Dominik Phillips
email: dphillips@ernw.deu

Aleksandar Milenkoski
email: amilenkoski@ernw.de

Virtual Secure Mode: Initialization

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows

Introduction

This section described the process for VSM initialization activities performed by the Windows loader when Windows 10 is booted. The Windows loader is the Windows boot entity that initializes VSM with respect to values of configuration parameters. Figure 1 depicts the booting process of Windows 10 with VSM enabled. In this process, each entity verifies the integrity of, and loads, the next entity in the booting chain. The Unified Extensible Firmware Interface (UEFI) firmware with Secure Boot enabled extends the trust chain securing the booting process of Windows. It serves as the first root of trust in this chain. The UEFI firmware verifies the integrity of and loads the boot manager. The following activities of the booting process can be structured into four phases:

• Phase 1: The boot manager loads the Windows loader. The Windows loader then loads the hypervisor loader ([1] in Figure 1);

• Phase 2: The hypervisor loader loads the Hyper-V hypervisor. Once Hyper-V is loaded, execution control is switched back to the Windows loader ([2] in Figure 1);

• Phase 3: The Windows loader loads the secure kernel ([3] in Figure 1); amilenkoski.client.ernw.net 2019-05-22 13:25:21

• Phase 4: The Windows loader loads the normal kernel. The secure and the normal kernel load Windows 10 to its full extent, making it ready for use ([4] in Figure 1). The Windows loader starts the VSM initialization process. On an UEFI-enabled platform, the Windows loader is implemented in the %SystemRoot%\System32\winload.efi executable. The OslPrepareTarget function implemented as part of the Windows loader performs VSM initialization activities. TO DO Section 2.1.1-Section 2.1.5 discuss such activities performed in relevant functions invoked by OslPrepareTarget: OslSetVsmPolicy, OslArch-HypervisorSetup, OslArchHypercallSetup, OslFwProtectSecureBootVariables, and OslVsmSetup. These functions are invoked by OslPrepareTarget in the order as presented in this section. When these functions are finished executing, the Windows loader loads the secure and the normal kernel, which then instantiate Isolated User Mode (IUM) applications. TO DO Section 2.1.6 discusses the requirements for an executable to be instantiated as an IUM application.

OslSetVsmPolicy

OslSetVsmPolicy processes configuration parameters for enabling or disabling the core VSM entities and configuring the VSM features Hypervisor Code Integrity (HVCI) and Credential Guard. The parameters for configuring HVCI and Credential Guard are stored in the system's registry. Figure 2 depicts pseudo-code of the implementation of OslSetVsmPolicy.

OslSetVsmPolicy first invokes BlSecureBootGetBootPrivateVariable. This function evaluates whether the UEFI variable VbsPolicyDisabled is defined. If defined, the core VSM entities and the VSM features will not be initialized.

If VbsPolicyDisabled is not set, OslSetVsmPolicy parses the registry key HKEY_LOCAL_MACHINE\SYSTEM \CurrentControlSet\Control\DeviceGuard (see Figure 3). The OslGetVsmEnabled function evaluates the values stored in the keys Scenarios\HypervisorEnforcedCodeIntegrity\Enabled, Scenarios\HypervisorEnforcedCodeIntegrity In addition to evaluating the above registry values, OslGetVsmEnabled evaluates the value of the BcdOSLoad-erInteger_HypervisorLaunchType variable. This variable is stored in the system's Boot Configuration Database (BCD). It has to be set for the hypervisor to be loaded. 1When OslGetVsmEnabled is finished executing, OslSetVsmPolicy processes further configuration information. This information is stored in the registry values RequirePlatformSecurityFeatures, Mandatory, and RequireMi-crosoftSignedBootChain (see Figure 3 and the invocations of OslHiveReadWriteControlDword in Figure 2). In addition, OslSetVsmPolicy invokes OslGetVbsHvciConfiguration. This function evaluates the HypervisorEnforced-CodeIntegrity registry value. This value is used for initializing the VSM feature HVCI.

