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The spectrum of the Dirac operator on SU2/Q8

Nicolas Ginoux∗

January 21, 2021

Abstract. We compute the fundamental Dirac operator for the three-parameter-

family of homogeneous Riemannian metrics and the four different spin structures

on SU2/Q8, where Q8 denotes the group of quaternions. We deduce its spectrum

for the Berger metrics and show the sharpness of Christian Bär’s upper bound for

the smallest Dirac eigenvalue in the particular case where SU2/Q8 is a homoge-

neous minimal hypersurface of S4.

Mathematics Subject Classification: 53C27, 53C30, 58C40
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Throughout this paper and unless explicitly mentioned we denote by M the
quotient of SU2 by the right-action of the group of quaternions Q8, i.e., the group

with 8 elements defined by {±I2,±A1,±A2,±A3} with A1 :=

(
−i 0
0 i

)
,

A2 :=

(
0 i
i 0

)
and A3 :=

(
0 1
−1 0

)
. The manifold M is a 3-dimensional

compact connected spin homogeneous space and at the same time the simplest
example of homogeneous hypersurface in the round sphere with 3 different prin-
cipal curvatures, see e.g. [6] and end of Section 2.
Using classical techniques (see e.g. [2]) we first compute the Dirac operator of
M for any homogeneous metric and any spin structure:

Theorem 0.1

i) The manifoldM carries a 3-parameter family of homogeneous Riemannian
metrics which are given by the orthonormal bases {X1 := a1A1, X2 :=
a2A2, X3 := a3A3} of su(2), where a1, a2, a3 ∈ R∗. Conversely, every
homogeneous metric on M is of that form.

ii) The isotropy representation α of M is given in the basis (X1, X2, X3) of
su(2) by

α(±I2) = I3 α(±A1) = diag(1,−1,−1)
α(±A2) = diag(−1, 1,−1) α(±A3) = diag(−1,−1, 1).
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In particular the manifold M is orientable.

iii) The manifoldM is spin and carries exactly 4 spin structures, each one cor-

responding to one of the following group homomorphisms Q8
εj−→ {−1, 1}:

ε0 ≡ 1 and Ker(εj) = {±I2,±Aj} for j ∈ {1, 2, 3}.

iv) The finite dimensional Dirac operator Dn corresponding to the irreducible
representation of SU2 on the space Vn of homogeneous polynomials of de-
gree n in two variables is non-trivial only if n is odd. In that situation

Dn = D′
n − a21a

2
2 + a22a

2
3 + a21a

2
3

2a1a2a3
Id

where D′
n is described by a n+1

2 × n+1
2 tridiagonal matrix. More precisely,

there exists a basis (v0, . . . , vn−1
2

) in which D′
n can be expressed as

0) in case M carries the spin structure given by ε0,

D′
n(vk) = (−1)ka1(n− 2k)vk + (k + 1)(a2 + (−1)ka3)vk+1

+(n− k + 1)(a2 − (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
a1 +

n+ 1

2
(a2 + a3)

)
vn−1

2
+
n+ 3

2
(a2 − a3)vn−3

2

if n ≡ 1 (4) and

D′
n(vk) = −(−1)ka1(n− 2k)vk + (k + 1)(a2 − (−1)ka3)vk+1

+(n− k + 1)(a2 + (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
a1 −

n+ 1

2
(a2 + a3)

)
vn−1

2
+
n+ 3

2
(a2 − a3)vn−3

2

if n ≡ 3 (4).

1) in case M carries the spin structure given by ε1,

D′
n(vk) = (−1)ka1(n− 2k)vk + (k + 1)(a2 + (−1)ka3)vk+1

+(n− k + 1)(a2 − (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
a1 −

n+ 1

2
(a2 + a3)

)
vn−1

2
+
n+ 3

2
(a2 − a3)vn−3

2

if n ≡ 1 (4) and

D′
n(vk) = −(−1)ka1(n− 2k)vk + (k + 1)(a2 − (−1)ka3)vk+1

+(n− k + 1)(a2 + (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
a1 +

n+ 1

2
(a2 + a3)

)
vn−1

2
+
n+ 3

2
(a2 − a3)vn−3

2

if n ≡ 3 (4).
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2) in case M carries the spin structure given by ε2,

D′
n(vk) = −(−1)ka1(n− 2k)vk + (k + 1)(a2 − (−1)ka3)vk+1

+(n− k + 1)(a2 + (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
− a1 +

n+ 1

2
(a2 − a3)

)
vn−1

2
+
n+ 3

2
(a2 + a3)vn−3

2

if n ≡ 1 (4) and

D′
n(vk) = (−1)ka1(n− 2k)vk + (k + 1)(a2 + (−1)ka3)vk+1

+(n− k + 1)(a2 − (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
− a1 −

n+ 1

2
(a2 − a3)

)
vn−1

2
+
n+ 3

2
(a2 + a3)vn−3

2

if n ≡ 3 (4).

3) in case M carries the spin structure given by ε3,

D′
n(vk) = −(−1)ka1(n− 2k)vk + (k + 1)(a2 − (−1)ka3)vk+1

+(n− k + 1)(a2 + (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
− a1 −

n+ 1

2
(a2 − a3)

)
vn−1

2
+
n+ 3

2
(a2 + a3)vn−3

2

if n ≡ 1 (4) and

D′
n(vk) = (−1)ka1(n− 2k)vk + (k + 1)(a2 + (−1)ka3)vk+1

+(n− k + 1)(a2 − (−1)ka3)vk−1, 0 ≤ k <
n− 1

2

D′
n(vn−1

2
) =

(
− a1 +

n+ 1

2
(a2 − a3)

)
vn−1

2
+
n+ 3

2
(a2 + a3)vn−3

2

if n ≡ 3 (4).

We deduce the spectrum of the Dirac operator D of M for the so-called Berger
metrics, which form a 2-parameter subfamily of homogeneous metrics:

Corollary 0.2 With the notations of Theorem 0.1, assume furthermore that

a2 = a3. Then the spectrum of the operator D +
2a2

1+a2
2

2a1
Id on M for the metric

induced by a1, a2 and the spin structure given by εj (j ∈ {0, 1, 2, 3}) consists of
the following family of eigenvalues:

0. for j = 0,

⋃

n∈N

n≡1 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {0, . . . , n− 5

2
} even, a1 + (n+ 1)a2

}
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⋃ ⋃

n∈N

n≡3 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {1, . . . , n− 5

2
} odd, a1 − (n+ 1)a2,−na1

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

1. for j = 1,

⋃

n∈N

n≡1 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {0, . . . , n− 5

2
} even, a1 − (n+ 1)a2

}

⋃ ⋃

n∈N

n≡3 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {1, . . . , n− 5

2
} odd, a1 + (n+ 1)a2,−na1

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

2. for j = 2 and j = 3,

⋃

n∈N

n≡1 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {1, . . . , n− 3

2
} odd,−na1

}

⋃ ⋃

n∈N

n≡3 (4)

{
a1 ±

√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

| k ∈ {0, . . . , n− 3

2
} even

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

In the case where a1 = a2 = a3, i.e., M is a space-form with positive curvature,
we reobtain the Dirac spectrum computed by Christian Bär in [3, Thm. 2], see
Corollary 3.2.

On the other hand, considering M as embedded homogeneous hypersurface in
the 4-dimensional round sphere S4 one could ask if the following inequality due
to Christian Bär [5, Cor. 4.3] is an equality:

λ1(D
2) ≤ 9

4
(H2 + 1), (1)

where λ1(D
2) is the smallest eigenvalue of the Dirac Laplacian on M (for the

induced metric and spin structure) and H is the mean curvature of M in S4.
This question takes its origin in the study of the equality case in Christian Bär’s
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estimate [5, Cor. 4.3] for the smallest eigenvalue λ1(D
2) of the Dirac Laplacian.

