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ON EIGENVALUE ESTIMATES FOR THE SUBMANIFOLD DIRAC
OPERATOR

NICOLAS GINOUX AND BERTRAND MOREL

ABSTRACT. We give lower bounds for the eigenvalues of the submanifold Dirac operator
in terms of intrinsic and extrinsic curvature expressions. We also show that the limiting
cases give rise to a class of spinor fields generalizing that of Killing spinors. We conclude
by translating these results in terms of intrinsic twisted Dirac operators.

1. INTRODUCTION

It is well known that limiting cases in classical estimates for the eigenvalues of the
fundamental Dirac operator on a compact manifold without boundary ([5],[8]) give rise
to special geometries. Indeed, these limiting cases are characterized by the existence of
special spinor fields, such as Killing spinor fields which imply severe restrictions on the
holonomy ([1]). Considering hypersurfaces bounding a domain, the hypersurface Dirac
operator has been introduced by E. Witten to prove the positive mass theorem [15].
The spinorial background that has been developped to extend the classical estimates
to hypersurfaces has now become a powerful tool to investigate extrinsic geometry and
manifolds with boundary problems (see e.g. [10],[11]).

In this direction, the spectrum of the submanifold Dirac operator has been studied in
[9], where some estimates are obtained for odd codimensions. In this paper, we first give
new lower bounds for the eigenvalues of the submanifold Dirac operator (Theorems 3.5
and 3.6) and discuss their limiting cases.

We start by restricting the spinor bundle of a Riemannian spin manifold to a spin
submanifold endowed with the induced metric. We then relate this bundle to the twisted
spinor bundle on the submanifold. For further study of the limiting cases, we have to
adapt the algebraic identifications of the spinor spaces and Clifford multiplications given
in [2].

Defining appropriate Dirac operators and relating them with the help of the spinorial
Gauss formula, the submanifold Dirac operator Dy is the natural generalization of the
hypersurface Dirac operator (see for example [16],[14]). We then get lower bounds for
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the eigenvalues of Dy in terms of the norm of the mean curvature vector, the Energy-
Momentum tensor associated with an eigenspinor, and an adapted conformal change of
the metric.

Lower bounds also involve the scalar curvature of the submanifold as well as a normal
curvature term which only appears in codimension greater than one.

As a consequence of our definitions, the established estimates hold for all codimensions
(compare with [9]).

Our identifications allow to discuss the limiting cases in terms of special sections of the
spinor bundle. These particular spinor fields generalize the notion of Killing spinors to
the spinor bundle of the submanifold twisted with the normal spinor bundle.

The main point of this paper is that such estimates (see also [16],[17],[9]) can always
be discussed in an intrinsic way by considering any auxiliary vector bundle attached to a
manifold instead of the normal bundle of a submanifold (see Theorems 4.1, 4.2, 4.3 and
4.4).

We would like to thank Oussama Hijazi for his support during the preparation of this
paper.

2. DIRAC OPERATORS ON SUBMANIFOLDS

2.1. Algebraic Preliminaries. In this section, we adapt algebraic material developped
by C. Bér in [2]. Basic facts concerning spinor representations can be found in classical
books (see [6],[12],[3] or [4]).

Let m and n be two integers, we start by constructing an irreducible representation
of the complex Clifford algebra Cl,,,, from irreducible representations p, and p,, of Cl,
and Cl,, respectively. Let X, be the space of complex spinors for the representation pj, .
Recall that if p is even, p, is unique up to an isomorphism, and if p is odd, there are two
inequivalent irreducible representations of Cl,; in this case, (p; , Ei), 7 = 0,1, denotes
the representation which sends the complex volume form to (—1)7 Idzé. So we have to
consider four cases according to the parity of m and n.

First case: Assume that n and m are even. Define

v :R"@R" — Endc(E,, ® 3,)
(0,0) — pn(v) ® (Idy: — 1dy ) + Ids,, ® pa(w),
where Y= is the 4-1-eigenspace for the action of the complex volume form w, of Cl,.

