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ABSTRACT: We give a new extrinsic upper bound for the smallest eigenvalues of the Dirac

operator of a hypersurface. If the ambient manifold is the hyperbolic space, we show that its

limiting case is achieved only for geodesic spheres.

Let (M, g) be an m-dimensional compact Riemannian manifold isometrically im-

mersed in one of the three space-forms M̃ = Rm+1, Sm+1 or Hm+1. Consider the problem
of finding sharp upper bounds for the smallest eigenvalue λ1 of the Dirac operator of M .

Such a problem has been examined by different authors (see [2], [5], [8], [3]). Recently, C.
Bär gave upper bounds involving the L2-norm of the mean curvature H of the immersion
as well as the ambient scalar curvature. More precisely, he showed that ([3], Theorem
4.1):

λ21 ≤
m2

4Vol(M)

∫

M

H2vg , if M̃ = R
m+1, and

λ21 ≤
m2

4Vol(M)

∫

M

(H2 + 1)vg , if M̃ = Sm+1,

with equality achieved for geodesic spheres. However, if M is immersed in Hm+1, C. Bär
proved that ([3], Theorem 4.4):

|λ1| ≤
m

2
(1 + ||H||∞),

which is not sharp: for geodesic spheres of radius r, the inequality is strict, and we have
([3], p. 590) lim

r→0

2|λ1|
m(1+||H||∞)

= 1. Another estimate in terms of the L2-norm of the mean

curvature and the extrinsic radius of the hypersurface was given by the same author ([3],

1



p.587), but the limiting-case could not be achieved.
In this paper, we investigate this case and prove the following:

Theorem 1 Assume that M is isometrically immersed in Hm+1, seen as the upper half-
sphere carrying the metric g = e2ug0 conformal to the standard metric g0 on Sm+1. Then

λ21 ≤
m2

4Vol(M)

∫

M

(H2 − 1)vg +
1

4Vol(M)
||du||2L2(M),

where du := d(u|M ). Besides, if equality is achieved, then the function u is constant on
M , and therefore M is a geodesic sphere.

In section 1, we recall basic facts regarding restricted spinor bundles. Then, applying
the Min-Max principle, we first prove in section 2 a general estimate when the ambient
manifold admits a real Killing spinor for a conformal change of the metric. Choosing
this spinor as test-spinor in the Rayleigh quotient constitutes the key-point of the paper:
real Killing spinors play the same role for the Dirac operator as coordinate functions do
for the scalar Laplacian, they are the most suitable test-sections for our problem. The
three problems can be uniformly treated, since the three space-forms can be conformally
embedded in Sm+1, which admits real Killing spinors. The approach El Soufi and Ilias
used for the scalar Laplacian in [9] can therefore be extended to the fundamental Dirac
operator.

I thank Helga Baum, Oussama Hijazi and Sebastián Montiel for their support during
the preparation of this paper. I also thank Bertrand Morel and Emmanuel Humbert for
fruitful discussions and their careful reading of the paper.

1 Spinors and Dirac operators on an oriented hyper-

surface

For preliminaries on spinors and Dirac operators, we refer to [13], [7], [10], [6], and [15].

For a recent review of the topic, see [14]. Let ι : M −→ (M̃, g) be an immersion from a

connected and oriented hypersurfaceM into a Riemannian spin manifold (M̃, g). We shall
always assume that the dimension m of M is greater than or equal to 2. Let ν : M −→
NM be the unitary section of the normal bundle NM such that, for every positively-
oriented basis (X1, . . . , Xm) of TM , the basis (X1, . . . , Xm, ν) of TM̃ |M is positively-
oriented. Let B be the shape-operator of the immersion ι, seen as a field of symmetric
endomorphisms of TM . We equipM with the induced metric and denote it by g, with the
associated norm | · |, the volume element vg and the total volume Vol(M). We respectively

denote by ∇ and ∇̃ the Levi-Civita connections of (M, g) and (M̃, g).
The normal bundle being trivialized by ν, the manifold (M, g) admits an induced spin-

structure. We denote by ΣM (resp. ΣM̃ ) the vector bundle of spinors of (M, g) (resp.
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of (M̃, g)). We set

