Aleksandar Milenkoski
email: amilenkoski@ernw.deu

Virtual Secure Mode: Protections of Communication Interfaces

This work is part of the Windows Insight series. This series aims to assist efforts on analysing inner working principles, functionalities, and properties of the Microsoft Windows operating system. For general inquiries contact Aleksandar Milenkoski (

Introduction

This work discusses implemented mechanisms for securing the VSM communication interfaces.

Restrictions on Issuing VTL Calls

Hyper-V restricts the issuing of VTL calls. For a VTL call to be issued, among other things, it has to be initiated from the most privileged CPU mode. For example, an entity invoking a VTL call have to execute with a Current Privilege Level (CPL) of 0, which is assigned by the processor executing the entity. Further, the input values have to be valid. ([Mic17], Section 15.6.1.1) describes the restrictions on issuing VTL calls in greater detail.

Marshalling and Sanitization

The secure kernel marshalls and sanitizes the input and output data of VTL returns. An example is the invocation of functions referenced in the IumSyscallArgFcnTable array. These functions are invoked in the IumApi_-NtGENERIC function. This function, in turn, is invoked in SkSyscall before and after a VTL return is issued by SkCallNormalMode. SkSyscall is where the secure kernel issues VTL returns to request normal-mode services. The functions referenced in the IumSyscallArgFcnTable array marshall and sanitize data passed to, and returned from, the normal kernel. This is a security measure for checking, controlling, and managing the data coming in, and going out of, the secure kernel in a centralized way. This significantly reduces the risk of exploiting implementation or design errors involving the malicious manipulation of this data. It also indicates that data originating from the normal kernel is not explicitly trusted by the secure kernel.

Access Control: Hypercalls

Hyper-V enforces access control over hypercall execution. For a partition to execute a hypercall protected by access control, it has to possess the required privileges. These privileges are assigned by the hypervisor to each partition in the form of flags declared as part of a bitmask. The bitmask is stored in the HvPartitionProp-ertyPrivilegeFlags Hyper-V variable ([Mic17], Section 4.2.2).

Figure 2 depicts the value of HvPartitionPropertyPrivilegeFlags assigned to the partition hosting the normal and the secure kernel. The HvPartitionPropertyPrivilegeFlags queries the value of HvPartitionPropertyPrivilegeFlags. This function is implemented as part of the winhvr driver. When the second parameter of WinHvGetPartition-Property is 0x10000, the function queries the value of HvPartitionPropertyPrivilegeFlags from the hypervisor (003b800000002e7f in Figure 2).

([Mic17], Section 4.2.2) provides information on the layout of the privilege flags that are part of HvPartition-PropertyPrivilegeFlags and how the flags can be interpreted. For example, the CreatePartitions privilege flag implements access control over the execution of the HvCreatePartition hypercall. The PostMessages privilege flag implements access control over the execution of the HvPostMessage hypercall.

Access Control: IUM System Calls

The secure kernel implements access control over the execution of IUM system calls. The IUM system calls IumSecureStorageGet, IumSecureStoragePut, IumCreateSecureSection, IumGetDmaEnabler, IumOpenSecureSection, and IumProtectSecureIo are protected by access control. These functions evaluate flag values and return Figure 2: A value of HvPartitionPropertyPrivilegeFlags the error code 0xC0000022 (STATUS_ACCESS_DENIED) if the flags are not set. 1 The evaluated flags are stored at offsets of an address stored in the gs:8 register. The flags are declared as part of the policy options of the trustlet invoking the IUM system calls. These options are used by the secure kernel to enable or disable secure kernel functionalities for trustlet, such as execution of IUM system calls. The policy options are described in ([YIRS17], Section "Trustlet Policy Metadata"). Policy options of trustlets are signed data. A modification of this data results in invalidation of its signature and prevents the execution of the trustlets associated with the modified options.

Secure Data Sharing: Mailboxes

The concept of mailboxes enables trustlets to share data with entities running in the normal environment in a secure manner. Figure 3 depicts the workflow of mailbox-based data sharing.

When a trustlet has data that it needs to share with an entity running in the normal environment, it populates a mailbox with the data. A mailbox is a memory region designated for storing shared data. Each mailbox can be uniquely identified by a mailbox ID. A trustlet populates a mailbox by issuing the IumPostMailbox IUM system call. The first parameter of this function is the ID of the mailbox to be populated (ID in Figure 3), the second stores the address of the data buffer where the shared data is stored (buf in Figure 3), and the third is the buffer size (size in Figure 3).