Recall that w,, = i[nTH]el - ...- ey, where (eq,...,e,) stands for any positively oriented
orthonormal basis of R” and ‘-’ denotes the Clifford multiplication in Cl,,. Then, for



o€ X, 0, for any vectors v € R™ and w € R", we have:

Aot w0 80) = pul0)0 @ (0" +0) + puv)o @ ()" — pu(uw)6?)
+pm(0)0 @ (pn ()" — pp(w)07) + 0 ® pp(w)*0
= (P + wP)o 6,

Therefore, since v(v + w)? = —|v + w|?Id, the map 7 induces a non trivial complex
. . . m+n . .
representation of Cl,,,, of dimension 272~ and so 7 is equivalent to p,1p.

With respect to the inclusions of Cl,,, and Cl,, in Cl,,,, corresponding to

R”™ — R™" =R"™ @ R" and R" — R™" =R" @ R"
v —> (v,0) w — (0,w),

we can write
m+4n+l
2 e e (1)

i e

Wm+tn —

1 e Cm " Cmtl "o Cmin

= Wp Wy
On the other hand, if ¢ € 3, and 6 € ¥,,, then for all v € R™,
V(v -wn)(o®0) = pm(v)o ®0. (2)
Therefore, since m is even, we have
V(Wmnin) (0 @ 0) = pr(wim)o @ pu(wn )b
so that
INTNEED IR DI D I D I
DVNITNEED I DI D Ml D I
We can then define
2=%,0%, =%, 0% ..
Second case : Assume that m is odd and n is even. For j =0, 1, set
¥ R™ @B R" — Ende (X, @ B,)
(v, w) = ph,(v) ® (Idgy — 1y ) +1dg; @ pp(w),

As before, the map 4/ induces a non trivial complex representation of Cl,,,, of dimension
21"3%) . Since Wy n = W - Wy as in (1), we have 77 (wpin) = (—1)71d, and therefore the
representations 47/ and p, ., are equivalent. Note that

V(v w,) =p (v)®1dg, , Vv ER™. (3)
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Third case : Assume that m is even and n is odd. For j =0, 1, set
7 R™@R" — Ende(Z,, ® ¥7)
. 0 —pm(v) .
('U, 0) 1 (pm('u) 0 ) ® IdE%

00— ("5 ) esiw)

where the matrices are given with respect to the decomposition %, = ¥} @ X . Once
again, 7/ is an irreducible complex representation of Cl,,,,. As in the previous case,
Wingn = W * Wy and we see that 17 (wyin) = (—1)1d.

So we proved that 47 is equivalent to p/, +n and

V(v - wy) = (—1)jipm(v)®1dzgl , YveR™. (4)
Fourth case : Assume that m and n are odd. Define
yt=%0 @ %0,
Y= @,
Y=Xtpx,

and

7 :R™"@®R" — End¢(Y)

(v,0) — ( 0 P (v) ®71>

—phn(v)®T 0
0 —Idso ® 771 o p; (w)
<“w”_’G¢&®ro&@0 0 ’

where 7 is an isomorphism from X0 to ¥} satisfying

Toph(w)ort = —p(w), VYweER"

Now, as in previous cases, we have y(v + w)? = —(Jv]? + |w|*)Idy for all v € R™ and
w € R™. Moreover, since in the case where m and n are odd, wy,+p, = —t Wy, - W, , We can
show that

Id 0
/Y(Wm—i-n) = ( 5]+ —Idz) .