Σ =

{
ΣM if m is even
Σ0M ⊕ Σ1M if m is odd,

where, for m odd and j ∈ {0, 1}, ΣjM is the vector bundle of spinors on M on which
the complex volume form acts by (−1)jId. We denote by ‘ ·

M
’ (resp. ‘·’) the Clifford

multiplication on Σ (resp. on ΣM̃ |M).
The vector bundle Σ can be endowed with a Hermitian inner product, denoted by < · , · >,
and a covariant derivative ∇, which satisfy the following properties, for all vector fields
X and Y on M and sections ψ and φ of Σ:

• < X ·
M
ψ , φ >= − < ψ , X ·

M
φ >

• X (< ψ , φ >) =< ∇Xψ , φ > + < ψ , ∇Xφ >

• ∇X

(
Y ·

M
ψ
)
= ∇XY ·

M
ψ + Y ·

M
∇Xψ.

The vector bundle ΣM̃ (and therefore ΣM̃ |M) can also be endowed with a covariant

derivative ∇̃ and a Hermitian inner product satisfying the same properties.

Now there exists an isomorphism between Σ and ΣM̃ |M ,

Σ −→ ΣM̃ |M (1)

ψ 7−→ Ψ,

which satisfies, for every vector field X on M and for every section ψ of Σ:

• X ·
M
ψ is mapped onto X · ν ·Ψ.

• ψ 7−→ Ψ is a unitary isomorphism w.r.t. the respective Hermitian inner products

• w.r.t. the respective covariant derivatives ∇ and ∇̃:

∇̃XΨ = ∇Xψ +
1

2
B(X) · ν ·Ψ. (2)

The Hermitian inner products on Σ and ΣM̃ |M will hence be denoted by the same symbol,
with associated norm ‘| · |’. Note however that this isomorphism is not unique, and that
it doesn’t preserve the covariant derivatives as can be seen in (2).

The isomorphism (1) can also be chosen so that the action of iν on ΣM̃ |M induces an
endomorphism on Σ, denoted by A, defined for every ψ in Σ by:

iν ·Ψ = A(ψ).
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The endomorphism A satisfies, for every vector field X on M and every section ψ of Σ:




A2 = Id

|A(ψ)| = |ψ|
A(X · ψ) = −X · A(ψ)
∇X(A(ψ)) = A(∇Xψ)

If m is even, the vector bundle Σ splits under the action of the complex volume form into
Σ = Σ+ ⊕ Σ−, and A is given by:

A(ψ+ + ψ−) = ψ+ − ψ−, where ψ± ∈ Σ±.

If m is odd, and if τ : Σ0M −→ Σ1M is the isomorphism given by the equivalence of the
spin representations, then

A =

(
0 τ−1

τ 0

)
.

In a local orthonormal basis (Xj)1≤j≤m of TM , let D and D̃ be the operators defined by:

D =
m∑

j=1

Xj ·
M

∇Xj
, D̃ =

m∑

j=1

Xj · ∇̃Xj
.

The operator D̃ is called the Dirac-Witten operator (Cf [16]). These two operators, acting

respectively on sections of Σ and ΣM̃ |M , are related by

∀ψ ∈ Γ(Σ), D̃Ψ = ν ·

(
Dψ −

mH

2
Ψ

)
,

where H = 1
m

∑m

j=1 g(B(Xj) , Xj) is the mean curvature of the immersion ι.

Note 1 If m is even, the operator D coincides with the Dirac operator DM of the
manifold (M, g). However, if m is odd, via the isomorphism Σ0M

τ
−→ Σ1M , calling DM

the Dirac operator of (M, g) acting on the sections of Σ0M ,

D = DM ⊕−DM ,

that is to say

∀φ0, ψ0 ∈ Γ(Σ0M), D
(
φ0 ⊕ τ(ψ0)

)
= DMφ

0 ⊕−τ(DMψ
0).

When M is compact, if (·, ·) :=
∫
M
< · , · > vg, with associated norm || · ||, the operator

D is formally self-adjoint with respect to (·, ·):

∀ψ, φ ∈ Γ(Σ), (Dψ, φ) = (ψ,Dφ).

The eigenvalues of D are therefore real.
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Lemma 1 The spectrum of D is symmetric with respect to zero.

