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We study a natural Dirac operator on a Lagrangian submanifold of a Kähler manifold. We first show that its square coincides with the Hodge -de Rham Laplacian provided the complex structure identifies the spin structures of the tangent and normal bundles of the submanifold. We then give extrinsic estimates for the eigenvalues of that operator and discuss some examples.

Introduction

The main object of this paper is to initiate the study of the properties of a Dirac operator on Lagrangian submanifolds of Kähler manifolds.

Spin geometry has revealed as a powerful tool in intrinsic geometry for a long time (see e.g. [START_REF] Lawson | Spin Geometry[END_REF]). It is however a recent and striking fact that spinors play a role in extrinsic geometry as well. Initiated by Witten [START_REF] Witten | A new proof of the positive energy theorem[END_REF], the use of Dirac operators on submanifolds has only been developed over the last years, especially about the following question: how can one relate analytical properties of some Dirac operators on a submanifold with extrinsic geometric quantities? For submanifolds of real space-forms, on which there exists particular spinor fields (mainly parallel spinor fields, up to a conformal change of the metric), a beautiful series of results has already appeared (see [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF] for references). However, answering that question in presence of further geometric structures seems to have been little considered.

We propose in this paper to begin with the study of (immersed) submanifolds of Kählerian manifolds. The presence of a complex structure on the ambient manifold gives rise to a rich variety of submanifolds (totally real, Kählerian, real hypersurface,...). That is why we shall restrict our attention to a particular class of submanifolds, namely Lagrangian submanifolds. A submanifold of a Kählerian manifold is Lagrangian if and only if the (ambient) complex structure maps its tangent bundle onto its normal bundle. Like every submanifold, a Lagrangian submanifold carries a twisted-Dirac operator. We shall first prove that, if furthermore the complex structure identifies the spin structures of the tangent and normal bundles, then this twisted-Dirac operator identifies with the Euler operator. This requires adapting some technical algebraic Lemmas (compare with [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF][START_REF]Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF]), which we shall therefore recall in detail in the first part. Coming back to the original question, we then prove new eigenvalue estimates for the above twisted-Dirac operator, and show their sharpness through examples. The results obtained show analogies with [START_REF] Chen | On the first eigenvalue of Laplacian of compact minimal submanifolds of rank one symmetric spaces[END_REF][START_REF] Ros | Spectral geometry of CR-minimal submanifolds in the complex projective space[END_REF]. This work is partially based on the Ph.D.-thesis of the author [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF].
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1 Spin structures and Dirac operators on a Lagrangian submanifold

We begin with collecting basic facts about spin structures on Lagrangian submanifolds of Kählerian manifolds (see also [START_REF] Lawson | Spin Geometry[END_REF][START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF][START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF] for general spin geometry). We first describe the necessary algebraic material, then transport it to bundles with the help of a group-equivariance condition.

Clifford algebras and spinors

In this subsection, we recall some important isomorphisms between the complex Clifford algebra (see definition below) and other vector spaces. We point out that the isomorphism (7) below slightly differs from the equivalent one in [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] or [START_REF]Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF], since we want here to keep track of the "Clifford action" in a more suitable way for our setting. We fix a positive integer n, and denote by "can" the standard Euclidean inner product of R n . Throughout this paper, unless explicitely mentioned, all the isomorphisms will be denoted by the identity map. Let Cl n (resp. Cl n ) be the complex (resp. real) Clifford algebra of (R n , can), that is, the only associative complex (resp. real) algebra with unit generated by R n with the relation

v • w + w • v = -2can(v, w)1,
for all vectors v and w in R n . Here the product of Cl n (resp. Cl n ), denoted " • ", is called the Clifford multiplication. We recall the properties of Cl n which will be important for the future:

• Let ΛR n ⊗ C be the complexified exterior algebra of R n . Then there exists a canonical linear isomorphism [START_REF] Lawson | Spin Geometry[END_REF] Cl

n -→ ΛR n ⊗ C (1) 
which maps every element of the form v

• ϕ (v ∈ R n , ϕ ∈ Cl n ) onto v ∧ ϕ -v ϕ, where "v ϕ" stands for v ♭ ϕ through the musical isomorphism v -→ v ♭ := can(v, •) between R n and (R n ) * .
We hereby identify through (1) the space Λ p R n ⊗ C as a subspace of Cl n .

• The algebra Cl n is either a complex matrix algebra or the copy of two such ones: there exists a complex vector space Σ n of dimension 2

[ n 2 ]
, called the space of spinors, and an isomorphism of complex algebras

Cl n ∼ = End C (Σ n ) if n is even End C (Σ n ) ⊕ End C (Σ n ) if n is odd. ( 2 
)
Without loss of generality (see e.g. [START_REF] Lawson | Spin Geometry[END_REF]), we further assume that, when n is odd, the isomorphism (2) maps the complex volume element of Cl n (see e.g. in [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF] for its definition) onto Id Σn ⊕ -Id Σn . We define δ n as the isomorphism (2) if n is even, and the composition of the projection onto the first subalgebra End C (Σ n ) with (2) if n is odd. In particular, for n odd and for every v in R n , the isomorphism (2) reads v -→ δ n (v) ⊕ -δ n (v), see [START_REF] Lawson | Spin Geometry[END_REF].

• The space Σ n carries a natural Hermitian inner product " • , • " (which we assume to be complexlinear in the first argument) such that, for every v in R n and all σ, σ ′ in Σ n ,

δ n (v)σ, σ ′ = -σ, δ n (v)σ ′ . (3) 
The property (3) determines the Hermitian inner product " • , • " up to a positive scalar [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF].

Define now the spin group Spin n as

Spin n := {v 1 • . . . • v 2k / k ≥ 1, v j ∈ R n , can(v j , v j ) = 1}
and the spin representation to be the restriction of δ n to Spin n . The spin group is a compact Lie-subgroup of the group of invertible elements in Cl n which has the following remarkable properties:

• There exists a two-fold covering Lie-group-homomorphism from Spin n onto the special orthogonal group SO n , which we denote by "Ad".