Each trustlet may have up to eight mailboxes. Possible mailbox IDs are between 0 and 7. The maximum size of each mailbox is 4092 bytes. IumPostMailbox evaluates the trustlet-provided mailbox ID and mailbox size against the previously mentioned upper values. IumPostMailbox then allocates heap memory. It also copies the data stored at the address that is the second parameter of IumPostMailbox at offset 0x4 of the allocated memory. The beginning of the allocated memory stores the size of the copied data. Finally, IumPostMailbox loads the address of the heap memory storing the shared data, and the size of the data, to an address referencing the mailbox indexed by the trustlet-provided mailbox ID. This is done by executing an atomic compare-andexchange operation implemented with the cmpxchg instruction. 2 The implementation of cmpxchg in IumPostMailbox indicates that the trustlet-provided data to be shared is stored in a mailbox only if the mailbox is empty; that is, if the address referencing the mailbox is zeroed out. The address referencing the mailbox with ID is at offset 0x8*ID+0x100 of the address stored at gs:8+0x30 (offset: 0x8*ID+0x100 ← buf in Figure 3). gs:8 is the address stored in the gs:8 register at the time of issuing IumPostMailbox. Once data is stored in a mailbox, entities running in the normal environment can retrieve it. This is done by invoking the VslRetrieveMailbox function implemented in the normal kernel. Parameters of VslRetrieveMailbox include the ID of the mailbox from which data is retrieved (ID in Figure 3) and a mailbox key (key in Figure 3). A mailbox key serves as a password for retrieving data stored in the mailboxes of a given trustlet. VslRetrieve-Mailbox stores the mailbox ID and the mailbox key in a buffer and issues a VTL call passing the buffer as input data.

VslRetrieveMailbox issues a VTL call by invoking the VslpEnterIumSecureMode and HvlSwitchToVtl1 functions. VslRetrieveMailbox requests a secure service with SSCN 0x13. This results in invoking the IumInvokeSecure-Service and SkRetrieveMailbox functions in the context of the secure kernel.

SkRetrieveMailbox first invokes the SkpsReferenceTrustletByMailboxKey function. This function identifies the trustlet whose mailboxes are protected by the mailbox key transferred from the normal environment. Skp-sReferenceTrustletByMailboxKey searches through the attributes of running trustlets for this mailbox key. In order to search the attributes of a given trustlet, SkpsReferenceTrustletByMailboxKey invokes the SkFindTrustle-tAttribute function. This indicates that mailboxes keys are stored as trustlets' attributes. Attributes of a given trustlet store information associated with the trustlet and they are embedded in the executable implementing the trustlet ([Mic17], section "Trustlet Attributes", Table 3-5).

If SkpsReferenceTrustletByMailboxKey cannot identify a trustlet, SkRetrieveMailbox returns the error code 0xC000-0034 (OBJECT_NAME_NOT_FOUND). 3 If SkpsReferenceTrustletByMailboxKey identifies a trustlet, SkRetrieveMailbox allocates a buffer (ret_buf in Figure 3) and sets the value of the rbp register to 0 (rbp=0 in Figure 3). It then loads into rbp the address stored at offset 0x8*ID+0x100 of the address stored in the rsi register. As mentioned earlier, this address is presumably the address referencing the mailbox indexed by ID. The loading of the address is implemented using the xchg instruction (xchg rbp, offset: 0x8*ID+0x100 in Figure 3). This instruction exchanges the address stored at the offset 0x8*ID+0x100 of rsi with the value stored in rbp (i.e.,0). This effectively zeroes out the value stored at the offset 0x8*ID+0x100 of rsi and populates rbp. As discussed earlier, this indicates that the mailbox indexed by ID has been retrieved and may be populated again.

SkRetrieveMailbox then populates the newly allocated buffer with the data stored at offset 0x4 of rbp (ret_buf ← rbp in Figure 3). This is the data shared by the trustlet. SkRetrieveMailbox then issues a VTL return by invoking SkCallNormalMode in order to switch to VTL 0. SkRetrieveMailbox passes the buffer populated with shared trustlet data to VTL 0 (SkCallNormalMode: ret_buf in Figure 3). This provides the data shared by a trustlet to the requesting entity that runs in the normal environment.