Proof : Just note that, for every section φ of Σ,

D (A(φ)) = −A (Dφ) ,

so if φ is an eigenspinor of D for the eigenvalue λ, then A(φ) is an eigenspinor of D for
the eigenvalue −λ.

✷

Note 2 If m is odd, every eigenvalue of DM is an eigenvalue of D. Nevertheless, if λ is
an eigenvalue of D, then λ or −λ is an eigenvalue of DM .

When M is compact, the operator D being elliptic, its eigenvalues form an increasing
unbounded sequence. The sequence (λk)k≥1 of eigenvalues of DM (counted with their
multiplicities) will thereby be ordered with increasing absolute value:

0 ≤ |λ1| ≤ |λ2| ≤ . . . ≤ |λk| ≤ |λk+1| ≤ . . . .

2 Upper eigenvalue bounds when the ambient man-

ifold admits a twistor-spinor

We assume M to be compact. In order to obtain upper bounds for the smallest eigenval-
ues of D, we shall use the following well-known proposition:

Proposition 1 (Min-Max principle) For each positive integer k,

λ2k = Min
Ek⊂Γ(Σ)

{
Max

ψ∈Ek\{0}
{
(D2ψ, ψ)

||ψ||2
}
}
,

where the minimum is taken over all the k-dimensional vector subspaces Ek of Γ(Σ).

We need, to apply the Min-Max principle, to pick a subspace Ek of sections (called test-

sections) of Σ on which will be computed the Rayleigh-quotient (D2ψ,ψ)
||ψ||2

. The three model-
spaces carry particular spinor fields whose restrictions to M form natural candidates to
be test-spinors, namely Killing spinors. Recall that, given a complex constant α, an α-
Killing spinor on (M̃, g) is a non-zero section Ψ of ΣM̃ satisfying, for every vector field

Z on M̃ ,

∇̃ZΨ = αZ ·Ψ.

If such a section exists, it can be shown that α must be real or purely imaginary, and the
manifold (M̃, g) must be Einstein with constant scalar curvature equal to 4m(m + 1)α2
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([6], [10]). A Killing spinor has no zero since it is a parallel section for the covariant deriva-

tive Z 7→ ∇̃Z−αZ·. There are however big differences between real and imaginary Killing
spinors, particularly concerning the length-function |Ψ| of such a spinor: this function is

constant on M̃ when α is real, whereas it cannot be constant when α is imaginary. This
is the first reason why we would be more interested in computing the Rayleigh-quotient
on real Killing spinors rather than on imaginary ones.
Both the Euclidean space and the round sphere admit real Killing spinors; these are
parallel spinors on Rm+1 (i.e. α = 0), and ±1

2
-Killing spinors on Sm+1. By computing

the Rayleigh-quotient with such test-spinors C. Bär obtained his sharp upper bounds for
hypersurfaces of Rm+1 or Sm+1 ([3], corollaries 4.2 and 4.3).
Conversely, the hyperbolic space admits ± i

2
-Killing spinors. How can one then choose a

real Killing spinor as test-spinor? The idea is as follow: embed Hm+1 in Sm+1, compare
the spinors for two conformal metrics, and use the restriction of a real Killing spinor on
the sphere to the hypersurface M →֒ H

m+1 as test-spinor.

We first recall basic facts about spinors and conformal metrics (see [13], [7], [4], [12] or

[11]). Let g = e2ug be a conformal change of the metric on M̃ , where u is a smooth

function on M . The manifold (M̃, g) being spin, let ΣgM̃ be its vector bundle of spinors,

and denote by “ · ” Clifford multiplication on ΣgM̃ . There exists an isometry,

ΣM̃ −→ ΣgM̃

Φ 7−→ Φ

satisfying, for every vector field Z on M̃ and every section Φ in ΣM̃ ,

Z · Φ = e−uZ ·Φ.