If this inequality is an equality, then the mean curvature of the hypersurface has
to be constant, nevertheless the reverse statement has up to now neither been
proved nor been contradicted. We give a partial answer to that question for M :

Corollary 0.3 With the notations of Theorem 0.1, assume furthermore that
M carries a homogeneous metric coming from a minimal embedding in S4 and
the spin structure described by ε0. Then (1) is an equality.

The paper is organized as follows. In the first section we describe the metrics
and spin structures onM and thus prove Theorem 0.1 i)−iii). In the second one
we compute the Dirac operator of M (Theorem 0.1 iv)) and the eigenvalue of
D1 (Corollary 2.9), which in the case whereM is a hypersurface of S4 turns out
to coincide with the upper bound in (1), see Corollary 2.11. In the third section
we prove Corollary 0.2 and derive the Dirac spectrum of M in case its metric
either is of constant sectional curvature or comes from a minimal embedding in
S4, see Corollary 3.2. We deduce in Corollary 3.3 the existence of non-zero real
Killing spinors in the first case and Corollary 0.3 in the other one.

Acknowledgement. This work provides a partial answer to a question set by
Christian Bär, whom the author would like to thank for his interest and support.
It’s also a pleasure to thank Christian Bär and Bernd Ammann for their remarks.

1 Metrics and spin structures on M

The Lie-algebra of Q8 being trivial the adjoint representation α of the homo-
geneous space M is nothing but the restriction of the adjoint map SU2 −→
Aut(su(2)) to Q8, where su(2) denotes the Lie-algebra of SU2. We define the
scalar product 〈· , ·〉 on su(2) by declaring the following basis to be orthonormal:

X1 := a1A1

X2 := a2A2

X3 := a3A3,

where a1, a2, a3 ∈ R∗ are fixed parameters. The map α is given in the basis
(X1, X2, X3) of su(2) by

α(±I2) = I3

α(±A1) = diag(1,−1,−1)

α(±A2) = diag(−1, 1,−1)

α(±A3) = diag(−1,−1, 1),

therefore it obviously preserves 〈· , ·〉 which hence induces a homogeneous metric
onM . Using the form of α in the basis (A1, A2, A3) computed above it is easy to
prove that every homogeneous metric on M comes from such a scalar product
on su(2), i.e., it admits {a1A1, a2A2, a3A3} as orthonormal basis for suitable
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a1, a2, a3 ∈ R∗. Note also that α preserves the orientation of su(2), so that if we
choose (X1, X2, X3) as positively-oriented orthonormal basis of su(2) then α is

expressed in that basis by a map Q8
α−→ SO3.

We now examine the spin structures on M considering the metric and the o-
rientation given by (X1, X2, X3). From [2, Lemma 3] the manifold M is spin if
and only if its isotropy representation α lifts to Spin3 through the non-trivial

two-fold covering Spin3
ξ−→ SO3, and in that case spin structures on M are

in one-to-one correspondence with those lifts, each one of those being uniquely
determined by a group homomorphism Q8

ε−→ {−1, 1}. Here Q8 already lies in
SU2

∼= Spin3 so thatM is obviously spin. Denoting by α̂ the inclusion Q8 ⊂ SU2,
every spin structure on M is uniquely described by a map α̃ : Q8 −→ SU2 of
the form α̃(h) = ε(h)α̂(h) for every h ∈ Q8, where ε : Q8 −→ {−1, 1} is a
group homomorphism. But there are exactly 4 such homomorphisms: the trivial
one ε0 ≡ 1 and the εj ’s, j = 1, 2, 3, with Ker(εj) = {±I2,±Aj}. This proves
Theorem 0.1 i)− iii).
In the following we shall call the spin structure corresponding to εj ·α̂ the εj-spin
structure on M .

2 The Dirac operator on M

Let us denote by Spinn

δn−→ Aut(Σn) the spinor representation in dimension n.
We recall the following theorem allowing the representation-theoretical compu-
tation of the fundamental Dirac operator on a homogeneous space, see e.g. [2,
Thm. 2 & Prop. 1]:

Theorem 2.1 Let M := G/H be an n-dimensional Riemannian homogeneous
spin manifold with G compact and simply-connected. Let p be a supplementary
subspace of h in g. Fix a p.o.n.b (X1, . . . , Xn) of p and let α : H −→ SOn

be the isotropy representation of M expressed in the basis (X1, . . . , Xn). Let
α̃ : H −→ Spinn be the lift of α to Spinn induced by the given spin structure

of M and Σα̃M −→ M be the spinor bundle of M associated with α̃. Let Ĝ be
the set of equivalence classes of irreducible unitary representations of G (in the

following we shall always identify an element of Ĝ with one of its representants).

i) The space L2(M,Σα̃M) splits under the unitary left action of G into a
direct Hilbert sum ⊕

γ∈Ĝ

Vγ ⊗HomH(Vγ ,Σn) (2)

where Vγ is the space of the representation γ (i.e., γ : G −→ U(Vγ)) and

HomH(Vγ ,Σn) :=
{
f ∈ Hom(Vγ ,Σn) s.t.

∀h ∈ H, f ◦ γ(h) = (δn ◦ α̃) (h) ◦ f
}
.

ii) The Dirac operator D of M preserves each summand of (2); more pre-
cisely, if (e1, . . . , en) denotes the canonical basis of R

n, then for every
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γ ∈ Ĝ, the restriction of D to Vγ ⊗ HomH(Vγ ,Σn) is given by Id ⊗ Dγ,
where, for every A ∈ HomH(Vγ ,Σn),

Dγ(A) := −
n∑

k=1

ek ·A◦Teγ(Xk)+
( n∑

i=1

βiei+
∑

i<j<k

αijkei ·ej ·ek
)
·A, (3)

and

βi :=
1

2

n∑

j=1

〈[Xj , Xi]p, Xj〉

αijk :=
1

4
(〈[Xi, Xj ]p, Xk〉+ 〈[Xj , Xk]p, Xi〉+ 〈[Xk, Xi]p, Xj〉)

(here and henceforth Xp will denote the image of X ∈ g under the projec-
tion g −→ p with kernel h).

The following statement will be useful for taking the symmetries of M into ac-
count, see Examples 2.4 below.

Lemma 2.2 Under the hypotheses of Theorem 2.1 let 〈· , ·〉′ be a further ho-
mogeneous metric on M and f : G −→ G be a Lie-group-homomorphism
such that f(H) ⊂ H and f∗ := [Tef ] is an orientation-preserving isometry
(T[e]M, 〈· , ·〉) −→ (T[e]M, 〈· , ·〉′).
Then the pull-back spin structure f∗Spinα̃(TM) is described by

H −→ Spinn

h 7−→ f̂−1 · α̃ ◦ f(h) · f̂

where f̂ ∈ Spinn satisfies ξ(f̂) = f∗.

Proof: The proof relies on the identity f∗ ◦ Ad(g) = Ad(f(g)) ◦ f∗ for every
g ∈ G, which implies in particular

α(h) = f−1
∗ ◦ α(f(h)) ◦ f∗

for every h ∈ H .

✷

Notes 2.3

1. Of course the homomorphism describing the pull-back spin structure in
Lemma 2.2 is well-defined since f̂ is uniquely determined up to a sign.

2. One should pay attention that Lemma 2.2 can only be applied once p.o.n.b.
(X1, . . . , Xn) and (X ′

1, . . . , X
′
n) of p w.r.t. 〈· , ·〉 and 〈· , ·〉′ respectively have

been chosen. Then all the objects above should be expressed in those bases,
see Examples 2.4 below.
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Examples 2.4 Consider again M := SU2/Q8, fix a1, a2, a3 ∈ R∗ and as above
set Xk := akAk for k ∈ {1, 2, 3}. We write (M, 〈· , ·〉a1,a2,a3 , εj) for M endowed
with the metric and the orientation given by (X1, X2, X3) and the εj-spin struc-
ture (j ∈ {0, 1, 2, 3}).