Therefore we conclude that 7 is equivalent to pp,., and X, = 3%,

Besides, we have the relation

(% (v) ® Idso 0 m
v(v.wn):z(pm( )() =9 —p?n(v)®1dzgl)’ Vv e R™. (5)
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2.2. Restriction of Spinors to a Submanifold. Let (M M1 g) be a Riemannian spin
manifold and let M™ be an immersed oriented submanifold in M with the induced Rie-
mannian structure. Assume that (M™, gja) is spin. If NM is the normal vector bundle

of M in ]T/[/, then there exists a spin structure on N M, denoted by SpinN. Let SpinM X
Spin/V be the pull-back of the product fibre bundle SpinM X SpinN over M x M by the di-
agonal map. There exists a principal bundle morphism ® : SpinM X p; Spin/N' — SpinM|y,
with

O((sar, sn)(a, d')) = D((snr, sw))(a - a') (6)
for all (sps,sn) in SpinM X, SpinN and for all (a,a’) in Spin(m) x Spin(n), such that

the following diagram commutes :

SpinM x ; Spin N —2~ SpiHMM

N

M

7

SOM x 3 SON —— SOM
where the lower horizontal arrow is just given by juxtaposition of bases (see [13]).

Now, let S := ZMM, where XM is the spinor bundle of M and

XM ® XN if n or m is even,
XM ®@ XN @XM ® XN otherwise.

Recall that there exists a hermitian inner product on S, denoted by < .,. >, such that
Clifford multiplication by a vector of T'M|,; is skew-symmetric. In the following, we write

(.,.)=Re(<.,.>).

2.3. Identification of the Restricted Spinor Bundle. From the preceding consider-
ations, it is now possible to identify S with 3. For example, if m and n are even, we have
the following isomorphism:

SM@YXN — S
([SMv 0]7 [SNu 77]) — [q)<SM7 SN)7 oQ® 77]
where the last equivalence class is given, for all (a,a’) € Spin(m) x Spin(n), by
(@((sar,sw)(@. @), @) ~ (S(sar, ), v(a - ) (o @)
with respect to (6). From now on, the inverse of this isomorphism will be denoted by

b € D(S) = v* € D(2). (7)
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With respect to < .,.> and the naturally induced hermitian inner product on X, this
isomorphism is unitary. This is why both inner products will be denoted by the same
symbol when using this identification.

Let w, = w, if n is even, and w, = —iw, if n is odd. Recall that in both cases
w? = (—1)" (compare with the definition of w, in [9] and note that it keeps the same
properties). From (2), (3), (4) and (5), it is easy to see that, with respect to the repre-
sentation « defined in Section 2.1, Clifford multiplication by a vector field X tangent to
M satisfies

Vo ET(S), X .0t = (Xwiv)" ®)

2.4. The Gauss Formula and the Submanifold Dirac Operator. Fix p € M and
denote by (e1,...,€em,v1,...,,) a positively oriented local orthonormal basis of TMM
such that (e1,...,e,) (resp. (v1,...,1,)) is a positively oriented local orthonormal basis
of TM (resp. NM). If V denotes the Levi-Civita connection of (M, g), then for all
X el(TM), forall Y e I'(NM) and for i = 1,...,m, the Gauss formula can be written
as

Vi(X +Y) =Vi(X +Y) + h(e;, X) — h(e;, Y), (9)
where V;(X+Y) = VMX+VNY and h*(e;, .) is the transpose of the second fundamental
form h viewed as a linear map from 7'M to NM. Here V; stands for V..

Denote also by V and V the induced spinorial covariant derivatives on I'(S). Therefore,
on I'(S), V=V* @1d +1d ® V" except for n and m odd where V = (V*¥ @ Id +1d ®
VEN @ (VEM @1d +1d @ VEN). For ¢ € I'(S), the covariant derivative V4 is understood
via the relation (Vi)* = Vi*.

As in [2], one can deduce from (9) the spinorial Gauss formula:

~ 1 &
Ve €T(S), Vih=Vah+=> e hy-o. (10)
2 =
Now, define the following Dirac operators
=30 ¥, D=SeV.,

i=1 i=1
and, H = >""" h(e;, e;) denoting the mean curvature vector field,

Dy = (1w, - D = (-1)%L.D+%H.M.¢ (11)

since H -w,- = (=1)"'w, - H- and D = D — LH- by (10).

Remark 2.1. Another Dirac operator can be defined by using intrinsic Clifford multiplica-
tion and twisting the Dirac operator on the submanifold with the normal spinor bundle.