• Denoting also "Ad" the composition of the natural representation of SO n on ΛR n ⊗ C with Ad, the isomorphism (1) is Spin n -equivariant, i.e., for every u in Spin n and ϕ in Cl n ,

u • ϕ • u -1 ≃ Ad(u)ϕ
through [START_REF] Bär | Harmonic spinors for twisted Dirac operators[END_REF].

• Every Hermitian inner product " • , • " satisfying (3) is Spin n -invariant, i.e., the spin representation is unitary w.r.t. " • , • ".

We now recall two lemmas and discuss their consequences.

Lemma 1 There exists a complex-antilinear automorphism  of Σ n commuting with the spin representation, i.e., for every u in Spin n , we have δ n (u)

•  =  • δ n (u).
Proof: Although it follows from representation theory (see e.g. p. 21 in [START_REF] Tits | Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen[END_REF] or Section 1.7 in [START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF]), we give here an elementary argument.

From the classification of real Clifford algebras (see [START_REF] Lawson | Spin Geometry[END_REF]), we have :

Cl n ∼ =                R 2 [ n 2 ] if n ≡ 0 or 6 (8) R 2 [ n 2 ] ⊕ R 2 [ n 2 ] if n ≡ 7 (8) H 2 [ n-1 2 ] if n ≡ 2 or 4 (8) H 2 [ n-2 2 ] ⊕ H 2 [ n-2 2 ] if n ≡ 3 (8) C 2 [ n 2 ]
if n ≡ 1 or 5 [START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF] As Cl n ∼ = Cl n ⊗ C, we see that, if n ≡ 0, 6 or 7 (8), the complex representation δ n : Cl n -→ End C (Σ n ) admits a real structure, i.e., there exists a C-antilinear and involutive automorphism  of Σ n such that, for every vector v in R n (hence for every element in Cl n ),

δ n (v) •  =  • δ n (v).
If n ≡ 2, 3 or 4 [START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF], there exists a quaternionic structure on Σ n , i.e., a C-antilinear automorphism  of Σ n satisfying  2 = -Id and the preceding relation. If n ≡ 1 or 5 [START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF], the real representation of Cl n being already complex, there exists no C-antilinear automorphism of Σ n commuting with the action of every vector of R n as before. However, the relation we look for needs only to hold on Spin n and not on Cl n . We eliminate the obvious case n = 1. For n > 1, as Spin n is a subset of Cl 0 n := ⊕ p even Λ p R n , and Cl 0 n identifies with Cl n-1 through an algebra-isomorphism which provides the equivalence of δ n-1 (or "double copy" as in (2)) with (δ n ) | Cl 0 n (see [START_REF] Lawson | Spin Geometry[END_REF]), we just need to solve the problem for δ n-1 . But from the preceding arguments, the representation δ n-1 admits a real or quaternionic structure, so that we again obtain a C-antilinear automorphism  of Σ n which commutes with (δ n ) |Spin n .

To sum up, for every n ≥ 1, there exists a C-antilinear automorphism  of Σ n such that, for every u in Spin n ,

δ n (u) •  =  • δ n (u),
which is the desired property.

✷

Corollary 1 (see e.g. [10] or p. 244 in [START_REF] Bär | Harmonic spinors for twisted Dirac operators[END_REF]) There exists a complex-linear isomorphism

Cl n -→ Σ n ⊗ Σ n if n is even Σ n ⊗ Σ n ⊕ Σ n ⊗ Σ n if n is odd (4)
satisfying:

• For every v in R n and every ϕ in Cl n , the element v • ϕ is mapped onto {δ n (v) ⊗ Id} ϕ when n is even (resp. onto {δ n (v) ⊗ Id ⊕ -δ n (v) ⊗ Id} ϕ when n is odd),

• The isomorphism (4) is Spin n -equivariant: for every u in Spin n and every ϕ in Cl n , the element u•ϕ•u -1 is mapped onto {δ n (u)⊗δ n (u)}ϕ when n is even (resp. onto {δ n (u)⊗δ n (u)⊕ δ n (u)⊗δ n (u)}ϕ when n is odd).

Proof: The proof obviously follows from the preceding lemma.

✷

For the next lemma, we recall an explicit description of the space of spinors as a subspace of the complex Clifford algebra in even dimensions (compare with [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF][START_REF] Kirchberg | The first eigenvalue of the Dirac operator on Kähler manifolds[END_REF][START_REF]Killing spinors on Kähler manifolds[END_REF]). We consider R 2n endowed with its natural complex structure J, so that

R 2n = R n ⊕ J(R n ). Let p ± the two projectors of R 2n ⊗ C defined by p ± := 1 2 (Id ∓ iJ) ,
where J is extended as a complex-linear automorphism of R 2n ⊗C. The endomorphisms p + and p -satisfy the following:

p -• p + = p + • p -= 0, p ± • J = J • p ± = ±ip ± , and can(p + (Z), Z ′ ) = can(Z, p -(Z ′ )) for all Z, Z ′ in R 2n ⊗ C.
Let (e j ) 1≤j≤n be the canonical basis of R n . For 1 ≤ j ≤ n, define z j := p + (e j ) and z j := p -(e j ). The vectors z 1 , . . . , z n , z 1 , . . . , z n form the so-called Witt-basis of R 2n ⊗ C associated to the basis (e j ) 1≤j≤n of R n . Set

ω := z 1 • . . . • z n .
From the above properties of p ± , that element of Cl 2n is independent of the choice of the positivelyoriented orthonormal basis (p.o.n.b.) of R n : replacing (e j ) 1≤j≤n by another p.o.n.b. of R n , and taking the associated Witt-basis of R 2n ⊗ C, one obtains the same element ω.