1. Set X ′
1 := X1, X

′
2 := −X2 and X ′

3 := −X3. Let f(A1) := A1, f(A2) :=
−A2 and f(A3) := −A3. Setting f(I2) := I2 and extending f linearly one
obtains a Lie-group-homomorphism SU2 → SU2 inducing an orientation-
preserving isometry (M, 〈· , ·〉a1,a2,a3) −→ (M, 〈· , ·〉a1,−a2,−a3). The matrix
of f∗ = f in the bases (X1, X2, X3) and (X ′

1, X
′
2, X

′
3) respectively is the

identity so that f̂ = 1 can be chosen. Applying Lemma 2.2 the pull-back
of the εj-spin structure by f is then described by

Q8 −→ SU2, h 7−→ εj(h)f(h)

(remember that −I2 ∈ Ker(εj)), i.e., the pull-back of the ε0- (resp. ε2-)
spin structure is the ε1- (resp. ε3-) one. In other words, changing the sign
of both a2 and a3 changes neither the metric nor the orientation, however
it permutes the ε0- (resp. ε2-) spin structure with the ε1- (resp. ε3-) one.
In particular the Dirac operator on e.g. (M, 〈· , ·〉a1,a2,a3 , ε0) coincides with
that of (M, 〈· , ·〉a1,−a2,−a3 , ε1).

2. Let σ be a permutation of {0, 1, 2, 3} with σ(0) = 0 and set X ′
k := aσ(k)Ak

for k ∈ {1, 2, 3}. Let f(A1) := Aσ−1(1), f(A2) := Aσ−1(2) and f(A3) :=
ε(σ)Aσ−1(3) where ε(σ) ∈ {−1, 1} is the signature of σ. Setting in the
same way as just above f(I2) := I2 and extending f linearly one obtains a
Lie-group-homomorphism SU2 → SU2 inducing an orientation-preserving
isometry (M, 〈· , ·〉a1,a2,a3) −→ (M, 〈· , ·〉aσ(1),aσ(2),aσ(3)

). This time the ma-
trix of f∗ = f in the bases (X1, X2, X3) and (X ′

1, X
′
2, X

′
3) respectively is

not the identity, however it coincides with the matrix of f in the basis
(A1, A2, A3) so that, per definition of the universal 2-fold covering map,

f̂−1 · f(h) · f̂ = h

for any lift f̂ of f to SU2 and every h ∈ Q8. The pull-back through f of
the εj-spin structure is therefore the (εj ◦ f)-one, that is, the εσ(j)-one. In
other words, permuting the coefficients a1, a2, a3 induces an orientation-
preserving isometry permuting the spin structure in the reverse way, the
ε0-one staying unchanged under that transformation. In particular the
Dirac operator on (M, 〈· , ·〉a1,a2,a3 , εj) coincides with that of
(M, 〈· , ·〉aσ(1) ,aσ(2),aσ(3)

, εσ−1(j)).

3. It is well-known that, for any fixed metric and spin structure on M ,
the Dirac operators for the two different orientations are just opposite
from one another (this is always the case in odd dimensions). For exam-
ple, if one turns a1 into −a1 and lets a2 and a3 unchanged, then the
Dirac operator on e.g. (M, 〈· , ·〉−a1,a2,a3 , ε0) coincides with minus that of
(M, 〈· , ·〉a1,−a2,−a3 , ε0), i.e., with minus that of (M, 〈· , ·〉a1,a2,a3 , ε1).
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Note that Examples 2.4 essentially exhausts all possible isometric transforma-
tions of M since the only Lie-group-automorphisms f of SU2 preserving Q8 are
characterized by f(Ak) = ǫ(k)Aσ(k) for some permutation σ of {1, 2, 3} and
ǫ(k) ∈ {−1, 1}.

We come now to the computation of the Dirac operator on M = SU2/Q8. We
begin with the part of the Dirac operator that does not depend on the repre-
sentation γ of SU2. Note also that this part only depends on the metric chosen
on M and not on its spin structure.

Proposition 2.5 For the metric on M given by a1, a2, a3 we have βj = 0 for

every j ∈ {1, 2, 3} and α123 =
a2
1a

2
2+a2

2a
2
3+a2

1a
2
3

2a1a2a3
. In particular

3∑

j=1

βjej ·+α123e1 · e2 · e3· = −a
2
1a

2
2 + a22a

2
3 + a21a

2
3

2a1a2a3
Id.

Proof: We compute the Lie-brackets [Xj , Xk] for all 1 ≤ j < k ≤ 3. Since
A1A2 = −A2A1 = A3 we have

[X1, X2] = a1a2[A1, A2]

= 2a1a2A3

=
2a1a2
a3

X3,

and analogously [X2, X3] =
2a2a3

a1
X1, [X3, X1] =

2a1a3

a2
X2. We straightforward

deduce that β1 = β2 = β3 = 0. Furthermore,

α123 =
1

4
(〈[X1, X2], X3〉+ 〈[X2, X3], X1〉+ 〈[X3, X1], X2〉)

=
1

4

(
2a1a2
a3

+
2a2a3
a1

+
2a1a3
a2

)

=
a21a

2
2 + a22a

2
3 + a21a

2
3

2a1a2a3
.

It remains to notice that, by convention, the complex volume form i[
3+1
2 ]e1 · e2 ·

e3 = −e1 · e2 · e3 acts by the identity on Σ3. This concludes the proof.

✷

We next determine the space of equivariant homomorphisms for each γ ∈ ŜU2

and each εj-spin structure on M . First recall that the irreducible unitary repre-
sentations of SU2 are given by its natural action on the n+1-dimensional vector
spaces of all n-graded homogeneous complex polynomials in two variables: set,
for any n ∈ N (we include n = 0)

Vn := {P ∈ C[z1, z2], P = 0 or P homogeneous and d◦P = n}.
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Then SU2 acts on Vn through

πn : SU2 −→ Aut(Vn)

A 7−→ (πn(A) : P 7→ P ◦RA),

where P ◦ RA(z) := P (zA) for every z = (z1 z2) ∈ C2. From now on we shall
always work with the following basis of Vn:

(Pk(z1, z2) := zn−k
1 zk2 , 0 ≤ k ≤ n).

Identifying Spin3 to SU2 the spinor representation Spin3
δ3−→ Aut(Σ3) is equi-

valent to the standard representation SU2 −→ Aut(C2). For every lift εj · α̂ of
the isotropy representation α ofM the space of equivariant homomorphisms for
πn and for the εj-spin structure - that we shall denote by HomQ8,εj (Vn,C

2) - is
then given by

HomQ8,εj (Vn,C
2) =

{
f ∈ Hom(Vn,C

2) s.t. f ◦ πn(h) = εj(h)h ◦ f ∀h ∈ Q8

}
.

We fix the following basis (F0, . . . , Fn, G0, . . . , Gn) of Hom(Vn,C
2) (which is

that of [2, p.73]): set, for every k ∈ {0, . . . , n},

Fk(Pl) :=





(1 0) if l = k and k even
(0 1) if l = k and k odd
0 otherwise,

and

Gk(Pl) :=





(0 1) if l = k and k even
(1 0) if l = k and k odd
0 otherwise.

W.r.t. the bases (P0, . . . , Pn) and ((1 0), (0 1)) of Vn and C
2 respectively the

elements Fk and Gk are described by matrices of the form:

Fk =

(
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0

)
, Gk =

(
0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0

)

if k is even and

Fk =

(
0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0

)
, Gk =

(
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0

)

if k is odd, where the “1” always stands in the (k + 1)st column.

