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We compute the fundamental Dirac operator for the three-parameterfamily of homogeneous Riemannian metrics and the four different spin structures on SU2/Q8, where Q8 denotes the group of quaternions. We deduce its spectrum for the Berger metrics and show the sharpness of Christian Bär's upper bound for the smallest Dirac eigenvalue in the particular case where SU2/Q8 is a homogeneous minimal hypersurface of S 4 .

Throughout this paper and unless explicitly mentioned we denote by M the quotient of SU 2 by the right-action of the group of quaternions Q 8 , i.e., the group with 8 elements defined by {±I 2 , ±A 1 , ±A 2 , ±A 3 } with A 1 := -i 0 0 i , A 2 := 0 i i 0 and A 3 := 0 1 -1 0 . The manifold M is a 3-dimensional compact connected spin homogeneous space and at the same time the simplest example of homogeneous hypersurface in the round sphere with 3 different principal curvatures, see e.g. [START_REF] Berndt | On homogeneous hypersurfaces in Riemannian symmetric spaces[END_REF] and end of Section 2.

Using classical techniques (see e.g. [START_REF] Bär | The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces[END_REF]) we first compute the Dirac operator of M for any homogeneous metric and any spin structure:

Theorem 0.1

i) The manifold M carries a 3-parameter family of homogeneous Riemannian metrics which are given by the orthonormal bases {X 1 := a 1 A 1 , X 2 := a 2 A 2 , X 3 := a 3 A 3 } of su [START_REF] Bär | The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces[END_REF], where a 1 , a 2 , a 3 ∈ R * . Conversely, every homogeneous metric on M is of that form.

ii) The isotropy representation α of M is given in the basis (X 1 , X 2 , X 3 ) of su(2) by α(±I 2 ) = I 3 α(±A 1 ) = diag(1, -1, -1) α(±A 2 ) = diag(-1, 1, -1) α(±A 3 ) = diag(-1, -1, 1).

In particular the manifold M is orientable.

iii) The manifold M is spin and carries exactly 4 spin structures, each one corresponding to one of the following group homomorphisms Q 8 εj -→ {-1, 1}: ε 0 ≡ 1 and Ker(ε j ) = {±I 2 , ±A j } for j ∈ {1, 2, 3}.

iv) The finite dimensional Dirac operator D n corresponding to the irreducible representation of SU 2 on the space V n of homogeneous polynomials of degree n in two variables is non-trivial only if n is odd. In that situation

D n = D ′ n - a 2 1 a 2 2 + a 2 2 a 2 3 + a 2 1 a 2 3 2a 1 a 2 a 3 Id
where D ′ n is described by a n+1 2 × n+1 2 tridiagonal matrix. More precisely, there exists a basis (v 0 , . . . , v n-1
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) in which D ′ n can be expressed as 0) in case M carries the spin structure given by ε 0 ,

D ′ n (v k ) = (-1) k a 1 (n -2k)v k + (k + 1)(a 2 + (-1) k a 3 )v k+1 +(n -k + 1)(a 2 -(-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 
D ′ n (v n-1 2 ) = a 1 + n + 1 2 (a 2 + a 3 ) v n-1 2 + n + 3 2 (a 2 -a 3 )v n-3 2 if n ≡ 1 (4) and D ′ n (v k ) = -(-1) k a 1 (n -2k)v k + (k + 1)(a 2 -(-1) k a 3 )v k+1 +(n -k + 1)(a 2 + (-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 
D ′ n (v n-1 2 ) = a 1 - n + 1 2 (a 2 + a 3 ) v n-1 2 + n + 3 2 (a 2 -a 3 )v n-3 2 if n ≡ 3 (4).
1) in case M carries the spin structure given by ε 1 ,

D ′ n (v k ) = (-1) k a 1 (n -2k)v k + (k + 1)(a 2 + (-1) k a 3 )v k+1 +(n -k + 1)(a 2 -(-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 
D ′ n (v n-1 2 ) = a 1 - n + 1 2 (a 2 + a 3 ) v n-1 2 + n + 3 2 (a 2 -a 3 )v n-3 2 if n ≡ 1 (4) and D ′ n (v k ) = -(-1) k a 1 (n -2k)v k + (k + 1)(a 2 -(-1) k a 3 )v k+1 +(n -k + 1)(a 2 + (-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 
D ′ n (v n-1 2 ) = a 1 + n + 1 2 (a 2 + a 3 ) v n-1 2 + n + 3 2 (a 2 -a 3 )v n-3 2 if n ≡ 3 (4). 2 
2) in case M carries the spin structure given by ε 2 ,

D ′ n (v k ) = -(-1) k a 1 (n -2k)v k + (k + 1)(a 2 -(-1) k a 3 )v k+1 +(n -k + 1)(a 2 + (-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 D ′ n (v n-1 2 ) = -a 1 + n + 1 2 (a 2 -a 3 ) v n-1 2 + n + 3 2 (a 2 + a 3 )v n-3 2 if n ≡ 1 (4)
and

D ′ n (v k ) = (-1) k a 1 (n -2k)v k + (k + 1)(a 2 + (-1) k a 3 )v k+1 +(n -k + 1)(a 2 -(-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 
D ′ n (v n-1 2 ) = -a 1 - n + 1 2 (a 2 -a 3 ) v n-1 2 + n + 3 2 (a 2 + a 3 )v n-3 2 if n ≡ 3 (4).
3) in case M carries the spin structure given by ε 3 ,

D ′ n (v k ) = -(-1) k a 1 (n -2k)v k + (k + 1)(a 2 -(-1) k a 3 )v k+1 +(n -k + 1)(a 2 + (-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 D ′ n (v n-1 2 ) = -a 1 - n + 1 2 (a 2 -a 3 ) v n-1 2 + n + 3 2 (a 2 + a 3 )v n-3 2 if n ≡ 1 (4) and D ′ n (v k ) = (-1) k a 1 (n -2k)v k + (k + 1)(a 2 + (-1) k a 3 )v k+1 +(n -k + 1)(a 2 -(-1) k a 3 )v k-1 , 0 ≤ k < n -1 2 D ′ n (v n-1 2 ) = -a 1 + n + 1 2 (a 2 -a 3 ) v n-1 2 + n + 3 2 (a 2 + a 3 )v n-3 2 if n ≡ 3 (4).
We deduce the spectrum of the Dirac operator D of M for the so-called Berger metrics, which form a 2-parameter subfamily of homogeneous metrics:

Corollary 0.2 With the notations of Theorem 0.1, assume furthermore that a 2 = a 3 . Then the spectrum of the operator D +

2a 2 1 +a 2 2 2a1
Id on M for the metric induced by a 1 , a 2 and the spin structure given by ε j (j ∈ {0, 1, 2, 3}) consists of the following family of eigenvalues:

0. for j = 0, n∈N n≡1 (4) a 1 ± (n -2k -1) 2 a 2 1 + 4(n -k)(k + 1)a 2 2 | k ∈ {0, . . . , n -5 2 } even, a 1 + (n + 1)a 2
In the case where a 1 = a 2 = a 3 , i.e., M is a space-form with positive curvature, we reobtain the Dirac spectrum computed by Christian Bär in [3, Thm. 2], see Corollary 3.2.