Such an isometry exists as well from Σ onto Σg, which will be denoted similarly.
With respect to the covariant derivatives ∇ and∇g on Σ and Σg respectively, the following
relation holds:

∇g
Xφ = ∇Xφ−

1

2
X ·

M
du ·

M
φ−

1

2
du(X)φ,

for every vector field X on M and every section φ of Σ. An analogous relation holds for
the covariant derivatives ∇̃ and ∇̃g: for every vector field X on M , and every section Φ
of ΣM̃ |M ,

∇̃g
XΦ = ∇̃XΦ−

1

2
X · du · Φ−

ν(u)

2
X · ν · Φ−

1

2
du(X)Φ (3)

(remember that du = d(u|M )).

2.1 Main result

When the ambient manifold M̃ carries an N -dimensional vector space of α-Killing spinors
for a certain metric, define

µ(N) :=

{
N if m is even[
N+1
2

]
if m is odd
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(where [·] is the integer part).

Theorem 2 Assume that, for a conformal change of the metric g = e2ug, the manifold
(M̃, g) admits an N-dimensional vector space of real Killing spinors. Then, for 1 ≤ k ≤
µ(N),

λ2k ≤
m2

4Vol(M)

∫

M

(
H2 +R(ι)

)
vg +

1

4Vol(M)
||du||2L2(M), (4)

where, in a local orthonormal basis (Xj)1≤j≤m of TM ,

R(ι) :=
1

m(m− 1)

∑

1≤i 6=j≤m

K̃(Xi, Xj),

and K̃ denotes the sectional curvature of (M̃, g).

Proof : Let Ψ be an α-Killing spinor on (M̃, g) (α is assumed to be real). Compute the

Rayleigh-quotient
(D2ψ,ψ)
||ψ||2

, where, as in Section 1, ψ is the preimage of Ψ through the

isomorphism (1). For this purpose, we need first to compare the squares of D and D̃,

then relate the Dirac-Witten operators D̃ and D̃g for metrics g and g respectively.

Lemma 2 For every section φ of Σ, we have:

1. D̃2Φ = D2φ− m
2
dH · ν · Φ− m2H2

4
Φ

2. D̃g Φ = e−u
(
D̃Φ+ m−1

2
du · Φ+ m

2
ν(u)ν · Φ

)
.

Proof : For every section φ in Σ, and in a local orthonormal basis (Xj)1≤j≤m of TM ,

D̃(ν · Φ) =
m∑

j=1

Xj · ∇̃Xj
ν · Φ+Xj · ν · ∇̃Xj

Φ

= mHΦ− ν · D̃Φ.

From D̃Φ = ν ·
(
Dφ− mH

2
Φ
)
and this identity, we deduce that:

D̃2Φ = mH

(
Dφ−

mH

2
Φ

)
− ν · D̃

(
Dφ−

mH

2
Φ

)

= mH

(
Dφ−

mH

2
Φ

)
− ν · ν ·

(
D2φ−

m

2
D(Hφ)−

mH

2
Dφ+

m2H2

4
Φ

)

= mH

(
Dφ−

mH

2
Φ

)
+D2φ−

m

2
dH · ν · Φ−

mH

2
Dφ−

mH

2
Dφ+

m2H2

4
Φ

= D2φ−
m

2
dH · ν · Φ−

m2H2

4
Φ.
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For the second point of Lemma 2, we apply formula (3) and use the fact that, if (Xj)1≤j≤m
is a local g-orthonormal basis of TM , then (e−uXj)1≤j≤m is a local g-orthonormal basis
of TM :

D̃gΦ =

m∑

j=1

e−2uXj · ∇̃
g
Xj
Φ

= e−u

(
m∑

j=1

Xj · ∇̃Xj
Φ−

1

2
Xj ·Xj · du · Φ−

ν(u)

2
Xj ·Xj · ν · Φ +

1

2
du(Xj)Xj · Φ

)

= e−u
(
D̃Φ +

m− 1

2
du · Φ+

mν(u)

2
ν · Φ

)
.

✷

We deduce from the second part of Lemma 2 that

D̃Ψ = −mαeuΨ−
m− 1

2
du ·Ψ−

m

2
ν(u)ν ·Ψ.

Now compute D̃2Ψ :

D̃(euΨ) = d(eu) ·Ψ+ euD̃Ψ

= −mαe2uΨ−
m− 3

2
eudu ·Ψ−

m

2
euν(u)ν ·Ψ.