For 1 ≤ p ≤ n, set L p := Span C z i1 • . . . • z ip • ω, 1 ≤ i 1 < • • • < i p ≤ n and L 0 := Cω.
Those subspaces of Cl 2n do not depend on the choice of a p.o.n.b. of R n , in the preceding sense. It can furthermore be shown that ⊕ n p=0 L p is a left-ideal of dimension 2 n in Cl 2n , hence is isomorphic to Σ 2n (see [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF]). We can then set

Σ 2n := ⊕ n p=0 L p . Note here that dim C (L p ) = C p n := n! p!(n-p)! .
Through that identification, for each ψ in Cl 2n , the endomorphism δ 2n (ψ) is given by the left-Clifford multiplication by ψ. For example (and this will be crucial for the future), the Clifford multiplication by the Kähler form Ω(• , •) = can(J• , •) of (R 2n , J) is given by

δ 2n ( Ω) = ⊕ n p=0 i(2p -n)Id L p ,
that is, L p is the eigenspace of δ 2n ( Ω) for the eigenvalue i(2p -n).

Moreover, a Hermitian inner product satisfying (3) can be defined in the following way: for any 1 ≤ i 1 < . . . < i p ≤ n and 1 ≤ j 1 < . . . < j q ≤ n, set

z i1 • . . . • z ip • ω , z j1 • . . . • z jq • ω := 0 if {i 1 , . . . , i p } = {j 1 , . . . , j q } 2 [ n+1 2 ]
otherwise.

It can be shown that (3) holds and that this Hermitian inner product does not depend on the choice of a p.o.n.b. of R n .

We furthermore define Spin ′ n to be the spin group of (JR n , can), i.e.,

Spin ′ n := {w 1 • . . . • w 2k / k ≥ 1, w j ∈ JR n , can(w j , w j ) = 1} ⊂ Cl 2n .
From the universal property of Clifford algebras [START_REF] Lawson | Spin Geometry[END_REF], the linear isometry J : R n -→ JR n induces a Lie-group-isomorphism

J : Spin n -→ Spin ′ n . We then set δ ′ n := δ n| Spin n • ( J) -1 : Spin ′ n -→ Aut C (Σ n ).
Note that elements of Spin n and Spin ′ n obviously commute.

Lemma 2 Consider Cl n as canonically embedded in Cl 2n . Then the map

Cl n -→ Σ 2n (5) ϕ -→ ϕ • ω is a complex-linear isomorphism satisfying: • For every v in R n and every ϕ in Cl n , the element v • ϕ is mapped onto v • ϕ • ω,
• For every w in JR n and every ϕ in

Λ p R n ⊗ C, the element (-1) p+1 iϕ • J(w) is mapped onto w • ϕ • ω.
In particular, the isomorphism (5) is Spin n -equivariant w.r.t. the "diagonal immersion"

Spin n -→ Spin 2n (6) u -→ u • J(u),
that is, for every u in Spin n and ϕ in Cl n , the element u

• ϕ • u -1 is mapped onto u • J (u) • ϕ • ω.
Proof: Since the linear map ( 5) is obviously surjective (for each 1 ≤ p ≤ n and each 1 ≤ i 1 < . . . < i p ≤ n, the element e i1 • . . . • e ip of Cl n is mapped onto z i1 • . . . z ip • ω), and both spaces have the same dimension, it is a linear isomorphism. Furthermore, (5) maps the subspace

Λ p R n ⊗ C onto L p .
The first property is trivial. On the other hand, for every w in JR n and ϕ in Λ p R n ⊗ C,

(-1) p+1 iϕ • J(w) • ω = (-1) p ϕ • (-ip + (J(w)) • ω) = (-1) p ϕ • p + (w) • ω = (-1) p ϕ • w • ω = w • ϕ • ω,
hence the second point holds. As a consequence, for all w 1 , w 2 in JR n with can(w 1 , w 1 ) = can(w 2 , w 2 ) = 1 and every ϕ in L p , the preimage through (5) of

w 1 • w 2 • ϕ • ω is given by (-1) p i{w 2 • ϕ} • J(w 1 ) • ω = (-1) p (-1) p+1 i 2 ϕ • J(w 2 ) • J(w 1 ) • ω = ϕ • J(w 2 ) • J(w 1 ) • ω, i.e., is equal to ϕ • J(w 2 ) • J(w 1
). Note that it does no longer depend on p. Since J(w 2 )

• J(w 1 ) = ( J) -1 (w 2 • w 1 ) = ( J ) -1 {(w 1 • w 2 ) -1 }, we obtain ϕ • ( J ) -1 (u ′-1 ) (5) 
≃ u ′ • ϕ • ω for every u ′ in Spin ′ n and every ϕ in Cl n , from which follows the last statement.

✷

Corollary 2 There exists a complex-linear isomorphism

Σ 2n -→ Σ n ⊗ Σ n if n is even Σ n ⊗ Σ n ⊕ Σ n ⊗ Σ n if n is odd, ( 7 
)
satisfying:

• For every v in R n and ϕ in Σ 2n , the element δ 2n (v)ϕ is mapped onto {δ n (v) ⊗ Id} ϕ if n is even (resp. onto {δ n (v) ⊗ Id ⊕ -δ n (v) ⊗ Id} ϕ if n is odd),
• For every w in JR n and ϕ in L p , the element δ 2n (w)ϕ is mapped onto (-1)

p i {Id ⊗ δ n (J(w))} ϕ if n is even (resp. onto (-1) p i {Id ⊗ δ n (J(w)) ⊕ -Id ⊗ δ n (J(w))} ϕ if n is odd),
• If Σ n ⊗ Σ n is endowed with the tensor product of a Hermitian inner product satisfying (3) with itself, then the isomorphism (7) is unitary.