On the other hand, considering M as embedded homogeneous hypersurface in the 4-dimensional round sphere S 4 one could ask if the following inequality due to Christian Bär [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF]Cor. 4.3] is an equality:

λ 1 (D 2 ) ≤ 9 4 (H 2 + 1), (1) 
where λ 1 (D 2 ) is the smallest eigenvalue of the Dirac Laplacian on M (for the induced metric and spin structure) and H is the mean curvature of M in S 4 . This question takes its origin in the study of the equality case in Christian Bär's estimate [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF]Cor. 4.3] for the smallest eigenvalue λ 1 (D 2 ) of the Dirac Laplacian. If this inequality is an equality, then the mean curvature of the hypersurface has to be constant, nevertheless the reverse statement has up to now neither been proved nor been contradicted. We give a partial answer to that question for M :

Corollary 0.3 With the notations of Theorem 0.1, assume furthermore that M carries a homogeneous metric coming from a minimal embedding in S 4 and the spin structure described by ε 0 . Then (1) is an equality.

The paper is organized as follows. In the first section we describe the metrics and spin structures on M and thus prove Theorem 0.1 i)-iii). In the second one we compute the Dirac operator of M (Theorem 0.1 iv)) and the eigenvalue of D 1 (Corollary 2.9), which in the case where M is a hypersurface of S 1 Metrics and spin structures on M

The Lie-algebra of Q 8 being trivial the adjoint representation α of the homogeneous space M is nothing but the restriction of the adjoint map SU 2 -→ Aut(su(2)) to Q 8 , where su(2) denotes the Lie-algebra of SU 2 . We define the scalar product • , • on su(2) by declaring the following basis to be orthonormal:

X 1 := a 1 A 1 X 2 := a 2 A 2 X 3 := a 3 A 3 ,
where a 1 , a 2 , a 3 ∈ R * are fixed parameters. The map α is given in the basis

(X 1 , X 2 , X 3 ) of su(2) by α(±I 2 ) = I 3 α(±A 1 ) = diag(1, -1, -1) α(±A 2 ) = diag(-1, 1, -1) α(±A 3 ) = diag(-1, -1, 1),
therefore it obviously preserves • , • which hence induces a homogeneous metric on M . Using the form of α in the basis (A 1 , A 2 , A 3 ) computed above it is easy to prove that every homogeneous metric on M comes from such a scalar product on su(2), i.e., it admits {a 1 A 1 , a 2 A 2 , a 3 A 3 } as orthonormal basis for suitable a 1 , a 2 , a 3 ∈ R * . Note also that α preserves the orientation of su [START_REF] Bär | The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces[END_REF], so that if we choose (X 1 , X 2 , X 3 ) as positively-oriented orthonormal basis of su(2) then α is expressed in that basis by a map Q 8 α -→ SO 3 .

We now examine the spin structures on M considering the metric and the orientation given by (X 1 , X 2 , X 3 ). From [2, Lemma 3] the manifold M is spin if and only if its isotropy representation α lifts to Spin 3 through the non-trivial two-fold covering Spin 3 ξ -→ SO 3 , and in that case spin structures on M are in one-to-one correspondence with those lifts, each one of those being uniquely determined by a group homomorphism Q 8 ε -→ {-1, 1}. Here Q 8 already lies in SU 2 ∼ = Spin 3 so that M is obviously spin. Denoting by α the inclusion Q 8 ⊂ SU 2 , every spin structure on M is uniquely described by a map α : Q 8 -→ SU 2 of the form α(h) = ε(h) α(h) for every h ∈ Q 8 , where ε : Q 8 -→ {-1, 1} is a group homomorphism. But there are exactly 4 such homomorphisms: the trivial one ε 0 ≡ 1 and the ε j 's, j = 1, 2, 3, with Ker(ε j ) = {±I 2 , ±A j }. This proves Theorem 0.1 i) -iii).

In the following we shall call the spin structure corresponding to ε j • α the ε j -spin structure on M . Theorem 2.1 Let M := G/H be an n-dimensional Riemannian homogeneous spin manifold with G compact and simply-connected. Let p be a supplementary subspace of h in g. Fix a p.o.n.b (X 1 , . . . , X n ) of p and let α : H -→ SO n be the isotropy representation of M expressed in the basis (X 1 , . . . , X n ). Let α : H -→ Spin n be the lift of α to Spin n induced by the given spin structure of M and Σ α M -→ M be the spinor bundle of M associated with α. Let G be the set of equivalence classes of irreducible unitary representations of G (in the following we shall always identify an element of G with one of its representants).

i) The space L 2 (M, Σ α M ) splits under the unitary left action of G into a direct Hilbert sum

γ∈ G V γ ⊗ Hom H (V γ , Σ n ) (2)
where V γ is the space of the representation γ (i.e., γ :

G -→ U(V γ ))
and

Hom H (V γ , Σ n ) := f ∈ Hom(V γ , Σ n ) s.t. ∀h ∈ H, f • γ(h) = (δ n • α) (h) • f .
ii) The Dirac operator D of M preserves each summand of (2); more precisely, if (e 1 , . . . , e n ) denotes the canonical basis of R n , then for every

γ ∈ G, the restriction of D to V γ ⊗ Hom H (V γ , Σ n ) is given by Id ⊗ D γ , where, for every A ∈ Hom H (V γ , Σ n ), D γ (A) := - n k=1 e k • A • T e γ(X k ) + n i=1 β i e i + i<j<k α ijk e i • e j • e k • A, (3) 
and

β i := 1 2 n j=1 [X j , X i ] p , X j α ijk := 1 4 ( [X i , X j ] p , X k + [X j , X k ] p , X i + [X k , X i ] p , X j )
(here and henceforth X p will denote the image of X ∈ g under the projection g -→ p with kernel h).

The following statement will be useful for taking the symmetries of M into account, see Examples 2.4 below.

Lemma 2.2 Under the hypotheses of

Theorem 2.1 let • , • ′ be a further ho- mogeneous metric on M and f : G -→ G be a Lie-group-homomorphism such that f (H) ⊂ H and f * := [T e f ] is an orientation-preserving isometry (T [e] M, • , • ) -→ (T [e] M, • , • ′ ).
Then the pull-back spin structure f * Spin α (T M ) is described by

H -→ Spin n h -→ f -1 • α • f (h) • f where f ∈ Spin n satisfies ξ( f ) = f * .
Proof: The proof relies on the identity f * • Ad(g) = Ad(f (g)) • f * for every g ∈ G, which implies in particular

α(h) = f -1 * • α(f (h)) • f * for every h ∈ H. ✷ Notes 2.3
1. Of course the homomorphism describing the pull-back spin structure in Lemma 2.2 is well-defined since f is uniquely determined up to a sign. 

:= SU 2 /Q 8 , fix a 1 , a 2 , a 3 ∈ R * and as above set X k := a k A k for k ∈ {1, 2, 3}.
We write (M, • , • a1,a2,a3 , ε j ) for M endowed with the metric and the orientation given by (X 1 , X 2 , X 3 ) and the ε j -spin structure (j ∈ {0, 1, 2, 3}).

1. Set X ′ 1 := X 1 , X ′ 2 := -X 2 and X ′ 3 := -X 3 . Let f (A 1 ) := A 1 , f (A 2 ) := -A 2 and f (A 3 ) := -A 3 . Setting f (I 2 ) := I 2 and extending f linearly one obtains a Lie-group-homomorphism SU 2 → SU 2 inducing an orientation- preserving isometry (M, • , • a1,a2,a3 ) -→ (M, • , • a1,-a2,-a3 ). The matrix of f * = f in the bases (X 1 , X 2 , X 3 ) and (X ′ 1 , X ′ 2 , X ′ 3
) respectively is the identity so that f = 1 can be chosen. Applying Lemma 2.2 the pull-back of the ε j -spin structure by f is then described by

Q 8 -→ SU 2 , h -→ ε j (h)f (h) (remember that -I 2 ∈ Ker(ε j )), i.e., the pull-back of the ε 0 -(resp. ε 2 -) spin structure is the ε 1 -(resp. ε 3 -) one.
In other words, changing the sign of both a 2 and a 3 changes neither the metric nor the orientation, however it permutes the ε 0 -(resp. ε 2 -) spin structure with the ε 1 -(resp. ε 3 -) one.

