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Fast Antenna Characterization Improvement by Pattern Rotations
Nicolas Mézières, Benjamin Fuchs, Laurent Le Coq, Jean-Marie Lerat, Romain Contreres and Gwenn Le Fur

Abstract—A post-processing procedure is proposed to improve
the characterization of antenna patterns from a small number
of field samples. By appropriately rotating the measured pattern
of the antenna under test, the sparsity of its spherical harmonic
spectrum can be enhanced. Our procedure enables extracting
as much information as possible from a given measurement
dataset and leads to a notable improvement of the antenna
radiation pattern reconstruction accuracy. The best orientation
of the antenna is found by testing a reduced set of angles
and using Gaussian processes as interpolation approach. This
post-processing requires no modification of the measurement
procedure and therefore no extra measurement time. The im-
proved fast antenna characterization accuracy is validated on
both spherical near and far-field simulations and measurements
for various types of antennas and compared with the state-of-
the-art approach.

Index Terms—Antenna measurements, antenna radiation pat-
terns, compressed sensing, sparse recovery, spherical wave ex-
pansion

I. INTRODUCTION

THE spherical antenna measurement technique is a stan-
dard and efficient tool for both near and far-field charac-

terization. The number of field sampling points grows quadrat-
ically with respect to the largest electrical dimension ka of
the Antenna Under Test (AUT) [1], k being the wavenum-
ber and a the radius of the minimal sphere enclosing the
antenna (illustrated in Fig. 1), involving large and possibly
prohibitive measurement times. Recently, the exploitation of
the sparse expansion of the field radiated by antennas into
spherical harmonic basis has been shown to greatly reduce
the number of required field samples, leading to important
decreases in field acquisition duration, as shown in [2]–[6].
They enable a very good approximation of the radiation pattern
from half of the field samples required by well established
standard technique using a first order probe and an equiangular
sampling [1], [7]. The expansion of the antenna radiated field
into the Vector Spherical Harmonic (VSH) basis depends on
the chosen coordinate system. Indeed, the radiation pattern of
an infinitesimal electric dipole oriented in the ẑ direction can
be described using only one VSH, any other orientation will
require at least two VSH. Consequently, one can legitimately
wonder how to choose the coordinate system yielding the
sparsest field expansion. This very point has been addressed

Manuscript received xx, 2020; revised xx, xx.
This work was carried out in the frame of a CNES and LNE grant

and is supported in part by the European Union through the European
Regional Development Fund (ERDF), and by the french region of Brittany,
Ministry of Higher Education and Research, Rennes Métropole and Conseil
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by [3], where an iterative algorithm is proposed to increase
the sparsity of the expansion by rotations and translations. To
our best knowledge, this is the only work where the AUT
orientation is optimized to this end. We refer to this work,
taken as reference for comparisons, as State-Of-the-Art (SOA)
in the sequel. Let us point out that the translation of the
coordinate system also leads to a change in the total number
of VSH, as shown in [8]–[10], whereas rotations only modify
the number of significant ones.

This paper proposes a post-processing procedure to effi-
ciently rotate the measured pattern of the AUT in order to
make its spherical harmonic spectrum as sparse as possible.
To do so, the sparsity of the VSH spectrum is computed
for a limited number of rotation angles taken on a coarse
grid. Then the spectrum sparsity is estimated over the whole
research domain using Gaussian Processes (GP). The method
is validated on near-field using simulation data and on far-field
using experimental data.

The paper is organized as follows. The spherical harmonic
expansion of the electric field is reviewed in Section II. The
identification of the sparse spherical harmonic coefficients and
metrics are also detailed. The proposed procedure to rotate the
antenna pattern in order to achieve a sparser field expansion is
described in Section III. This technique is validated over near-
field simulation data and over far-field experimental data in
Sections IV and V respectively. Conclusions and perspectives
are drawn in Section VI.