Lemma 2.6 Let M carry the εj-spin structure for j ∈ {0, 1, 2, 3}. Then
HomQ8,εj (Vn,C

2) = {0} if n is even. Moreover

0. for j = 0 we have

HomQ8,ε0(Vn,C
2) =





⊕n−1
2

k=0 C(Fk + Fn−k) if n ≡ 1 (4)

⊕n−1
2

k=0 C(Gk −Gn−k) if n ≡ 3 (4).
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1. for j = 1 we have

HomQ8,ε1(Vn,C
2) =





⊕n−1
2

k=0 C(Fk − Fn−k) if n ≡ 1 (4)

⊕n−1
2

k=0 C(Gk +Gn−k) if n ≡ 3 (4).

2. for j = 2 we have

HomQ8,ε2(Vn,C
2) =





⊕n−1
2

k=0 C(Gk +Gn−k) if n ≡ 1 (4)

⊕n−1
2

k=0 C(Fk − Fn−k) if n ≡ 3 (4).

3. for j = 3 we have

HomQ8,ε3(Vn,C
2) =





⊕n−1
2

k=0 C(Gk −Gn−k) if n ≡ 1 (4)

⊕n−1
2

k=0 C(Fk + Fn−k) if n ≡ 3 (4).

Proof: Since −I2 ∈ Ker(εj) any element f ∈ HomQ8,εj (Vn,C
2) must satisfy

f ◦ πn(−I2) = −f , with πn(−I2) = (−1)nIdVn
, so that the condition reads

(−1)nf = −f,

which requires f = 0 as soon as n is even.
From now on, we assume that n is odd. We compute πn(Aj) for j = 1, 2 (re-
member that A1 and A2 generate Q8): for every k ∈ {0, . . . , n} and z ∈ C2,

{πn(A1)}(Pk)(z) = Pk

(
(z1 z2) ·

(
−i 0
0 i

))

= Pk(−iz1, iz2)
= (−iz1)n−k(iz2)

k

= (−1)n−kinzn−k
1 zk2 ,

i.e., {πn(A1)}(Pk) = (−1)n−kinPk. Analogously,

{πn(A2)}(Pk)(z) = Pk

(
(z1 z2) ·

(
0 i
i 0

))

= Pk(iz2, iz1)

= (iz2)
n−k(iz1)

k,

i.e., {πn(A2)}(Pk) = inPn−k. The conditions f ◦ πn(Al) = εj(Al)Al ◦ f for
l = 1, 2 then read

∣∣∣∣∣
f(Pk) = (−1)k+

n−1
2 iεj(A1)(A1 ◦ f)(Pk)

f(Pn−k) = (−1)
n+1
2 iεj(A2)(A2 ◦ f)(Pk)

(4)
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for every k ∈ {0, 1, . . . , n}. From now on we denote by

(
f1k
f2k

)
:= f(Pk) ∈ C2.

We examine each case separately.
• Case j = 0: In that case the conditions (4) are equivalent to

∣∣∣∣∣
f(Pk) = (−1)k+

n−1
2 i(A1 ◦ f)(Pk)

f(Pn−k) = (−1)
n+1
2 i(A2 ◦ f)(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+
n−1
2 f1k

f2k = (−1)k+
n+1
2 f2k

f1n−k = (−1)
n−1
2 f2k

f2n−k = (−1)
n−1
2 f1k.

If n ≡ 1 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = (−1)kf1k
f2k = −(−1)kf2k
f1n−k = f2k
f2n−k = f1k,

hence f1k = 0 if k is odd (resp. f2k = 0 if k is even) and (f1n−k, f2n−k) =
(f2k, f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f10(F0 + Fn) + f21(F1 + Fn−1) + . . .+ f1n−1
2
(Fn−1

2
+ Fn+1

2
)

and the result in that case.
If n ≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = −(−1)kf1k
f2k = (−1)kf2k
f1n−k = −f2k
f2n−k = −f1k,

hence f1k = 0 if k is even (resp. f2k = 0 if k is odd) and (f1n−k, f2n−k) =
(−f2k,−f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f20(G0 −Gn) + f11(G1 −Gn−1) + . . .+ f1n−1
2
(Gn−1

2
−Gn+1

2
)

and the result in that case.
• Case j = 1: In that case the conditions (4) are equivalent to

∣∣∣∣∣
f(Pk) = (−1)k+

n−1
2 i(A1 ◦ f)(Pk)

f(Pn−k) = (−1)
n−1
2 i(A2 ◦ f)(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+
n−1
2 f1k

f2k = (−1)k+
n+1
2 f2k

f1n−k = (−1)
n+1
2 f2k

f2n−k = (−1)
n+1
2 f1k.
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If n ≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k = (−1)kf1k
f2k = −(−1)kf2k
f1n−k = −f2k
f2n−k = −f1k,

hence f1k = 0 if k is odd (resp. f2k = 0 if k is even) and (f1n−k, f2n−k) =
(−f2k,−f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f10(F0 − Fn) + f21(F1 − Fn−1) + . . .+ f1n−1
2
(Fn−1

2
− Fn+1

2
)

and the result in that case.
If n ≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = −(−1)kf1k
f2k = (−1)kf2k
f1n−k = f2k
f2n−k = f1k,

hence f1k = 0 if k is even (resp. f2k = 0 if k is odd) and (f1n−k, f2n−k) =
(f2k, f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f20(G0 +Gn) + f11(G1 +Gn−1) + . . .+ f1n−1
2
(Gn−1

2
+Gn+1

2
)

and the result in that case.
• Case j = 2: In that case the conditions (4) are equivalent to

∣∣∣∣∣
f(Pk) = (−1)k+

n+1
2 i(A1 ◦ f)(Pk)

f(Pn−k) = (−1)
n+1
2 i(A2 ◦ f)(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+
n+1
2 f1k

f2k = (−1)k+
n−1
2 f2k

f1n−k = (−1)
n−1
2 f2k

f2n−k = (−1)
n−1
2 f1k.

If n ≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k = −(−1)kf1k
f2k = (−1)kf2k
f1n−k = f2k
f2n−k = f1k,

hence f1k = 0 if k is even (resp. f2k = 0 if k is odd) and (f1n−k, f2n−k) =
(f2k, f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f20(G0 +Gn) + f11(G1 +Gn−1) + . . .+ f2n−1
2
(Gn−1

2
+Gn+1

2
)

and the result in that case.
If n ≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = (−1)kf1k
f2k = −(−1)kf2k
f1n−k = −f2k
f2n−k = −f1k,
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hence f1k = 0 if k is odd (resp. f2k = 0 if k is even) and (f1n−k, f2n−k) =
(−f2k,−f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f10(F0 − Fn) + f21(F1 − Fn−1) + . . .+ f2n−1
2
(Fn−1

2
− Fn+1

2
)

and the result in that case.
• Case j = 3: In that case the conditions (4) are equivalent to

∣∣∣∣∣
f(Pk) = (−1)k+

n+1
2 i(A1 ◦ f)(Pk)

f(Pn−k) = (−1)
n−1
2 i(A2 ◦ f)(Pk),

that is, ∣∣∣∣∣∣∣∣∣

f1k = (−1)k+
n+1
2 f1k

f2k = (−1)k+
n−1
2 f2k

f1n−k = (−1)
n+1
2 f2k

f2n−k = (−1)
n+1
2 f1k.