In particular the Dirac operator on e.g. (M, • , • a1,a2,a3 , ε 0 ) coincides with that of (M, • , • a1,-a2,-a3 , ε 1 ).

2. Let σ be a permutation of {0, 1, 2, 3} with σ(0) = 0 and set

X ′ k := a σ(k) A k for k ∈ {1, 2, 3}. Let f (A 1 ) := A σ -1 (1) , f (A 2 ) := A σ -1 (2) and f (A 3 ) := ε(σ)A σ -1 (3) where ε(σ) ∈ {-1, 1} is the signature of σ.
Setting in the same way as just above f (I 2 ) := I 2 and extending f linearly one obtains a Lie-group-homomorphism SU 2 → SU 2 inducing an orientation-preserving isometry (M,

• , • a1,a2,a3 ) -→ (M, • , • a σ(1) ,a σ(2) ,a σ(3) ). This time the ma- trix of f * = f in the bases (X 1 , X 2 , X 3 ) and (X ′ 1 , X ′ 2 , X ′ 
3 ) respectively is not the identity, however it coincides with the matrix of f in the basis (A 1 , A 2 , A 3 ) so that, per definition of the universal 2-fold covering map,

f -1 • f (h) • f = h
for any lift f of f to SU 2 and every h ∈ Q 8 . The pull-back through f of the ε j -spin structure is therefore the (ε j • f )-one, that is, the ε σ(j) -one. In other words, permuting the coefficients a 1 , a 2 , a 3 induces an orientationpreserving isometry permuting the spin structure in the reverse way, the ε 0 -one staying unchanged under that transformation. In particular the Dirac operator on (M, • , • a1,a2,a3 , ε j ) coincides with that of (M, • ,

• a σ(1) ,a σ(2) ,a σ(3) , ε σ -1 (j) ).
3. It is well-known that, for any fixed metric and spin structure on M , the Dirac operators for the two different orientations are just opposite from one another (this is always the case in odd dimensions). For example, if one turns a 1 into -a 1 and lets a 2 and a 3 unchanged, then the Dirac operator on e.g. (M, • , • -a1,a2,a3 , ε 0 ) coincides with minus that of (M, • , • a1,-a2,-a3 , ε 0 ), i.e., with minus that of (M, • , • a1,a2,a3 , ε 1 ).

Note that Examples 2.4 essentially exhausts all possible isometric transformations of M since the only Lie-group-automorphisms f of SU 2 preserving Q 8 are characterized by f (A k ) = ǫ(k)A σ(k) for some permutation σ of {1, 2, 3} and ǫ(k) ∈ {-1, 1}.

We come now to the computation of the Dirac operator on M = SU 2 /Q 8 . We begin with the part of the Dirac operator that does not depend on the representation γ of SU 2 . Note also that this part only depends on the metric chosen on M and not on its spin structure.

Proposition 2.5 For the metric on M given by a 1 , a 2 , a 3 we have β j = 0 for every j ∈ {1, 2, 3} and

α 123 = a 2 1 a 2 2 +a 2 2 a 2 3 +a 2 1 a 2 3 2a1a2a3
. In particular

3 j=1 β j e j • +α 123 e 1 • e 2 • e 3 • = - a 2 1 a 2 2 + a 2 2 a 2 3 + a 2 1 a 2 3 2a 1 a 2 a 3 Id. Proof: We compute the Lie-brackets [X j , X k ] for all 1 ≤ j < k ≤ 3. Since A 1 A 2 = -A 2 A 1 = A 3 we have [X 1 , X 2 ] = a 1 a 2 [A 1 , A 2 ] = 2a 1 a 2 A 3 = 2a 1 a 2 a 3 X 3 ,
and analogously

[X 2 , X 3 ] = 2a2a3 a1 X 1 , [X 3 , X 1 ] = 2a1a3 a2 X 2 . We straightforward deduce that β 1 = β 2 = β 3 = 0. Furthermore, α 123 = 1 4 ( [X 1 , X 2 ], X 3 + [X 2 , X 3 ], X 1 + [X 3 , X 1 ], X 2 ) = 1 4 2a 1 a 2 a 3 + 2a 2 a 3 a 1 + 2a 1 a 3 a 2 = a 2 1 a 2 2 + a 2 2 a 2 3 + a 2 1 a 2 3 2a 1 a 2 a 3 .
It remains to notice that, by convention, the complex volume form i [ 3+1 2 ] e 1 • e 2 • e 3 = -e 1 • e 2 • e 3 acts by the identity on Σ 3 . This concludes the proof.

✷

We next determine the space of equivariant homomorphisms for each γ ∈ SU 2 and each ε j -spin structure on M . First recall that the irreducible unitary representations of SU 2 are given by its natural action on the n + 1-dimensional vector spaces of all n-graded homogeneous complex polynomials in two variables: set, for any n ∈ N (we include n = 0)

V n := {P ∈ C[z 1 , z 2 ], P = 0 or P homogeneous and d • P = n}.
Then SU 2 acts on V n through

π n : SU 2 -→ Aut(V n ) A -→ (π n (A) : P → P • R A ),
where P • R A (z) := P (zA) for every z = (z 1 z 2 ) ∈ C 2 . From now on we shall always work with the following basis of V n :

(P k (z 1 , z 2 ) := z n-k 1 z k 2 , 0 ≤ k ≤ n).
Identifying Spin 3 to SU 2 the spinor representation Spin 3

δ3

-→ Aut(Σ 3 ) is equivalent to the standard representation SU 2 -→ Aut(C 2 ). For every lift ε j • α of the isotropy representation α of M the space of equivariant homomorphisms for π n and for the ε j -spin structure -that we shall denote by Hom Q8,εj (V n , C 2 ) -is then given by

Hom Q8,εj (V n , C 2 ) = f ∈ Hom(V n , C 2 ) s.t. f • π n (h) = ε j (h)h • f ∀ h ∈ Q 8 .
We fix the following basis (F 0 , . . . ,

F n , G 0 , . . . , G n ) of Hom(V n , C 2 ) (which is that of [2, p.73]): set, for every k ∈ {0, . . . , n}, F k (P l ) :=    (1 0) if l = k and k even (0 1) if l = k and k odd 0 otherwise,
and Lemma 2.6 Let M carry the ε j -spin structure for j ∈ {0, 1, 2, 3}. Then

G k (P l ) :=    (0 1) if l = k and k even ( 1 
Hom Q8,εj (V n , C 2 ) = {0} if n is even. Moreover 0. for j = 0 we have Hom Q8,ε0 (V n , C 2 ) =      n-1 2 k=0 C(F k + F n-k ) if n ≡ 1 (4) n-1 2 k=0 C(G k -G n-k ) if n ≡ 3 (4).
1. for j = 1 we have

Hom Q8,ε1 (V n , C 2 ) =      n-1 2 k=0 C(F k -F n-k ) if n ≡ 1 (4) n-1 2 k=0 C(G k + G n-k ) if n ≡ 3 (4).
2. for j = 2 we have

Hom Q8,ε2 (V n , C 2 ) =      n-1 2 k=0 C(G k + G n-k ) if n ≡ 1 (4) n-1 2 k=0 C(F k -F n-k ) if n ≡ 3 (4).
3. for j = 3 we have

Hom Q8,ε3 (V n , C 2 ) =      n-1 2 k=0 C(G k -G n-k ) if n ≡ 1 (4) n-1 2 k=0 C(F k + F n-k ) if n ≡ 3 (4). Proof: Since -I 2 ∈ Ker(ε j ) any element f ∈ Hom Q8,εj (V n , C 2 ) must satisfy f • π n (-I 2 ) = -f , with π n (-I 2 ) = (-1
) n Id Vn , so that the condition reads

(-1) n f = -f,
which requires f = 0 as soon as n is even.