II. FAST ANTENNA MEASUREMENTS

A. Spherical Harmonic Expansion

The electric field E(r, θ, ϕ) in spherical coordinates radiated
outside the sphere enclosing all sources can be expanded into
the VSH basis as follows [1]:

E(r, θ, ϕ) =
k
√
η

2∑
s=1

∞∑
n=1

n∑
m=−n

QsmnFsmn(r, θ, ϕ) (1)

where η is the admittance of the propagation medium, Qsmn
are the spherical coefficients and Fsmn the VSH functions.
To formalize the problem, the directions (θ, ϕ) are discretized
and the infinite series in (1) is truncated to N = bkac + 10
[1], and bxc is the greatest integer less than or equal to x.
After discretization of the directions (θ, ϕ) and for a fixed
distance r, the expansion (1) can be expressed as a linear
system : y = Ax where the vector x of size Nc contains the
spherical coefficients Qsmn. The vector y of size M gathers
the values of the measured electric field, yj = E(θj , ϕj) where
(θj , ϕj) are the sampling positions over the sphere. The matrix
A corresponds to the harmonics Fsmn, each column being
associated to a triplet (s,m, n) and each row to a position
(θj , ϕj).
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Fig. 1. Euler’s angles in zyz convention. Three rotations of angles
(ϕ0, θ0, χ0) with respect to the axis z,y1, z2 = z′ enables to go from
the basis {x,y, z} to {x′,y′, z′}. The radius of the minimum enclosing
sphere around the antenna is denoted a. The intermediate basis {x1,y1, z1}
and {x2,y2, z2} are also displayed.

The electric near and far-field radiated by the AUT can
both be expanded according to (1). In the near-field case, the
radiation pattern of the probe has to be taken into account,
which leads after some manipulations to the transmission
formula and specific considerations, as detailed in [1], [7].

B. Sparse Expansion of the Field

The field acquisition time is tied to the number of sampling
points required. By leveraging the sparsity of the spherical
coefficients x, their identification can be achieved by solving
an underdetermined linear system, thus we are able to decrease
the size of the measurement set. A possible way is then to
consider the following optimization problem, known as Basis
Pursuit DeNoising (BPDN) [11]:

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ σ (2)

where σ > 0 controls the fitting to the data contained in y
and is known as error tolerance. The tuning of this quantity
has been considered in [6]. BPDN problem (2) is a specific
convex optimization problem, belonging to sparse recovery
category. It can be solved efficiently using many readily
available routines, such as the SPGL1 algorithm [12], [13].

C. Fast Antenna Measurement Performances

1) Effective Sparsity and Field Comparison: The sparsity
of a signal can be measured by counting the number of non-
zero coefficients. However, real-world data are always noisy
and low magnitude coefficients are often not relevant. To this
end, we define the notion of effective sparsity denoted kT ,
giving the number of significant coefficients with respect to a
chosen threshold T (in dB), as

kT (x) =
1

Nc
#

{
|xj |
‖x‖∞

> 10
T
20 , j = 1, . . . , Nc

}
(3)

with # the cardinal operator and ‖x‖∞ the maximum magni-
tude of x’s components. An effective sparsity k−40 means that
only the coefficients greater than −40 dB from the maximum
magnitude one count as non-zero. Truncating the spherical
spectrum with respect to this threshold leads to negligible
changes in the radiation pattern [6].

To assess the performance of a given field reconstruction,
we compare the reconstructed field ỹ to the reference one,

y. For that purpose, the Equivalent Error Signal metric (EES)
returns a mean relative error in dB contained in ỹ with respect
to the reference y, both of size M , and is defined as

EES(y, ỹ) = 20 log10

(
‖y − ỹ‖1
M‖y‖∞

)
. (4)

2) Phase Transition Diagrams (PTD): These diagrams [14]
are an efficient way to display the probability of success of
sparse recovery problems such as (2). This probability depends
on the number of non-zero components of the solution and the
sampling ratio, which is the number of data over the number
of unknowns. The behaviour of a typical PTD is illustrated in
Fig. 2. They can also be used to access the recovery success of
fast antenna measurement procedures, as shown in [2], [4]–[6].
The transition between a failed and successful identification
of the sparse solution is very steep, meaning that only a few
additional measurements may be required to go from a failed
to a correct identification. Intuitively, a small number of non-
zero coefficients can be correctly retrieved from only a few
measurement samples. Consequently, to properly characterize
the field radiated by a given antenna, the sparser its spherical
harmonic spectrum, the smaller the number of required field
samples.