This has been done by C. Bér in [2] by setting
DYV T(E) — T(%)
> €i Iy Vip if m or n is even,

—
v Y€ y Vie® —=>, ¢ y Vie if m and n are odd.

In fact, with the help of (8) and (11), we can relate Dy and D3} by
1 *
(Dre) = ((“1)ws D+ SH i - 0)

= DNyt %(H ‘wy ), Y e T(S). (12)

It is known that Dy is formally self-adjoint and that D? = 5*5, where D* is the
formal adjoint of D w.r.t. [, (., .)v, (see [9]).

3. ESTIMATES FOR THE EIGENVALUES OF THE SUBMANIFOLD DIRAC OPERATOR

3.1. Basic Estimates. First, for any spinor field ¢ € I'(S), define the function

RY :=2) (ei-e; - Td@RY ¥, 0/|¢%) (13)

i,j=1

on My :={x € M : ¢(z) # 0}, where RY «; Stands for spinorial normal curvature tensor.
We start by giving a proof of the following result (see [9]):

Theorem 3.1 (Hijazi-Zhang). Let M™ C M™" be q compact spin submanifold of a

Riemannian spin manifold (M, g). Consider a non-trivial spinor field ¢ € T'(S) such that
Dyt = M. Assume that m > 2 and

m(R+ Ry) > (m—1)|[H|]* >0

on My, where R is the scalar curvature of (M™, gar) and RY is given by (13). Then one
has

2
1 . m
)\221 %15(\/H(R+Rﬁ)—||H||) ) (14)

Proof: For any function ¢, nowhere equal to %, define the modified connection,

1—g¢q

>‘— . - -
V= Vit 3

e -H-+qle;-wy - .
Using the Lichnerowicz-Schrodinger formula (see [12]) we have

(D%,) = (V*Vi,0) + (R + RY) [P,
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and one can easily compute

/M‘VAIM%Q =

R T T ) [

Then, assuming m(R + R}) > (m — 1)[|H||* > 0 on My, we can choose ¢ so that
(m —DI[H]|

Vg (B4 RY) = |IH]|

Inserting equation (16) in (15), and since the complement of My, in M is of zero-measure,
we conclude by observing that the left member of (15) is nonnegative. O

(1—mq)* = on M. (16)

Let s be the lowest eigenvalue of the self-adjoint operator R defined by
RN . T(S) — T(S) (17)
p — 2> eie Id@RY, o (18)
ij=1
The hypothesis m(R + R)) > (m — 1)||H||> > 0 in Theorem 3.1 can be strengthened to
give
Corollary 3.2. Under the same hypotheses as in Theorem 3.1, assume that m > 2 and
m(R+ k1) > (m = D|[H|* >0
on M, then

A2 > i inf (\/%(RJF/@) _ HH||)2 | (19)

Recall that in the case of hypersurfaces, limiting cases are characterized by the existence
of a real Killing spinor on M and the fact that the mean curvature H is constant (see [16]
and [14]). A non-zero section ¢ of S satisfying

VX € I(TM), Vyu* = —1X . y*
m M
for a given real constant p will be called a twisted (real) Killing spinor.

Proposition 3.3. If equality holds in (19), then (M™, gjar) admits a twisted Killing spinor

and ||H|| is constant.

Proof: Suppose the limiting case holds in (19), then the right hand side has to be constant
on M, and

vzi(\/%uﬂm)— IH|)?, V=0, onM. (20)
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Note that equality holds in (14) which yields R} = x; . Hence 1) is an eigenspinor for the
operator RY with eigenvalue ;. Using (20), we can show that |¢)| must be constant on
M (therefore, My, = M) and compute

Dy = —;ei-<m6i-H-@/}+qui-wL-@/})

m(l —q)
2(1 —mq)

Then, by (11) and the fact that H -w,- = (=1)""tw, - H-,

_ il m(l —q)
0 = )\Wi'@z)+§'¢_m

0 = (1—mq)2)\wL-@Z)—(m—1)g-w.

H -+ mglw, -v.

