristics to improve on standard NRPA: the Distance heuristic and the Quantile heuristic. The Distance heuristic improves a lot on standard NRPA and the Quantile heuristic is a slight improvement. We also compared NRPA with the heuristics to the current EDF solver Opturn. On standard instances NRPA with the heuristic is much better. On the operational EDF instances it is still better even though Opturn was tuned for these instances while NRPA is a general algorithm that uses a Distance heuristic that works for all kinds of VRP problems.

As we have seen from the examples of the EDF instances, NRPA with heuristics performs better than the current solver. The percentage of kilometers saved by heuristic NRPA is greater than 5% of the total number of kilometers. EDF agents drive hundreds of millions of kilometers each year. The use of heuristic NRPA could save millions of kilometers each year and reduce the carbon footprint of EDF by hundreds of tons of CO2.

5 :

 5 polp [code(move)] ← polp [code(move)] + α for m in possible moves for state do 8: z ← z + exp (policy [code(m)]) for m in possible moves for state do 11: polp [code(m)] ← polp [code(m)] -α * exp(policy[code(m)

Algorithm 5 for move in sequence do 5 :

 55 The adapt algorithm to bad solutions 1: Adapt Bad (policy, sequence) polp [code(move)] ← polp [code(move)] -α for m in possible moves for state do 8: z ← z + exp (policy [code(m)]) for m in possible moves for state do 11: polp [code(m)] ← polp [code(m)] + α * exp(policy[code(m)

•

  nrpa : Standard NRPA (3 levels) without heuristics • nrpaD : NRPA (3 levels) with Distance initialization heuristic • nrpaDQ : NRPA (3 levels) with Distance initialization heuristic and Quantile heuristic • opturn : current EDF solver, based on Solomon and LNS heuristic.

Table 1 :

 1 The different algorithms tested on the 56 standard instances.

		nrpa		nrpaD		nrpaDQ		opturn	
	instance	V	Km	V	Km	V	Km	V	Km
	c101	10	828.94	10	828.94	10	828.94	10	852.95
	c102	10	986.77	10	858.18	10	843.57	11 1458.24
	c103	10 1117.30	10	872.45	10	857.14	11 1674.76
	c104	10 1120.67	10	894.83	10	901.79	11 1640.93
	c105	11	900.69	10	828.94	10	828.94	11 1102.17
	c106	11	940.90	10	828.94	10	828.94	11 1465.60
	c107	10 1071.41	10	828.94	10	828.94	10	994.84
	c108	10 1104.49	10	830.16	10	831.04	11 1674.53
	c109	10 1061.88	10	842.43	10	849.09	11 1688.91
	c201	4	723.69	3	591.56	3	591.56	4	974.46
	c202	4	870.43	3	611.08	3	609.23	4	952.33
	c203	4 1108.55	3	617.06	3	628.40	4 1058.52
	c204	4 1043.12	3	773	3	629.67	4 1265.41
	c205	4	720.12	3	591.17	3	588.88	4 1007.44
	c206	4	753.90	3	590.79	3	600.88	4 1252.91
	c207	4	733.45	3	597.53	3	597.53	4 1032.26
	c208	4	717.03	3	601.05	3	604.36	4 1189.83
	r101	19 1665.61	19 1656.54	19 1655.36	22 2187.97
	r102	18 1520.63	17 1546.12	17 1523.75	19 1967.61
	r103	14 1331.52	14 1287.66	13 1379.44	17 1887.31
	r104	11 1113.42	11 1074.57	10 1112.86	13 1524.18
	r105	15 1467.54	14 1439.11	14 1456.76	17 1931.07
	r106	13 1346.79	12 1313.12	13 1301.35	15 1687.18
	r107	12 1222.77	11 1163.35	11 1158.45	14 1621.52
	r108	11 1142.77	10 1008.88	10 1004.15	12 1414.54
	r109	13 1290.98	12 1218.86	12 1220.98	16 1866.01
	r110	12 1236.98	11 1159.06	11 1158.85	13 1625.52
	r111	12 1181.52	11 1125.77	11 1189.42	14 1659.14
	r112	11 1105.92	10 1018.92 10 1023.14 919.90 3 895.23	3 1239.46
	rc101	16 1701.31	15 1625.45	15 1640.51	19 2483.55
	rc102	14 1560.96	13 1549.49	14 1511.67	16 2261.19
	rc103	12 1426.39	11 1321.51	11 1356.68	14	1952
	rc104	11 1264.83	10 1202.19	10 1165.98	13 1686.93
	rc105	15 1610.40	14 1652.48	14 1634.49	19 2343.03
	rc106	12 1451.27	13 1417.10	12 1428.08	14 1952.11
	rc107	12 1404.08	11 1312.12	11 1289.70	14 1755.26
	rc108	11 1380.20	11 1197.96	11 1188.93	14 1888.36
	rc201	5 1695.44						
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