From now on, we assume that n is odd. We compute π n (A j ) for j = 1, 2 (remember that A 1 and A 2 generate Q 8 ): for every k ∈ {0, . . . , n} and z ∈ C 2 ,

{π n (A 1 )}(P k )(z) = P k (z 1 z 2 ) • -i 0 0 i = P k (-iz 1 , iz 2 ) = (-iz 1 ) n-k (iz 2 ) k = (-1) n-k i n z n-k 1 z k 2 ,
i.e., {π n (A 1 )}(P k ) = (-1) n-k i n P k . Analogously,

{π n (A 2 )}(P k )(z) = P k (z 1 z 2 ) • 0 i i 0 = P k (iz 2 , iz 1 ) = (iz 2 ) n-k (iz 1 ) k , i.e., {π n (A 2 )}(P k ) = i n P n-k . The conditions f • π n (A l ) = ε j (A l )A l • f for l = 1, 2 then read f (P k ) = (-1) k+ n-1 2 iε j (A 1 )(A 1 • f )(P k ) f (P n-k ) = (-1) n+1 2 iε j (A 2 )(A 2 • f )(P k ) (4)
for every k ∈ {0, 1, . . . , n}. From now on we denote by

f 1k f 2k := f (P k ) ∈ C 2 .
We examine each case separately.

• Case j = 0: In that case the conditions (4) are equivalent to

f (P k ) = (-1) k+ n-1 2 i(A 1 • f )(P k ) f (P n-k ) = (-1) n+1 2 i(A 2 • f )(P k ), that is, f 1k = (-1) k+ n-1 2 f 1k f 2k = (-1) k+ n+1 2 f 2k f 1n-k = (-1) n-1 2 f 2k f 2n-k = (-1) n-1 2 f 1k .
If n ≡ 1 (4) then those identities become

f 1k = (-1) k f 1k f 2k = -(-1) k f 2k f 1n-k = f 2k f 2n-k = f 1k , hence f 1k = 0 if k is odd (resp. f 2k = 0 if k is even) and (f 1n-k , f 2n-k ) = (f 2k , f 1k ) for every 0 ≤ k ≤ n-1
2 . We deduce that

f = f 10 (F 0 + F n ) + f 21 (F 1 + F n-1 ) + . . . + f 1 n-1 2 (F n-1 2 + F n+1 2 )
and the result in that case.

If n ≡ 3 (4) then those identities become

f 1k = -(-1) k f 1k f 2k = (-1) k f 2k f 1n-k = -f 2k f 2n-k = -f 1k , hence f 1k = 0 if k is even (resp. f 2k = 0 if k is odd) and (f 1n-k , f 2n-k ) = (-f 2k , -f 1k ) for every 0 ≤ k ≤ n-1
2 . We deduce that

f = f 20 (G 0 -G n ) + f 11 (G 1 -G n-1 ) + . . . + f 1 n-1 2 (G n-1 2 -G n+1 2 )
and the result in that case.

• Case j = 1: In that case the conditions (4) are equivalent to

f (P k ) = (-1) k+ n-1 2 i(A 1 • f )(P k ) f (P n-k ) = (-1) n-1 2 i(A 2 • f )(P k ), that is, f 1k = (-1) k+ n-1 2 f 1k f 2k = (-1) k+ n+1 2 f 2k f 1n-k = (-1) n+1 2 f 2k f 2n-k = (-1) n+1 2 f 1k .
If n ≡ 1 (4) then those identities become

f 1k = (-1) k f 1k f 2k = -(-1) k f 2k f 1n-k = -f 2k f 2n-k = -f 1k , hence f 1k = 0 if k is odd (resp. f 2k = 0 if k is even) and (f 1n-k , f 2n-k ) = (-f 2k , -f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 10 (F 0 -F n ) + f 21 (F 1 -F n-1 ) + . . . + f 1 n-1 2 (F n-1 2 -F n+1 2 )
and the result in that case. If n ≡ 3 (4) then those identities become

f 1k = -(-1) k f 1k f 2k = (-1) k f 2k f 1n-k = f 2k f 2n-k = f 1k , hence f 1k = 0 if k is even (resp. f 2k = 0 if k is odd) and (f 1n-k , f 2n-k ) = (f 2k , f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 20 (G 0 + G n ) + f 11 (G 1 + G n-1 ) + . . . + f 1 n-1 2 (G n-1 2 + G n+1 2 )
and the result in that case.

• Case j = 2: In that case the conditions (4) are equivalent to

f (P k ) = (-1) k+ n+1 2 i(A 1 • f )(P k ) f (P n-k ) = (-1) n+1 2 i(A 2 • f )(P k ), that is, f 1k = (-1) k+ n+1 2 f 1k f 2k = (-1) k+ n-1 2 f 2k f 1n-k = (-1) n-1 2 f 2k f 2n-k = (-1) n-1 2 f 1k .
If n ≡ 1 (4) then those identities become

f 1k = -(-1) k f 1k f 2k = (-1) k f 2k f 1n-k = f 2k f 2n-k = f 1k , hence f 1k = 0 if k is even (resp. f 2k = 0 if k is odd) and (f 1n-k , f 2n-k ) = (f 2k , f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 20 (G 0 + G n ) + f 11 (G 1 + G n-1 ) + . . . + f 2 n-1 2 (G n-1 2 + G n+1 2 )
and the result in that case. If n ≡ 3 (4) then those identities become

f 1k = (-1) k f 1k f 2k = -(-1) k f 2k f 1n-k = -f 2k f 2n-k = -f 1k , hence f 1k = 0 if k is odd (resp. f 2k = 0 if k is even) and (f 1n-k , f 2n-k ) = (-f 2k , -f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 10 (F 0 -F n ) + f 21 (F 1 -F n-1 ) + . . . + f 2 n-1 2 (F n-1 2 -F n+1 2 )
and the result in that case.

• Case j = 3: In that case the conditions (4) are equivalent to

f (P k ) = (-1) k+ n+1 2 i(A 1 • f )(P k ) f (P n-k ) = (-1) n-1 2 i(A 2 • f )(P k ), that is, f 1k = (-1) k+ n+1 2 f 1k f 2k = (-1) k+ n-1 2 f 2k f 1n-k = (-1) n+1 2 f 2k f 2n-k = (-1) n+1 2 f 1k . If n ≡ 1 (4) then those identities become f 1k = -(-1) k f 1k f 2k = (-1) k f 2k f 1n-k = -f 2k f 2n-k = -f 1k , hence f 1k = 0 if k is even (resp. f 2k = 0 if k is odd) and (f 1n-k , f 2n-k ) = (-f 2k , -f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 20 (G 0 -G n ) + f 11 (G 1 -G n-1 ) + . . . + f 2 n-1 2 (G n-1 2 -G n+1 2 )
and the result in that case. If n ≡ 3 (4) then those identities become

f 1k = (-1) k f 1k f 2k = -(-1) k f 2k f 1n-k = f 2k f 2n-k = f 1k , hence f 1k = 0 if k is odd (resp. f 2k = 0 if k is even) and (f 1n-k , f 2n-k ) = (f 2k , f 1k ) for every 0 ≤ k ≤ n-1 2 . We deduce that f = f 10 (F 0 + F n ) + f 21 (F 1 + F n-1 ) + . . . + f 2 n-1 2 (F n-1 2 + F n+1 2 )
and the result in that case. This concludes the proof.