Secure Data Sharing: Secure Storage Blobs

The concept of secure storage blobs enables trustlets to share data between each other in a secure manner. A secure storage blob is a memory region designated for storing shared data. The functionalities of the secure storage blob mechanism are implemented in the IUM system calls IumSecureStoragePut and IumSecureStor-ageGet. IumSecureStoragePut is used by trustlets for storing data in secure storage blobs. IumSecureStorageGet is used by trustlets for retrieving data stored in secure storage blobs.

The storing data into, and retrieving data from, secure storage blobs is subject to access control. This is based on an authentication value that trustlets accessing a secure storage blob have to provide. This authentication value may be either a collaboration ID or a trustlet instance.

A trustlet sharing data via a secure storage blob may associate a collaboration ID with the blob. This allows multiple trustlets that are in possession of this ID to access the blob. Same as the mailbox key, the collaboration ID of a given trustlet is stored as part of the trustlet's attributes ([Mic17], section "Trustlet Attributes"). Alternatively to collaboration ID, a trustlet sharing data via a storage blob may associate a trustlet instance with the blob. This allows only the specific trustlet that is in possession of this instance to access the blob. A trustlet instance is a form of trustlet identity. It is a 16-byte number generated by the secure kernel and is unique to each instantiated trustlet ([Mic17], Section "Trustlet Identity"). When a trustlet is accessing a secure storage blob, if no collaboration ID is provided, the trustlet instance is used for authentication.

Analysing the IumSecureStorageGet function allows for better understanding the way in which access to secure storage blobs is secured. Figure 4 depicts a pseudo-code of the implementation of IumSecureStorageGet. The second parameter of IumSecureStorageGet is the address of a buffer where the data retrieved from a secure storage blob is to be stored (buf in Figure 4). The third parameter of IumSecureStorageGet is where the size of shared data is to be stored (size in Figure 4).

IumSecureStorageGet first invokes the SkGetCollaborationId function. This function attempts to extract the collaboration ID from the attributes of the trustlet retrieving shared data (collabID in Figure 4) by invoking SkFind-TrustletAttribute. If a collaboration ID is not present (if(res) and else in Figure 4), then the trustlet instance is extracted. At the time of invoking SkGetCollaborationID, the trustlet instance is stored at offset 0x1D0 of the address stored in the gs:8 register. SkGetCollaborationID then stores the extracted collaboration ID, or the trustlet instance, into a data buffer. This buffer is referred to as the authentication data buffer in this work (auth in Figure 4).

Once the authentication data buffer is populated, IumSecureStorageGet invokes SkGetBlob. This function first iterates through an array that stores pointers to secure storage blobs (blob_array in Figure 4). The address of this array is stored in a global variable of the secure kernel. Each element of the array stores a pointer to the authentication value associated with each storage blob, that is, a collaboration ID or a trustlet instance (el->auth in Figure 4). It also stores a pointer to the data stored in the blob.

During the iteration of the array of storage blobs, SkGetBlob compares the content of the previously populated authentication buffer with the authentication value associated with each storage blob. If a match is found (authenticated = 1 in Figure 4), SkGetBlob copies the data stored in the blob in the buffer for storing shared data (memmove and buf in Figure 4). It also stores the size of the data in the variable for storing this size (size in Figure 4). The shared data is stored at offset 0x18 of the storage blob that SkGetBlob has granted access to (el+0x18 4). The size of the shared data is stored at offset 0x14 of this blob (el+0x14 in Figure 4). The data buffer storing the shared data, and the data size, are then returned to the trustlet invoking the IumSecureStorageGet function.

Figure 1

 1 Figure 1 depicts the contents of the IumSyscallArgFcnTable array. The array references functions that represent data marshallers and sanitizers for data of simple types and on a per-type basis for data of complex types. The latter involve marshallers and sanitizers of data of specific data structures. The IumArg_GENERIC function (see Figure 1) performs generic marshalling and sanitization. IumArg_PALPC_MESSAGE_ATTRIBUTES and IumArg_PPORT_MESSAGE are examples of per-type marshallers and sanitizers of data of type ALPC_MES-SAGE_ATTRIBUTES and PORT_MESSAGE.

Figure 1 :

 1 Figure 1: The IumSyscallArgFcnTable array

Figure 3 :

 3 Figure 3: The workflow of mailbox-based data sharing

Figure 4 :

 4 Figure 4: Pseudo-code of the implementation of IumSecureStorageGet

https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 19/4/2018]

https://msdn.microsoft.com/en-us/library/cc704588.aspx [Retrieved: 19/4/2018]

contracted by the German Federal Office for Information Security (ger., Bundesamt für Sicherheit in der Informationstechnik -BSI).