H -+ —mglw, -9

Since in the equality case, /-7 (R + x1) — ||H|| = 2|A|, we can deduce the relation:

H
wl-@Z):sgn()\)M- :

[T )

With respect to the isomorphism , we can rewrite equation (20) as an intrinsic
equation on I'(X):
VX € D(TM), Vx* = —2Xx . o

m. M
A
with  p = sgnz( )\/ ml(RJrKJl).
m_

Note that if there exists two smooth real functions f and x on M and a non-zero section
1 of S satisfying for all vector field X on M

f

m

Vxy* = — XMw* and RNY = k1),

then, by computing the action of the curvature tensor on ¥*, we see that necessarily

m—1

fQX]\'/[w*

m2

1 - 1
SRic(X) - ¢ — ;@@- JA@RY, )" = ——df - X - " —df(X)y" +2

which implies
m

f2:4(m—1)

Moreover, in the equality case, the fact that f is constant implies that || H|| is constant. [

(R + k) = constant .

Remark 3.4. If the normal curvature tensor is zero, then p has to be constant and the
manifold M must be Einstein with mean curvature vector being of constant length. Be-
sides, the equality case corresponds to that of Friedrich’s inequality. Therefore p is the
first eigenvalue of the Dirac operator D3/.
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3.2. Estimate Involving the Energy-Momentum Tensor. If ) € I'(S) is a spinor
field, we define the Energy-Momentum tensor Q¥ associated with ¢ on M, by

1
Q’Z’; = 5(61 . CLJJ_ * ij + ej ‘ wJ_ : v2w7’l/}/|’l/}‘2)
Note that
1 . * ik |k

Therefore, Q¥ is the intrinsic Energy-Momentum tensor associated with *. Observe
that this intrinsic Energy-Momentum tensor is the one that appears in the Einstein-Dirac
equation (see [7]). We prove the following (compare with [14])

Theorem 3.5. Let M™ C M™™ be q compact spin submanifold of a Riemannian spin
manifold (M, g). Consider a non-trivial spinor field ¢» € T'(S) such that Dy = M.
Assume that

R+ k1 +4|QY12 > ||H|*>> 0
on My. Then one has

1 2
¥ > 2t (VR s QU — 1) (21)

Proof: For any real function ¢ that never vanishes, consider the modified covariant deriv-
ative defined on I'(S) by

1 n

As in the proof of Theorem 3.1, we compute

/M VP, =

1R+ RY+41Q%P  ||H|]?
AJ<1+mQ2>[A2_Z< 1+meg)  mg? ﬂw'%g

1 ) 2 y, < H- w1 >2
1 [ ) [ - S

To finish the proof of Theorem 3.5, if R + k1 + 4|Q¥|*> > ||H||? > 0, we take

i, (@22)

, 1]
m(V/R+ k1 +4|Q¥2 — || H]|)
and then observe that by the Cauchy-Schwarz inequality, we have

H|> -
|| H]| W >
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Suppose now that equality holds in (21). Then

1
VO=0 , W=3 (VE+m+AQ P —[IH|l) and Ry =rp.

Moreover,
<H- 1/’7 Wy - 'QZ) >2
IH| - L Ea}
]
so that, by the equality case in the Cauchy-Schwarz inequality,
wi = fH -1,

for some real function f on M. As in the preceding section, and taking into account the

identification (7), we deduce that f = Sﬁ%ﬁ), and that the section v satisfies

Vir = — Z QL e L (24)

Hence, we can say that ¢ is a kind of Energy-Momentum spinor (see [14]). We will
call such a section a twisted EM-spinor. One can give an integrability condition for the
existence of twisted EM-spinors, by computing the action of the curvature tensor on I'(S):

(tr(QV) = J(R+ RY + 41Q"P).

This implies, with equation (24), that the section ¥* is an “eigenspinor” for D3} associ-
ated with the function £1/R + k1 + 4|Q?[?. Note that this function is constant if and
only if ||H|| is constant.