Once OslSetVsmPolicy is finished processing the configuration parameters stored in the registry, it passes these parameters to the function BlVsmSetSystemPolicy. This function then evaluates the value stored in the Bc-dOSLoaderInteger_SafeBoot variable. This variable is stored in the system's BCD. It can have one of the following values: SafemodeMinimal, SafemodeNetwork, or SafemodeDsRepair. 2 . The VSM initialization procedure continues only if BcdOSLoaderInteger_SafeBoot has the value of SafemodeMinimal.

BlVsmSetSystemPolicy then initializes the variable BlVsmpSystemPolicy. This variable stores the configuration parameters previously read from the registry in the form of flags that are part of a bitmask value. Before storing them in BlVsmpSystemPolicy, BlVsmSetSystemPolicy compares the configuration parameters with configuration parameters stored in the UEFI variable VbsPolicy. In case of a mismatch, the values stored in the UEFI variable are used for initializing the core VSM entities and VSM features. This indicates that UEFI serves as the root of trust for evaluating at system start-up the integrity of configuration parameters stored in the registry. The configuration parameters stored in VbsPolicy are defined at the previous system shutdown and reflect the VSM configuration at that time.

VbsPolicy is not defined when Secure Boot is disabled. In the scenario where the VSM features HVCI and Credential Guard are not configured to operate, a default set of configuration parameters are stored in BlVsmpSys-temPolicy. These parameters are for initializing only the core VSM entities. This indicates that Secure Boot is not a requirement for initializing these entities. Secure Boot is a requirement for initializing the VSM features Credential Guard and HVCI.

In the scenario where Credential Guard, and/or HVCI are configured to be enabled, and Secure Boot is not enabled, the core VSM entities, HVCI, and/or Credential Guard are not initialized.

Once populated with configuration parameters, BlVsmpSystemPolicy is stored in the LOADER_PARAMETER_-BLOCK structure ([RSI12], Chapter 13). The Windows loader passes this structure to the normal and secure kernel when loaded.

OslArchHypervisorSetup

OslArchHypervisorSetup loads and executes the hypervisor loader. This section discusses the integrity verification process conducted as part of this activity. The integrity of the hypervisor loader executable is verified using the Authenticode digital signing technology. The hypervisor loader has to be signed by Microsoft. This section focuses on the cryptographic requirements that the digital Authenticode signature of the hypervisor loader must fulfill such that the loader is considered authentic.

On an UEFI-enabled platform, the hypervisor loader is implemented in the %SystemRoot%\System32\hvloader.efi executable (i.e., image). The Windows loader loads this executable in the ImgpLoadPEImage function. Figure 4 (label 1) depicts the functions preceding ImgpLoadPEImage. Once the hypervisor loader is loaded, it is executed in the Archpx64TransferTo64BitApplicationAsm function. Figure 4 (label 2) depicts the functions preceding Archpx64TransferTo64BitApplicationAsm. Before the function ImgpLoadPEImage initiates the image verification process it must identify and store the signing requirements in configuration variables. This involves identifying and storing the required extended key usage (EKUs) that have to be present in the certificate of the signer of the image. It also involves identifying and storing the required hash algorithm used for signing certificates stored as part of the Authenticode signature.

ImgpGetScenarioFromImageFlags (see Figure 5, [1]) extracts a value indicating the required hash algorithm, such as Secure Hash Algorithm (SHA)-1, and stores it as an integer value. This work refers to this integer value as signing scenario. The signing scenario is stored as a flag that is part of a bitmask value. This work refers to this bitmask value as image loading parameters. The function ImgpGetHashAlgorithmForScenario (see Figure 5, label [2]) maps the signing scenario extracted by ImgpGetScenarioFromImageFlags to a code identifying the required hash algorithm. This work refers to this code as hash code. For example, ImgpGetScenarioFromImageFlags extracts a signing scenario of 0 from the image loading parameters of the hypervisor loader. ImgpGetHashAlgorithmForScenario maps the signing scenario of 0 to the hash code 0x800c if Secure Boot is enabled. This function maps the signing scenario of 0 to the hash code 0x8004 if Secure Boot is disabled. The hash codes 0x8004 and 0x800c identify the SHA-1 and SHA-256 hash algorithms, respectively.