✷

It remains to compute the map T I2 π n for every (odd) n.

Lemma 2.7

The endomorphisms T I2 π n (X j ), 1 ≤ j ≤ 3, are given in the basis (P 0 , . . . , P n ) of V n by:

{T I2 π n (X 1 )}(P k ) = -ia 1 (n -2k)P k {T I2 π n (X 2 )}(P k ) = ia 2 ((n -k)P k+1 + kP k-1 ) {T I2 π n (X 3 )}(P k ) = a 3 (-(n -k)P k+1 + kP k-1 )
for every k ∈ {0, . . . , n}, with the convention P -1 = P n+1 = 0.

Proof: For every X ∈ su 2 , P ∈ V n and z ∈ C 2 , we have

({T I2 π n (X)}(P )) (z) = d dt | t=0 P • R exp(tX) (z) = d dt | t=0 P • R exp(tX) (z) = d dt | t=0 (P (z exp(tX))) = d z P (zX) = ∂P ∂z 1 (z) (zX) 1 + ∂P ∂z 2 (z) (zX) 2 .
Since zA 1 = (-iz 1 iz 2 ), zA 2 = (iz 2 iz 1 ) and zA 3 = (-z 2 z 1 ) we have, for every k ∈ {0, . . . , n}

{T I2 π n (X 1 )}(P k ) = a 1 {T I2 π n (A 1 )}(P k ) = a 1 -iz 1 ∂P k ∂z 1 (z) + iz 2 ∂P k ∂z 2 (z) = -ia 1 (n -k)z 1 z n-k-1 1 z k 2 -kz 2 z n-k 1 z k-1 2 = -ia 1 (n -k)z n-k 1 z k 2 -kz n-k 1 z k 2 = -ia 1 (n -2k)P k .
For X 2 we have

{T I2 π n (X 2 )}(P k ) = a 2 {T I2 π n (A 2 )}(P k ) = a 2 iz 2 ∂P k ∂z 1 (z) + iz 1 ∂P k ∂z 2 (z) = ia 2 (n -k)z n-k-1 1 z k+1 2 + kz n-k+1 1 z k-1 2 = ia 2 ((n -k)P k+1 + kP k-1 ) ,
and for X 3 we obtain

{T I2 π n (X 3 )}(P k ) = a 3 {T I2 π n (A 3 )}(P k ) = a 3 -z 2 ∂P k ∂z 1 (z) + z 1 ∂P k ∂z 2 (z) = a 3 -(n -k)z n-k-1 1 z k+1 2 + kz n-k+1 1 z k-1 2 = a 3 (-(n -k)P k+1 + kP k-1 ) .
Note that the above expressions for {T I2 π n (X 2 )}(P k ) and {T I2 π n (X 3 )}(P k ) are also valid for k = 0 or k = n with the convention P -1 = P n+1 = 0. The result follows.

✷

We now compute the component D n of the Dirac operator of M acting on Hom Q8,εj (V n , C 2 ), see [START_REF] Bär | The Dirac operator on space forms of positive curvature[END_REF]. We adopt henceforth the following convention: F k := G k := 0 as soon as k / ∈ {0, . . . , n}.

The fix part of D n has already been computed in Proposition 2.5, so that only the endomorphism D ′ n of Hom Q8,εj (V n , C 2 ) given by

D ′ n A = - 3 j=1 e j • A • T I2 π n (X j )
for every A ∈ Hom Q8,εj (V n , C 2 ), remains to be made explicit. First note that the Clifford product by e j can be identified with the matrix multiplication by A j for j ∈ {1, 2, 3}. Furthermore, it is straightforward to show using Lemma 2.7 that, for every k ∈ {0, 1, . . . , n},

F k • T I2 π n (X 1 ) = -ia 1 (n -2k)F k F k • T I2 π n (X 2 ) = ia 2 ((n -k + 1)G k-1 + (k + 1)G k+1 ) F k • T I2 π n (X 3 ) = a 3 (-(n -k + 1)G k-1 + (k + 1)G k+1 ) .
Those identities still hold for k = 0 or n using our convention above on the F k 's and G k 's. To obtain the corresponding identities on the G k 's one just has to exchange the roles of F l and G l for every l:

G k • T I2 π n (X 1 ) = -ia 1 (n -2k)G k G k • T I2 π n (X 2 ) = ia 2 ((n -k + 1)F k-1 + (k + 1)F k+1 ) G k • T I2 π n (X 3 ) = a 3 (-(n -k + 1)F k-1 + (k + 1)F k+1 ) .
We deduce the following set of identities:

(F k ± F n-k ) • T I2 π n (X 1 ) = -ia 1 (n -2k)(F k ∓ F n-k ) (F k ± F n-k ) • T I2 π n (X 2 ) = ia 2 (k + 1)(G k+1 ± G n-k-1 ) + (n -k + 1)(G k-1 ± G n-k+1 ) (F k ± F n-k ) • T I2 π n (X 3 ) = a 3 (k + 1)(G k+1 ∓ G n-k-1 ) -(n -k + 1)(G k-1 ∓ G n-k+1 ) (G k ± G n-k ) • T I2 π n (X 1 ) = -ia 1 (n -2k)(G k ∓ G n-k ) (G k ± G n-k ) • T I2 π n (X 2 ) = ia 2 (k + 1)(F k+1 ± F n-k-1 ) + (n -k + 1)(F k-1 ± F n-k+1 ) (G k ± G n-k ) • T I2 π n (X 3 ) = a 3 (k + 1)(F k+1 ∓ F n-k-1 ) -(n -k + 1)(F k-1 ∓ F n-k+1 ) . (5)
On the other hand, it is also a short calculation to show

A 1 • (F k ± F n-k ) = (-1) k+1 i(F k ∓ F n-k ) A 2 • (F k ± F n-k ) = i(G k ± G n-k ) A 3 • (F k ± F n-k ) = (-1) k+1 (G k ∓ G n-k ) A 1 • (G k ± G n-k ) = (-1) k i(G k ∓ G n-k ) A 2 • (G k ± G n-k ) = i(F k ± F n-k ) A 3 • (G k ± G n-k ) = (-1) k (F k ∓ F n-k ). (6)
Bringing ( 5) and ( 6) together we deduce that

D ′ n (F k ± F n-k ) = - 3 j=1 e j • (F k ± F n-k ) • T I2 π n (X j ) = - 3 j=1 A j • (F k ± F n-k ) • T I2 π n (X j ) (5) = ia 1 (n -2k)A 1 • (F k ∓ F n-k ) -ia 2 A 2 • (k + 1)(G k+1 ± G n-k-1 ) + (n -k + 1)(G k-1 ± G n-k+1 ) -a 3 A 3 • (k + 1)(G k+1 ∓ G n-k-1 ) -(n -k + 1)(G k-1 ∓ G n-k+1 ) (6) = (-1) k a 1 (n -2k)(F k ± F n-k ) +a 2 (k + 1)(F k+1 ± F n-k-1 ) + (n -k + 1)(F k-1 ± F n-k+1 ) +(-1) k a 3 (k + 1)(F k+1 ± F n-k-1 ) -(n -k + 1)(F k-1 ± F n-k+1 ) = (-1) k a 1 (n -2k)(F k ± F n-k ) +(k + 1)(a 2 + (-1) k a 3 )(F k+1 ± F n-k-1 ) +(n -k + 1)(a 2 -(-1) k a 3 )(F k-1 ± F n-k+1 ).
Similarly,