Fig. 2. Phase Transition Diagram sketch with its three regions : failure,
transition and success of the spherical coefficients identification as a function
of their effective sparsity and the sampling ratio δ, i.e. the number of field
samples over the number of coefficients.

3) Spectrum Sparsity and Reconstruction Accuracy: Fol-
lowing the PTD theory, we generate random spherical coef-
ficients sets according to a normal law with predetermined
variance with a given effective sparsity k−40. We emulate real-
istic antenna patterns by drawing random spherical coefficients
spectrum and try to retrieve them using BPDN.

The accuracy of reconstruction is given by the EES metric
(4) between the field computed from the random set, which
is our reference y, and the interpolated one from a coarse
sampling, ỹ. As shown in Fig. 3, a lower effective sparsity
(or equivalently less significant coefficients) leads to better
EES values. The EES metric defined in (4) represents a
mean error. Hence, a modification of only 1 dB may already
represents a lot of changes and accuracy gain/loss, especially
if they accumulate over some area. However, these random
coefficients spread almost evenly amongst the spectrum but
undersampling conditions will make the fast variations, or
equivalently the spherical modes with large n and/or m harder
to be identified.
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Fig. 3. Quantiles of the EES (extracted from 100 trials) as a function of the
effective sparsity for a fixed number of data (2352 data for 3360 spherical
coefficients, sampling ratio δ =70%).

III. ROTATIONS FOR SPARSER FIELD EXPANSION

An approach is proposed to make the spherical harmonic
spectrum of the AUT sparser and therefore to improve, for a
given field sampling, the accuracy of a fast antenna measure-
ment. The rotation of the AUT changes its spherical harmonic
spectrum. We exploit this property to minimize the number
of modes required to describe the AUT pattern. A procedure
based on GP interpolation is proposed to find the rotation
angles achieving the sparsest AUT spectrum.

A. Coordinate System Rotation

A common way to represent rotations in 3D space is to use
Euler’s angles (ϕ0, θ0, χ0). The zyz convention, used in [1], is
illustrated in Fig. 1 for positives angles (ϕ0, θ0, χ0). The basis
{x′,y′, z′} is obtained from the initial one {x,y, z} by three
successive rotations of angles ϕ0, θ0 and χ0. We can express
the spherical harmonics Fsmn(r) in the first system {x,y, z}
as a linear combination (depending on Euler’s angles) of the
ones in the rotated system, {x′,y′, z′} with the (small) d-
Wigner function [15], namely Fsµn(r

′) as follows [1]:

Fsmn(r) =

n∑
µ=−n

eimϕ0dnµm(θ0)e
iµχ0Fsµn(r

′). (5)

B. Problem Formulation

Our goal is to find the rotation angles (ϕ0, θ0, χ0) leading
to the sparsest VSH representation of the field radiated by
the AUT. The rotation angle ϕ0 only introduces a phase shift
according to (5), and thus does not influence the sparsity of
the spectrum. Therefore, only the couple of rotation angles
(θ0, χ0) have to be determined. After rotations with angles
(θ0, χ0), the equation satisfied by the radiated field reads :

(ARθ0,χ0)x(θ0, χ0) = y (6)

where Rθ0,χ0
is the matrix encoding the rotation of the VSH,

described in (5) for the couple (θ0, χ0). We then solve :

min
x
‖x‖1 subject to ‖ARθ0,χ0

x− y‖2 ≤ σ (7)

We evaluate the effective sparsity k−40 defined in (3) of the
solution x(θ0, χ0) using only the two rotation angles (θ0, χ0).
The computation of Rθ0,χ0

takes about 1.5 s and the resolution
of (7) using SPGL1 takes about 1.2 s for a matrix A of

size 2522 × 4606 with an Intel i7-8700 and 16 GB RAM,
i.e. solving the BPDN problem is not as time consuming as
computing the VSH rotation matrix. However, testing a lot
of couples (θ0, χ0) may become a heavy computational task.
To avoid that difficulty, the effective sparsity k−40 of the
solutions is estimated from a coarse (θ0, χ0) grid using GP
and a relevant restriction of the research domain.