If n ≡ 1 (4) then those identities become
∣∣∣∣∣∣∣∣

f1k = −(−1)kf1k
f2k = (−1)kf2k
f1n−k = −f2k
f2n−k = −f1k,

hence f1k = 0 if k is even (resp. f2k = 0 if k is odd) and (f1n−k, f2n−k) =
(−f2k,−f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f20(G0 −Gn) + f11(G1 −Gn−1) + . . .+ f2n−1
2
(Gn−1

2
−Gn+1

2
)

and the result in that case.
If n ≡ 3 (4) then those identities become

∣∣∣∣∣∣∣∣

f1k = (−1)kf1k
f2k = −(−1)kf2k
f1n−k = f2k
f2n−k = f1k,

hence f1k = 0 if k is odd (resp. f2k = 0 if k is even) and (f1n−k, f2n−k) =
(f2k, f1k) for every 0 ≤ k ≤ n−1

2 . We deduce that

f = f10(F0 + Fn) + f21(F1 + Fn−1) + . . .+ f2n−1
2
(Fn−1

2
+ Fn+1

2
)

and the result in that case. This concludes the proof.

✷

It remains to compute the map TI2πn for every (odd) n.

Lemma 2.7 The endomorphisms TI2πn(Xj), 1 ≤ j ≤ 3, are given in the basis
(P0, . . . , Pn) of Vn by:

{TI2πn(X1)}(Pk) = −ia1(n− 2k)Pk

{TI2πn(X2)}(Pk) = ia2 ((n− k)Pk+1 + kPk−1)

{TI2πn(X3)}(Pk) = a3 (−(n− k)Pk+1 + kPk−1)

for every k ∈ {0, . . . , n}, with the convention P−1 = Pn+1 = 0.

14



Proof: For every X ∈ su2, P ∈ Vn and z ∈ C2, we have

({TI2πn(X)}(P )) (z) =
d

dt
|
t=0

(
P ◦Rexp(tX)

)
(z)

=
d

dt
|
t=0

(
P ◦Rexp(tX)(z)

)

=
d

dt
|
t=0

(P (z exp(tX)))

= dzP (zX)

=
∂P

∂z1
(z) (zX)1 +

∂P

∂z2
(z) (zX)2 .

Since zA1 = (−iz1 iz2), zA2 = (iz2 iz1) and zA3 = (−z2 z1) we have, for every
k ∈ {0, . . . , n}

{TI2πn(X1)}(Pk) = a1{TI2πn(A1)}(Pk)

= a1

(
−iz1

∂Pk

∂z1
(z) + iz2

∂Pk

∂z2
(z)

)

= −ia1
(
(n− k)z1z

n−k−1
1 zk2 − kz2z

n−k
1 zk−1

2

)

= −ia1
(
(n− k)zn−k

1 zk2 − kzn−k
1 zk2

)

= −ia1(n− 2k)Pk.

For X2 we have

{TI2πn(X2)}(Pk) = a2{TI2πn(A2)}(Pk)

= a2

(
iz2

∂Pk

∂z1
(z) + iz1

∂Pk

∂z2
(z)

)

= ia2
(
(n− k)zn−k−1

1 zk+1
2 + kzn−k+1

1 zk−1
2

)

= ia2 ((n− k)Pk+1 + kPk−1) ,

and for X3 we obtain

{TI2πn(X3)}(Pk) = a3{TI2πn(A3)}(Pk)

= a3

(
−z2

∂Pk

∂z1
(z) + z1

∂Pk

∂z2
(z)

)

= a3
(
−(n− k)zn−k−1

1 zk+1
2 + kzn−k+1

1 zk−1
2

)

= a3 (−(n− k)Pk+1 + kPk−1) .

Note that the above expressions for {TI2πn(X2)}(Pk) and {TI2πn(X3)}(Pk) are
also valid for k = 0 or k = n with the convention P−1 = Pn+1 = 0. The result
follows.

✷

We now compute the component Dn of the Dirac operator of M acting on
HomQ8,εj (Vn,C

2), see (3). We adopt henceforth the following convention: Fk :=
Gk := 0 as soon as k /∈ {0, . . . , n}.
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The fix part of Dn has already been computed in Proposition 2.5, so that only
the endomorphism D′

n of HomQ8,εj (Vn,C
2) given by

D′
nA = −

3∑

j=1

ej ·A ◦ TI2πn(Xj)

for every A ∈ HomQ8,εj (Vn,C
2), remains to be made explicit.

First note that the Clifford product by ej can be identified with the matrix
multiplication by Aj for j ∈ {1, 2, 3}.
Furthermore, it is straightforward to show using Lemma 2.7 that, for every
k ∈ {0, 1, . . . , n},

Fk ◦ TI2πn(X1) = −ia1(n− 2k)Fk

Fk ◦ TI2πn(X2) = ia2 ((n− k + 1)Gk−1 + (k + 1)Gk+1)

Fk ◦ TI2πn(X3) = a3 (−(n− k + 1)Gk−1 + (k + 1)Gk+1) .

Those identities still hold for k = 0 or n using our convention above on the Fk’s
and Gk’s. To obtain the corresponding identities on the Gk’s one just has to
exchange the roles of Fl and Gl for every l:

Gk ◦ TI2πn(X1) = −ia1(n− 2k)Gk

Gk ◦ TI2πn(X2) = ia2 ((n− k + 1)Fk−1 + (k + 1)Fk+1)

Gk ◦ TI2πn(X3) = a3 (−(n− k + 1)Fk−1 + (k + 1)Fk+1) .

We deduce the following set of identities:

(Fk ± Fn−k) ◦ TI2πn(X1) = −ia1(n− 2k)(Fk ∓ Fn−k)

(Fk ± Fn−k) ◦ TI2πn(X2) = ia2

(
(k + 1)(Gk+1 ±Gn−k−1)

+ (n− k + 1)(Gk−1 ±Gn−k+1)
)

(Fk ± Fn−k) ◦ TI2πn(X3) = a3

(
(k + 1)(Gk+1 ∓Gn−k−1)

− (n− k + 1)(Gk−1 ∓Gn−k+1)
)

(Gk ±Gn−k) ◦ TI2πn(X1) = −ia1(n− 2k)(Gk ∓Gn−k)

(Gk ±Gn−k) ◦ TI2πn(X2) = ia2

(
(k + 1)(Fk+1 ± Fn−k−1)

+ (n− k + 1)(Fk−1 ± Fn−k+1)
)

(Gk ±Gn−k) ◦ TI2πn(X3) = a3

(
(k + 1)(Fk+1 ∓ Fn−k−1)

− (n− k + 1)(Fk−1 ∓ Fn−k+1)
)
.

(5)

On the other hand, it is also a short calculation to show

A1 · (Fk ± Fn−k) = (−1)k+1i(Fk ∓ Fn−k)
A2 · (Fk ± Fn−k) = i(Gk ±Gn−k)
A3 · (Fk ± Fn−k) = (−1)k+1(Gk ∓Gn−k)
A1 · (Gk ±Gn−k) = (−1)ki(Gk ∓Gn−k)
A2 · (Gk ±Gn−k) = i(Fk ± Fn−k)
A3 · (Gk ±Gn−k) = (−1)k(Fk ∓ Fn−k).

(6)
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Bringing (5) and (6) together we deduce that

D′
n(Fk ± Fn−k) = −

3∑

j=1

ej · (Fk ± Fn−k) ◦ TI2πn(Xj)

= −
3∑

j=1

Aj · (Fk ± Fn−k) ◦ TI2πn(Xj)

(5)
= ia1(n− 2k)A1 · (Fk ∓ Fn−k)

−ia2A2 ·
(
(k + 1)(Gk+1 ±Gn−k−1) + (n− k + 1)(Gk−1 ±Gn−k+1)

)

−a3A3 ·
(
(k + 1)(Gk+1 ∓Gn−k−1)− (n− k + 1)(Gk−1 ∓Gn−k+1)

)

(6)
= (−1)ka1(n− 2k)(Fk ± Fn−k)

+a2

(
(k + 1)(Fk+1 ± Fn−k−1) + (n− k + 1)(Fk−1 ± Fn−k+1)

)

+(−1)ka3

(
(k + 1)(Fk+1 ± Fn−k−1)− (n− k + 1)(Fk−1 ± Fn−k+1)

)

= (−1)ka1(n− 2k)(Fk ± Fn−k)

+(k + 1)(a2 + (−1)ka3)(Fk+1 ± Fn−k−1)

+(n− k + 1)(a2 − (−1)ka3)(Fk−1 ± Fn−k+1).