In particular, the inverse of (7) is Spin n × Spin ′ n -equivariant w.r.t. the group-homomorphism

Spin n × Spin ′ n -→ Spin 2n (u, u ′ ) -→ u • u ′ , that is: for every (u, u ′ ) in Spin n × Spin ′
n and every ϕ in Σ 2n , the isomorphism (7) maps the element

δ 2n (u • u ′ )ϕ onto {δ n (u) ⊗ δ ′ n (u ′ )} ϕ if n is even (resp. onto {δ n (u) ⊗ δ ′ n (u ′ ) ⊕ δ n (u) ⊗ δ ′ n (u ′ )} ϕ if n is odd).
Proof: The isomorphism ( 7) is obtained bringing together the isomorphisms (4) and ( 5), and straightforward satisfies the first property. The second one follows from Lemma 2 and from

ϕ • v (4) = -{Id ⊗ δ n (v)}ϕ if n is even -{Id ⊗ δ n (v) ⊕ -Id ⊗ δ n (v)}ϕ if n is odd.
for every v in R n and every ϕ in Cl n . The third one comes from the fact that the squared-norm of the image of e i1 • . . .

• e ip • ω is 2 [ n+1 2 ]
(remember that (e j ) 1≤j≤n stands here for the canonical basis of R n ). The last statement follows from the two first ones, since for all vectors w 1 and w 2 in JR n , the isomorphism (7) maps δ 2n (w 1 )δ 2n (w 2 ) onto Id⊗{δ n (J(w 1 ))δ n (J(w 2 ))} if n is even (resp. onto Id⊗{δ n (J(w 1 ))δ n (J(w 2 ))}⊕ Id ⊗ {δ n (J(w 1 ))δ n (J(w 2 ))} if n is odd).

✷

Corollary 3 There exists a complex-linear isomorphism

Σ 2n -→ ΛR n ⊗ C ( 8 
)
satisfying:

• For every v in R n and ϕ in Σ 2n , the element δ 2n (v)ϕ is mapped onto v ∧ ϕ -v ϕ,
• For every w in JR n and ϕ in Σ 2n , the element δ 2n (w)ϕ is mapped onto -i{J(w) ∧ ϕ + J(w) ϕ}.

In particular, the isomorphism (8) is Spin n -equivariant w.r.t. [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF], i.e., for every u in Spin n and every ϕ in Σ 2n , the isomorphism (8) maps u • J(u) • ϕ onto Ad(u)ϕ.

Proof: As before, the isomorphism ( 8) is obtained from the isomorphisms (1) and ( 5), and satisfies the first property. The second statement comes from the fact that, for every vector v in R n and every ϕ in Λ p R n ⊗ C, the element ϕ • v corresponds through (1) to the form (-1) p {v ∧ ϕ + v ϕ} (see [START_REF] Lawson | Spin Geometry[END_REF]). The last one straightforward follows from the preliminary remarks and Lemma 2.

✷

Spinor bundles on a Lagrangian submanifold

We now deduce from the first subsection isomorphisms between spinor bundles on a submanifold. Since we shall need those isomorphisms in the setting of Lagrangian submanifolds (see definition below), we restrict to the case of a Riemannian submanifold (M n , g) of dimension n immersed in a Riemannian manifold ( M 2n , g) of (real) dimension 2n. We shall always use the following notations: II will be the bundle-valued second fundamental form of the immersion, H its mean-curvature vector field (in our convention, H := 1 n tr(II)), and ∇ M (resp. ∇) will be the Levi-Cività connection of (M, g) (resp. of ( M , g)). The induced covariant derivative on the exterior bundle will be denoted analogously. We assume M to be spin, and fix a spin structure Spin(T M ) -→ SO(T M ). As it is in general impossible to induce a spin structure from M to M (compare with the case of an oriented hypersurface [START_REF] Lawson | Spin Geometry[END_REF][START_REF]Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF][START_REF] Morel | Eigenvalue Estimates for the Dirac-Schrödinger Operators[END_REF]), we assume M to be spin as well and fix a spin structure Spin(T M ) -→ SO(T M ) on M . Then the normal bundle N M of M in M is spin, and carries an induced spin structure, Spin(N M ) -→ SO(N M ), for which there exists a principal-bundle-homomorphism Spin(T M ) × M Spin(N M ) -→ Spin(T M ) |M making the following diagram commutative [START_REF] Milnor | Remarks concerning spin manifolds[END_REF]:

Spin(T M ) × M Spin(N M ) / / Spin(T M ) |M % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ M SO(T M ) × M SO(N M ) / / SO(T M ) |M
• The isomorphism (2) being obviously Spin n -equivariant induces a bilinear map, called the Clifford multiplication

T M × M ΣM -→ ΣM (X, ϕ) -→ γ M (X)ϕ satisfying γ M (X)γ M (Y ) + γ M (Y )γ M (X) = -2g(X, Y )Id ΣM
for all vectors X and Y in T M . The same holds for ΣN and Σ M ; we denote by X • ϕ := γ M (X)ϕ the Clifford multiplication by a vector X on an element ϕ of Σ M .

• The spinor bundle ΣM also inherits from the space of spinors a Hermitian inner product "

• , • M " satisfying γ M (X)ϕ, ψ M = -ϕ, γ M (X)ψ M
for every X in T M and all ϕ, ψ in ΣM . The same property holds for ΣN and for Σ M , for which such a Hermitian inner product will be denoted by " • , • ".

• The Levi-Cività connection of (T M, g) induces a covariant derivative ∇ ΣM on ΣM [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF][START_REF] Lawson | Spin Geometry[END_REF]. This covariant derivative is metric w.r.t. " • , • M " and satisfies the Leibniz rule w.r.t. the Clifford multiplication. We denote by ∇ ΣN (resp. ∇) that covariant derivative on ΣN (resp. on Σ M ).