The SOA method [3] proposes to find x(0, 0) before
optimizing over the three Euler’s angles by minimizing
‖Rϕ0,θ0,χ0

x(0, 0)‖1. Note that this problem is much harder
than minimizing ‖Tx‖1 for a given matrix T , as it cannot be
casted into a convex optimization problem. Iterative minimiza-
tion methods, such as gradient descent, may be trapped in local
minima and will require around as much matrix computation
as parameters to optimize. The optimization has to be done for
several initialization points and the final result may not the be
the true minimum.

C. Effective Sparsity Estimation via Gaussian Processes

1) Interpolation: GP are stochastic processes that can be
used to interpolate continuous functions. They are well adapted
to situations where evaluating the function is computationally
heavy. GP have already shown a great relevance in many
applications and motivated a lot of research [16]. They enable
the computation of confidence intervals and parameters tuning
for better estimation depending on the fed data. Rotation of
the VSH basis can be seen as the rotation of the AUT into the
new coordinate system. Physically, it represents a continuous
modification of the field, and thus of its spectrum. The function
kT (x(θ0, χ0)) can consequently be fairly well approximated
by a continuous function, as shown in Fig. 4. The region
with the lowest sparsity is indeed well identified with a few
samples. In this case, the SOA method detects a sparsity
minimum but the minimization of ‖Rϕ0,θ0,χ0

x(0, 0)‖1 does
not lead to the correct Euler’s angles, this will be further
discussed in Section V-C.
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Fig. 4. Effective sparsity k−40 for χ0 = 0° , containing the lowest sparsity
on the research domain, its GP estimation and the `1 norm found by the SOA
method of the spherical coefficients for the 12 GHz reflectarray measurement.
The GP curve is derived from the discrete set of values represented by black
markers. The `1 only reaches a local minimum.

The objective is to interpolate the effective sparsity function
kT (x(θ0, χ0)) from a reduced number of values, at points
(θ

(p)
0 , χ

(p)
0 ). The interpolation k̃T is therefore an estimation.

2) Practical Implementation: A GP is characterized by
its expectancy, set to 0 in our case, and its covariance, or
kernel function, V. We let V(a1,a2) = h(‖a1 − a2‖) =
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exp(−‖a1−a2‖2
2l2 ), where ‖ · ‖ is the Euclidean norm and l a

positive parameter characterizing the distance at which points
influence themselves. This kernel is named square exponential
and is known to produce indefinitely differentiable curves [16].
If a = (θ0, χ0) and the known values of kT are located at
points a(p) = (θ

(p)
0 , χ

(p)
0 ), p ∈ {1, . . . , P}, then if K is the

vector gathering the kT (a(p)) :

k̃T (x(a)) =
[
V(a,a(1)) . . . V(a,a(P ))

]
V−1K (8)

where V = (vlm) is the matrix containing the covariance
between the data points a(i), i.e. vlm = V(a(l),a(m)). Once
the values kT are known at some points, evaluating k̃T can be
done by small scale matrix multiplications, allowing a lot of
fast optimization techniques.