3.3. Conformal Lower Bounds. Consider a conformal change of the metric g = e?g
for a real function v on M. Let

S —S8§ (25)
o=
be the induced isometry between the two corresponding spinor bundles. Recall that if ¢,
1 are two sections of S, and Z any vector field on M, we have

(0, 9) = (@,9)g and Z-¢ =274,
where Z = e™"Z. We will also denote by § = (e*g)m the restriction of g to M.

W%

Note that this isomorphism commutes with the isomorphism given by (7). By

conformal covariance of the Dirac operator, for ¢ € I'(S), we have,

E( 6_(m2—1)u@> :e_(mgl)UD—w’ (26)

where D stands for the Dirac operator w.r.t. to g. On the other hand, the corresponding
mean curvature vector field is given by

H=e2 (H —m grad® u) (27)
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Now, assume that grad™ v = 0. If Dy stands for the submanifold Dirac operator w.r.t.
to g, equations (26) and (27) imply that Dy is a conformally covariant operator, i.e.

Dy <6_@“@> = <D—H@Z)) (28)

for any section 1 of S.

JFrom now on, we will only consider regular conformal changes of the metric, i.e.,
g = e**g with grad¥u =0, on M.

Theorem 3.6. Let M™ C M™" be q compact spin submanifold of a Riemannian spin
manifold (M, g). Consider a non-trivial spinor field 1» € T'(S) such that Dy = M. For

any reqular conformal change of the metric g = e**g on M, assume that
Re®™ + ky +4|QY)? > ||H|[? > 0
on My. Then one has

1 — 2
N> inf (\/R62“ FoRy +4QU)? — ||H||) . (29)

My

n—1

Proof: For 1 € T'(S) an eigenspinor of Dy with eigenvalue A, let B := e~ "2 “1). Then
(28) gives Dy @ = X e~ . Recall that

vi@: Vb — % e - du -1y — %ei(u) E7

1
R

QP =@ P (30)
Equation (22), which is also true on (M ,g), applied to ® yields

_a_

/|V 90|2U§:

M

L U RAR AT IR
| e ma) e - (1 )12 v
1 2 2 — ’
: /M (14 m6°) [ 1 =

i ~ — —N
Since H = e ™"H, and R; = e‘Qufo, we have

_6_

/M|v 12y =

o 1 /Re®™ + RY +4|Q¥)*  ||H||?\7,_
/M<1+mq2>€ 2 [)\2_1< ¢ || H]| )}‘(‘0‘2%

_1 2\ ,—2u # 2_<H'77Z)7WL'77Z)>2
: /M (1t ) [ 1| e

and e; = e "e;. Now, it is straightforward to get @% = e "(Q),:, hence,

(1 +mg?) mq?

(1+mg?) mgq®

)| 2fes
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As in the proof of Theorem 3.5, we finally take

]
m(y/Re2 + i +41QV ] — ||HI))

q:

and use the Cauchy-Schwarz inequality (23). OJ
If the hypothesis in Theorem 3.6 is satisfied by an eigenfunction u; associated with the
first eigenvalue p; of the Yamabe operator, then one has:

Corollary 3.7. Under the same conditions as in Theorem 3.6, assume that m > 3 and
w1+ K1+ 41QY)2 > [|H||? > 0 on My, then

A2>1‘f\/ 140°F — |||
=R 1+ ke +4[QV —[[HI[)

Corollary 3.8. Under the same conditions as in Theorem 3.6, if M 1is a compact surface

of genus zero and rea(M) + k1 +4|Q¥|* > ||H||* > 0 on My, then

2
1 8
)\2>Z1Df<\/m+lil+4|Qw|2_||H||> .

Now suppose that equality holds in (29). Then

H
=0, wy Y= where € € {£1},
Y
1
A = 3 ( Re* + ky +4|Q¥]2 — ||HH) and RN = k1) .
Using (25) and (30), it follows € = sgn(\) and
1
Vip* = 56 ) M @/} + du (€;)y ZQ” ¢ (31)

with du = M. Non-trivial spinor fields satisfying equation (31) will be naturally

m

called twisted WEM-spinors (compare with [14]).