We now compare the different spinor bundles on the submanifold M . We need further notations in that purpose. For a tangent vector X to M and an element

φ of ΣM ⊗ ΣN if n is even (resp. of ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN if n is odd), we define "X • M φ" to be {γ M (X) ⊗ Id ΣN }φ if n is even {γ M (X) ⊗ Id ΣN ⊕ -γ M (X) ⊗ Id ΣN }φ if n is odd.
We furthermore set

∇ := ∇ ΣM⊗ΣN if m or n is even ∇ ΣM⊗ΣN ⊕ ∇ ΣM⊗ΣN otherwise.
Note that ∇ is not the natural covariant derivative of ΣM , since from its definition it depends on the covariant derivative of the normal bundle. From the above homomorphism between spin bundles and the preceding subsection, we have the following: Lemma 3 There exists a complex-vector bundle isomorphism

Σ M |M -→ ΣM ⊗ ΣN if n is even ΣM ⊗ ΣN ⊕ ΣM ⊗ ΣN if n is odd (9)
satisfying:

• For every tangent vector field X on M and every section φ of Σ M |M , the isomorphism (9) maps the section

X • φ onto X • M φ,
• For every tangent vector field X on M and every section φ of Σ M |M ,

∇ X φ = ∇ X φ + 1 2 n j=1 e j • II(X, e j ) • φ in any local o.n.b. (e j ) 1≤j≤n of T M .
Furthermore, the isomorphism (9) can be assumed to be unitary.

Proof: From its equivariance under the action of Spin n × Spin ′ n , the isomorphism (7) straightforward induces the isomorphism (9) between the vector bundles. The first property is just the translation of that of (7) on vector bundles. The second one is deduced in a quite analogous way as in [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] from the three following points: use the local expressions of the covariant derivatives ∇ and ∇ [START_REF] Bourguignon | A Spinorial approach to Riemannian and Conformal Geometry[END_REF][START_REF] Lawson | Spin Geometry[END_REF], apply the Gauß-Weingarten formula on T M |M , and use the correspondence through [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne[END_REF] between the Clifford multiplications by 2-forms, that is: for all vectors X 1 and X 2 in T M ,

X 1 • X 2 • (9) ≃ X 1 • M X 2 • M ,
and for all vectors ν 1 , ν 2 in N M ,

ν 1 • ν 2 • (9) ≃ Id ⊗ γ N (ν 1 )γ N (ν 2 ) (⊕ Id ⊗ γ N (ν 1 )γ N (ν 2 )),
where the parentheses stand for the case "n odd" (see previous subsection). The last remark is also a direct consequence of Corollary 2.

✷

In this setup, the most natural Dirac operators that can be introduced on the manifold M are the socalled twisted-Dirac operator D ΣN M [START_REF] Lawson | Spin Geometry[END_REF] and the Dirac-Witten operator D [START_REF] Witten | A new proof of the positive energy theorem[END_REF], respectively defined in a local o.n.b (e j ) 1≤j≤m of T M by

D ΣN M := m j=1 e j • M ∇ ej , D := m j=1 e j • ∇ ej .
Both operators, which act on the sections of Σ M |M , are elliptic, and from Lemma 3 are related by

D = D ΣN M - mH 2 • .
Furthermore, the operator D ΣN M is formally self-adjoint (but D is not ).

We now specialize to submanifolds with particular geometric structures. It is first important to point out that the spinor bundle ΣN is in general not isomorphic to ΣM ; this may hold even if there exists an isomorphism between T M and N M , such as for Lagrangian submanifolds in Kählerian manifolds (see the examples in Notes 1). We therefore recall the notion of isomorphism between spin structures:

Definition 1 Let E and F be two spin vector bundles on a manifold M , with fixed spin structures Spin(E) -→ SO(E) and Spin(F ) -→ SO(F ). An isomorphism between the spin structures of E and F is given by a pair of principal-bundle isomorphisms Spin(E) f -→ Spin(F ) and SO(E) f -→ SO(F ) such that the following diagram commutes:

Spin(E) f / / Spin(F ) # # ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ M SO(E) f / / SO(F ) ; ; ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈
If two vector bundles have isomorphic spin structures, they obviously have isomorphic spinor bundles as well. Hence we give the following Corollary 4 Assume that there exists an orientation-preserving isometry f from T M to N M which induces an isomorphism ( f , f ) of the respective spin structures. Then there exists a complex-vector bundle isomorphism

Σ M |M -→ ΛT M ⊗ C ( 10 
)
satisfying:

• For every tangent vector X to M and every φ in Σ M |M , the element X • φ is mapped onto X ∧ φ -X φ,

• For every vector ν in N M and every

φ in Σ M |M , the element ν • φ is mapped onto i{f -1 (ν) ∧ φ + f -1 (ν) φ},
• If furthermore f is parallel w.r.t. the respective connections on T M and N M , then for every tangent vector field X to M and every section φ of Σ M |M , the element ∇ X φ is mapped onto ∇ M X φ.

Proof: The existence of ( 10) is a direct consequence of Corollary 3 and the fact that the spin structure of T M |M reduces via f to the spin structure of T M . The first property comes straigthforward. For the second one, it is to be noted that the automorphism

J := 0 -f -1 f 0 of T M |M is described through the Spin n -reduction as Spin(T M ) × Ad R 2n -→ Spin(T M ) × Ad R 2n [ s, v] -→ [ s, J(v)].
The last statement follows from a short computation using the properties of compatibility between ∇ and the other objects on ΣM ⊗ ΣM (⊕ΣM ⊗ ΣM ).

✷

Remark that, from the preceding proof, the existence of an orientation-preserving isometry f : T M -→ N M is equivalent to the existence of an almost-Hermitian structure J on T M |M mapping T M onto N M .

Let Ω then denote the Kähler form of (T M |M , g, J), i.e., Ω(X, Y ) := g(J(X), Y ) for all X and Y in T M |M . Under the hypotheses of Corollary 4, the following holds: for every 0 ≤ p ≤ n and φ in Λ p T M ⊗ C,

Ω • φ = i(2p -n)φ
through (10). This also follows from the properties of ( 5), see previous subsection.

The existence of an almost-complex structure on T M |M is precisely the case we shall be interested in, since we shall consider submanifolds of Kählerian manifolds. We now recall the following

Definition 2 A submanifold M n of a Kählerian manifold ( M 2n , g, J) is called Lagrangian if and only if J(T M ) = N M,
i.e., the complex structure identifies the tangent and normal bundles of the submanifold.