The ImgpLoadPEImage function initiates the integrity verification process by invoking the ImgpValidateImageHash function (see Figure 5,[3]). Based on the EKU flag, ImgpValidateImageHash stores the required signer's EKUs, extracted by ImgpLoadPEImage, in a variable. When the hypervisor loader is loaded, the required signer's EKU is 1.3.6.1.4.1.311.10.3.6. In addition, it stores the EKU 1.3.6.1.5.5.7.3.3 in this variable. This is an EKU that has to be present in all code signing certificates issued by Microsoft. The hypervisor loader is signed by Microsoft.

The MinCryptVerifyCertificateWithTrustedBootInfo function (see Figure 5, [3]), invoked by ImgpValidateImageHash, verifies whether the required signer's EKUs are present in the certificate of the signer of the image being loaded. If a required EKU is missing, MinCryptVerifyCertificateWithTrustedBootInfo returns the error code 0xc0000428 (INVALID_IMAGE_HASH). 3 The certificate of the signer of the image being loaded is also verified against its root certificate. The root certificate is hardcoded in the Windows loader executable. The fact that hardcoded contents of Windows loader executable are used for verification of the certificates of the signer of the hypervisor loader, shows that the root of trust for verifying the integrity of the loader is the Windows loader itself.

We analyzed the possibility for mitigating the previously described integrity verification process by modifying the system's boot configuration. This can be done by issuing the command bcdedit /set nointegritychecks on.

The command sets the variable BcdLibraryBoolean_DisableIntegrityChecks to 1. This variable is stored in the system's BCD. We observed that when the hypervisor loader is loaded (see [1] in Figure 4), the value of BcdLi-braryBoolean_DisableIntegrityChecks is evaluated, however, ignored. The integrity of the hypervisor loader is always verified.

Once the hypervisor loader is loaded, execution control is transferred to it by executing Archpx64TransferTo64Bit-ApplicationAsm (see [2] in Figure 4). The hypervisor loader then loads the Hyper-V executable (hvix64.exe or hvax64.exe). The image integrity verification process implemented in the hypervisor loader is conceptually identical to the one implemented in the Windows loader. The hypervisor has to be signed by Microsoft. The integrity of the Hyper-V executable is verified using the Authenticode digital signing technology.

OslArchHypercallSetup

OslArchHypercallSetup maps a page aligned at a guest physical memory address to a guest virtual address. This page is allocated to the partition hosting the normal and secure kernel and is populated by the hypervisor with code. This code is for the kernels to invoke hypervisor services, referred to as hypercalls. The page storing the code is referred to as the hypercall page.

OslArchHypercallSetup invokes BlMmMapPhysicalAddressEx. This function performs the mapping of the guest physical address, at which the hypercall page is aligned, to a guest virtual address. Figure 6 depicts the guest virtual address at which a hypercall page is aligned (fffff802'206ea000 in Figure 6).

OslFwProtectSecureBootVariables

Among other parameters, OslFwProtectSecureBootVariables verifies configuration parameters of the VSM feature Credential Guard. The verified parameters are stored in the system's registry, and their values are verified against their counterparts stored as UEFI variables. In case of a mismatch, the values stored as UEFI variables are used for initialization of Credential Guard. The configuration parameters stored as UEFI variables are written into the UEFI context at the first system shutdown after enabling VSM and reflect the Credential Guard configuration at that time. UEFI serves as the root of trust for evaluating at system start-up the integrity of configuration parameters of Credential Guard stored in the registry. Secure Boot is a requirement for Credential Guard. If Secure Boot is not enabled, Credential Guard is not initialized (see Section 2)