3) Research Domain and Testing Grid: The initial domain
of (θ0, χ0) is [0, 180] × [0, 360] in degrees. However, thanks
to the symmetries of the VSH, it can be reduced to (θ0, χ0) ∈
[0, 180[×[0, 90[. First, the case θ0 = 0°, or 180° by symmetry,
has to be computed once, because it only induces a phase
shift of the coefficients. Secondly, a first known rotation in
χ0 can be applied to ensure that the main beam of the field
can be sent to one of the pole or to achieve symmetry with
respect to the plane x = 0. The number of tested points has
been chosen empirically and these points are regularly spaced
on a testing grid with a step of 17°, allowing to capture the
global behaviour of the effective sparsity, as shown in Fig. 4.
It implies 61 BPDN problems to solve and rotations matrix
to compute, 6 different χ0 values for ten θ0 values plus one
at θ0 = 0°. Finally, we have set l, the characteristic length of
the GP introduced in the previous paragraph to 22.5°, which
is between 17° and 17

√
2 ≈ 24°, respectively the length of

the edge or the diagonal of a cell of the testing grid.

IV. VALIDATION ON ANTENNA SPHERICAL NEAR-FIELD
SIMULATION

A. Methodology

An antenna is modelled numerically using HFSS and its
near-field over an equiangular sampling scheme, δϕ = δθ =
2° (where δϕ and δθ are the angular steps in ϕ and θ
respectively) over the full sphere is exported, constituting the
reference data set. A coarse sampling over the sphere using
an igloo sampling strategy [4] is selected from it. It is defined
as δϕ = δθ

sin θ . A low density sampling is chosen to mimic
a fast measurement data set, and used to compute spherical
coefficients with or without rotations, using BPDN (2).

B. Waveguide Array at 50 GHz

The presented case is a linear array of waveguides consti-
tuted by 13 elements with 3mm spacing at 50GHz (same
excitation magnitude but different phases), with an enclosing
sphere of radius a =25mm, hence a truncation order N = 36
(or Nc = 2736 coefficients). The dense sampling rate for far-
field reference has 6152 samples, while the low density one,
used for sparse recovery, has only 1876. The measurement
coordinate system (x,y, z) does, on purpose, not correspond
to the symmetry of the array. Spherical coefficients with and

without rotation found by GP interpolation are shown in Fig.
5. Estimated optimized rotations angles are θ0 = 45° and
χ0 = 55°. We observe that raw data produces some high
frequency modes which are not physically realistic and are due
to the too low density sampling rate. The optimized rotation
reduces the number of significant spherical coefficients and
consequently vanishes the high frequency modes. Reference
far-field is illustrated in Fig. 6 with a specific cutting plane.
The effective sparsities are kT = 33% and 15% for the raw
and rotated field respectively with corresponding EES values
−36.6 dB and −53.4 dB.

0 5 10 15 20 25 30 35
n (s = 1)

30

20

10

0

-10

-20

-30

m

0 5 10 15 20 25 30 35
n (s = 2)

30

20

10

0

-10

-20

-30

m

40

30

20

10

0 dB

Raw Field Expansion

0 5 10 15 20 25 30 35
n (s = 1)

30

20

10

0

-10

-20

-30

m

0 5 10 15 20 25 30 35
n (s = 2)

30

20

10

0

-10

-20

-30

m

40

30

20

10

0 dB

Rotated Field Expansion

Fig. 5. Normalized spherical coefficients of the waveguide array simulated
at 50GHz.

V. VALIDATION ON ANTENNA FAR-FIELD MEASUREMENT

We now validate the procedure using antenna far-field
measurements. Three antennas are investigated : a Luneburg
lens, a Radiating Cavity Antenna (RCA) and a ReflectArray
(RA). The Table I gathers information about the presented
cases in this section. For each antenna, we show a cartography
of the pattern and the position of the optical axis z′ of the
optimized rotated coordinate system, they are presented in Fig.
7. The reconstruction results are reported in Table II.