D ′ n (G k ± G n-k ) = - 3 j=1 A j • (G k ± G n-k ) • T I2 π n (X j ) (5) 
= ia 1 (n -2k)A 1 • (G k ∓ G n-k ) -ia 2 A 2 • (k + 1)(F k+1 ± F n-k-1 ) + (n -k + 1)(F k-1 ± F n-k+1 ) -a 3 A 3 • (k + 1)(F k+1 ∓ F n-k-1 ) -(n -k + 1)(F k-1 ∓ F n-k+1 ) (6) = -(-1) k a 1 (n -2k)(G k ± G n-k ) +a 2 (k + 1)(G k+1 ± G n-k-1 ) + (n -k + 1)(G k-1 ± G n-k+1 ) -(-1) k a 3 (k + 1)(G k+1 ± G n-k-1 ) -(n -k + 1)(G k-1 ± G n-k+1 ) = -(-1) k a 1 (n -2k)(G k ± G n-k ) +(k + 1)(a 2 -(-1) k a 3 )(G k+1 ± G n-k-1 ) +(n -k + 1)(a 2 + (-1) k a 3 )(G k-1 ± G n-k+1 ). Note that, for k = n-1 2 , F k+1 ± F n-k-1 = ±(F k ± F n-k
) and the same holds for the G k 's, so that

D ′ n (F n-1 2 ± F n+1 2 ) = (-1) n-1 2 a 1 (F n-1 2 ± F n+1 2 ) + n + 1 2 (a 2 + (-1) n-1 2 a 3 )(F n+1 2 ± F n-1 2 ) + n + 3 2 (a 2 -(-1) n-1 2 a 3 )(F n-3 2 ± F n+3 2 ) = (-1) n-1 2 a 1 ± n + 1 2 (a 2 + (-1) n-1 2 a 3 ) (F n-1 2 ± F n+1 2 ) + n + 3 2 (a 2 -(-1) n-1 2 a 3 )(F n-3 2 ± F n+3 2 )
and in the same way

D ′ n (G n-1 2 ± G n+1 2 ) = -(-1) n-1 2 a 1 (G n-1 2 ± G n+1 2 ) + n + 1 2 (a 2 -(-1) n-1 2 a 3 )(G n+1 2 ± G n-1 2 ) + n + 3 2 (a 2 + (-1) n-1 2 a 3 )(G n-3 2 ± G n+3 2 ) = -(-1) n-1 2 a 1 ± n + 1 2 (a 2 -(-1) n-1 2 a 3 ) (G n-1 2 ± G n+1 2 ) + n + 3 2 (a 2 + (-1) n-1 2 a 3 )(G n-3 2 ± G n+3 2 
).

Denoting by (v 0 , . . . , v n-1

2

) the basis of Hom Q8,εj (V n , C 2 ) computed in Lemma 2.6 we conclude the proof of Theorem 0.1 iv). Note 2.8 From Theorem 0.1 iv) the matrix representing the operator D n in the basis (v 0 , . . . , v n-1

2

) is not symmetric. Beware however that this basis does not take A 1 , A 2 , A 3 into account the same way and turns out not to be orthonormal.

We now make the eigenvalue of D 1 explicit: Corollary 2.9 Fix j ∈ {0, 1, 2, 3} and let ǫ 1 , ǫ 2 , ǫ 3 ∈ {-1, 1} be defined by ǫ l := -(-1) δj0+δ jl for l ∈ {1, 2, 3}. Then under the assumptions of Theorem 0.1 the following number is an eigenvalue of the Dirac operator of M for the spin structure given by ε j and the metric induced by a 1 , a 2 , a 3 :

-(ǫ 2 a 2 -ǫ 3 a 3 ) 2 a 2 1 + 2a 2 a 3 (ǫ 2 a 2 + ǫ 3 a 3 )a 1 -a 2 2 a 2 3 2a 1 a 2 a 3 .
If in particular ǫ 2 ǫ 3 a 2 a 3 > 0 then there exists a 1 ∈ R * such that for the corresponding metric the Dirac operator of M has a non-zero kernel.

Proof: For n = 1 the operator D ′ n can be expressed from Theorem 0.1 as

D ′ 1 = (ǫ 1 a 1 + ǫ 2 a 2 + ǫ 3 a 3
)Id for the ǫ l 's defined above (beware that they depend on j). Therefore the corresponding Dirac operator D n is given by

D 1 = ǫ 1 a 1 + ǫ 2 a 2 + ǫ 3 a 3 - a 2 1 a 2 2 + a 2 2 a 2 3 + a 2 1 a 2 3 2a 1 a 2 a 3 Id = -(ǫ 2 a 2 -ǫ 3 a 3 ) 2 a 2 1 + 2a 2 a 3 (ǫ 2 a 2 + ǫ 3 a 3 )a 1 -a 2 2 a 2 3 2a 1 a 2 a 3 Id,
from which the first statement follows.

An elementary computation shows that, if ǫ 2 ǫ 3 a 2 a 3 > 0, then the numerator of the eigenvalue vanishes for

a 1 = a 2 a 3 (ǫ 2 a 2 + ǫ 3 a 3 ) ± 2(ǫ 2 ǫ 3 a 2 a 3 ) 3 2 (ǫ 2 a 2 -ǫ 3 a 3 ) 2
in the case ǫ 2 a 2 = ǫ 3 a 3 and a 1 = ǫ 2 a 3 4 if ǫ 2 a 2 = ǫ 3 a 3 . Note that none of those numbers can vanish because of a 2 a 3 = 0. This concludes the proof. ✷ Notes 2.10 1. It follows from Corollary 2.9 that, for any given spin structure on M , there exists a 2-parameter-family of Riemannian metrics for which M admits non-zero harmonic spinors. This is not a surprise since the existence of such metrics already follows from a purely theoretical result by Christian Bär [START_REF] Bär | Metrics with harmonic spinors[END_REF]. However we can make some of those metrics explicit here.

2. There may exist non-zero harmonic spinors for other metrics on M and possibly without needing the condition ǫ 2 ǫ 3 a 2 a 3 > 0 from Corollary 2.9, since we have up to now only studied the eigenvalue corresponding to one particular representation.

3. In the same way the eigenvalue computed in Corollary 2.9 is not necessarily the smallest one in absolute value. Choose for example the ε 0 -spin structure, a 2 = a 3 < 0 and

a 1 ∈]-a2 8 , -a2 2 [. Then 4a1a2-a 2 2 2a1
and -

8a1a2+a 2 2 2a1
are eigenvalues of the Dirac operator of M , the first one corresponding to n = 1 (i.e., to the one computed in Corollary 2.9) and the second one to n = 3, see Corollary 0.2. However one has from the assumptions on a 1 , a 2 , a 3 that | -

8a1a2+a 2 2 2a1 | < | 4a1a2-a 2 2 2a1
|.