4. FINAL REMARK

In this section, we show that the normal bundle of the submanifold can be replaced
by an auxiliary arbitrary vector bundle on the submanifold. Thus, all the preceding
computations could be done in an intrinsic way to obtain results for a twisted Dirac
operator on the manifold.

Let (M™,g) be a compact Riemannian spin manifold. Let N — M be a Riemannian
vector bundle of rank n over M. Suppose that N is endowed with a metric connection
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V¥ and a spin structure. Let XM (resp. XN) be the spinor bundle of M (resp. N). Set
Y:=XM®XN.
Recall that Clifford multiplication on I'(X) by a tangent vector field X is given by:
Vip e D(X), X -4 = (pu(X) @ lduy) ().
Define the tensor-product connection V on I'(X) by
V=V g@Ildgy + Idey @ VY,

where VM and V*V are the induced connections on I'(XM) and ['(EN) respectively.
Let DYV be the twisted Dirac operator given by

D]X\}N = €; Vz
i=1
For any smooth real function f on M, define the modified twisted Dirac operator by

D; =Dy — g
For A € R, consider the following modified connections
S 1—q)f
V) = V., (7 i tghe; -
i +2(1_mq)e +qAe
-Q f n+1 P
Ve = Vi‘g—n,qei'+(‘1) qui-+;Qlje

where Qv is now the intrinsic Energy-Momentum tensor associated with /.

Note that these connections can be obtained from those defined in section 3, assuming
that
H-¢=fw 9.
In fact, this is the only way to give an intrinsic meaning to the modified connection used
before. Then the same computations as in the proofs of Theorem 3.1, 3.5 and 3.6, lead
to the following assertions:

Let (M™, g) be a compact Riemannian spin manifold with N — M an auxiliary oriented
Riemannian spin vector bundle of rank n. Let ¢ € I'(X) be an eigenspinor for the modified
twisted Dirac operator Dy, associated with the eigenvalue A. Then,

Proposition 4.1. Assume that m > 2 and m(R + k1) > (m —1)f* > 0 on My. Then

one has
)\2>— 1nf(\/7 (R+ k1) — |f|)

If equality holds, (M™, g) admits a twisted Killing spinor.

Following the proof of Theorem 3.6, we can extend the previous theorem by per-
forming a conformal change of the metric on M. For the limiting case, just note that

QY = Ltr(QY)g.
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Proposition 4.2. Assume that m > 2 and m(Re** + k1) > (m — 1)f% > 0 on M, for
any conformal change of the metric g = e*'g on M. Then one has

2 > - mf (\/ (Re2 + k) — |f\)
m—l

If equality holds, (M™,q) admits a twisted WEM-spinor, with Q¥ = g, where

1 m
W= g B ).

Proposition 4.3. Assume that R+ k1 + 4|QY|*> > f2> 0 on My. Then one has
1 2
N> < inf (VR 4QF - |f))
4 My

If equality holds, (M™, g) admits a twisted EM-spinor.

Proposition 4.4. Assume that Re* + k; + 4|Q¥|*> > f? > 0 on My, for any conformal
change of the metric g = 62“g on M. Then one has

A > 7 inf (\/Re2“ + k1 +4]Q¥|2 — |f|)
If equality holds, (M™,g) admits a twisted WEM-spinor.

Remark 4.5. Assuming the normal curvature tensor is zero and f is constant, then the
necessary conditions for the equality cases in Theorem 4.1, 4.2, 4.3 and 4.4 become suf-
ficient conditions. Moreover, when m is odd, the considered Dirac operator may have to
be defined with the opposite Clifford multiplication according to the sign of f.

Remark 4.6. We would like to thank Christian Bar for the following suggestion: all in-
equalities which appear in the hypotheses of our theorems and propositions can be taken
in the large. This can be done by choosing an adapted function ¢. depending continuously
on a parameter € > 0 instead of the function ¢ in the proof of the above Theorems. We
then obtain our inequalities when ¢ tends towards 0.
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