On the other hand, calling △ the scalar Laplacian on (M, g),

D̃(du ·Ψ) =

m∑

j=1

Xj · ∇̃Xj
du ·Ψ+

m∑

j=1

Xj · du · ∇̃Xj
Ψ

=
m∑

j=1

Xj · ∇Xj
du ·Ψ+

m∑

j=1

g(B(du), Xj)Xj · ν ·Ψ− du ·
m∑

j=1

Xj · ∇̃Xj
Ψ

− 2

m∑

j=1

du(Xj)∇̃Xj
Ψ

= (△u)Ψ +B(du) · ν ·Ψ− du · D̃Ψ− 2∇̃duΨ.

But, from (3),

∇̃duΨ = αeudu ·Ψ+
1

2
ν(u)du · ν ·Ψ,

hence

D̃(du ·Ψ) = (△u)Ψ+B(du) ·ν ·Ψ+(m−2)αeudu ·Ψ−
m− 1

2
|du|2Ψ+

m− 2

2
ν(u)du ·ν ·Ψ.

Besides,

D̃(ν(u)ν ·Ψ) = d(ν(u)) · ν ·Ψ+mHν(u)Ψ− ν(u)ν · D̃Ψ

= d(ν(u)) · ν ·Ψ+mHν(u)Ψ +mαeuν(u)ν ·Ψ

−
m− 1

2
ν(u)du · ν ·Ψ−

m

2
ν(u)2Ψ.
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We then have:

D̃2Ψ = m2α2e2uΨ− αeudu ·Ψ−
m− 1

2
B(du) · ν ·Ψ+

(m− 1)2

4
|du|2Ψ

−
m− 1

2
(△u)Ψ +

m− 1

2
ν(u)du · ν ·Ψ−

m

2
d(ν(u)) · ν ·Ψ

−
m2H

2
ν(u)Ψ +

m2ν(u)2

4
Ψ.

The first part of Lemma 2 yields:

D2ψ =
m2

4

(
H2 − 2Hν(u) + ν(u)2 + 4α2e2u

)
Ψ+

(m− 1)2

4
|du|2Ψ

−
m− 1

2
(△u)Ψ +X0 ·Ψ+ Y0 · ν ·Ψ,

where X0 and Y0 are the tangent vector fields on M defined by:

X0 := −αeudu

Y0 :=
m− 1

2
(ν(u)du− B(du)) +

m

2
d (H − ν(u)) .

Note that, if Hg is the mean curvature of the immersion ι :M −→ (M̃, g), then

H2 − 2Hν(u) + ν(u)2 = (H − ν(u))2

= e2uH2
g .

According to A. El Soufi et S. Ilias ([9], Proposition 2),

e2u
(
H2
g +R(ι)

)
= H2 +R(ι)−

m− 2

m
|du|2 +

2

m
△u, (5)

with R(ι) = R(ι, g).

But, if (M̃, g) is Einstein with scalar curvature equal to ρ, then R(ι) = ρ

m(m+1)
. Hence,

in our case, R(ι) = 4α2, and relation (5) yields:

D2ψ =
m2

4

(
H2 +R(ι)

)
Ψ+

1

4
|du|2Ψ+

1

2
(△u)Ψ +X0 ·Ψ+ Y0 · ν ·Ψ. (6)

Since Ψ has constant length on M̃ , the spinor ψ is also of constant length on M , which
we assume to be equal to 1. Taking the Hermitian product of equality (6) with Ψ gives:

< D2ψ , ψ >=
m2

4

(
H2 +R(ι)

)
+

1

4
|du|2 +

1

2
△u+ < X0 ·Ψ , Ψ > + < Y0 · ν ·Ψ , Ψ > .

Since X0 and Y0 are tangent vector fields on M , the last two terms are purely imaginary.
As the operator D is formally self-adjoint, we therefore don’t need these terms to compute
the Rayleigh-quotient. Integrating over M , we obtain:

(D2ψ, ψ)

(ψ, ψ)
=

m2

4Vol(M)

∫

M

(
H2 +R(ι)

)
vg +

1

4Vol(M)

∫

M

|du|2vg.

This holds for every α-Killing spinor Ψ on (M̃, g). The Min-Max principle thus yields
the result.
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✷

Notes

1. If the function u is constant on M̃ , i.e. if the manifold (M̃, g) itself admits α-Killing
spinors with real α, the inequality (4) is just the one C. Bär proved in [3] (Theorem
4.1), since in this case R(ι) = 4α2.