We end this section with an important remark which actually constitutes the main motivation for this work. The manifold M can be seen as hypersurface of the 4-dimensional round sphere S 4 (with sectional curvature 1): consider the manifold {A ∈ M 3×3 (R), t A = A, tr(A) = 0 and tr(A 2 ) = 2} ∼ = S 4 with metric (A, B) -→ A, B := 1 2 tr(AB). Let B := diag(λ, -λ -µ, µ) ∈ S 4 where λ, µ ∈ R satisfy λ + 2µ = 0, λ = µ, µ + 2λ = 0 and

λ 2 + (λ + µ) 2 + µ 2 = 2. Set N := {π(P ) • B • π(P ) -1 , P ∈ SU 2 } ⊂ S 4 ,
where SU 2 π -→ SO 3 is the universal 2-fold covering map. Then it is an elementary exercise to show that N is a hypersurface of S 4 which is diffeomorphic to SU 2 /Q 8 , that the homogeneous metric induced by the inclusion map N ⊂ S 4 eigenvalues of such matrices. It is however possible to compute them for particular values of the parameters a 1 , a 2 , a 3 ∈ R * , i.e., for particular metrics on M . In Corollary 0.2 we do it for the so-called Berger metrics on M (compare with [2, p.71] where the author chooses a 2 = 1 = -a 3 and a 1 = -1 T with T > 0). Namely, if we assume that a 2 = a 3 then the identities for

D ′ n (F k ± F n-k ) and D ′ n (G k ± G n-k ) become D ′ n (F k ± F n-k ) = (-1) k a 1 (n -2k)(F k ± F n-k ) +(k + 1)(1 + (-1) k )a 2 (F k+1 ± F n-k-1 ) +(n -k + 1)(1 -(-1) k )a 2 (F k-1 ± F n-k+1 )
and

D ′ n (G k ± G n-k ) = -(-1) k a 1 (n -2k)(G k ± G n-k ) +(k + 1)(1 -(-1) k )a 2 (G k+1 ± G n-k-1 ) +(n -k + 1)(1 + (-1) k )a 2 (G k-1 ± G n-k+1 )
for every k ∈ {0, . . . , n-1 2 }. In particular, if k is even, then

D ′ n (F k ± F n-k ) = a 1 (n -2k)(F k ± F n-k ) +2(k + 1)a 2 (F k+1 ± F n-k-1 )
and

D ′ n (G k ± G n-k ) = -a 1 (n -2k)(G k ± G n-k ) +2(n -k + 1)a 2 (G k-1 ± G n-k+1 ).
If k is odd then

D ′ n (F k ± F n-k ) = -a 1 (n -2k)(F k ± F n-k ) +2(n -k + 1)a 2 (F k-1 ± F n-k+1 )
and

D ′ n (G k ± G n-k ) = a 1 (n -2k)(G k ± G n-k ) +2(k + 1)a 2 (G k+1 ± G n-k-1 ).
We now consider each case separately. Remember that from Theorem 2.1 the Dirac operator D restricted to V n ⊗ Hom Q8,εj (V n , C2 ) is given by Id ⊗ D n where

D n = D ′ n -( a 2 1 a 2 2 +a 2 1 a 2 3 +a 2 2 a 2 3 2a1a2a3
)Id. In particular the multiplicity of each eigenvalue of D n should be counted n + 1 times for the spectrum of D.

• Case j = 0: * If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n-1 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {0, . . . , n-5 2 } is even and of the isolated eigenvalue a 1 +(n+1)a 2 (corresponding to k = n-1

2 ). The eigenvalues of each such 2 × 2-matrix are simple and given by

a 1 ± ((n -2k)(n -2(k + 1)) + 1)a 2 1 + 4(n -k)(k + 1)a 2
* If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n-3 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {1, . . . , n-5 2 } is odd and of the isolated eigenvalues -na 1 (corresponding to k = 0) and a 1 -(n + 1)a 2 (corresponding to k = n-1

2 ). This shows 0.

• Case j = 1: * If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n-1 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {0, . . . , n-5 2 } is even and of the isolated eigenvalue a 1 -(n+1)a 2 (corresponding to k = n-1

2 ). The eigenvalues of each such 2 × 2-matrix have already been computed in the case j = 0 above. * If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n-3 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {1, . . . , n-5 2 } is odd and of the isolated eigenvalues -na 1 (corresponding to k = 0) and a 1 + (n + 1)a 2 (corresponding to k = n-1

2 ). This shows 1.

• Case j = 2 or j = 3: Since a 2 = a 3 the Dirac spectra for the ε 2 -and ε 3 -spin structures coincide, see Examples 2.4.2 with σ = (2 3). * If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n-1 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {1, . . . , n-3 2 } is odd and of the isolated eigenvalue -na 1 (corresponding to k = 0). * If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6 that the matrix of D ′ n consists of n+1 4 blocks on the diagonal of the form

(n -2k)a 1 2(n -k)a 2 2(k + 1)a 2 -(n -2(k + 1))a 1
where k ∈ {0, . . . , n-3 2 } is even. This shows 2. and concludes the proof of Corollary 0.2. Note 3.1 Of course one should understand each upper bound (e.g. n-5

2 ) for the possible values of k in Corollary 0.2 as follows: if for a given n it is negative then the corresponding eigenvalues do not appear. For example if M carries the ε 0 -spin structure and n = 1 then

D n + 2a 2 1 +a 2 2
2a1 Id has only one eigenvalue, namely a 1 + 2a 2 (with multiplicity 2). Similarly, if j = 2, 3 and n = 1, then only -a 1 appears with multiplicity 2.

One could in a similar way compute the spectrum of the Dirac operator for a 2 = -a 3 , in which case the spectra would coincide for the ε 0 -and the ε 1 -spin structure on M (use Examples 2.4).

We end this section with deriving from Corollary 0.2 the spectrum of the Dirac operator on M for any of the 4 spin structures and the following metrics: for one of the metrics with constant sectional curvature and for one of the 6 metrics induced by minimal isometric embeddings into S 4 (i.e., for (λ = 0, µ = ±1), (λ = ±1, µ = 0) or (λ, µ) = ±(1, -1), see end of Section 2). In the first case the spectrum has already been computed by Christian Bär in [3, Thm. 2] and it can be easily checked that his results coincide with ours. where k runs over N and w.r.t. any of the other spin structures ε j of the family where k runs over N.

ii) a 1 = -1 4 , a 2 = a 3 = 1 2 . Then the spectrum of the Dirac operator of M for every possible k and on the other hand For the next corollary recall that, for a given β ∈ C, a β-Killing spinor on a spin manifold N is a smooth section ψ of the spinor bundle of N such that ∇ X ψ = βX • ψ for every X ∈ T N .

Corollary 3.3 Under the hypotheses of Theorem 0.1 the following holds:

i) If a 1 = a 2 = a 3 = 1 then the ε 0 -spin structure is the only one for which M admits a non-zero space of Killing spinors, which is then 2-dimensional and associated to the constant β = -1 2 . In particular 3 2 is in absolute value the smallest eigenvalue of the Dirac operator of M for the ε 0 -spin structure.

ii) If a 1 = -1 4 , a 2 = a 3 = 1 2 and M carries the ε 0 -spin structure then 3 2 is in absolute value the smallest eigenvalue of the Dirac operator of M . In particular inequality (1) is an equality on M for the induced metric and spin structure.

Proof: If a 1 = a 2 = a 3 = 1 then on the one hand the metric induced on M has constant sectional curvature 1; on the other hand Corollary 3.2 i) implies that the smallest eigenvalue in absolute value of the Dirac operator of M is 3 2 with multiplicity 2 w.r.t. the ε 0 -spin structure and - 5 2 with multiplicity 2 w.r.t. any of the other spin structures (both obtained for n = 1, i.e., they are the eigenvalues computed in Corollary 2.9). Now M carries a non-trivial Killing spinor if and only if the smallest eigenvalue of its Dirac Laplacian coincides with T. Friedrich's lower bound 3 4(3-1) inf M (Scal M ) in terms of the scalar curvature of M , see [START_REF] Friedrich | Der erste Eigenwert des Dirac-Operators einer kompakten riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung[END_REF]. Here 3 4(3-1) Scal M = 9 4 so that M carries a 2-dimensional space of non-zero Killing spinors only for the ε 0 -spin structure; in that case the corresponding constant β should obviously be -1 2 . This shows i) If a 1 = -1 4 , a 2 = a 3 = 1 2 and M carries the ε 0 -spin structure then from Corollary 3.2 ii) the eigenvalues corresponding to n = 1 and n = 3 are 3 2 and -3 2 , 3 2 with
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  The Dirac operator on M Let us denote by Spin n δn -→ Aut(Σ n ) the spinor representation in dimension n. We recall the following theorem allowing the representation-theoretical computation of the fundamental Dirac operator on a homogeneous space, see e.g. [2, Thm. 2 & Prop. 1]:

  0) if l = k and k odd 0 otherwise. W.r.t. the bases (P 0 , . . . , P n ) and ((1 0), (0 1)) of V n and C 2 respectively the elements F k and G k are described by matrices of the form: F k = 0 . . . 0 1 0 . . . 0 0 . . . 0 0 0 . . . 0 , G k = 0 . . . 0 0 0 . . . 0 0 . . . 0 1 0 . . . 0 if k is even and F k = 0 . . . 0 0 0 . . . 0 0 . . . 0 1 0 . . . 0 , G k = 0 . . . 0 1 0 . . . 0 0 . . . 0 0 0 . . . 0 if k is odd, where the "1" always stands in the (k + 1) st column.