OslFwProtectSecureBootVariables invokes the OslFwProtectSecConfigVars function. OslFwProtectSecConfigVars first evaluates the value stored in the key RunasPPL (OslHiveReadWriteControlDword and EfiGetVariable in Figure 8). RunasPPL configures the Local Security Authority (LSA) process to be executed under Protected Process Light (PPL) protection. 4 PPL is a security mechanism protecting the memory space of a process from accesses by other untrusted processes. If the RunasPPL registry key is set and Secure Boot is enabled, the OslFwProtectSecConfigVars compares the value read from the registry with the UEFI variable Kernel_Lsa_Ppl_Config. OslFwProtectSecConfigVars then evaluates the value stored in the key LsaCfgFlags.5 Among other things, the LsaCfgFlags registry key indicates if Credential Guard should be enabled. The value stored in the LsaCfgFlags registry key (OslHiveReadWriteControlDword and getRegValue in Figure 8) is compared with the value stored in the UEFI variable Kernel_Lsa_Cfg_Flags (EfiGetVariable and getEfiValue in Figure 8). The comparison is done with a logical OR operation (getRegValue | getEfiValue in Figure 8). In addition, OslFwProtectSecConfigVars evaluates the value of the UEFI variable Kernel_Lsa_Cfg_Flags_Cleared. If this variable is set, the configuration parameters of Credential Guard will be cleared and Credential Guard will not be initialized.

Figure 1 :

 1 Figure 1: The booting process of Windows 10 with VSM enabled

Figure 2 :

 2 Figure 2: Pseudo-code of the implementation of OslSetVsmPolicy

Figure 4 :

 4 Figure 4: Function stack: Windows loader loads the hypervisor loader ImgpLoadPEImage invokes three functions that are relevant to the image verification process: ImgpGetScenari-oFromImageFlags, ImgpGetHashAlgorithmForScenario, and ImgpValidateImageHash.

Figure 5 :

 5 Figure 5: Function stack: Windows loader loads the hypervisor loader In addition to ImgpGetScenarioFromImageFlags, ImgpLoadPEImage extracts from the image loading parameters a value indicating the EKUs that have to be present in the certificate of the signer of the image. This work refers to this value as EKU flag and to the associated EKUs as required signer's EKUs. A certificate's EKUs express the purposes for which the public key that is stored as part of certificate may be used. Code signing certificates issued by Microsoft contain specific EKUs that describe the use of the certificates' public keys for verifying signatures of specific executables. For example, the 1.3.6.1.4.1.311.10.3.37 (Isolated User Mode) EKU is stored in part of certificates used for verifying the signatures of IUM applications.

Figure 6 :

 6 Figure6: Guest virtual address of a hypercall page When OslArchHypercallSetup is finished executing, the guest virtual address of the hypercall page is stored in the HvlpHypercallCodePageVa variable. Once the hypercall page is populated by Hyper-V, HvlpHypercallCodePageVa is stored in the LOADER_PARAMETER_BLOCK structure ([RSI12], Chapter 13). This structure is passed to the normal and secure kernel when they are loaded and executed. Figure7depicts the content of a populated hypercall page, aligned at the virtual address fffff802'206ea000. It is extracted from the context of the normal kernel, once it has been loaded by the Windows loader.

Figure 7 :

 7 Figure 7: The content of a hypercall page

 Figure 12 depicts pseudocode of the implementation of OslFwProtectSecConfigVars. OslFwProtectSecConfigVars evaluates the values of the registry keys HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\LSA\RunasPPL and HKEY_LOCAL_-MACHINE\SYSTEM\CurrentControlSet\Control\LSA\LsaCfgFlags against their counterparts stored as UEFI variables.