For a Lagrangian submanifold in a Kählerian manifold, the complex structure J obviously preserves the metric and the orientation of T M |M , and is parallel.

Corollary 5 Let (M n , g) be a spin Lagrangian submanifold immersed in a Kählerian spin manifold ( M 2n , g, J). Let the normal bundle N M carry the induced spin structure. Assume that the complex structure J induces an isomorphism between the spin structures of T M and N M . Then there exists a complex-vector bundle isomorphism

Σ M |M -→ ΛT M ⊗ C
satisfying:

• For every tangent vector X to M and every φ in Σ M |M , the element X • φ is mapped onto X ∧ φ -X φ,

• For every vector ν in N M and every φ in Σ M |M , the element ν • φ is mapped onto -i{J(ν) ∧ φ + J(ν) φ},

• For every tangent vector field X to M and every section φ of Σ M |M , the element ∇ X φ is mapped onto ∇ M X φ.

In particular, for each 0 ≤ p ≤ n, the subspace Λ p T M ⊗ C is the eigenspace associated to the eigenvalue i(2p -n) of the action of the Kähler form Ω of ( M 2n , g, J). Furthermore, for every section φ of Σ M |M ,

D ΣN M φ = (d + δ)φ and Dφ = (d + δ)φ + im 2 {J(H) ∧ φ + J(H) φ},
where d (resp. δ) denotes the exterior differential (resp. codifferential).

Proof: The only statement to be proved is the last one, for which it suffices to know that, for any local o. ✷ Notes 1 1) In the same way as above, one can give a "bundle-version" of Corollary 1: let E be any arbitrary Riemannian spin vector bundle on a spin manifold M such that there exists an isomorphism from T M to E, preserving the metric, the orientation and the spin structure. Then there exists a complex-vector bundle isomorphism between the Clifford bundle and the tensor product ΣM ⊗ ΣE (or double copy), mapping X • φ onto X • M φ for every X in T M and φ in the Clifford bundle; if furthermore the isomorphism from T M to E is parallel w.r.t. the covariant derivatives on T M and E, then ∇ M X φ is mapped onto ∇ ΣM⊗ΣE X φ (or double copy).

2) We proved in Corollary 5 that, under a compatibility condition between the complex structure and the spin structures of T M and N M , the twisted-Dirac operator can be identified with d + δ (the so-called Euler operator ), that is, a square-root of the Hodge -de Rham Laplacian dδ + δd. This compatibility hypothesis is important, since otherwise the conclusions of Corollary 5 may fail as can be seen on the following example. Consider the unit circle M := S 1 , canonically embedded in the complex line M := C. This embedding is isometric and Lagrangian. Furthermore, S 1 carries two spin structures, a trivial one and a non-trivial one. If one chooses the trivial (resp. non-trivial) spin structure on the tangent bundle of S 1 , then the induced spin structure on the normal bundle is non-trivial (resp. trivial) [START_REF]Dirac eigenvalues: the case of compact manifolds[END_REF][START_REF] Friedrich | Dirac operators in Riemannian geometry[END_REF]. Therefore, the complex structure does not even preserve the spin bundles over S 1 . Furthermore, the induced twisted Dirac operator is in both cases the fundamental Dirac operator of S 1 for the non-trivial spin structure. Since this operator has trivial kernel, it cannot coincide with a square-root of the Hodge -de Rham Laplacian. One therefore sees that the hypothesis of compatibility of Corollary 5 between the complex and the spin structures is necessary.

2 An upper eigenvalue bound for the twisted Dirac operator on a Lagrangian submanifold

In this section, we consider a compact Lagrangian spin submanifold (M n , g) in a Kählerian spin manifold ( M 2n , g, J). Since the operator D ΣN M is elliptic and formally self-adjoint, it has a discrete spectrum; we then denote by λ k (k ∈ N \ {0}) its eigenvalues, counted with their multiplicities, assuming that |λ k+1 | ≥ |λ k | for every k ≥ 1. We are interested in the following question: how can one control the smallest eigenvalues of the twisted Dirac operator in terms of extrinsic geometric invariants? For submanifolds of certain real space-forms, it was proved by C. Bär in [START_REF]Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF] and the author in [START_REF] Ginoux | Opérateurs de Dirac sur les sous-variétés[END_REF][START_REF]Une nouvelle estimation extrinsèque du spectre de l'opérateur de Dirac[END_REF] that the ambient curvature together with either the L 2 or the L ∞ norm of the mean curvature appear as the best candidates in that purpose. Those results were obtained considering restrictions to the submanifold of particular spinor fields on the ambient manifold, called Killing spinors (see [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF] about those). As non Ricci-flat Kählerian spin manifolds of (real) dimension greater than 2 do not admit such spinor fields [START_REF] Hijazi | A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors[END_REF][START_REF] Lichnerowicz | Killing spinors according to O. Hijazi and applications[END_REF][START_REF]Spin manifolds, Killing spinors and the universality of the Hijazi Inequality[END_REF], it comes as a natural question whether such kind of estimates could still hold in our context. We give an affirmative and sharp answer to that problem, using the notion of Kählerian Killing spinors introduced by K.-D. Kirchberg in [START_REF]Killing spinors on Kähler manifolds[END_REF] and O. Hijazi in [START_REF]Eigenvalues of the Dirac operator on compact Kähler manifolds[END_REF]. Remember that, for a complex constant α, an α-Kählerian Killing spinor on the Kählerian spin manifold ( M 2n , g, J) is a couple of sections (ψ, φ) of Σ M satisfying, for every tangent vector field Z on M ,