TABLE I
CHARACTERISTICS OF THE INVESTIGATED ANTENNAS

Antenna Size a(m) Coef. Nc Meas. set Subsample
Lens 12 GHz 0.15 4606 9746 3702
RCA 6 GHz 0.13 1456 2332 1088
RA 12 GHz 0.15 4606 10970 2628

A. Methodology

All measurements have been carried out in the two far-field
anechoic chambers of the M2ARS facilities at IETR. Both are
equipped with a roll-over-azimuth positioning system and a
mechanical probe polarization change. The field is acquired
step by step with a high density sampling rate following
an igloo strategy to avoid the oversampling near the poles,
δϕ = δθ

sin θ , providing our reference patterns. As in near-
field in IV-A, we select a coarse igloo sampling to mimic
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Fig. 6. Normalized electric far-field radiated by the waveguide array at
50GHz (z′ chosen by GP) in (a) and the cutplane represented by the green
doted line in (b).

a fast measurement data set. The resulting interpolating field
is derived by spherical coefficients identified by BPDN and
compared with the reference pattern. The GP interpolation is
done with the same parameters as in near-field.
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Fig. 7. Normalized electric far-fields radiated by: (a) the single beamed
Luneburg lens at 12GHz, (b) the dual beamed version, (c) the radiating
cavity antenna at 6GHz and (d) the reflectarray at 12GHz. Cross markers
z′ are the position of the z-axis after the optimized rotation by Gaussian
processes.

B. Experimental cases

1) Luneburg Lens Antenna at 12GHz: The flat Luneburg
lens antenna is fed by several waveguides [17] and measured
over the full sphere. We investigate two configurations :
one excited waveguide generating one beam and two excited
waveguides radiating two beams. The resulting reference far-
fields are shown in Fig. 7a and 7b.
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Fig. 8. Normalized spherical coefficients for s = 1 of the Luneburg Lens
with single beam for the angles found by the SOA method in (a), the proposed
approach in (b) and default position in (c). The curves generated by the SOA
method and the corresponding effective sparsity in the χ0 = 90° plane is
shown in (d).

2) Lens with single Beam : The 3D far field pattern is
displayed in Fig. 7a. We note that the procedure chooses to
orientate the z′-axis at the maximum of the field. Spherical
coefficients are displayed in Fig. 8b, we clearly observe less
significant coefficients for the rotated field expansion with the
proposed approach. The result of the SOA method is different.
The rotation is done so a symmetry with respect to the equator
of the radiation pattern is achieved, explaining the peculiar
pattern in Fig. 8a, this is further discussed in Section V-C.

3) Lens with dual Beam: We generate this case from two
single beam measurements. The radiation pattern is shown
in Fig. 7b. The two beams nearly have the same magnitude,
and the z′-axis is not located at a maximum magnitude point
anymore. Hovewer, the SOA methodreturns the same result as
the single beam case for the same reason.

4) Radiating Cavity Antenna at 6GHz: The AUT is mea-
sured over the full sphere and is designed for Car 2 X (C2X)
communications. The reference electric far-field is illustrated
in Fig. 7c. This antenna has a small dynamic range, as
the measured magnitudes of the electric far-field vary from
0 to −25 dB. The best rotation angles determined by GP,
indicated by the cross marker in Fig. 7c, are the same as the
SOA method. After performing this rotation, the number of
significant coefficients is halved, as shown in Table II.
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5) Reflectarray at 12GHz: The field of the reflectarray is
illustrated in Fig. 7d. It has a very directive pattern with a tilted
beam and the measurement is carried out over an hemisphere.

C. Discussion

1) Reconstruction accuracy: In all cases, the sparsity of
the spherical coefficients is increased or equaled with respect
to the SOA method. This enhanced sparsity leads to an
improvement of the field reconstruction as illustrated by the
values of EES in Table II. The choice of rotation angles is not
trivial for most cases and cannot be guessed in advance, as
shown by the z′ markers in the far-field mappings in Fig. 7.