Figure 8 :

 8 Figure 8: Pseudo-code of the implementation of OslFwProtectSecConfigVars

https://msdn.microsoft.com/en-us/library/windows/desktop/aa362670(v=vs.85).aspx [Retrieved:

25/4/2018] 2 https://msdn.microsoft.com/en-us/library/windows/desktop/aa362656(v=vs.85).aspx [Retrieved: 25/4/2018]

https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 25/4/2018]

https://docs.microsoft.com/en-us/windows-server/security/credentials-protection-and-management/configuring-additional-lsaprotection [Retrieved: 25/4/2018]

5 https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage [Retrieved: 25/4/2018]

This project has been contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).

operating system. For general inquiries contact Aleksandar Milenkoski

OslVsmSetup

Figure 9 depicts pseudo-code of the implementation of OslPrepareTarget invoking the OslVsmSetup function. The primary task of OslVsmSetup is to load and execute the secure kernel and its modules. After the secure kernel is loaded, the Windows loader loads the normal kernel. The secure and the normal kernel then load Windows 10 to its full extent, making it ready for use (see Figure 1). The secure kernel is implemented in the %SystemRoot%\System32\securekernel.exe executable. The secure kernel is loaded if the 11-th bit in the BlVsmpSystemPolicy variable is not set (bittest and 0xBu in Figure 9). In addition, the HvlpResourceInitialized variable needs to be set. HvlpResourceInitialized is set only when the hypervisor loader has loaded the Hyper-V hypervisor. If this variable is not set, for the secure kernel to be loaded, the presence of Hyper-V has to be determined. Hyper-V sets the 31-st bit of the value stored in the ecx register ([Mic17], Section 2.2). The HviIsHypervisorMicrosoftCompatible function verifies that this bit is set.

OslVsmSetup invokes the OslpVsmLoadModules and OslLoadImage functions to load and verify the integrity of the securekernel.exe as well as its required modules. The integrity of securekernel.exe and its required modules is verified using the Authenticode digital signing technology. The secure kernel has to be signed by Microsoft. The verification of cryptographic requirements, such as EKUs that have to be present in the certificate of the signer of the image, is conceptually identical to the one described in Section 3.

Before OslpVsmLoadModules is invoked, OslVsmSetup evaluates the value stored in the BCDE_OSLOADER_TYPE_-VSM_LAUNCH_TYPE variable. This variable is stored in the system's BCD. It can have the value Off or Auto. OslpVsmLoadModules is invoked only if BCDE_OSLOADER_TYPE_VSM_LAUNCH_TYPE has the value of Auto.

Instantiation of IUM Applications

Once the normal and the secure kernel are loaded and executed, they instantiate IUM applications (i.e., trustlets). For an IUM application to be instantiated, the normal kernel invokes the NtCreateUserProcess function. Among other things, this function initializes relevant kernel structures for process management, such as the structure of type EPROCESS. This structure contains relevant process information, such as process ID. NtCreateUserProcess collaborates with the secure kernel to finish instantiating the IUM application.

Third parties cannot instantiate an application as a trustlet without fulfilling certain requirements. The use of functions implemented as part of the Windows API and exposed to third parties, such as CreateUserProcess, do not instantiate executables as IUM applications. This is because such functions do not set a concrete flag used by the normal kernel for instantiating an executable as an IUM application. This flag is referred to as the IUM application flag in this work. In order to instantiate an application as an IUM application, third parties need to implement custom executable loaders that directly invoke NtCreateUserProcess such that the IUM application flag is set.

In addition to the IUM application flag being set, for an application to be instantiated as a trustlet, it has to be properly signed. Each executable implementing an IUM application has to be signed by Microsoft using the Authenticode digital signing technology. The certificate issued by the signer of the IUM application has to possess the following EKUs (textual EKU descriptions provided in round brackets, see Section 3):

• 1.3.6.1.5.5.7.3.3 (Code Signing) The EKU Isolated User Mode is used specifically for marking certificates that can be used only for verifying signatures of executables implementing IUM applications. As part of the Authenticode signature verification process of a given IUM application, the EKUs stored in the certificate used for signing the application are evaluated against EKUs hardcoded in the ci.dll library file. In case of a mismatch, the application is considered not authentic.