2. In case m = 2, the integral
∫
M
(H2 +R(ι)) vg is the so-called Willmore integral.

This integral is invariant under conformal changes of the metric on M̃ .

3. When the ambient manifold M̃ is simply connected, the spin structure of (M̃, g)
is preserved under the action of orientation-preserving conformal diffeomorphisms.
We can therefore improve the inequality (4): for k ∈ {1, . . . , µ(N)},

λ2k ≤
m2

4Vol(M)

∫

M

(
H2 +R(ι)

)
vg +

1

4Vol(M)
inf
{
||dv||2

}
,

where the infimum is taken over all conformal diffeomorphisms γ of (M̃, g) and
functions v are given by: e2vg = γ∗g. From the Gauß equation, this inequality is
equivalent to

λ2k ≤
m

4(m− 1)Vol(M)

∫

M

S vg +
m

4(m− 1)Vol(M)
||τ(ι)||2 +

1

4Vol(M)
inf
{
||dv||2

}
.

Compare this result to a similar one obtained by I. Agricola and T. Friedrich when
m = 2 (see [1], Theorem 2).

Now we examine the limiting-case in (4) for the eigenvalue λ1.

Theorem 3 If (M̃, g) carries a maximal number of real non-parallel Killing spinors, then
the limiting-case in (4) is achieved for the smallest eigenvalue λ1 if and only if du = 0

and H2 +R(ι) is constant equal to
4λ21
m2 .

Proof : If equality is achieved in (4) for λ1, then for every real Killing spinor Ψ on (M̃, g),
we have D2ψ = λ21ψ. But identity (6) yields

λ21 =
m2

4

(
H2 +R(ι)

)
+

1

4
|du|2 +

1

2
△u,

from which we deduce
X0 ·Ψ+ Y0 · ν ·Ψ = 0.

If there exists a maximal number of α-Killing spinors on (M̃, g) (i.e. N = 2[
m+1

2
]), then

X0 and Y0 vanish identically on M . Indeed, fix a point x in M , and let Φ be in ΣxM̃ |M .

There exists a Killing spinor Ψ on (M̃, g) such that Ψx = Φ. The preceding identity
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says therefore that X0(x) · Φ + Y0(x) · νx · Φ = 0 is valid for every Φ in ΣxM̃ |M . The

representation Clm+1 −→ C(2[
m+1

2
]) of the complex Clifford algebra Clm+1 being injective,

we deduce that X0(x) + Y0(x) · νx = 0, from which it follows that X0(x) = Y0(x) = 0.
Furthermore, if α 6= 0, then du = 0 from the very definition of X0.

✷

Note If α 6= 0, then in the limiting-case λ1 6= 0 and ψ cannot be an eigenspinor for D.

Example Let (Hm+1, g) be the m+1-dimensional hyperbolic space (of constant sectional
curvature −1). Consider it as the upper half-sphere

{x = (x1, . . . , xm+2) ∈ R
m+2, x21 + . . .+ x2m+2 = 1 and xm+2 > 0},

carrying the metric g = 1
x2m+2

g0, where g0 is the standard metric on the round sphere

Sm+1. Since (Sm+1, g0) carries a maximal number of real non-parallel Killing spinors, we
can apply Theorem 2 and obtain: for 1 ≤ k ≤ 2[

m
2
],

λ2k ≤
m2

4Vol(M)

∫

M

(
H2 − 1

)
vg +

1

4Vol(M)

∫

M

g0(e
T
m+2 , e

T
m+2)vg,

where eTm+2 is the orthogonal projection of vector em+2 = (0, . . . , 0, 1) in Rm+2 onto the
tangent space of M . Besides, if the limiting-case is achieved in this inequality, then, from
Theorem 3, the function xm+2 is constant on M , i.e. M is a geodesic sphere centered at
em+2. Theorem 1 is hence proved.
Note that, because the group of isometries of (Hm+1, g) acts transitively on H

m+1, every
geodesic sphere satisfies:

λ21 =
m2

4

(
H2 − 1

)
.
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