Similarly,

D′
n(Gk ±Gn−k) = −

3∑

j=1

Aj · (Gk ±Gn−k) ◦ TI2πn(Xj)

(5)
= ia1(n− 2k)A1 · (Gk ∓Gn−k)

−ia2A2 ·
(
(k + 1)(Fk+1 ± Fn−k−1) + (n− k + 1)(Fk−1 ± Fn−k+1)

)

−a3A3 ·
(
(k + 1)(Fk+1 ∓ Fn−k−1)− (n− k + 1)(Fk−1 ∓ Fn−k+1)

)

(6)
= −(−1)ka1(n− 2k)(Gk ±Gn−k)

+a2

(
(k + 1)(Gk+1 ±Gn−k−1) + (n− k + 1)(Gk−1 ±Gn−k+1)

)

−(−1)ka3

(
(k + 1)(Gk+1 ±Gn−k−1)− (n− k + 1)(Gk−1 ±Gn−k+1)

)

= −(−1)ka1(n− 2k)(Gk ±Gn−k)

+(k + 1)(a2 − (−1)ka3)(Gk+1 ±Gn−k−1)

+(n− k + 1)(a2 + (−1)ka3)(Gk−1 ±Gn−k+1).

Note that, for k = n−1
2 , Fk+1 ±Fn−k−1 = ±(Fk ±Fn−k) and the same holds for

the Gk’s, so that

D′
n(Fn−1

2
± Fn+1

2
)

= (−1)
n−1
2 a1(Fn−1

2
± Fn+1

2
)

+
n+ 1

2
(a2 + (−1)

n−1
2 a3)(Fn+1

2
± Fn−1

2
)
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+
n+ 3

2
(a2 − (−1)

n−1
2 a3)(Fn−3

2
± Fn+3

2
)

=
(
(−1)

n−1
2 a1 ±

n+ 1

2
(a2 + (−1)

n−1
2 a3)

)
(Fn−1

2
± Fn+1

2
)

+
n+ 3

2
(a2 − (−1)

n−1
2 a3)(Fn−3

2
± Fn+3

2
)

and in the same way

D′
n(Gn−1

2
±Gn+1

2
)

= −(−1)
n−1
2 a1(Gn−1

2
±Gn+1

2
)

+
n+ 1

2
(a2 − (−1)

n−1
2 a3)(Gn+1

2
±Gn−1

2
)

+
n+ 3

2
(a2 + (−1)

n−1
2 a3)(Gn−3

2
±Gn+3

2
)

=
(
− (−1)

n−1
2 a1 ±

n+ 1

2
(a2 − (−1)

n−1
2 a3)

)
(Gn−1

2
±Gn+1

2
)

+
n+ 3

2
(a2 + (−1)

n−1
2 a3)(Gn−3

2
±Gn+3

2
).

Denoting by (v0, . . . , vn−1
2
) the basis of HomQ8,εj (Vn,C

2) computed in Lemma

2.6 we conclude the proof of Theorem 0.1 iv).

Note 2.8 From Theorem 0.1 iv) the matrix representing the operatorDn in the
basis (v0, . . . , vn−1

2
) is not symmetric. Beware however that this basis does not

take A1, A2, A3 into account the same way and turns out not to be orthonormal.

We now make the eigenvalue of D1 explicit:

Corollary 2.9 Fix j ∈ {0, 1, 2, 3} and let ǫ1, ǫ2, ǫ3 ∈ {−1, 1} be defined by
ǫl := −(−1)δj0+δjl for l ∈ {1, 2, 3}. Then under the assumptions of Theorem 0.1
the following number is an eigenvalue of the Dirac operator of M for the spin
structure given by εj and the metric induced by a1, a2, a3:

−(ǫ2a2 − ǫ3a3)
2a21 + 2a2a3(ǫ2a2 + ǫ3a3)a1 − a22a

2
3

2a1a2a3
.

If in particular ǫ2ǫ3a2a3 > 0 then there exists a1 ∈ R∗ such that for the corres-
ponding metric the Dirac operator of M has a non-zero kernel.

Proof: For n = 1 the operator D′
n can be expressed from Theorem 0.1 as

D′
1 = (ǫ1a1 + ǫ2a2 + ǫ3a3)Id

for the ǫl’s defined above (beware that they depend on j). Therefore the corres-
ponding Dirac operator Dn is given by

D1 =
(
ǫ1a1 + ǫ2a2 + ǫ3a3 −

a21a
2
2 + a22a

2
3 + a21a

2
3

2a1a2a3

)
Id

=
−(ǫ2a2 − ǫ3a3)

2a21 + 2a2a3(ǫ2a2 + ǫ3a3)a1 − a22a
2
3

2a1a2a3
Id,
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from which the first statement follows.
An elementary computation shows that, if ǫ2ǫ3a2a3 > 0, then the numerator of
the eigenvalue vanishes for

a1 =
a2a3(ǫ2a2 + ǫ3a3)± 2(ǫ2ǫ3a2a3)

3
2

(ǫ2a2 − ǫ3a3)2

in the case ǫ2a2 6= ǫ3a3 and

a1 =
ǫ2a3
4

if ǫ2a2 = ǫ3a3. Note that none of those numbers can vanish because of a2a3 6= 0.
This concludes the proof.

✷

Notes 2.10

1. It follows from Corollary 2.9 that, for any given spin structure onM , there
exists a 2-parameter-family of Riemannian metrics for which M admits
non-zero harmonic spinors. This is not a surprise since the existence of
such metrics already follows from a purely theoretical result by Christian
Bär [4]. However we can make some of those metrics explicit here.

2. There may exist non-zero harmonic spinors for other metrics on M and
possibly without needing the condition ǫ2ǫ3a2a3 > 0 from Corollary 2.9,
since we have up to now only studied the eigenvalue corresponding to one
particular representation.

3. In the same way the eigenvalue computed in Corollary 2.9 is not neces-
sarily the smallest one in absolute value. Choose for example the ε0-spin

structure, a2 = a3 < 0 and a1 ∈]− a2

8 ,−
a2

2 [. Then
4a1a2−a2

2

2a1
and − 8a1a2+a2

2

2a1

are eigenvalues of the Dirac operator of M , the first one corresponding to
n = 1 (i.e., to the one computed in Corollary 2.9) and the second one
to n = 3, see Corollary 0.2. However one has from the assumptions on

a1, a2, a3 that | − 8a1a2+a2
2

2a1
| < | 4a1a2−a2

2

2a1
|.

We end this section with an important remark which actually constitutes the
main motivation for this work. The manifold M can be seen as hypersurface
of the 4-dimensional round sphere S4 (with sectional curvature 1): consider the
manifold {A ∈ M3×3(R),

tA = A, tr(A) = 0 and tr(A2) = 2} ∼= S4 with metric
(A,B) 7−→ 〈A,B〉 := 1

2 tr(AB). Let B := diag(λ,−λ−µ, µ) ∈ S4 where λ, µ ∈ R

satisfy λ+ 2µ 6= 0, λ 6= µ, µ+ 2λ 6= 0 and λ2 + (λ+ µ)2 + µ2 = 2. Set

N := {π(P ) · B · π(P )−1, P ∈ SU2} ⊂ S4,

where SU2
π−→ SO3 is the universal 2-fold covering map. Then it is an elemen-

tary exercise to show that N is a hypersurface of S4 which is diffeomorphic to
SU2/Q8, that the homogeneous metric induced by the inclusion map N ⊂ S4
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is given by a1 := − 1
2(λ+2µ) , a2 := 1

2(µ−λ) , a3 := 1
2(µ+2λ) and that choosing

νB := 1√
3
diag(2µ+λ, λ−µ,−2λ−µ) ∈ TBS

4 as unit normal vector field the in-

duced spin structure on N is the ε0-one. Here beware that the metrics obtained
form a one-parameter strict subfamily of that of all homogeneous metrics onM .
Furthermore, the Weingarten endomorphism-field of N w.r.t. νB - seen as en-
domorphism of su(2) - is given in the basis (X1, X2, X3) of su(2) by

Mat(A) =
√
3 · diag( λ

2µ+ λ
,
µ+ λ

µ− λ
,− µ

2λ+ µ
).