∇ Z ψ + αp -(Z) • φ = 0 ∇ Z φ + αp + (Z) • ψ = 0,
where p ± (Z) := 1 2 (Z ∓ iJ(Z)). When α = 0, an α-Kählerian Killing spinor is just a pair of parallel spinor fields. As for Killing spinors, the presence of non-zero Kählerian Killing spinors yields strong conditions on the geometry of M (see [START_REF]Killing spinors on Kähler manifolds[END_REF][START_REF]Eigenvalues of the Dirac operator on compact Kähler manifolds[END_REF]): if α = 0, the complex dimension n of M has to be odd, the manifold ( M , g, J) has to be Einstein with scalar curvature n(n + 1)α 2 (therefore α must be either real or purely imaginary), and the sections ψ and φ have to lie in particular eigenspaces of the Clifford action of the Kähler form Ω of ( M , g, J):

Ω • ψ = -iψ Ω • φ = iφ
(remember that, in our convention, Ω(X, Y ) := g (J(X), Y ) for all vectors X and Y in T M ). For example, the odd-complex-dimensional projective space CP 2k+1 is a spin manifold carrying 1-Kählerian Killing spinors [START_REF] Kirchberg | The first eigenvalue of the Dirac operator on Kähler manifolds[END_REF].

Main result

From here on, we denote by K(α) the space of α-Kählerian Killing spinors on ( M , g, J) (note that, if α = 0, then K(α) ∩ K(-α) = {0}). Manifolds carrying a non-zero K(α) have been completely characterized by A. Moroianu in [START_REF] Moroianu | La première valeur propre de l'opérateur de Dirac sur les variétés kählériennes compactes[END_REF] when α is a non-zero real number. The classification of spin Kählerian manifolds admitting a non-zero K(α)with purely imaginary α is not known completely, but partial results have been obtained by K.-D. Kirchberg in [START_REF]Killing spinors on Kähler manifolds[END_REF] and M. Herzlich in [START_REF] Herzlich | Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces[END_REF]. We prove the following: Theorem 1 Let (M n , g) be a Lagrangian spin submanifold of a Kählerian spin manifold ( M 2n , g, J). Let the normal bundle of M in M carry the induced spin structure, and H be the mean curvature vector field of M in M . Assume that, for a given non-zero complex constant α, the dimension of K(α) is N ≥ 1. Then the following holds: 1.) The 2N th eigenvalue λ 2N of the twisted-Dirac operator D ΣN M satisfies

(λ 2N ) 2 ≤ (n + 1) 2 α 2 4 + n 2 ||H|| 2 ∞ 4 . ( 11 
)
2.) If furthermore α is a non-zero real number, the N th eigenvalue λ N satisfies

(λ N ) 2 ≤ (n + 1) 2 α 2 4 + n 2 4Vol(M ) M |H| 2 v g . (12) 
Proof:

Let K n-1 2 (resp. K n+1 2 
) be the (pointwise) orthogonal projection of K(α) onto the -i-(resp. i-)

eigenspace of the Clifford action of Ω, that is,

K n-1 2 := ψ ∈ Γ(Σ M ) / Ω • ψ = -iψ and ∃ φ ∈ Γ(Σ M ) / (ψ, φ) ∈ K(α) K n+1 2 := φ ∈ Γ(Σ M ) / Ω • φ = iφ and ∃ ψ ∈ Γ(Σ M ) / (ψ, φ) ∈ K(α) .
Since, from the hypotheses, α = 0, the orthogonal projections K(α) -→ K n±1 2 are injective. We therefore

have dim C K n±1 2 = dim C K n±1 2 
= N . We then give an upper bound of the Rayleigh-quotient 

Q (D ΣN M ) 2 , ϕ := M (D ΣN M ) 2 ϕ , ϕ v g M ϕ , ϕ v g for ϕ ∈ K n-1 2 ⊕ K n+1
) 2 ϕ = D 2 ϕ + n 2 |H| 2 4 ϕ + n 2 n j=1 e j • ∇ N ej H • ϕ, (13) 
where ∇ N H denotes the normal covariant derivative of H. But, since M is Lagrangian in M , the complex vectors Z j := p + (e j ) and Z j := p -(e j ) (1 ≤ j ≤ n) form a Witt-basis for T M ⊗ C. Now remember the expression of the Kähler form Ω of ( M , g, J) in that basis:

Ω = -2i n j=1 Z j ∧ Z j .
We deduce from that identity that

Dψ = -α n j=1 Z j ∧ Z j • φ + α n j=1 g Z j , Z j φ = - iα 2 Ω • φ + nα 2 φ = (n + 1)α 2 φ, since Ω • φ = iφ. A similar computation gives Dφ = -α n j=1 p -(e j ) • p + (e j ) • ψ = -α n j=1 Z j ∧ Z j • ψ + α n j=1 g Z j , Z j ψ = iα 2 Ω • ψ + nα 2 ψ = (n + 1)α 2 ψ,
since Ω • ψ = -iψ. We therefore obtain: . Taking the Hermitian inner product of ( 14) with ϕ and integrating lead to

D 2 ψ = (n+1) 2 α 2
Q (D ΣN M ) 2 , ϕ = (n + 1) 2 α 2 4 + n 2 M |H| 2 ϕ , ϕ v g 4 M ϕ , ϕ v g . ( 15 
)

Examples

For an odd integer n ≥ 3, consider the round sphere S n (of constant sectional curvature 1) of dimension n as canonically embedded in the 2n + 1-dimensional round sphere S 2n+1 . That embedding is isometric, totally geodesic, and the canonical complex structure of R 2n+2 maps the tangent bundle of S n into the horizontal space H defined, for each z in S 2n+1 as

H z := {Rz ⊕ RJz} ⊥ ⊂ T z S 2n+1 ,
with the following property:

H | S n = T S n ⊕ ⊥ J(T S n ).
Let then CP n be the complex projective space of complex dimension n. Composing the Hopf fibration S 2n+1 -→ CP n with the above embedding yields an immersion