2) Impact of the mode distribution: Rotating the radiated
field by the single beam lens at 12GHz in Fig. 7a by
(ϕ0, θ0, χ0) = (0, 90, 90) in degrees will put the main beam
orthogonal to the equator. In such configuration, the field is
symmetric with respect to it and the spherical spectrum is
concentrated in the modes Fsmn such that m+n is even and
sparsity is greatly promoted, explaining the specific pattern
shown in Fig. 8a. This is achieved at a cost of pushing some
modes to higher order ones (further from the line m = 0),
which are harder to identify with undersampled sets. As shown
in Fig. 8d, this case will lead to a sudden effective sparsity
variation, which is well identifiable using our approach. For
the RCA case, both methods chose to achieve a symmetry with
respect to the equator. However, due to the small directivity
of the pattern, shown in Fig. 7c, there is no creation of high
order modes as in the previous case.

Considering the reflectarray case, as illustrated in Fig. 4, the
SOA method fails to detect the rotation angles leading to the
sparsest expansion in this case. This can be explained by the
relatively low number of samples with respect to the number
of unknowns since this method optimizes the rotation using
the spherical coefficients found along the default orientation.

3) Computation Time: The computation time is difficult to
estimate for the SOA method. Indeed, several initialization
points must be tested to ensure a proper optimization, it
requires multiple rotation matrix computation per iteration,
being at least as costly as solving the BPDN with SPGL1, and
convergence speed is highly dependent on parameter tuning,
which is no trivial matter. The proposed approach always took
less than 3 minutes of computation time for the configuration
given in Section III-B for the largest antenna in electrical size.

4) Minimization Efficiency: The angular distance between
our procedure and a brute force approach (successive refine-
ments of a dense testing grid around the expected minima up
to 0.2°) of the optimized rotation angles is lower than 2.5° for
all the presented measurements. The corresponding effective
sparsities k−40 and EES values show differences of 2 % and
0.14 dB in the worst case.

VI. CONCLUSION

An efficient procedure using rotations of the measured
antenna patterns for generating a sparser expansion of the
field has been proposed. This post-processing method is valid
for spherical near and far-field antenna characterization with
low sampling rates and involves no extra measurement time

TABLE II
EES VALUES, CORRESPONDING EFFECTIVE SPARSITIES k−40

k−40 (%) EES (dB)
Antenna Raw SOA GP Raw SOA GP

Lens (single) 62 43 41 -46.9 -50.0 -51.2
Lens (double) 58 37 37 -43.6 -48.3 -49.3

RCA 33 15 15 -37.2 -39.0 -39.1
RA 40 40 29 -48.0 -48.0 -50.9

or modification to the previous measurement procedures. It
allows to exploit at best the information contained in a given
undersampled field dataset. In addition, the proposed approach
is applicable to any type of spherical sampling strategy. Accu-
racy and stability improvements with respect to the previous
methods have been demonstrated using near field simulation
and far field measurements of various types of antennas.

The translation of the AUT is another mean that could
be harnessed to further improve the sparsity of the spherical
harmonic spectrum. This significant work goes beyond the
scope of this paper and is left for future studies.

REFERENCES

[1] J. Hald, J. Hansen, F. Jensen, and F. Larsen, Spherical Near Field
Antenna Measurements, J. Hansen, Ed. Peter Peregrinus, 1988.

[2] R. Cornelius, D. Heberling, N. Koep, A. Behboodi, and R. Mathar,
“Compressed sensing applied to spherical near-field to far-field trans-
formation.” Davos: Eur. Conf. Antennas Propag. (EuCAP), 2016.

[3] D. Loschenbrand and C. Mecklenbrauker, “Fast antenna characterization
via a sparse spherical multipole expansion.” Aachen: 4th International
Workshop on Compressed Sensing Theory and its Applications to Radar,
Sonar and Remote, 2016.

[4] B. Fuchs, L. Le Coq, S. Rondineau, and M. Migliore, “Fast antenna far
field characterization via sparse spherical harmonic expansion,” IEEE
Trans. Antennas Propag., vol. 65, no. 10, pp. 5503–5510, Oct. 2017.

[5] B. Hofmann, O. Neitz, and T. F. Eibert, “On the minimum number of
samples for sparse recovery in spherical antenna near-field measure-
ments,” IEEE Trans. on Antennas and Propag., July 2019.
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