In particular, the mean curvature H := 1
3 tr(A) of N in S4 w.r.t. νB is

H =
3
√
3 · λµ(λ + µ)

(2µ+ λ)(µ − λ)(2λ+ µ)
.

Corollary 2.11 Under the hypotheses of Theorem 0.1 assume furthermore that
M sits in S4, i.e., that a1 = − 1

2(λ+2µ) , a2 = 1
2(µ−λ) , a3 = 1

2(µ+2λ) for some

λ, µ ∈ R satisfying λ + 2µ 6= 0, λ 6= µ, µ+ 2λ 6= 0 and λ2 + (λ+ µ)2 + µ2 = 2.
Then 9

4 (H2 + 1) is an eigenvalue of the Dirac Laplacian of M for the induced
(ε0-)spin structure.

Proof: The result follows straightforward from Corollary 2.9 in the case j = 0
and from an elementary computation giving

9

4
(H2 + 1) =

9

(λ+ 2µ)2(µ− λ)2(µ+ 2λ)2

=

(−(a2 − a3)
2a21 + 2a2a3(a2 + a3)a1 − a22a

2
3

2a1a2a3

)2

.

✷

Corollary 2.11 confirms what had been already noticed since Christian Bär’s
work [5] on extrinsic upper eigenvalue bounds for the lower part of the Dirac
spectrum: for any compact orientable hypersurface M

m
with constant mean

curvatureH (and carrying the induced metric and spin structure) in the (m+1)-

dimensional round sphere the number m2

4 (H2 + 1) is an eigenvalue of its Dirac
Laplacian. However the question still remains open whether this eigenvalue
should be the smallest one or not.

3 Computation of the spectrum of the Dirac o-

perator on M for particular metrics

Although the matrices representing the Dirac operator D of M have a “simple”
shape (they are tridiagonal, see Theorem 0.1), their spectrum is still hard to
compute explicitly since there does not exist any general formula giving the
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eigenvalues of such matrices. It is however possible to compute them for parti-
cular values of the parameters a1, a2, a3 ∈ R∗, i.e., for particular metrics on M .
In Corollary 0.2 we do it for the so-called Berger metrics on M (compare with
[2, p.71] where the author chooses a2 = 1 = −a3 and a1 = − 1

T
with T > 0).

Namely, if we assume that a2 = a3 then the identities for D′
n(Fk ± Fn−k) and

D′
n(Gk ±Gn−k) become

D′
n(Fk ± Fn−k) = (−1)ka1(n− 2k)(Fk ± Fn−k)

+(k + 1)(1 + (−1)k)a2(Fk+1 ± Fn−k−1)

+(n− k + 1)(1− (−1)k)a2(Fk−1 ± Fn−k+1)

and

D′
n(Gk ±Gn−k) = −(−1)ka1(n− 2k)(Gk ±Gn−k)

+(k + 1)(1− (−1)k)a2(Gk+1 ±Gn−k−1)

+(n− k + 1)(1 + (−1)k)a2(Gk−1 ±Gn−k+1)

for every k ∈ {0, . . . , n−1
2 }. In particular, if k is even, then

D′
n(Fk ± Fn−k) = a1(n− 2k)(Fk ± Fn−k)

+2(k + 1)a2(Fk+1 ± Fn−k−1)

and

D′
n(Gk ±Gn−k) = −a1(n− 2k)(Gk ±Gn−k)

+2(n− k + 1)a2(Gk−1 ±Gn−k+1).

If k is odd then

D′
n(Fk ± Fn−k) = −a1(n− 2k)(Fk ± Fn−k)

+2(n− k + 1)a2(Fk−1 ± Fn−k+1)

and

D′
n(Gk ±Gn−k) = a1(n− 2k)(Gk ±Gn−k)

+2(k + 1)a2(Gk+1 ±Gn−k−1).

We now consider each case separately. Remember that from Theorem 2.1 the
Dirac operator D restricted to Vn⊗HomQ8,εj (Vn,C

2) is given by Id⊗Dn where

Dn = D′
n − (

a2
1a

2
2+a2

1a
2
3+a2

2a
2
3

2a1a2a3
)Id. In particular the multiplicity of each eigenvalue

of Dn should be counted n+ 1 times for the spectrum of D.
• Case j = 0:

* If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n−1
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {0, . . . , n−5
2 } is even and of the isolated eigenvalue a1+(n+1)a2

(corresponding to k = n−1
2 ). The eigenvalues of each such 2 × 2-matrix

are simple and given by

a1 ±
√
((n− 2k)(n− 2(k + 1)) + 1)a21 + 4(n− k)(k + 1)a22

with ((n− 2k)(n− 2(k + 1)) + 1) = (n− 2k − 1)2.
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* If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n−3
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {1, . . . , n−5
2 } is odd and of the isolated eigenvalues −na1 (cor-

responding to k = 0) and a1 − (n+ 1)a2 (corresponding to k = n−1
2 ).

This shows 0.
• Case j = 1:

* If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n−1
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {0, . . . , n−5
2 } is even and of the isolated eigenvalue a1−(n+1)a2

(corresponding to k = n−1
2 ). The eigenvalues of each such 2 × 2-matrix

have already been computed in the case j = 0 above.

* If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n−3
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {1, . . . , n−5
2 } is odd and of the isolated eigenvalues −na1 (cor-

responding to k = 0) and a1 + (n+ 1)a2 (corresponding to k = n−1
2 ).

This shows 1.
• Case j = 2 or j = 3: Since a2 = a3 the Dirac spectra for the ε2- and ε3- spin
structures coincide, see Examples 2.4.2 with σ = (2 3).

* If n ≡ 1 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n−1
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {1, . . . , n−3
2 } is odd and of the isolated eigenvalue −na1 (cor-

responding to k = 0).

* If n ≡ 3 (4): It follows from the identities just above and from Lemma 2.6
that the matrix of D′

n consists of n+1
4 blocks on the diagonal of the form

(
(n− 2k)a1 2(n− k)a2
2(k + 1)a2 −(n− 2(k + 1))a1

)

where k ∈ {0, . . . , n−3
2 } is even.

This shows 2. and concludes the proof of Corollary 0.2.
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Note 3.1 Of course one should understand each upper bound (e.g. n−5
2 ) for

the possible values of k in Corollary 0.2 as follows: if for a given n it is negative
then the corresponding eigenvalues do not appear. For example if M carries the

ε0-spin structure and n = 1 then Dn+
2a2

1+a2
2

2a1
Id has only one eigenvalue, namely

a1 + 2a2 (with multiplicity 2). Similarly, if j = 2, 3 and n = 1, then only −a1
appears with multiplicity 2.

One could in a similar way compute the spectrum of the Dirac operator for
a2 = −a3, in which case the spectra would coincide for the ε0- and the ε1-spin
structure on M (use Examples 2.4).