S n -→ CP n (16) 
satisfying the following: it is isometric (the Hopf fibration induces an isometry from H onto T CP n ), totally geodesic (the Hopf fibration maps horizontal geodesics onto geodesics) and Lagrangian (the Hopf fibration is "holomorphic" w.r.t. the complex structures of H and CP n ). Furthermore, if n is odd, the manifold CP n is spin, has a unique spin structure since it is simply-connected [START_REF] Lawson | Spin Geometry[END_REF], and carries a 2C n+1 2 n dimensional space of 1-Kählerian Killing spinors [START_REF] Kirchberg | The first eigenvalue of the Dirac operator on Kähler manifolds[END_REF] (remember that C p n := n! p!(n-p)! ). The round sphere S n is also spin, and for the same reason has a unique spin structure; more generally, every spin vector bundle on S n has a unique spin structure, that is, two spin structures on a vector bundle on S n will always be isomorphic. Consider then the (canonical) spin structure of T S n and the induced one on the normal bundle of S n in CP n w.r.t. [START_REF] Hijazi | A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors[END_REF]; then the complex structure of CP n will necessarily induce an isomorphism between the spin structures of the tangent and normal bundles of S n . Hence we obtain from Corollary 6 the existence of the following upper bound for the 2C n+1 , which is precisely the multiplicity of the first eigenvalue of the Hodge -de Rham Laplacian on the closed n+1 2 -forms.

A further interesting example would be to consider the real n-dimensional projective space (with n = 4k + 3) in the complex projective space CP n . That question, which is linked to determining all the Lagrangian submanifolds which satisfy the equality in Theorem 1, will be considered in a forthcoming work.

  n.b. (e j ) 1≤j≤n of T M ,

2 ,

 2 ϕ = 0, and apply the Min-Max principle. Let (ψ, φ) be a non-zero α-Kählerian Killing spinor as above on M . To obtain (D ΣN M ) 2 ψ or (D ΣN M ) 2 φ, we first evaluate D 2 on ψ or φ, then use the following relation ([11], Lemme 4.1): for every section ϕ of Σ M |M and in every local orthonormal basis (o.n.b.) (e j ) 1≤j≤n of T M , (D ΣN M

  Let us fix a local o.n.b. (e j ) 1≤j≤n of T M . From the hypotheses, p -(e j ) • φ. For every vector X on T M , we have g (p -(X), p -(X)) = 0 and therefore p -(X) • p -(X) • ϕ = 0 for every ϕ in Σ M |M . Hence Dψ = -α n j=1 p + (e j ) • p -(e j ) • φ.

4 ψ 2 4φ 2 ⊕ K n+1 2

 4222 and D 2 φ = (n+1) 2 α ϕ := ψ or φ, hence for every ϕ ∈ K n-1

n+1 2 n 4 .

 24 smallest eigenvalues λ of the Hodge -de Rham Laplacian on the closed n+1 2 -forms:λ ≤ (n + 1) 2That estimate is sharp: indeed, for 1 ≤ p ≤ n -1, the spectrum of the Hodge -de Rham Laplacian on the closed p-forms onS n is [9] {(k + p)(n -p + k + 1) / k ∈ N},and the multiplicity of the first eigenvalue (k = 0) is C p n+1 . But, for p := n+1 2 , we have 2C

Here we recall that, as the operator D ΣN M is self-adjoint, we only keep the real parts when taking the Hermitian inner product of both members of [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] with ϕ. That is why the term involving ∇ N H doesn't give any contribution to [START_REF] Herzlich | Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces[END_REF]. We thereby obtain

2 is 2N -dimensional, the first statement straightforward follows from the Min-Max principle.

To conclude the second one, one just has to remember that, if furthermore α is real, then the lengthfunction of ψ + φ is constant on M (see [START_REF] Kirchberg | The first eigenvalue of the Dirac operator on Kähler manifolds[END_REF]), hence on M . Summing up the identities [START_REF] Ginoux | On eigenvalue estimates for the submanifold Dirac operator[END_REF] for ϕ := ψ and ϕ := φ and integrating against ψ + φ, one straightforward obtains the desired integral upper bound, but this time for the N th eigenvalue only since K(α) is N -dimensional.

✷

Note 1 If α = 0, that is, if the ambient manifold M admits non-trivial parallel spinors, then for every non-zero parallel spinor ϕ on M , we have Dϕ = 0; it then follows from (13) that

from which we directly obtain

That estimate, which was proved by C. Bär in [START_REF]Extrinsic Bounds for Eigenvalues of the Dirac Operator[END_REF], could be included in Theorem 1 as the particular case α = 0 of [START_REF]Reilly-type spinorial inequalities[END_REF]. We however point out that, for ambient manifolds carrying parallel spinors, we dot not obtain any further information on the spectrum of D ΣN M in presence of a Kähler structure on M .

Corollary 6 Under the hypotheses of Theorem 1, assume furthermore that the complex structure J induces an isomorphism between the spin structures of T M and N M . Let H be the mean curvature vector field of M in M . Then the following holds: 1.) The 2N smallest eigenvalues (counted with their multiplicities) λ of the Hodge -de Rham Laplacian on Ω n-1

2.) If furthermore α is a non-zero real number, the N smallest eigenvalues λ satisfy

If moreover M is minimal in M (i.e., if H = 0), then the same result hold for the N (resp.

) smallest eigenvalues of the Hodge -de Rham Laplacian on the space of closed n+1 2 -forms.

Proof: From Corollary 5, if J identifies the spin structures of T M and N M , then (D ΣN M ) 2 = dδ + δd. Furthermore, the isomorphism (10) identifies the eigenspace associated to the eigenvalue i(2p -n) of the Clifford action of Ω with Λ p T M ⊗ C; since, under that action, the spinor field φ (resp. ψ) is eigen for the eigenvalue i (resp. -i), it is a i.e., ψ is coclosed and φ is closed. As the spectrum of the n-1 2 -Laplacian on coclosed forms coincides with that of the n+1 2 -Laplacian on closed forms (use the Hodge star operator), we obtain the second property.

✷