Corollary 3 . 2 2 - 2 -

 3222 Under the hypotheses of Theorem 0.1, assume furthermore that i) a 1 = a 2 = a 3 = 1. Then the spectrum of the Dirac operator of M w.r.t. the ε 0 -spin structure consists of the family 4k -1 with multiplicity 2k(2k + 1) -3 4k -3 with multiplicity 4(k + 1)(k + 2)

2 - 2 -

 22 4k -1 with multiplicity 2(k + 1)(2k + 1) -3 4k -3 with multiplicity 4(k + 1) 2

2 . 2 = - 1 4 ± 4 .

 2244 The result in i) straightforward follows using Corollary 0.2 and Examples 2.4. Assuming now a 1 = -1 4 and a 2 = a 3 = 1 2 , one hasa 1 ± (n -2k -1) 2 a 2 1 + 4(n -k)(k + 1)a 2 (n -2k -1) 2 + 16(n -k)(k + 1This concludes the proof. ✷ One can deduce from Corollary 3.2 and Examples 2.4 the spectrum of the Dirac operator of for any spin structure and any metric induced by (a 1 , a 1 , a 1 ) with a 1 ∈ R * or any metric induced by a minimal embedding into S 4 : in the first case rescale by a 1 , in the second one exchange the roles of a 1 , a 2 , a 3 and possibly multiply all of them by -1.

  4 turns out to coincide with the upper bound in[START_REF] Ammann | A Variational Problem in Conformal Spin Geometry[END_REF], see Corollary 2.11. In the third section we prove Corollary 0.2 and derive the Dirac spectrum of M in case its metric either is of constant sectional curvature or comes from a minimal embedding in S 4 , see Corollary 3.2. We deduce in Corollary 3.3 the existence of non-zero real Killing spinors in the first case and Corollary 0.3 in the other one.

  ′ respectively have been chosen. Then all the objects above should be expressed in those bases, see Examples 2.4 below. Examples 2.4 Consider again M

2. One should pay attention that Lemma 2.2 can only be applied once p.o.n.b. (X 1 , . . . , X n ) and (X ′ 1 , . . . , X ′ n ) of p w.r.t. • , • and • , •

with ((n -2k)(n -2(k + 1)) + 1) = (n -2k -1) 2 .
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is given by a 1 := -1 2(λ+2µ) , a 2 := 1 2(µ-λ) , a 3 := 1 2(µ+2λ) and that choosing ν B := 1 √ 3 diag(2µ + λ, λ -µ, -2λ -µ) ∈ T B S 4 as unit normal vector field the induced spin structure on N is the ε 0 -one. Here beware that the metrics obtained form a one-parameter strict subfamily of that of all homogeneous metrics on M . Furthermore, the Weingarten endomorphism-field of N w.r.t. ν B -seen as endomorphism of su(2) -is given in the basis (X 1 , X 2 , X 3 ) of su(2) by

In particular, the mean curvature

Corollary 2.11 Under the hypotheses of Theorem 0.1 assume furthermore that M sits in S 4 , i.e., that

Then 9 4 (H 2 + 1) is an eigenvalue of the Dirac Laplacian of M for the induced (ε 0 -)spin structure.

Proof: The result follows straightforward from Corollary 2.9 in the case j = 0 and from an elementary computation giving

✷

Corollary 2.11 confirms what had been already noticed since Christian Bär's work [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF] on extrinsic upper eigenvalue bounds for the lower part of the Dirac spectrum: for any compact orientable hypersurface M m with constant mean curvature H (and carrying the induced metric and spin structure) in the (m+1)dimensional round sphere the number m 2 4 (H 2 + 1) is an eigenvalue of its Dirac Laplacian. However the question still remains open whether this eigenvalue should be the smallest one or not.

Computation of the spectrum of the Dirac operator on M for particular metrics

Although the matrices representing the Dirac operator D of M have a "simple" shape (they are tridiagonal, see Theorem 0.1), their spectrum is still hard to compute explicitly since there does not exist any general formula giving the * w.r.t. the ε 0 -spin structure is given by n∈N n≡1 (4)

each eigenvalue having multiplicity n + 1 for the corresponding n. * w.r.t. the ε 1 -spin structure is given by n∈N n≡1 (4)

each eigenvalue having multiplicity n + 1 for the corresponding n.

* w.r.t. the ε 2 -or ε 3 -spin structure is given by n∈N n≡1 (4)

each eigenvalue having multiplicity n + 1 for the corresponding n.

Proof: In case a 1 = a 2 = a 3 = 1 one has on the one hand 

for every k ∈ {0, . . . , n-5 2 }. The l.h.s. of ( 7) is a trinomial in k with negative dominant coefficient and of which roots are given by n-1 2 ± (n-3)(n+5)

3

.

If

, which shows that ( 7) is satisfied. Hence 3 2 is in absolute value the smallest eigenvalue of the Dirac operator. Apply Corollary 2.11 to the case λ = 0 and µ = 1 to conclude.

✷

That M admits a 2-dimensional space of Killing spinors w.r.t. its ε 0 -spin structure and any normal metric is also not a surprise, see [START_REF] Ammann | A Variational Problem in Conformal Spin Geometry[END_REF]Cor. 5.2.5 (1b)]. Moreover, following the symmetry arguments already used above (see Examples 2.4) Corollary 3.3 ii) actually holds for any of the metrics induced by a minimal embedding into S 4 . This proves Corollary 0.3. Corollary 0.3 provides a further example (after geodesic spheres [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF] and generalized Clifford tori [START_REF] Ginoux | Remarques sur le spectre de l'opérateur de Dirac[END_REF]) of homogeneous hypersurface of the round sphere for which Christian Bär's inequality [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF]Cor. 4.3] is an equality for the smallest Dirac eigenvalue. Here it should furthermore be noticed that, still under the assumptions of Corollary 0.3, the multiplicity of the smallest eigenvalue of the Dirac Laplacian on M is greater than the corresponding one on the 3-dimensional round sphere. This shows an analogy with the generalized Clifford tori tested in [START_REF] Ginoux | Remarques sur le spectre de l'opérateur de Dirac[END_REF], on which the multiplicity of the smallest eigenvalue of the Dirac Laplacian is also greater than or equal to the corresponding one on the round sphere of same dimension.

We conjecture that the inequality in [START_REF] Bär | Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF]Cor. 4.3] for the smallest Dirac eigenvalue is an equality for every homogeneous hypersurface in the round sphere. We refer to [START_REF] Ginoux | The spectrum of the Dirac operator on SU 3 /T 2[END_REF] for further work in this direction.