We end this section with deriving from Corollary 0.2 the spectrum of the Dirac
operator onM for any of the 4 spin structures and the following metrics: for one
of the metrics with constant sectional curvature and for one of the 6 metrics
induced by minimal isometric embeddings into S4 (i.e., for (λ = 0, µ = ±1),
(λ = ±1, µ = 0) or (λ, µ) = ±(1,−1), see end of Section 2). In the first case
the spectrum has already been computed by Christian Bär in [3, Thm. 2] and
it can be easily checked that his results coincide with ours.

Corollary 3.2 Under the hypotheses of Theorem 0.1, assume furthermore that

i) a1 = a2 = a3 = 1. Then the spectrum of the Dirac operator of M w.r.t.
the ε0-spin structure consists of the family

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3
2 + 4k with multiplicity 2(k + 1)(2k + 1)

3
2 + 4k + 2 with multiplicity 4k(k + 1)

− 3
2 − 4k − 1 with multiplicity 2k(2k + 1)

− 3
2 − 4k − 3 with multiplicity 4(k + 1)(k + 2)

where k runs over N and w.r.t. any of the other spin structures εj of the
family

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3
2 + 4k with multiplicity 2k(2k + 1)

3
2 + 4k + 2 with multiplicity 4(k + 1)2

− 3
2 − 4k − 1 with multiplicity 2(k + 1)(2k + 1)

− 3
2 − 4k − 3 with multiplicity 4(k + 1)2

where k runs over N.

ii) a1 = − 1
4 , a2 = a3 = 1

2 . Then the spectrum of the Dirac operator of M
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* w.r.t. the ε0-spin structure is given by

⋃

n∈N

n≡1 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {0, . . . , n− 5

2
} even,

n

2
+ 1

}

⋃ ⋃

n∈N

n≡3 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {1, . . . , n− 5

2
} odd,−n

2
,
n+ 3

4

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

* w.r.t. the ε1-spin structure is given by

⋃

n∈N

n≡1 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {0, . . . , n− 5

2
} even,−n

2

}

⋃ ⋃

n∈N

n≡3 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {1, . . . , n− 5

2
} odd,

n

2
+ 1,

n+ 3

4

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

* w.r.t. the ε2- or ε3-spin structure is given by

⋃

n∈N

n≡1 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {1, . . . , n− 3

2
} odd,

n+ 3

4

}

⋃ ⋃

n∈N

n≡3 (4)

{1

2
± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

| k ∈ {0, . . . , n− 3

2
} even

}
,

each eigenvalue having multiplicity n+ 1 for the corresponding n.

Proof: In case a1 = a2 = a3 = 1 one has on the one hand

(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22 = (n+ 1)2
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for every possible k and on the other hand
2a2

1+a2
2

2a1
= 3

2 . The result in i) straight-
forward follows using Corollary 0.2 and Examples 2.4.
Assuming now a1 = − 1

4 and a2 = a3 = 1
2 , one has

a1 ±
√
(n− 2k − 1)2a21 + 4(n− k)(k + 1)a22

= −1

4
±

√
(n− 2k − 1)2 + 16(n− k)(k + 1)

4

and
2a2

1+a2
2

2a1
= − 3

4 . This concludes the proof.

✷

One can deduce from Corollary 3.2 and Examples 2.4 the spectrum of the Dirac
operator ofM for any spin structure and any metric induced by (a1, a1, a1) with
a1 ∈ R∗ or any metric induced by a minimal embedding into S4: in the first
case rescale by a1, in the second one exchange the roles of a1, a2, a3 and possibly
multiply all of them by −1.
For the next corollary recall that, for a given β ∈ C, a β-Killing spinor on a
spin manifold N is a smooth section ψ of the spinor bundle of N such that
∇Xψ = βX · ψ for every X ∈ TN .

Corollary 3.3 Under the hypotheses of Theorem 0.1 the following holds:

i) If a1 = a2 = a3 = 1 then the ε0-spin structure is the only one for which M
admits a non-zero space of Killing spinors, which is then 2-dimensional
and associated to the constant β = − 1

2 . In particular 3
2 is in absolute

value the smallest eigenvalue of the Dirac operator of M for the ε0-spin
structure.

ii) If a1 = − 1
4 , a2 = a3 = 1

2 and M carries the ε0-spin structure then 3
2 is

in absolute value the smallest eigenvalue of the Dirac operator of M . In
particular inequality (1) is an equality on M for the induced metric and
spin structure.

Proof: If a1 = a2 = a3 = 1 then on the one hand the metric induced on M
has constant sectional curvature 1; on the other hand Corollary 3.2 i) implies
that the smallest eigenvalue in absolute value of the Dirac operator of M is
3
2 with multiplicity 2 w.r.t. the ε0-spin structure and − 5

2 with multiplicity 2
w.r.t. any of the other spin structures (both obtained for n = 1, i.e., they are
the eigenvalues computed in Corollary 2.9). Now M carries a non-trivial Killing
spinor if and only if the smallest eigenvalue of its Dirac Laplacian coincides with
T. Friedrich’s lower bound 3

4(3−1) infM (ScalM ) in terms of the scalar curvature

of M , see [7]. Here 3
4(3−1)ScalM = 9

4 so that M carries a 2-dimensional space of

non-zero Killing spinors only for the ε0-spin structure; in that case the corres-
ponding constant β should obviously be − 1

2 . This shows i)
If a1 = − 1

4 , a2 = a3 = 1
2 andM carries the ε0-spin structure then from Corollary

3.2 ii) the eigenvalues corresponding to n = 1 and n = 3 are 3
2 and − 3

2 ,
3
2 with
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multiplicities 2, 4 and 4 respectively. Next we show that all eigenvalues corres-
ponding to n ≥ 5 are greater than 3

2 in absolute value. Since this is obviously
the case for n

2 + 1, −n
2 and n+3

4 we just have to deal with the eigenvalues
1
2± 1

4

√
(n− 2k − 1)2 + 16(n− k)(k + 1), of which absolute value is greater than

3
2 if and only if

(n− 2k − 1)2 + 16(n− k)(k + 1)− 64 > 0 (7)

for every k ∈ {0, . . . , n−5
2 }. The l.h.s. of (7) is a trinomial in k with negative

dominant coefficient and of which roots are given by n−1
2 ±

√
(n−3)(n+5)

3 . If

n ≥ 5 then n−1
2 −

√
(n−3)(n+5)

3 < 0 < n−1
2 < n−1

2 +
√

(n−3)(n+5)
3 , which shows

that (7) is satisfied. Hence 3
2 is in absolute value the smallest eigenvalue of the

Dirac operator. Apply Corollary 2.11 to the case λ = 0 and µ = 1 to conclude.

✷

That M admits a 2-dimensional space of Killing spinors w.r.t. its ε0-spin struc-
ture and any normal metric is also not a surprise, see [1, Cor. 5.2.5 (1b)]. More-
over, following the symmetry arguments already used above (see Examples 2.4)
Corollary 3.3 ii) actually holds for any of the metrics induced by a minimal
embedding into S4. This proves Corollary 0.3.

Corollary 0.3 provides a further example (after geodesic spheres [5] and gene-
ralized Clifford tori [8]) of homogeneous hypersurface of the round sphere for
which Christian Bär’s inequality [5, Cor. 4.3] is an equality for the smallest Dirac
eigenvalue. Here it should furthermore be noticed that, still under the assump-
tions of Corollary 0.3, the multiplicity of the smallest eigenvalue of the Dirac
Laplacian on M is greater than the corresponding one on the 3-dimensional
round sphere. This shows an analogy with the generalized Clifford tori tested in
[8], on which the multiplicity of the smallest eigenvalue of the Dirac Laplacian
is also greater than or equal to the corresponding one on the round sphere of
same dimension.

We conjecture that the inequality in [5, Cor. 4.3] for the smallest Dirac eigen-
value is an equality for every homogeneous hypersurface in the round sphere.
We refer to [9] for further work in this direction.
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